大学物理 液体的表面性质
- 格式:pdf
- 大小:1.88 MB
- 文档页数:56
南昌大学物理实验报告课程名称:普通物理实验(1)实验名称:液体表面张力的测定学院:理学院专业班级:应用物理学152班学生姓名:学号:实验地点:B608 座位号:26实验时间:第十三周星期四上午10点开始一、实验目的:1、了解水的表面性质,用拉脱法测定室温下水的表面张力系数。
2、学会使用焦利氏秤测量微小力的原理和方法。
二、实验仪器:焦利称、砝码、镊子、砝码盘与金属圆环、小塑料盆、自来水。
三、实验原理:液体表面层内分子相互作用的结果使得液体表面自然收缩,犹如紧张的弹性薄膜。
由于液面收缩而产生的沿着切线方向的力称为表面张力。
设想在液面上做长为L的线段,线段两侧便有张力F f相互作用。
其方向与L垂直,大小与线段长度L成正比。
即:F f=γL比例系数γ称为液体表面张力,其单位是N∙m−1。
将一表面洁净的长为L、宽为d的矩形金属片(或金属丝)竖直进入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂是,则有:F=my+F f式中F为把金属片拉出液面时所用的力;mg为金属片和带起的水膜的总重量;f为张力。
此时,F f与接触面的周围边界为2(L+d),代入得:γ=F−mg2(L+d)本实验用金属圆环代替金属片,则有:γ=F−mgπ(d1+d2)=k∆s̅̅̅π(d1+d2)式中d1、d2分别为圆环的内外直径,k为弹簧的劲度系数,∆s̅̅̅为弹簧的伸长量。
实验表明,γ与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高,γ值越小,液体含杂质越多,γ值越小。
只要上述条件保持一定,则γ是一个常量。
第3章 液体的表面性质3.1 内容提要(一)基本概念1. 表面张力:液体的表面犹如张紧的弹性薄膜,具有收缩的趋势,即液体表面存在着张力,称为表面张力。
它是液体表面层内分子力作用的结果。
2.表面张力系数:用于反映液体表面性质的物理量,三种定义如下:(1)表面张力系数表示在单位长度直线两旁液面的相互拉力。
由L f α=得 Lf =α (3.1) 在国际单位制中,α的单位用N ·m -1表示。
(2)表面张力系数α等于增加单位表面积时,外力所做的功。
由△A=α·△S 得SA ∆∆=α (3.2) (3)表面张力系数α在数值等于增大液体单位表面积所增加的表面能,由△E =△A =α△S 得 SE ∆∆=α (3.3) 严格说来,表面能是在温度不变的条件下可转变为机械能的那部分表面能。
3.影响表面张力系数的几个因素(1) 不同液体的表面张力系数不同,它与液体的成分有关,取决于液体分子的性质。
(2) 同一种液体的表面张力系数与温度有关。
温度越高,α就越小。
(3) 液体表面张力系数的大小还与相邻物质的化学性质有关。
(4) 液体表面张力系数还与液体中的杂质有关。
加入杂质能显著改变液体的表面张力系数。
4.表面张力的微观本质微观理论认为,液体的表面张力是由于液体表面层分子之间相互作用力的不对称性引起的。
所谓液体的表面层是指位于液体表面处,与表面平行、厚度等于液体分子有效作用半径(一般不超过6×10-7cm)的那层液体。
从能量的角度出发,分子处于液体表面层时,分子的相互作用热能要比处于液体内部的分子的相互作用热能大,而且越靠近液面,分子的相互作用热能就越大。
而液体处于稳定平衡时,分子的相互作用热能最小,因此,液体表面层中的分子都有挤进液体内部的趋势,结果液体的表面就会尽量地收缩。
从力的观点来看,就是在液体表面内存在一种使其收缩的力,这种力就称为表面张力。
所谓表面张力,无论从力或是从能量的角度来解释,都是表面层内分子相互作用的不对称性所引起的。
流体的表面张力和毛细现象流体的表面张力和毛细现象是液体力学中重要的概念,它们对于理解和解释许多自然现象和工程应用具有重要意义。
