常微分方程数值解实验
- 格式:pdf
- 大小:346.80 KB
- 文档页数:12
数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。
本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。
二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。
本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。
2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。
本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。
3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。
本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。
4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。
本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。
三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。
在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。
在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。
在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。
在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。
四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。
在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。
数学与计算科学学院实验报告实验项目名称欧拉法解常微分方程所属课程名称数值计算实验类型验证型实验日期2012-6- 4班级隧道1002班学号201008020233姓名李彬彬成绩一、实验概述:【实验目的】 通过运用相关的数值计算软件,解决最基本的常微分方程的数值计算,并且能够熟练的运用这种方法。
【实验原理】 欧拉法1.对常微分方程初始问题(9.2))((9.1)),(00⎪⎩⎪⎨⎧==y x y y x f dxdy用数值方法求解时,我们总是认为(9.1)、(9.2)的解存在且唯一。
欧拉法是解初值问题的最简单的数值方法。
从(9.2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(9.3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为y (x 1)的近似值。
利用y 1及f (x 1, y 1)又可以算出y (x 2)的近似值:),(1112y x hf y y +=一般地,在任意点x n +1 = (n + 1)h 处y (x )的近似值由下式给出),(1n n n n y x hf y y +=+(9.4)这就是欧拉法的计算公式,h 称为步长。
不难看出,近似解的误差首先是由差商近似代替微商(见(9.3))引起的,这种近似代替所产生的误差称为截断误差。
还有一种误差称为舍入误差,这种误差是由于利用(9.4)进行计算时数值舍入引起的。
【实验环境】Windows XP 环境下运行 NumericalAnalyse 软件二、实验内容:【实验方案】在区间[0,1]上以h=0.1为步长,分别用欧拉法与预估-校正法求初值问题y’=y-2x/y且 y|x=0 =1的数值解。
将上述方程输入到软件NumericalAnalyse中步骤如图选择常微分方程的数值解法。
微分方程数值解法实验报告2篇微分方程数值解法实验报告(一)在实际科学与工程问题中,我们经常会遇到微分方程的求解。
然而,许多微分方程往往没有解析解,这就需要我们利用数值方法来获得近似解。
本篇实验报告将介绍两种常见的微分方程数值解法:欧拉方法和改进的欧拉方法。
一、欧拉方法欧拉方法是最简单的微分方程数值解法之一。
其基本原理为离散化微分方程,将微分方程中的导数用差商代替。
设要求解的微分方程为dy/dx = f(x, y),步长为h,则可用以下公式进行递推计算:y_{n+1} = y_n +hf(x_n, y_n)二、算法实现为了对欧拉方法进行数值实验,我们以一阶线性常微分方程为例:dy/dx = x - y, y(0) = 1步骤如下:(1)选择合适的步长h和求解区间[a, b],这里我们取h=0.1,[a, b] = [0, 1];(2)初始化y_0 = 1;(3)利用欧拉方法递推计算y_{n+1} = y_n + 0.1(x_n - y_n);(4)重复步骤(3),直到x_n = 1。
