《第21章一元二次方程》单元测试含答案解析
- 格式:doc
- 大小:160.50 KB
- 文档页数:21
第二十一章一元二次方程单元测试考试时间:90分钟满分:100分一、单选题(共12题;共36分)1.一元二次方程(x﹣1)2=2的解是()A. x 1=﹣1﹣,x 2=﹣1+B. x 1=1﹣,x 2=1+C. x 1=3,x 2=﹣1D. x 1=1,x 2=﹣32.已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A. ﹣1B. 0C. 1D. 23.一元二次方程的解是( )A. x1=1,x2=2B.C.D. x1=0,x2=24.下列方程有两个相等的实数根的是()A. x2+2x+3=0B. x2+x﹣12=0C. x2+8x+16=0D. 3x2+2x+1=05.用配方法解一元二次方程x2+8x+7=0,则方程可化为()A. (x+4)2=9B. (x﹣4)2=9C. (x+8)2=23D. (x﹣8)2=96.方程mx2﹣4x+1=0(m<0)的根是()A. B. C. D.7.若一元二次方程有实数解,则m的取值范围是()A. B. C. D.8.下列一元二次方程中,两个实数根之和为1的是( )A. x²+x+2=0B. x²+x-2=0C. x²-x+2=0D. x²-x-2=09.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A. 6B. 8C. 10D. 1210.小明在探索一元二次方程2x2﹣x﹣2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是()x 1 2 3 42x2﹣x﹣2 ﹣1 4 13 26A. 4B. 3C. 2D. 111.下面是某同学在一次数学测验中,解答的填空题,其中答对的是()A. 若x2=5 ,则x=B. 若x2=,则x=C. x2+x-m=0的一根为-1,则m=0D. 以上都不对12.若x2+bx+c=0的两根中较小的一个根是m(m≠0),则=()A. mB. ﹣mC. 2mD. ﹣2m二、填空题(共6题;共21分)13.已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为________ .14.已知某工厂经过两年的时间把某种产品从现在的年产量100万台提高到121万台,那么每年的年平均增产百分率为________,按此年平均增长率,预计第四年该工厂的年产量为________。
第21章一元二次方程单元测试一、选择题(共10小题).1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=02.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1 3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0 4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.25.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥16.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为.13.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①,②,③,④.(2)猜想:第n个方程为,其解为.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0解:A.x+2y=0含有两个未知数,不合题意;B.x2﹣4y=0含有两个未知数,不合题意;C.x2+3x=0是一元二次方程,符合题意;D.x+1=0中未知数的最高次数不是2次,不合题意;故选:C.2.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1解:∵(x﹣1)2=0,∴x﹣1=0,x=1,即x1=x2=1,故选:C.3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0解:∵方程的两根分别为2和3,∴2+3=5,2×3=6,∴方程为x2﹣5x+6=0.故选:D.4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.2解:设这个增长率为x,由题意得,20(1+x)2=24.2.故选:D.5.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥1解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选:A.6.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是解:∵方程x2+bx+a=0有一个根是1,∴1+b+a=0,∴a+b=﹣1.故选:B.7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④解:①因为a+c=0,a≠0,所以①a、c异号,所以△=b2﹣4ac>0,所以方程有两个实数根;②若方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,所以方程cx2+bx+a=0也一定有两个不等的实数根;若c=0,则方程cx2+bx+a=0为一次,没有两个不等实数根;③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=﹣4abm﹣4ac+4abm+b2=b2﹣4ac.所以①④成立.故选:D.8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法解:方程(5x﹣1)2=(2x+3)2的最适当方法应是直接开平方法.故选:A.9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对解:x2﹣14x+40=0,(x﹣4)(x﹣10)=0,x﹣4=0或x﹣10=0,所以x1=4,x2=10,因为4+4<9,不符合三角形三边的关系,所以三角形的第三边长是10,所以三角形的周长=4+9+10=23.故选:C.10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2解:设x+y=a,原方程可化为a(a+2)﹣8=0即:a2+2a﹣8=0解得a1=2,a2=﹣4∴x+y=2或﹣4故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=﹣1.解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,∴|m|=1,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为x2+x﹣3=0.解:方程整理得:x2+x﹣3=0,故答案为:x2+x﹣3=013.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=17.解:由原方程,得2x2﹣3x﹣1=0,∴二次项系数a=2,一次项系数b=﹣3,常数项c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=9+8=17;故答案是:17.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值﹣1.解:把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为:﹣1.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为1.解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,即2m=1﹣(m2﹣m﹣1),∴m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有两个实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1,∴m=1.故答案为:1.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为x=3或x=﹣7.解:据题意得,∵(x+2)*5=(x+2)2﹣52∴x2+4x﹣21=0,∴(x﹣3)(x+7)=0,∴x=3或x=﹣7.