本文将围绕流体的表面张力和毛细现象展开讨论,并探索其背后的物理原理和实际应用。
一、表面张力的概念及原理表面张力是指液体表面处分子间存在的相互作用力所表现出来的力。
液体分子之间存在吸引力,使得液体表面处的分子相对于内部的分子所受到一个净向内的作用力,导致液体表面呈现出类似于弹性膜的性质,这就是表面张力。
表面张力的强度决定了液体表面的特性,对于液体的凝聚性、润湿性以及与固体的相互作用有重要影响。
表面张力可通过实验测量得到,常用的实验方法包括测量液体在浮体上的起伏高度、测量液体的静水压强以及测量液滴的形态等。
表面张力的数值通常用单位长度的力来表示,国际单位制中以N/m表示。
二、毛细现象的定义及原理毛细现象是指液体在细小的毛细管内上升或下降的现象。
当液体与毛细管接触时,由于液体与固体间的相互作用力,液体在毛细管中会产生一定的上升或下降效应,这就是毛细现象。
毛细现象广泛存在于自然界和工业应用中,如植物的输水现象、药丸溶解以及吸管吸水等。
毛细现象的产生与表面张力密切相关。
当液体进入细小的毛细管内时,其表面张力会对液体产生一个向内的作用力,导致液面在毛细管内呈现弯曲或上升的形态,直至与液体内部的重力产生平衡。
毛细现象符合普通的液体静力学原理,可以通过毛细管的直径、液体的性质以及环境条件等因素来调控。
三、流体表面张力和毛细现象的应用流体的表面张力和毛细现象在许多实际应用中有着重要的作用。
下面将介绍一些相关的应用。
1. 毛细管现象在植物中的输水过程中起着重要作用。
植物通过根部吸水,利用毛细管现象将水分输送到树叶,并通过蒸腾作用将水分蒸发到空气中。
2. 在医药领域,毛细现象被用来研究药物的溶解速率和释放速度,通过控制毛细管的直径和液体的性质,可以调控药物的释放速度,从而实现针对性的治疗效果。
物理化学第八章表面一、表面化学的概念表面化学是研究发生在固体表面或液体表面的化学现象的科学。
在处理和制备材料、开发新工艺、研究反应机理以及在工业生产和实验室研究中,常常涉及到表面化学问题。
二、表面张力表面张力是液体表面分子之间的相互吸引力,是液体内部分子之间的相互排斥力。
其大小可以用表面张力系数γ表示。
三、弯曲液面的附加压力由于液面是弯曲的,所以液体在表面层内不仅要承受重力等一般压力,还要承受由于液面弯曲而产生的附加压力。
表面层内任一点上总压力与一般压力之差即为附加压力。
四、润湿现象润湿是指液体与固体接触时,液体会延固体表面铺展开来,这种现象叫做润湿现象。
润湿现象的产生与液体和固体的种类及它们之间的相互作用有关。
不同液体在不同固体表面上发生不同的润湿现象。
五、接触角和粘附功接触角是指液体在固体表面上附着时形成的液体-气体-固体三相交界处的切角。
接触角的大小反映了液体对固体表面的润湿程度。
粘附功是指液体润湿固体表面时,由润湿而在界面上产生的附加压力,其大小可用下式表示:W=2γcosθ(1-cosθ)其中γ为表面张力系数,θ为接触角。
六、降低表面张力的方法1、添加表面活性剂:表面活性剂可以显著地降低溶液的表面张力,并具有很好的润湿和乳化能力。
2、温度升高:温度升高可以增加分子的热运动,从而降低表面张力。
3、改变固体表面的性质:通过改变固体表面的性质(如通过化学吸附或物理吸附),可以降低表面张力。
七、应用表面化学的方法制备微纳米材料通过使用表面化学的方法,可以在固体表面上制备出各种微纳米材料。
例如,通过使用表面活性剂可以制备出纳米颗粒和纳米膜等材料。
通过使用分子束外延等方法可以在固体表面上制备出单层或多层原子膜。
这些技术在材料科学、电子学和生物学等领域中有着广泛的应用。
物理化学第十三章表面物理化学物理化学是化学的一个重要分支,它涉及到分子间的相互作用、物质的结构和性质以及它们之间的转化。
在物理化学的学习中,第十三章的内容是表面物理化学,它主要研究的是液体和气体界面上的分子相互作用和物理现象。
第十一章 流体运动基础一、基本知识点流体的可压缩性:流体的体积会随着压强的不同而改变的性质。