三、实验结果与讨论我们通过上述步骤得到了在[0, 1]上的近似解y(x)。
下图展示了欧拉方法求解的结果。
从图中可以看出,欧拉方法得到的近似解与精确解有一定的偏差。
这是因为欧拉方法只是通过递推计算得到的近似解,并没有考虑到更高阶的误差。
所以在需要高精度解时,欧拉方法并不理想。
四、改进的欧拉方法针对欧拉方法的不足,我们可以考虑使用改进的欧拉方法(也称为改进的欧拉-柯西方法)。
它是通过利用前后两个步长欧拉方法得到的结果作为差商的中间项,从而提高了求解精度。
一阶线性常微分方程的改进欧拉方法可以表示为:y_{n+1} = y_n + h(f(x_n, y_n) + f(x_{n+1}, y_n + hf(x_n,y_n)))/2五、算法实现与结果展示将改进的欧拉方法应用于前述的一阶线性常微分方程,我们同样选择h=0.1,[a, b] = [0, 1]。
浙江大学城市学院实验报告课程名称数值计算方法实验项目名称常微分方程初值问题的数值解法 实验成绩指导老师签名日期2015/12/16 一.实验目的和要求1. 用Matlab 软件掌握求微分方程数值解的欧拉方法和龙格-库塔方法; 2. 通过实例学习用微分方程模型解决简化的实际问题;二.实验内容和原理编程题2-1要求写出Matlab 源程序m 文件,并有适当的注释语句;分析应用题2-2,2-3,2-4,2-5要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上; 2-1 编程编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下:在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句; Euler 法y=eulera,b,n,y0,f,f1,b1改进Euler 法y=eulerproa,b,n,y0,f,f1,b1 2-2 分析应用题假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题()()20(0)10y t y t y '=-⎧⎨=⎩并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度; 2-3 分析应用题用以下三种不同的方法求下述微分方程的数值解,取10h = 画出解的图形,与精确值比较并进行分析; 1欧拉法; 2改进欧拉法; 3龙格-库塔方法;2-4 分析应用题考虑一个涉及到社会上与众不同的人的繁衍问题模型;假设在时刻t 单位为年,社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人;而固定比例为r 的所有其他的后代也是与众不同的人;如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为:其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量;1假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形;2精确求出微分方程的解()p t ,并将你当50t =时在分题b 中得到的结果与此时的精确值进行比较; MATLAB 相关函数求微分方程的解析解及其数值的代入dsolve‘egn1’,‘egn2’,‘x ’ subsexpr,{x,y,…},{x1,y1,…}其中‘egn i ’表示第i 个方程,‘x ’表示微分方程中的自变量,默认时自变量为t ; subs 命令中的expr 、x 、y 为符合型表达式,x 、y 分别用数值x1、x2代入; >>symsxyz>>subs'x+y+z',{x,y,z},{1,2,3} ans= 6>>symsx>>subs'x^2',x,2 ans= 4>>s=dsolve‘12Dy y ∧=+’,‘(0)1y =’,‘x ’ ans= >>symsx >>subss,x,2 ans=右端函数(,)f x y 的自动生成f=inline ‘expr ’,’var1’,‘var2’,……其中’expr ’表示函数的表达式,’var1’,‘var2’表示函数表达式中的变量,运行该函数,生成一个新的函数表达式为fvar1,var2,……; >>f=inline'x+3y','x','y' f=Inlinefunction: fx,y=x+3y >>f2,3 ans= 114,5阶龙格-库塔方法求解微分方程数值解t,x=ode45f,ts,x0,options其中f 是由待解方程写成的m 文件名;x0为函数的初值;t,x 分别为输出的自变量和函数值列向量,t的步长是程序根据误差限自动选定的;若ts=t0,t1,t2,…,tf,则输出在自变量指定值,等步长时用ts=t0:k:tf,输出在等分点;options 用于设定误差限可以缺省,缺省时设定为相对误差310-,绝对误差610-,程序为:options=odeset ‘reltol ’,rt,’abstol ’,at,这里rt,at 分别为设定的相对误差和绝对误差;常用选项见下表;选项名 功能 可选值 省缺值 AbsTol 设定绝对误差正数 RelTol 设定相对误差 正数InitialStep 设定初始步长 正数 自动 MaxStep设定步长上界正数MaxOrder 设定ode15s 的最高阶数 1,2,3,4,5 5 Stats 显示计算成本统计 on,off off BDF 设定ode15s 是否用反向差分on,offoff例:在命令窗口执行>>odefun =inline ‘2*y t y -’,‘t ’,‘y ’;>>[],45(,[0,4],1)t y ode odefun =;ans=>>t y ‘o-’,%解函数图形表示>>45(,[0,4],1)ode odefun %不用输出变量,则直接输出图形 >>[],45(,0:4,1)t y ode odefun =;[],t yans=三.