故答案为:x=3或x=﹣7三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)解:(1)3(2x﹣1)2﹣12=0,移项,得3(2x﹣1)2=12,两边都除以3,得(2x﹣1)2=4,两边开平方,得2x﹣1=±2,移项,得2x=1±2,解得:x1=,x2=﹣;(2)2x2﹣4x﹣7=0,两边都除以2,得x2﹣2x﹣=0,移项,得x2﹣2x=,配方,得x2﹣2x+1=,即(x﹣1)2=,解得:x﹣1=±,即x1=1+,x2=1﹣;(3)x2+x﹣1=0,这里a=1,b=1,c=﹣1,∵b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,解得:x1=,x2=;(4)(2x﹣1)2﹣x2=0,方程左边因式分解,得(2x﹣1+x)(2x﹣1﹣x)=0,即(3x﹣1)(x﹣1)=0,解得:x1=,x2=1.18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0,解得a=,将a=代入方程,整理可得:2x2+x﹣3=0,即(x﹣1)(2x+3)=0,解得x=1或x=﹣,∴该方程的另一个根﹣.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.解:(1)由题意有△=(2m﹣1)2﹣4m2≥0,解得,∴实数m的取值范围是;(2)由两根关系,得根x1+x2=﹣(2m﹣1),x1•x2=m2,由x12﹣x22=0得(x1+x2)(x1﹣x2)=0,若x1+x2=0,即﹣(2m﹣1)=0,解得,∵>,∴不合题意,舍去,若x1﹣x2=0,即x1=x2∴△=0,由(1)知,故当x12﹣x22=0时,.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.解:(1)由题意可得,,解得,241≤x≤300,即x的取值范围是:241≤x≤300(x为正整数);铅笔的零售价每支应为:元;铅笔的批发价每支应为:元;(2)由题意可得,15×﹣15×=1,化简,得x2+60x﹣900(m2﹣1)=0,解得,x1=30(m﹣1),x2=﹣30(m+1)(舍去),∴241≤30(m﹣1)≤300,解得,≤m≤11,∴m=10或m=11,当m=10时,m2﹣1=99<100,故m=10不合题意,舍去,当m=11时,m2﹣1=120>100,符合题意,∴m=11,∴x=30(m﹣1)=300,经检验x=300是原分式方程的解,答:初三年级共有300名学生,m的值是11.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?解:(1)设经过x秒,线段PQ能将△ABC分成面积相等的两部分由题意知:AP=x,BQ=2x,则BP=6﹣x,∴(6﹣x)•2x=××6×8,∴x2﹣6x+12=0,∵b2﹣4ac<0,此方程无解,∴线段PQ不能将△ABC分成面积相等的两部分;(2)设t秒后,△PBQ的面积为1①当点P在线段AB上,点Q在线段CB上时此时0<t≤4由题意知:(6﹣t)(8﹣2t)=1,整理得:t2﹣10t+23=0,解得:t1=5+(不合题意,应舍去),t2=5﹣,②当点P在线段AB上,点Q在线段CB的延长线上时此时4<t≤6,由题意知:(6﹣t)(2t﹣8)=1,整理得:t2﹣10t+25=0,解得:t1=t2=5,③当点P在线段AB的延长线上,点Q在线段CB的延长线上时此时t>6,由题意知:(t﹣6)(2t﹣8)=1,整理得:t2﹣10t+23=0,解得:t1=5+,t2=5﹣,(不合题意,应舍去),综上所述,经过5﹣秒、5秒或5+秒后,△PBQ的面积为1.24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①x1=1,x2=﹣1,②x1=1,x2=﹣2,③x1=1,x2=﹣3,④x1=1,x2=﹣4.(2)猜想:第n个方程为x2+(n﹣1)x﹣n=0,其解为x1=1,x2=﹣n.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).解:(1)①(x+1)(x﹣1)=0,∴x1=1,x2=﹣1.②(x+2)(x﹣1)=0,∴x1=1,x2=﹣2.③(x+3)(x﹣1)=0,∴x1=1,x2=﹣3.④(x+4)(x﹣1)=0,∴x1=1,x2=﹣4.(2)由(1)找出规律,可写出第n个方程为:x2+(n﹣1)x﹣n=0,(x﹣1)(x+n)=0,解得x1=1,x n=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.故答案是:(1)①x1=1,x2=﹣1.②x1=1,x2=﹣2.③x1=1,x2=﹣3.④x1=1,x2=﹣4.(2)x2+(n﹣1)x﹣n=0;x1=1,x2=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.。
九年级数学上册《第二十一章 一元二次方程》单元测试卷-附答案(人教版)一、选择题1.一元二次方程2210x x -+=的二次项系数是( )A .2B .1C .0D .1-2.用配方法解方程2640x x ++=,配方正确的是( )A .()235x +=B .()2313x +=C .()265x +=D .()2613x +=3.下列方程中,没有实数根的是( )A .210x -=B .2240x x --=C .220x x -+=D .()()210x x -+=4.如果270a a +=,那么a 的值是( )A .0B .7C .0或7D .0或-75.若1x 、2x 是一元二次方程2350x x +-=的两根,则12x x ⋅的值是( )A .3B .-3C .5D .-56.已知关于x 的方程220x bx ++=的一个根为1x =,则实数b 的值为( )A .2B .2-C .3D .3-7.若一元二次方程220ax x -+=有两个不相等的实数根,则实数a 的取值范围为( )A .18a <B .18a <且0a ≠ C .18a ≤且0a ≠ D .18a >8.关于x 的方程225x mx m +-=-的一个根是4,那么m 的值是( )A .-3或4B .3-或7C .3或4D .3或79.已知方程2201930x x +-=的两根分别是α和β,则代数式2ααβ2019α++的值为( )A .1B .0C .2019D .-201910.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .()316210x x -=B .()316210x -=C .()316210x x -=D .36210x =二、填空题11.已知:()11610m m xx +-+-=是关于x 的一元二次方程,则m= .12.将方程280x mx -+=用配方法化为23)x n -=(,则m n +的值是 . 13.关于x 的一元二次方程240x x k -+=有实数根,则k 的取值范围为 .14.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是 .三、计算题15.解方程:22530x x ++=.四、解答题16.已知x =1是一元二次方程(a ﹣2)x 2+(a 2﹣3)x ﹣a+1=0的一个根,求a 的值. 17.已知关于x 的方程2220x x m -+-=有两个实数根1x 和2x ,求m 的取值范围. 18.已知关于x 的一元二次方程2320x x k ++-=的两个实数根分别为1x 和2x ,若()()12111x x ++=-,求k 的值.19.印度古算书中有这样一首诗:“一群猴子分两队,高高兴兴在游戏.八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮.告我总数共多少,两队猴子在一起.”你能解决这个问题吗?五、综合题20.规定:如果关于x 的一元二次方程ax 2+ bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程” (1)解方程x 2+2x-8=0(2)方程x 2+2×-8=0 (填“是”或“不是”)“倍根方程”,请你写出一个“倍根方程”21.已知关于x 的一元二次方程:x 2﹣(m ﹣3)x ﹣m =0.(1)证明:无论m 为何值,原方程有两个不相等的实数根; (2)当方程有一根为1时,求m 的值及方程的另一根.22.已知关于x 的一元二次方程()222110x m x m ++++=.(1)若方程有实数根,求实数m 的取值范围; (2)若方程一实数根为-3,求实数m 的值.23.某市为鼓励居民节约用水,对居民用水实行阶梯收费,每户居民用水量每月不超过a 吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费.(1)若a=12,某户居民3月份用水量为22吨,则该用户应缴纳水费多少元?(2)若如表是某户居民4月份和5月份的用水量和缴费情况:月份用水量(吨)交水费总金额(元)4186252486根据上表数据,求规定用水量a的值参考答案1.