流体的黏性:内摩擦力作用导致相邻流体层速度不同的性质。
理想流体:绝对不可压缩且完全没有黏性的流体。
稳定流动:空间各点的流速不随时间变化的流体流动。
流线:在流体空间设想的一系列曲线,其上任意一点的切线方向都与流体通过该点时速度方向一致。
任何两条流线不能相交。
流管:在稳定流动的流体中的一个由流线围成的管状微元。
稳定流动的连续性方程:单位时间内通过任一截面的流体质量都相等,即S ρυ=恒量也称为质量流量守恒定律。
理想流体稳定流动的连续性方程:单位时间内通过任一截面的流体体积都相等,即S υ=恒量也称为体积流量守恒定律。
理想流体的伯努利方程:理想流体作稳定流动时,单位体积的势能、动能及该点压强之和是一恒量,即212P gh ρρυ++=恒量牛顿黏滞定律:黏性力f 的大小与两速度不同的流体层的接触面积S 及接触处的速度梯度d dxυ成正比,即 d f Sdxυη= 式中比例系数η称为流体的黏滞系数或黏度。
η值的大小取决于流体本身的性质,并和温度有关,单位是2N s m -⋅⋅或Pa s ⋅。
表11-1 几种流体的黏度流体 温度()C ︒η()Pa s ⋅流体 温度()C ︒η()Pa s ⋅水0 20 37 100 31.7910-⨯ 31.00510-⨯ 30.69110-⨯ 30.28410-⨯ 空气0 20 100617.110-⨯ 618.110-⨯ 621.810-⨯蓖麻油7.5 2050 60112.2510-⨯ 19.8610-⨯ 11.2210-⨯ 10.8010-⨯ 氢气-125168.310-⨯ 61310-⨯血液 373(2.5~3.5)10-⨯二氧 化碳0 30061410-⨯ 62710-⨯雷诺数: 判断黏性流体的流动状态的一个无量纲的数e rR ρυη=式中,υ为流速,ρ为流体密度,η为黏度,r 为流管半径。
几个常见现象中蕴含的表面物理化学知识日常生活中,我们对见到的一些现象可能已经习以为常,认为它们理应如此,但是为什么会这样,就没有过多地去想了。
例如,下过雨后,我们见到树叶上、草上的小水珠都接近于球形;如果不小心打碎了体温计后,里面的水银掉到桌上、地上也呈球形。
毛巾下端浸水后,使得整条毛巾变湿。
另外中学课堂经常表演一个小魔术:先准备一杯水,然后小心地把一枚针水平放置在水面上,结果发现针浮在水面上而不沉于杯底,并且在针下面的水面上形成一个凹面。
所有这些现象其实都与表面张力有关。
事实上,自然界中的许多现象都与表界面的特殊性质有关。
本文将选取几个日常生活中的常见现象,参考天津大学物理化学教研室编写的《物理化学》教材,应用表界面物理化学的基本原理,对表面的特殊性质进行分析和讨论。
实例一:吹胀的肥皂泡成球形,不再吹时会变小;自来水管口滴下的水滴、室外的露珠皆呈圆球形。
自然界中的物质一般以固、液、气三种相态存在。
不同相态相互接触即产生界面,常见界面有气—液、液—液、气—固、固—液和固—固等。
习惯常将气—液、气—固界面叫做液体表面和固体表面。
图1 液体的表面层分子与内部分子受力情况示意图以气-液体系为例,液体的表面层分子与内部分子所处的环境不同,如图1所示。
在液体内部的任一分子,均处于同类分子的包围中,因此平均来看,体相内部的分子所受四周邻近相同分子的作用力是对称的,各个方向的力彼此抵销。
但是处于表面层的分子,由于气相密度比体相低,液面上方蒸气分子对表面层分子的吸引力远远小于液体内部分子对它的吸引力,使得表面层分子恒受到指向液体内部的拉力,因而液体表面就如同一层绷紧了的弹性膜。
这种引起液体表面收缩的单位长度的力,我们称为表面张力,单位N.m-1。
它的方向和液面相切,并和两部分的分界线垂直。
如果是水平液面,表面张力就在这个平面上,如图2所示。
假设用细钢丝制成一个框架,其一边是可自由活动的金属丝(无摩擦)。
将此金属丝固定后使框架蘸上一层肥皂泡。
题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。