操作方法与实验步骤包括实验数据记录和处理2-1编程编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下:在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句; Euler 法y=eulera,b,n,y0,f,f1,b1改进Euler 法y=eulerproa,b,n,y0,f,f1,b1Euler 法y=eulera,b,n,y0,f,f1,b1 y=zeros1,n+1; y1=y0; h=b-a/n; x=a:h:b; fori=1:n; yi+1=yi+hfxi,yi; end plotx,y holdon%求微分方程的精确解 x1=linspacea,b,100; '精确解为' s=dsolvef1,b1,'x' symsxy1=zeros1,100; for i=1:100y1i=subss,x,x1i; endplotx1,y1,'r'title'红色代表精确解'改进Euler 法y=eulerproa,b,n,y0,f,f1,b1 %求微分方程的数值解 y=zeros1,n+1; y1=y0; h=b-a/n; x=a:h:b; fori=1:n; T1=fxi,yi; T2=fxi+1,yi+hT1; yi+1=yi+h/2T1+T2; end plotx,y holdon%求微分方程的精确解 x1=linspacea,b,100; '精确解为' s=dsolvef1,b1,'x' symsxy1=zeros1,100; fori=1:100 y1i=subss,x,x1i; endplotx1,y1,'r'title'红色代表精确解' 2-2分析应用题假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题()()20(0)10y t y t y '=-⎧⎨=⎩并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度;1向前欧拉法>>euler0,10,100,10,inline'y-20','x','y','Dy=y-20','y0=10' ans= 精确解为 s= 20-10expx ans= +005Columns1through8(2)改进欧拉法>>eulerpro0,10,100,10,inline'y-20','x','y','Dy=y-20','y0=10' ans= 精确解为 s= 20-10expx ans= +005Columns1through8改进欧拉法的精度比向前欧拉法更高; 2-3分析应用题用以下三种不同的方法求下述微分方程的数值解,取10h = 画出解的图形,与精确值比较并进行分析; 1欧拉法; 2改进欧拉法;2-4分析应用题考虑一个涉及到社会上与众不同的人的繁衍问题模型;假设在时刻t 单位为年,社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人;而固定比例为r 的所有其他的后代也是与众不同的人;如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为:其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量;1假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形;2精确求出微分方程的解()p t ,并将你当50t =时在分题b 中得到的结果与此时的精确值进行比较;1>>euler0,50,50,,inline'','t','p','Dp=','p0= 1' ans= 精确解为 s=1-99/100expx/500 ans=Columns1through82>>dsolve'Dp=','p0=','t' ans=1-99/100expt/500 >>1-99/100exp ans=与欧拉法求得的精确值差0,0001四.实验结果与分析。
实验5 常微分方程的数值解概要:将装满放射性废物的圆桶扔到水深300ft 的海底,圆桶体积55gal ,装满废料的桶重为527.436lbf ,在海中浮力为470.327lbf 。
此外,下沉时受到的阻力与速度成正比,比例系数为0.08lbf/s 。
实验发现当圆桶速度超过40ft/s 时,就会因与海底冲撞而破裂。
要求:(1)建立解决上述问题的微分方程模型(2)用数值和解析两种方法求解微分方程,并回答谁赢得了官司。