【答案】A【解析】【解答】解:∵一元二次方程2210x x -+=中的二次项为:22x∴一元二次方程2210x x -+=的二次项系数是2. 故答案为:A.【分析】一元二次方程一般形式20ax bx c ++=(a≠0),其中a 为二次项系数,据此解答即可.2.【答案】A【解析】【解答】解:∵x 2+6x+4=0∴x 2+6x+32=-4+32 ∴(x+3)2=5. 故答案为:A.【分析】将常数项移到方程的右边,然后配方(方程的两边同时加上一次项系数一半的平方“32”,左边利用完全平方公式分解因式,右边合并同类项即可.3.【答案】C【解析】【解答】解:A .1a =和0b = 1c =-()22Δ4041140b ac ∴=-=-⨯⨯-=>∴方程210x -=有两个不相等的实数根,选项A 不符合题意;B .1a = 2b =-和4c =-()()22Δ42414200b ac ∴=-=--⨯⨯-=>∴方程2240x x --=有两个不相等的实数根,选项B 不符合题意;C .1a = 1b =-和2c =()22Δ4141270b ac ∴=-=--⨯⨯=-<∴方程220x x -+=没有实数根,选项C 符合题意;D .把原方程转化为一般形式为220x x --=1a ∴=,1b =-和2c =-()()22Δ4141290b ac ∴=-=--⨯⨯-=>∴方程()()210x x -+=有两个不相等的实数根,选项D 不符合题意.故答案为:C .【分析】先计算出各项中△的值,取△<0的选项即可.4.【答案】D【解析】【解答】解:270a a +=()70a a +=解得0a =或7a =- 故答案为:D.【分析】此方程缺常数项,方程的左边易于利用提取公因式法分解因式,故可利用因式分解法求解.5.【答案】D【解析】【解答】解:∵1x 、2x 是一元二次方程2350x x +-=的两根∴12551x x -==-故答案为:D .【分析】利用一元二次方程根与系数的关系可得12551x x -==-。
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
第21章《一元二次方程》单元测试班级: 姓名: 得分:——A 卷(60分)——一、选择题(每小题3分,共21分)1.下列方程中是关于x 的一元二次方程的是( )A.20ax bx c ++=B.2250x x --=C.223x x x -=+D.2120x x -= 2.关于x 的方程2320ax x -+=是一元二次方程,则( )A.0a >B.0a ≠C.1a =D.a ≥03.用配方法解下列方程,其中应在左右两边同时加上4的是( )A.225x x -=B.2245x x -=C.245x x +=D.225x x +=4.方程(1)0x x -=的根是( )A.0x =B.1x =C.10x =,21x =D.110x x ==5.解方程① x 2+2x -3=0,②x 2-3x -2=0,③(x +1)2=2(x +1),方法选择适当的是( )A.①公式法;②因式分解法;③配方法B.①因式分解法;②公式法;③配方法C.①公式法;②配方法;③因式分解法D.①配方法;②公式法;③因式分解法6.已知关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,则k ( )A. 2k =B. 2k >C. 2k <D.2k ≠7.某厂一月份的产量为500吨,三月份的产量达到720吨。
若平均每月增长率是x ,则可以列方程( )A .720)21(500=+xB .720)1(5002=+xC .720)1(5002=+xD .500)1(7202=+x二、填空题(每小题3分,共18分)8.若(a -1)x 2+3ax -1=0是关于x 的一元二次方程,那么a 的取值范围是 .9.将方程3x (x -1)=5(x +2)化成一般形式为 .10.方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 . 11.22___)(_____6+=++x x x .12.方程230x kx +-=的一个根是1,则k 的值是 .13.已知关于的x 方程240x mx -+=有两个相等实数根,那么=m .三、解方程(每小题5分,共10分)14.22990x x --=(配方法) 15.2450x x --=(公式法)四、解答题(第16题5分,第17题6分,共11分)16.学校组织了一次篮球比赛(每两队之间只进行一场比赛),共进行了6场比赛,那么共有多少个球队参加了这次比赛?17.某蔬菜有限公司一年四季都有大量新鲜蔬菜销往全国各地,近年来它的蔬菜产值不断增加,2013年蔬菜的产值是1000万元,2015年产值达到1210万元.求这两年蔬菜产值的年平均增长率是多少?——B 卷(40分)——一、选择题(每小题2分,共6分)1. 关于x 的方程21(1)310m m x x +++-=是一元二次方程,则( )A. 1m =B. 1m =-C. 1m =±D. m 为全体实数2.以3和1-为两根的一元二次方程是 ( );A.0322=-+x xB.0322=++x xC.0322=--x xD.0322=+-x x3.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6-B. 1C. 6-或1D. 2二、填空题(每小题3分,共6分)4.已知m 是方程x 2-x -2=0的一个根,则代数式m 2-m 的值等于 .5.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 .三、解方程(每小题5分,共10分)6.)12(3)12(2+=+x x 7.01072=+-x x四、解答题(每小题9分,共18分)8.如图,矩形ABCD中,AB=6厘米,BC=12厘米,点P从点A出发沿AB边向点B 以1厘米/秒的速度移动,点Q从点B出发沿BC边向点C以2厘米/秒的速度移动,如果P、Q分别是从A、B同时出发,经过几秒时△PBQ的面积等于8平方厘米?P9.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?——C 卷(20分)——一、选择题(每小题2分,共4分)1. 已知222246140x y z x y z +++-++=,则x y z ++的值是( )A. 1B. -1C. 2D. -2 2.已知a 是210x x +-=的一个根,则22211a a a---的值是( )二、填空题(每小题3分,共6分) 3.已知一元二次方程2560x x -+=的两个根是12,x x ,则1211x x += . 4.若一个三角形的三边长均满足方程2680x x -+=,则此三角形的周长为 .三、解答题(每小题5分,共10分)5.先化简,再求值:3(1)1x x +--÷2441x x x -+-,其中x 满足方程260x x +-=.6.已知a 是2201610x x -+=的一个根,试求22201620151a a a -++的值.第21章《一元二次方程》单元测试参考答案一、选择题(每小题3分,共21分)1.B 2.B 3.C 4.C 5.D 6.C 7.B二、填空题(每小题3分,共18分)8.a ≠1 9.3x 2-5x -10=0 10.2、-3 、-1 11.9、3 12.2 13.±4三、解方程(每小题5分,共10分)14.22990x x --=(配方法) 15.2450x x --=(公式法) 解:移项,得 2299x x -= 解:1,4,c 5.a b ==-=-配方,得 221991x x -+=+ 224(4)41(5)360b ac ∆=-=--⨯⨯-=> 即 2(1)100x -= 方程有两个不等实数根由此可得 110x -=± 462x ±=== 111x =,29x =- 15x =,21x =-四、解答题(第16题5分,第17题6分,共11分)16.解:共有x 个球队参加了这次比赛,由题意得12×x (x -1)=6解得 x 1=4,x 2=-3(不合题意,舍去)答:共有4个球队参加了这次比赛.17.解:设这两年蔬菜产值的年平均增长率是x ,由题意得1000(1+x )2=1210解得 x 1=0.1,x 2=-2.1(不合题意,舍去)∴ x =0.1=10%答:这两年绿地面积的年平均增长率为10%.——B 卷(40分)——一、选择题(每小题2分,共6分)1.A 2.C 3.C二、填空题(每小题3分,共6分)4.2 5.25或36.三、解方程(每小题5分,共10分) 6.)12(3)12(2+=+x x 7.01072=+-x x 解:移项,得 2(21)3(21)0x x +-+= 解:1,7,c 10.a b ==-=因式分解,得(21)(213)0x x ++-= 224(7)410019b ac ∆=-=--⨯⨯=>于是,得210x +=,或2130x +-= 9732x ±== 112x =-,21x = 15x =,22x =四、解答题(每小题9分,共18分)8.解:设经过x 秒时△PBQ 的面积等于 8 平方厘米,由题意得 12×2x (6-x )=8解得 x 1=2,x 2=4经检验x 1,x 2均符合题意答:经过2秒或4秒时△PBQ 的面积等于 8 平方厘米。
第二十一章 一元二次方程单元测试题(一)一、选择题(本大题共9小题,每小题3分,共27分)1、下列方程中,关于x 的一元二次方程是( )A. (x -1)(x -2)=2B. 21x +1x =2C. ax 2+bx +c =0D. 3x 2-2y =0答案:A分析:本题考查了一元二次方程的定义.解答:A 选项:由原方程知:x 2-3x +1=0,符合一元二次方程的定义,故本选项正确; B 选项:该方程是分式方程,故本选项错误;C 选项:当a =0时,该方程不是一元二次方程,故本选项错误;D 选项:该方程中含有两个未知数,是二元二次方程,故本选项错误;选A .2、关于x 的一元二次方程(m -2)x 2+5x +m 2-4=0的常数项是0,则( )A. m =4B. m =2C. m =2或m =-2D. m =-2答案:D分析:本题考查了一元二次方程的一般形式.解答:∵常数项为0,∴m 2-4=0解得m =±2,又∵是一元二次方程,∴m -2≠0,∴m =-2.选D .3、解下列方程:(1)(x -2)2=5,(2)x 2-3x -2=0,(3)x 2+x -6=0,较适当的方法分别为( )A. (1)直接开平法方(2)因式分解法(3)配方法B. (1)因式分解法(2)公式法(3)直接开平方法C. (1)公式法(2)直接开平方法(3)因式分解法D. (1)直接开平方法(2)公式法(3)因式分解法答案:D分析:本题考查了一元二次方程的解法.解答:(1)所给出的方程,符合用直接开平方法解的方程的结构特点,应用直接开平方法.(2)所给出的方程,系数较小,是整数,且左边不能进行因式分解,因此应用公式法.(3)给出的方程,左边可以进行因式分解,应用因式分解法.选D.4、已知m,n是方程x2-2x-1=0的两根,则(2m2-4m-1)(3n2-6n+2)的值等于()A. 4B. 5C. 6D. 7答案:B分析:本题考查了一元二次方程的根.解答:∵m,n是方程x2-2x-1=0的两根,∴m2-2m-1=0,n2-2n-1=0,∴m2-2m=1,n2-2n=1,∴2(m2-2m)=2,3(n2-2n)=3,∴(2m2-4m-1)(3n2-6n+2)=[2(m2-2m)-1][3(n2-2n)+2]=(2-1)(3+2)=5,即(2m2-4m-1)(3n2-6n+2)的值等于5.∴B选项是正确的.选B.5、若方程(x-m)(x-a)=0(m≠0)的根是x1=x2=m,则下列结论正确的是()A. a=m且a是该方程的根B. a=0且a是该方程的根C. a=m但a不是该方程的根D. a=0但a不是该方程的根答案:A分析:本题考查了一元二次方程的根.解答:方程(x-m)(x-a)=0(m≠0)的根为x1=m,x2=a,由题得:x1=x2=m,∴m=a,且a≠0,即a=m且a是方程的根.选A.6、关于x的一元二次方程x2+m=0有两个实数根,则m的取值范围是()A. m≤1B. m<1C. -3≤m≤1D. -3<m<1答案:C分析:本题考查了一元二次方程的根的判别式.解答:根据题意:Δ=()2-4×1×m≥0,m+3-4m≥0,3m≤3,m≤1,同时:m+3≥0,m≥-3,故-3≤m≤1,选C.7、已知关于x的方程x2+3x+a=0有一个根为-2,则它的两根之积为()A. 3B. 2C. -2D. -3答案:B分析:本题考查了根与系数的关系.解答:∵关于x的方程x2+3x+a=0有一个根为-2,∴(-2)2+3×(-2)+a=0,解得a=2.∴方程为x2+3x+2=0,∴两根之积为2.选B.8、已知x≠y,且x2+2x=3,y2+2y=3,则xy的值为()A. -2B. 2C. -3D. 3答案:C分析:本题考查了根与系数的关系.解答:依题意可知,x、y可以看作是关于t的方程t2+2t-3=0的两个不相等的实数根,∴xy=-3.选C.9、有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中,错误的是()A. 如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B. 如果方程M有两根符号相同,那么方程N的两根符号也相同C. 如果5是方程M的一个根,那么15是方程N的一个根D. 如果方程M和方程N有一个相同的根,那么这个根必是x=1答案:D分析:本题考查了根与系数的关系、根的判别式.解答:A.∵M有两个不相等的实数根,∴Δ>0,即b2-4ac>0,而此时N的判别式Δ=b2-4ac>0,故它也有两个不相等的实数根;故正确;B.M的两根符号相同:即x1·x2=ca>0,而N的两根之积=ac>0也大于0,故N的两个根也是同号的,故正确;C.如果5是M的一个根,则有:25a+5b+c=0①,我们只需要考虑将15代入N方程看是否成立,代入得:125c+15b+a=0②,比较①与②,可知②式是由①式两边同时除以25得到,故②式成立,故正确;D.比较方程M与N可得:ax2+bx+c=0,cx2+bx+a=0,故(a-c)x2+(c-a)=0,即(a-c)x2=(a-c),x2=1,此时x=±1,故可知,它们如果有根相同的根可是1或-1,故错误.二、填空题(本大题共10小题,每小题3分,共30分)10、已知关于x的方程(m-2)xm|+(2m+1)x-m=0是一元二次方程,则m=______.答案:-2分析:本题考查了一元二次方程的定义.解答:∵(m-2)xm|+(2m+1)x-m=0是一元二次方程,∴m-2≠0且|m2.∴m=-2.11、关于x的一元二次方程(x-4)(x+4)+3a(x+1)=5a的一次项系数是______.答案:3a分析:本题考查了一元二次方程的一般形式.解答:∵(x-4)(x+4)+3a(x+1)=5a,∴x2-16+3ax+3a=5a,∴x2+3ax-2a-16=0,∵(x-4)(x+4)+3a(x+1)=5a是关于x的一元二次方程,∴x2+3ax-2a-16=0是关于x的一元二次方程,∴一次项系数为3a.故答案为:3a.12、定义新运算:m,n是实数,m*n=m(2n-1),若m,n是方程2x2-x+k=0(k<0)的两根,则m*m-n*n=______.答案:0分析:本题考查了一元二次方程的根、新定义.解答:∵m,n是方程2x2-x+k=0(k<0)的两根,∴2m2-m+k=0,2n2-n+k=0,即2m2-m=-k,2n2-n=-k,则m*m-n*n=m(2m-1)-n(2n-1)=2m2-m-(2n2-n)=-k-(-k)=-k+k=0,故答案为:0.13、方程x2-3x-1=0与x2-x+3=0的所有实数根的和是______.答案:3分析:本题考查了一元二次方程的根的判别式.解答:∵x2-3x-1=0,a=1,b=-3,c=-1,∴b2-4ac=13>0,∴方程有两个不相等的实数根,设这两个实数根分别为x1与x2,则x1+x2=3;又∵x2-x+3=0,a=1,b=-1,c=3,∴b2-4ac=-11<0,∴此方程没有实数根.∴一元二次方程x2-3x-1=0与x2-x+3=0的所有实数根的和等于3.故答案为:3.14、如果关于x的方程kx2-6x+9=0有两个实数根,那么k的取值范围为______.答案:k<1且k≠0分析:本题考查了一元二次方程的根的判别式.解答:根据题意得k≠0且Δ=(-6)2-4k×9>0,解得k<1且k≠0.故答案为k<1且k≠0.15、二次项系数为2的一元二次方程的两个根分别是,那么这个方程是______.答案:2x2-4x-4=0分析:本题考查了根与系数的关系.解答:设这个方程为ax2+bx+c=0,将原方程变形为x2+bax+ca=0,∵一元二次方程的两个根分别为,∴x1+x2=(+(=-ba,x1·x2=(=ca,解得ba=-2,ca=-2则所求方程为2x2-4x-4=0,故答案是:2x2-4x-4=0.16、对于实数p,q,我们用符号min{p·q}表示p,q两数中较小的数.若min{(x-1)2,x2}=1,则x=______.答案:2或-1分析:本题考查了新定义.解答:∵min{(x-1)2,x2}=1,当x=0.5时,x2=(x-1)2,不可能得出最小值为1,∴当x>0.5时,(x-1)2<x2,则(x-1)2=1,x-1=±1,x-1=1,x-1=-1,解得:x1=2,x2=0(不合题意,舍去),当x<0.5时,(x-1)2>x2,则x2=1,解得:x1=1(不合题意,舍去),x2=-1,综上所述:x的值为:2或-1.故答案为:2或-1.17、关于x的一元二次方程x2-mx+2m-1=0的两个实数根分别是x1、x2,且x12+x22=23,则m=______.答案:-3分析:本题考查了根与系数的关系.