模型建立由牛顿第二定律可列出圆桶下沉速度的微分方程:dv G F f G F bv dt m m ----==其中G 为圆桶重量,F 为浮力,b 为下沉阻力与速度关系的比例系数。
换算到国际单位制,dept=300*0.3048=91.4400 海深(m )ve=40*0.3048=12.1920 速度极限(超过就会使圆筒碰撞破裂)(m/s) G=527.436*0.4536*9.8=2344.6 圆筒重量(N ) F=470.327*0.4536*9.8=2090.7 浮力(N)m=527.436*0.4536=239.24 圆筒质量(kg ) b=0.08*0.4536*9.8/0.3048=1.1667 比例系数(Ns/m) 模型求解 一.求数值解Matlab 程序如下: sd.m:function dx=sd(t,x,G,F,m,b) dx=[(G-F-b*x)/m];%微分方程sddraw.m: clear;G=527.436*0.4536*9.8;%圆筒重量(N ) F=470.327*0.4536*9.8;%浮力(N)m=527.436*0.4536;%圆筒质量(kg )b=0.08*0.4536*9.8/0.3048%比例系数(Ns/m) h=0.1;%所取时间点间隔ts=[0:h:2000];%粗略估计到时间2000 x0=0;%初始条件opt=odeset('reltol',1e-3,'abstol',1e-6);%相对误差1e-6,绝对误差1e-9 [t,x]=ode45(@sd,ts,x0,opt,G ,F,m,b);%使用5级4阶龙格—库塔公式计算 %[t,x]%输出t,x(t),y(t)plot(t,x,'-'),grid%输出v(t)的图形 xlabel('t'); ylabel('v(t)');%用辛普森公式对速度积分求出下沉深度 T=20;%估计20s 以内降到海底for i=0:2:10*T%作图时间间隔为0.2 y=x(1:(i+1)); k=length(y);a1=[y(2:2:k-1)];s1=sum(a1); a2=[y(3:2:k-1)];s2=sum(a2);z4((i+2)/2)=(y(1)+y(k)+4*s1+2*s2)*h/3;%辛普森公式求深度 endi=[0:2:10*T]; figure;de=300.*0.3048.*ones(5*T+1,1);%海深ve=40.*0.3048*[1 1];%速度极限值(超过就会使圆筒碰撞破裂)plot(x(i+1),z4',x(i+1),de,ve,[0 z4(5*T+1)]);%作出速度-深度图线,同时画出海深和速度要求grid;gtext('dept'),gtext('Vmax');xlabel('v');ylabel('dept(v)');figure;plot(i/10,z4');%作出时间-下降深度曲线grid;xlabel('t');ylabel('dept(t)');求解结果如下图:速度—时间曲线:可以看到经过足够长的时间后,如若桶没有落到海底,它的速度会趋于常值。
常微分方程的数值解法与实际应用研究引言:常微分方程是数学中一种重要的数学工具,广泛应用于物理、经济、生物等领域的实际问题的数学建模。
在解析求解常微分方程存在困难或不可行的情况下,数值解法提供了一种有效的求解方法,并被广泛应用于实际问题的研究中。
本文将介绍常微分方程的数值解法以及一些实际应用的研究案例。
一、常微分方程的数值解法:1. 欧拉法:欧拉法是一种基础的数值解法,通过将微分方程离散化,近似得到方程的数值解。
欧拉法的基本思想是根据微分方程的导数信息进行近似计算,通过逐步迭代来逼近真实解。
但是欧拉法存在截断误差较大、收敛性较慢等问题。
2. 改进的欧拉法(改进欧拉法推导过程略):为了解决欧拉法的问题,改进的欧拉法引入了更多的导数信息,改善了截断误差,并提高了算法的收敛速度。
改进欧拉法是一种相对简单而可靠的数值解法。
3. 四阶龙格-库塔法:四阶龙格-库塔法是常微分方程数值解法中最常用和最经典的一种方法。
通过多次迭代,四阶龙格-库塔法可以获得非常精确的数值解,具有较高的精度和稳定性。
二、常微分方程数值解法的实际应用研究:1. 建筑物的结构动力学分析:建筑物的结构动力学分析需要求解一些动力学常微分方程,例如考虑结构的振动和应力响应。
利用数值解法可以更好地模拟建筑物的振动情况,并对其结构进行安全性评估。
2. 生态系统模型分析:生态系统模型通常包含一系列描述物种数量和相互作用的微分方程。
数值解法可以提供对生态系统不同时间点上物种数量和相互作用的变化情况的模拟和预测。
这对于环境保护、物种保护以及生态系统可持续发展方面具有重要意义。
3. 电路模拟与分析:电路模拟与分析通常涉及电路中的电容、电感和电阻等元件,这些元件可以通过常微分方程进行建模。
数值解法可以提供电路中电压、电流等关键参数的模拟和分析,对电路设计和故障诊断具有重要帮助。
4. 化学反应动力学研究:化学反应动力学研究需要求解涉及反应速率、物质浓度等的微分方程。
实验4 常微分方程数值解化学工程系分9班焦阳2009011813 【实验目的】1. 掌握用MATLAB软件求微分方程初值问题数值解的方法;2. 通过实例学习用微分方程模型解决简化的实际问题;3. 了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。