解答:由题a=1,b=-m,c=2m-1,x1+x2=-ba=m,x1x2=ca=2m-1,∵x12+x22=23,∴(x1+x2)2-2x1x2=m2-2(2m-1)=23,m2-4m+2=23,m2-4m-21=0,(m-7)(m+3)=0,∴m=7或-3,当m=7时原式为x2-7x+13=0,Δ=49-13×4=-3<0,∴不成立,m=-3时原式为x2+3x-7=0,Δ=9+4×7=37>0,综上m=-3.18、已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x-1)2+b(x-1)+1=0的两根之和为______.答案:5分析:本题考查了根与系数的关系.解答:两个方程的系数、结构相同,∴1、2也是也是关于(x-1)的方程a(x-1)2+b(x-1)+1=0的两个根,∴x-1=1或x-1=2,∴x=2或x=3,∴2+3=5,故答案为:5.19、小卖部从批发市场购进一批杨梅,在销售了部分杨梅之后,余下的每千克降价3元,直至全部售完,销售金额y元与杨梅销售量x千克之间的关系如图所示,若销售这批杨梅一共赢利220元,那么这批杨梅的进价是______元/千克.答案:10分析:本题考查了一元二次方程的应用.解答:由题干图象知,40千克前的售价为:600÷40=15元/千克,40千克后,余下的每千克降价3元,可得此时售价为15-3=12元/千克,余下的杨梅:(720-600)÷12=10千克设进价为t元/千克则40(15-t)+10(12-t)=220解得t=10,∴这批杨梅的进价为10元/千克.三、解答题20、解下列方程:(1)(2x-1)2=9.(2)x2+3x-4=0(配方法).(3)(x+4)2=5(x+4).(4)2x2-10x=3.答案:(1)x1=2,x2=-1.(2)x1=1,x2=-4.(3)x 1=-4,x 2=1.(4)x 1,x 2. 分析:本题考查了一元二次方程的解法.解答:(1)(2x -1)2=9,开方得:2x -1=3或2x -1=-3,解得:x 1=2,x 2=-1.(2)x 2+3x -4=0,方程变形得:x 2+3x =4,配方得:x 2+3x +94=254, 即(x +32)2=254, 开方得:x +32=±52, 解得:x 1=1,x 2=-4.(3)方程整理得:(x +4)2-5(x +4)=0,分解因式得:(x +4)(x +4-5)=0,解得:x 1=-4,x 2=1.(4)移项,得:2x 2-10x -3=0,a =2,b =-10,c =-3,b 2-4ac =100+24=124>0,x解得:x 1=52,x 2=52. 21、某公司投资新建了一商场,共有商辅30间.据预测:当每间的年租金定为10万元时,可全部租出.每间的年租金每增加0.5万元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用0.5万元.当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?答案:10.5万元或15万元.分析:本题考查了一元二次方程的应用.解答:设每间商铺的年租金增加x 万元,则每间商铺的年租金为(10+x )万元,依题意有:(30-0.5x )×(10+x )-(30-0.5x )×1-0.5x ×0.5=275, 2x 2-11x +5=0,解得x =5或0.5,故每间商铺的年租金定为10.5万元或15万元.答:当每间商铺的年租金定为10.5万元或15万元时, 该公司的年收益为275万元.22、若关于x 的方程x 2-(m -5)x -3m 2=0(m ≠0)的两个根为x 1,x 2,且满足|12x x |=34. (1)求证:方程由两个异号的实数根.(2)求m 的值.答案:(1)证明见解答.(2)103或10. 分析:本题考查了根与系数的关系、根的判别式. 解答:(1)Δ=[-(m -5)]2+12m 2=13(m -513)2+30013≥0, ∴Δ>0,又∵x 1·x 2=-3m 2<0,方程有两个异号的实数根.(2)原方程的两个根为x 1,x 2,由根与系数的关系得:x 1+x 2=m -5,x 1·x 2=-3m 2,把|12x x |=34代入求得:m 1=103,m 2=10, 答:m 的值是103,10. 22、等腰△ABC 的直角边AB =BC =10cm ,点P 、Q 分别从A 、C 两点同时出发,均以1cm /s 的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t .△PCQ 的面积为S .(1)求出S 关于t 的函数关系式.(2)当点P 运动几秒时,S △PCQ =S △ABC ?(3)作PE ⊥AC 于点E ,当点P 、Q 运动时,线段DE 的长度是否改变?证明你的结论.答案:(1)当0<t <10时,S =2102t t -, 当t >10时,S =2102t t -.(2)点P 运动到S △PCQ =S △ABC .(3)DE 的长度不变,证明见解答.分析:本题考查了一元二次方程的应用.解答:(1)由题意得,当0<t <10时,PB =AB -AP =10-t ,CQ =t ,在△PCQ 中,S =12PB ·CQ =12t ×(10-t )=2102t t -, 当t >10时,PB =t -10,S =12PB ·CQ =12t ×(t -10)=2102t t -. (2)S △ABC =12×AB ×BC =12×10×10=50, ∵S △PCQ =S △ABC ,当0<t <10时,可列方程2102t t -=50,无解,当t >10时,2102t t - =50,解得t 或t ,∵t >10,∴t故点P 运动到S △PCQ =S △ABC .(3)DE 的长度不改变.如图所示,过Q 点作AC 的延长线的垂线交AC 的延长线于点F ,∵PE ⊥AC ,QF ⊥AC ,则∠PEA =∠QFC ,且△ABC 是等腰直角三角形,故∠EAP =∠ACB =45|=circ ,由对顶角相等的性质可知∠QCF =∠ACB =∠P AE ,在△AEP 和△CFQ ,PAE QCF PEA QFCAP CQ∠=∠⎧⎨∠=∠=⎩,∴△AEP≌△CFQ(AAS),∴PE=QF,∵PE//QF,∴四边形PEQF是平行四边形,∴DE=12EF=12(EC+CF)=12(EC+AE)=12AC,∵AC的长度不变,故DE的长度不变.。
人教版2022年九年级上册第21章《一元二次方程》单元测试卷班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程的是()A.y=2x﹣1 B.x2=6 C.5xy﹣1=1 D.2(x+1)=22.一元二次方程x2﹣3x﹣4=0的二次项系数、一次项系数、常数项分别是()A.1,3,﹣4 B.0,3,4 C.0,﹣3,4 D.1,﹣3,﹣43.用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为()A .B .C.2 D .4.方程(x﹣2)2=4(x﹣2)的解为()A.4 B.﹣2 C.4或﹣6 D.6或25.一元二次方程ax2+bx+c=0(a≠0)的求根公式是()A .B .C .D .6.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,57.若关于x的一元二次方程(m﹣1)x2+2x﹣2=0没有实数根,则实数m的取值范围是()A.m <B.m >C.m >且m≠1 D.m≠18.2022年2月6日,中国女足获得亚洲杯冠军!某传媒发布的参赛队员简介视频两天的点击量由原来的5万飙升至150万,若设每天点击量的平均增长率为x,则下列所列方程正确的是()A.5(1+x)2=150 B.5+5(1+x)+5(1+x)2=150C.5x2=150 D.5+5x+5x2=1509.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排21场比赛,则八年级班级的个数为()A.5 B.6 C.7 D.810.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③二.填空题(共6小题,满分24分,每小题4分)11.一元二次方程x2=7x的解是.12.关于x的方程(a﹣1)x2﹣3x+3=0是一元二次方程,则a的取值范围是.13.若a是方程2x2﹣x﹣5=0的一个根,则代数式2a﹣4a2+1的值是.14.方程x2+x﹣1=0的两根为x1、x2,则x1+x2的值为.15.已知a,b是一元二次方程x2+3x﹣8=0的两个实数根,则3a2+8a﹣b的值是.16.已知(a2+b2)(a2+b2﹣2)=8,那么a2+b2=.三.解答题(共7小题,满分46分)17.(6分)解下列方程:(1)(x﹣2)2=5(x﹣2);(2)2x2﹣3x=1.18.(5分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元.为了扩大销售,增加盈利和减少库存,商场决定采取适当的降价措施.经调查发现,如果每件降价1元,则每天可多售2件.商场若想每天盈利1200元,每件衬衫应降价多少元?19.(5分)为提高应急处置能力,某社区计划搭建一个临时物资储备仓库,用来放置应急物资.如图,仓库的两边靠墙(墙足够长),另外两边用总长为58米的铁皮围成,两面墙的夹角为90°,铁皮与墙面均垂直,其中CD边上留有宽2米的通道,且边CD的长不小于30米.若仓库的面积是800平方米,则BC的长应为多少米?20.(6分)已知关于x的一元二次方程x2﹣(m+3)x+3m=0.(1)求证:无论m取任何实数,方程总有实数根;(2)若等腰三角形的其中一边为4,另两边是这个方程的两根,求m的值.21.(7分)请根据图片内容,回答下列问题:(1)每轮传染中,平均一个人传染了几个人?(2)按照这样的速度传染,第三轮将新增多少名感染者(假设每轮传染人数相同)?22.(8分)在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?23.(9分)阅读理解:材料1:对于一个关于x的二次三项式ax2+bx+c(a≠0),除了可以利用配方法求该多项式的取值范围外,爱思考的小川同学还想到了其他的方法:比如先令ax2+bx+c=y(a≠0),然后移项可得:ax2+bx+(c﹣y)=0,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:例:求x2+2x+5的取值范围;解:令x2+2x+5=y∴x2+2x+(5﹣y)=0∴Δ=4﹣4×(5﹣y)≥0∴y≥4∴x2+2x+5≥4.材料2:在学习完一元二次方程的解法后,爱思考的小川同学又想到仿造一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x的一元二次方程ax2+bx+c=0(a>0)有两个不相等的实数根x1、x2(x1>x2)则关于x的一元二次不等式ax2+bx+c≥0(a>0)的解集为:x≥x1或x≤x2则关于x的一元二次不等式ax2+bx+c≤0(a>0)的解集为:x2≤x≤x1请根据上述材料,解答下列问题:(1)若关于x的二次三项式x2+ax+3(a为常数)的最小值为﹣6,则a=;(2)求出代数式的取值范围;(3)若关于x的代数式(其中m、n为常数且m≠0)的最小值为﹣4,最大值为7,请求出满足条件的m、n 的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.含有两个未知数,不是一元一次方程,故本选项不合题意;B.x2=6是一元一次方程,故本选项符合题意;C.含有两个未知数,不是一元一次方程,故本选项不合题意;D.是一元一次方程的定义,故本选项不合题意;故选:B.2.【解答】解:一元二次方程x2﹣3x﹣4=0的二次项系数为1,一次项系数为﹣3,常数项为﹣4.故选:D.3.【解答】解:∵3x2+6x﹣1=0,∴3x2+6x=1,x2+2x =,则x2+2x+1=,即(x+1)2=,∴a=1,b =,∴a+b =.故选:B.4.【解答】解:(x﹣2)2=4(x﹣2),移项,得(x﹣2)2﹣4(x﹣2)=0,整理,得(x﹣2)(x﹣2﹣4)=0.所以x﹣2=0或x﹣6=0.所以x1=2,x2=6.故选:D.5.【解答】解:一元二次方程的求根公式为x =,故选:A.6.【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.7.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣2=0没有实数根,∴Δ=22﹣4(m﹣1)×(﹣2)<0,且m﹣1≠0,解得m <,故选:A.8.【解答】解:由题意可得,5+5(1+x)+5(1+x)2=150,故选:B.9.【解答】解:设八年级共有x个班,依题意得:x(x﹣1)=21,整理得:x2﹣x﹣42=0,解得:x1=﹣6(不合题意,舍去),x2=7,∴八年级共有7个班.故选:C.10.【解答】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知Δ=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴Δ=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b =或2ax0+b =﹣∴故④正确.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:x2﹣7x=0,x(x﹣7)=0,x=0或x﹣7=0,所以x1=0,x2=7.故答案为:x1=0,x2=7.12.【解答】解:∵方程(a﹣1)x2﹣3x+3=0是一元二次方程,∴a﹣1≠0,∴a≠1,故答案为:a≠1.13.【解答】解:∵a是方程2x2﹣x﹣5=0的一个根,∴2a2﹣a﹣5=0,∴2a2﹣a=5,∴4a2﹣2a=10,∴2a﹣4a2+1=﹣10+1=﹣9,故答案为:﹣9.14.【解答】解:∵方程x2+x﹣1=0的两根为x1、x2,∴x1+x2=﹣1,故答案为:﹣1.15.【解答】解:∵a,b是一元二次方程x2+3x﹣8=0的两个实数根,∴a2+3a=8,a+b=﹣3,∴3a2+8a﹣b=3(a2+3a)﹣(a+b)=3×8﹣(﹣3)=27.故答案为:27.16.【解答】解:设a2+b2=t(t≥0),则t(t﹣2)=8,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),则a2+b2=4.故答案是:4.三.解答题(共7小题,满分46分)17.【解答】解:(1)(x﹣2)2=5(x﹣2),(x﹣2)2﹣5(x﹣2)=0,(x﹣2)(x﹣2﹣5)=0,x﹣=2=0或x﹣2﹣5=0,所以x1=2,x2=7;(2)2x2﹣3x=1,2x2﹣3x﹣1=0,Δ=(﹣3)2﹣4×2×(﹣1)=17>0,x =,所以x1=,x2=.18.【解答】解:设每件衬衫降价x元,则每件盈利(40﹣x)元,平均每天可售出(20+2x)件,依题意得:(40﹣x)(20+2x)=1200,整理得:x2﹣30x+200=0,解得:x1=10,x2=20.答:每件衬衫应降价10元或20元.19.【解答】解:设CD=x米,则BC=(58+2﹣x)米,依题意得:x(58+2﹣x)=800,整理得:x2﹣60x+800=0,解得:x1=20(不符合题意,舍去),x2=40,∴58+2﹣x=58+2﹣40=20.答:BC的长应为20米.20.【解答】(1)证明:Δ=[﹣(m+3)]2﹣4×1×3m=m2﹣6m+9=(m﹣3)2.∵(m﹣3)2≥0,即Δ≥0,∴无论m取任何实数,方程总有实数根;(2)解:当腰为4时,把x=4代入x2﹣(m+3)x+3m=0,得,16﹣4m﹣12+3m=0,解得m=4;当底为4时,则程x2﹣(m+3)x+3m=0有两相等的实数根,∴Δ=0,∴(m﹣3)2=0,∴m=3,综上所述,m的值为4或3.21.【解答】解:(1)设每轮传染中,平均一个人传染x个人,根据题意,可得(1+x)2=121,解得x1=10,x2=﹣12(舍去),答:每轮传染中,平均一个人传染10个人;(2)根据题意,121×10=1210(名),答:按照这样的速度传染,第三轮将新增1210名感染者.22.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.23.【解答】解:(1)设y=x2+ax+3,变形为x2+ax+3﹣y=0,∵△≥0,∴a2﹣4(3﹣y)≥0可得y,而由已知y≥﹣6,故3﹣=﹣6,∴a=6或a=﹣6.(2)设y =,变形为3x2+(6+3y)x﹣2﹣y=0,∵△≥0,∴(6+3y)2﹣4×3×(﹣2﹣y)≥0,化简得3y2+16y+20≥0,先求出3y2+16y+20=0的二根y1=﹣2,y2=﹣,∴根据材料二得y或y≥﹣2.(3)设y =,变形得yx2﹣(y+5m)x+2y+n=0,∵△≥0,∴(y+5m)2﹣4y(2y+n)≥0,整理得7y2﹣(10m﹣4n)y﹣25m2≤0,由已知可得﹣4≤y≤7,根据材料二知7y2﹣(10m﹣4n)y﹣25m2=0的二根是y1=﹣4,y2=7,代入整理得,解得或.。