【实验内容】1.题目3:小型火箭初始重量为1400kg,其中包括1080kg燃料。
火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃烧用尽时关闭。
设火箭上升时空气阻力正比于速度的平方,比例系数为0.4kg/m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。
建立模型并进行分析:假设火箭在上升过程中,重力加速度g不随高度而变化,即固定g = 9.8m/s^2。
、(1)从火箭开始上升到引擎关闭:设火箭质量为m,高度为h,速度为v,加速度为a,阻力为f:,,ﭸ由牛顿第二定律可得:总ﭸ综上可得:;ﭸ;初值条件为:,;定义域为:。
根据常微分方程组的初值问题,在MATLAB中计算数值解,记,,, 。
通过解出微分方程的数值解,并进行绘图得到高度-时间曲线,速度-时间曲线,加速度-时间曲线如下:由MA度、速度t(s MATLAB 计算速度、加速度如下t(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 计算得到的火箭度如下表:h(m)06.57326.4459.76106.5166.7240.2326.7425.7536.9659.8793.6937.81091.1254.1425.1604.1790.1983.2181.2384.的火箭从开始上h(m) 0 6.5737 26.444 59.762 106.57 166.79 240.27 326.72 425.79 536.99 659.8 793.63 937.85 1091.8 1254.7 1425.9 1604.8 1790.8 1983.1 2181.2 2384.5 开始上升到关闭引v(m/s)0 13.18926.57740.06253.53566.89 80.02192.829105.22117.11128.43139.14149.18158.55167.23175.22182.55189.22195.27200.75205.7 关闭引擎这段时间/s) 189 577 062 535 021 829 .22 .11 .43 .14 .18 .55 .23 .22 .55 .22 .27 .75 段时间内各时刻a(m/s^2)13.0571413.304513.4532813.4971913.4331313.2613112.9853412.6121912.1519511.6169311.0212710.38 9.7083329.0209048.3309057.6502496.9900526.3593395.7646125.2094884.694626各时刻的高^2)71404532871931313153421919569312733290490524905233961248862621 2592.4 210.18 4.22201222 2804.5 214.19 3.79432623 3020.6 217.79 3.41201724 3240.1 221.01 3.07303925 3462.7 223.92 2.7726326 3687.9 226.56 2.50440927 3915.6 228.97 2.26774828 4145.6 231.14 2.06332529 4377.8 233.11 1.88975930 4611.9 234.91 1.74334931 4847.7 236.57 1.6177932 5085 238.14 1.50617933 5323.8 239.61 1.40954434 5564.1 240.99 1.32933135 5805.8 242.28 1.2650336 6048.7 243.5 1.21393737 6292.9 244.68 1.17083938 6538.1 245.83 1.1302639 6784.5 246.96 1.09469840 7032 248.05 1.06634841 7280.5 249.1 1.04558942 7530.2 250.12 1.03075943 7780.9 251.14 1.01781844 8032.5 252.15 1.00237545 8285.1 253.16 0.98756846 8538.8 254.15 0.97632347 8793.4 255.12 0.96963948 9049 256.07 0.96629149 9305.6 257.03 0.96239250 9563.1 257.99 0.95272351 9821.5 258.95 0.9411852 10081 259.9 0.93372753 10341 260.83 0.93277654 10603 261.75 0.93633455 10865 262.67 0.9369556 11128 263.61 0.92584757 11392 264.54 0.91379358 11657 265.46 0.91062859 11923 266.35 0.9161260 12190 267.26 0.917011根据表格可以很容易得到:关闭引擎的瞬间,h=12190m,v=267.26m/s,a=0.917011m/s^2。