《第21章一元二次方程》单元测试含答案解析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x ﹣3)2=4+92.若一元二次方程x2+2x+a=0的有实数解,则a的取值范畴是()A.a<1 B.a≤4 C.a≤1 D.a≥13.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm4.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k 的取值范畴是()A.k≥B.k>C.k<D.k≤5.已知关于x的一元二次方程x2+mx+n=0的两个实数根分不为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.26.如图,某小区有一块长为18米,宽为6米的矩形空地,打算在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则能够列出关于x的方程是()A.x2+9x﹣8=0 B.x2﹣9x﹣8=0 C.x2﹣9x+8=0 D.2x2﹣9x+8=07.下列方程有两个相等的实数根的是()A.x2+x+1=0 B.4x2+2x+1=0 C.x2+12x+36=0 D.x2+x﹣2=08.我省2013年的快递业务量为1.4亿件,受益于电子商务进展和法治环境改善等多重因素,快递业务迅猛进展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件.设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.59.已知2是关于x的方程x2﹣2mx+3m=0的一个根,同时那个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或1010.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则按照题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=6二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在题中的横线上11.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=.12.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为.13.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=.14.将x2+6x+3配方成(x+m)2+n的形式,则m=.15.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=.16.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m =.17.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是L.18.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=.19.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范畴是.20.已知若分式的值为0,则x的值为.三、解答题21.某地区2013年投入教育经费2500万元,2015年投入教育经费30 25万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)按照(1)所得的年平均增长率,估量2016年该地区将投入教育经费多少万元.22.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范畴;(2)当该方程的一个根为1时,求a的值及方程的另一根.23.白溪镇2012年有绿地面积57.5公顷,该镇近几年持续增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?24.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,咨询2015年建设了多少万平方米廉租房?25.某校在基地参加社会实践话动中,带队老师考咨询学生:基地打算新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长6 9米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请按照上面的信息,解决咨询题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判定谁的讲法正确,什么缘故?26.先化简,再求值:(+)÷,其中a满足a2﹣4a﹣1=0.27.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.28.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?29.已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.《第21章一元二次方程》参考答案与试题解析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x ﹣3)2=4+9【考点】解一元二次方程-配方法.【分析】按照配方法,可得方程的解.【解答】解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.【点评】本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.2.若一元二次方程x2+2x+a=0的有实数解,则a的取值范畴是()A.a<1 B.a≤4 C.a≤1 D.a≥1【考点】根的判不式.【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判不式△≥0,据此能够列出关于a的不等式,通过解不等式即可求得a的值.【解答】解:因为关于x的一元二次方程有实根,因此△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判不式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm【考点】一元二次方程的应用.【专题】几何图形咨询题.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,按照长方体的体积运算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,按照题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.【点评】此题要紧考查长方体的体积运算公式:长方体的体积=长×宽×高,以及平面图形折成立体图形后各部分之间的关系.4.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k 的取值范畴是()A.k≥B.k>C.k<D.k≤【考点】根的判不式.【专题】运算题.【分析】先按照判不式的意义得到△=(2k﹣1)2﹣4(k2﹣1)≥0,然后解关于k的一元一次不等式即可.【解答】解:按照题意得△=(2k﹣1)2﹣4(k2﹣1)≥0,解得k≤.故选D.【点评】本题考查了根的判不式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.已知关于x的一元二次方程x2+mx+n=0的两个实数根分不为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【考点】根与系数的关系.【分析】按照根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.【解答】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分不为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.【点评】本题考查了根与系数的关系的应用,能按照根与系数的关系得出﹣2+4=﹣m,﹣2×4=n是解此题的关键.6.如图,某小区有一块长为18米,宽为6米的矩形空地,打算在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则能够列出关于x的方程是()A.x2+9x﹣8=0 B.x2﹣9x﹣8=0 C.x2﹣9x+8=0 D.2x2﹣9x+8=0【考点】由实际咨询题抽象出一元二次方程.【专题】几何图形咨询题.【分析】设人行道的宽度为x米,按照矩形绿地的面积之和为60米2,列出一元二次方程.【解答】解:设人行道的宽度为x米,按照题意得,(18﹣3x)(6﹣2x)=60,化简整理得,x2﹣9x+8=0.故选C.【点评】本题考查了由实际咨询题抽象出一元二次方程,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.7.下列方程有两个相等的实数根的是()A.x2+x+1=0 B.4x2+2x+1=0 C.x2+12x+36=0 D.x2+x﹣2=0【考点】根的判不式.【分析】由方程有两个相等的实数根,得到△=0,因此按照△=0判定即可.【解答】解:A、方程x2+x+1=0,∵△=1﹣4<0,方程无实数根;B、方程4x2+2x+1=0,∵△=4﹣16<0,方程无实数根;C、方程x2+12x+36=0,∵△=144﹣144=0,方程有两个相等的实数根;D、方程x2+x﹣2=0,∵△=1+8>0,方程有两个不相等的实数根;故选C.【点评】本题考查了一元二次方程根的情形与判不式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根8.我省2013年的快递业务量为1.4亿件,受益于电子商务进展和法治环境改善等多重因素,快递业务迅猛进展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件.设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5【考点】由实际咨询题抽象出一元二次方程.【专题】增长率咨询题.【分析】按照题意可得等量关系:2013年的快递业务量×(1+增长率)2=2015年的快递业务量,按照等量关系列出方程即可.【解答】解:设2014年与2013年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.【点评】此题要紧考查了由实际咨询题抽象出一元二次方程,关键是把握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则通过两次变化后的数量关系为a(1±x)2=b.9.已知2是关于x的方程x2﹣2mx+3m=0的一个根,同时那个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.【专题】压轴题.【分析】先将x=2代入x2﹣2mx+3m=0,求出m=4,则方程即为x2﹣8 x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情形:①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论.注意两种情形都要用三角形三边关系定理进行检验.【解答】解:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=6.①当6是腰时,2是底边,现在周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.因此它的周长是14.故选B.【点评】此题要紧考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.10.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则按照题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=6【考点】由实际咨询题抽象出一元二次方程.【专题】几何图形咨询题.【分析】一边长为x米,则另外一边长为:5﹣x,按照它的面积为6平方米,即可列出方程式.【解答】解:一边长为x米,则另外一边长为:5﹣x,由题意得:x(5﹣x)=6,故选:B.【点评】本题考查了由实际咨询题抽相出一元二次方程,难度适中,解答本题的关键读明白题意列出方程式.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在题中的横线上11.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=1 0.【考点】根与系数的关系.【专题】运算题;实数.【分析】利用根与系数的关系确定出原式的值即可.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣3=0的两根,∴x1+x2=2,x1x2=﹣3,则原式=(x1+x2)2﹣2x1x2=4+6=10,故答案为:10【点评】此题考查了根与系数的关系,熟练把握根与系数的关系是解本题的关键.12.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为﹣3.【考点】一元二次方程的解.【分析】将x=1代入方程得到关于m的方程,从而可求得m的值.【解答】解:将x=1代入得:1+2+m=0,解得:m=﹣3.故答案为:﹣3.【点评】本题要紧考查的是方程的解(根)的定义,将方程的解(根)代入方程得到关于m的方程是解题的关键.13.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=﹣或1.【考点】换元法解一元二次方程.【分析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x即(a+b)的值.【解答】解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得16x2﹣8x﹣8=0,即2x2﹣x﹣1=0,分解得:(2x+1)(x﹣1)=0,解得:x1=﹣,x2=1.则a+b的值是﹣或1.故答案是:﹣或1.【点评】本题要紧考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.14.将x2+6x+3配方成(x+m)2+n的形式,则m=3.【考点】配方法的应用.【专题】运算题.【分析】原式配方得到结果,即可求出m的值.【解答】解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(x+m)2+n,则m=3,故答案为:3【点评】此题考查了配方法的应用,熟练把握完全平方公式是解本题的关键.15.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=4.【考点】因式分解-十字相乘法等.【分析】利用多项式乘法去括号,得出关于n的关系式进而求出n的值.【解答】解:∵x2+x+m=(x﹣3)(x+n),∴x2+x+m=x2+(n﹣3)x﹣3n,故n﹣3=1,解得:n=4.故答案为:4.【点评】此题要紧考查了多项式乘以多项式,正确去括号得出是解题关键.16.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m =.【考点】根的判不式.【分析】按照题意可得△=0,据此求解即可.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=9﹣4m=0,解得:m=.故答案为:.【点评】本题考查了根的判不式,解答本题的关键是把握当△=0时,方程有两个相等的两个实数根.17.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是20L.【考点】一元二次方程的应用.【分析】设每次倒出液体xL,第一次倒出后还有纯药液(40﹣x),药液的浓度为,再倒出xL后,倒出纯药液•x,利用40﹣x﹣•x确实是剩下的纯药液10L,进而可得方程.【解答】解:设每次倒出液体xL,由题意得:40﹣x﹣•x=10,解得:x=60(舍去)或x=20.答:每次倒出20升.故答案为:20.【点评】此题要紧考查了一元二次方程的应用,关键是正确明白得题意,找出题目中的等量关系,列出方程.18.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=1.【考点】一元二次方程的定义.【专题】运算题;待定系数法.【分析】按照一元二次方程的定义和一元二次方程的解的定义得到a+ 1≠0且a2﹣1=0,然后解不等式和方程即可得到a的值.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为:1.【点评】本题考查了一元二次方程的定义:含一个未知数,同时未知数的最高次数为2的整式方程叫一元二次方程,其一样式为ax2+bx+c=0(a ≠0).也考查了一元二次方程的解的定义.19.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范畴是k≥﹣6.【考点】根的判不式;一元一次方程的解.【分析】由于k的取值不确定,故应分k=0(现在方程化简为一元一次方程)和k≠0(现在方程为二元一次方程)两种情形进行解答.【解答】解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,按照题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.【点评】本题考查的是根的判不式,注意把握一元二次方程ax2+bx+c =0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情形进行讨论.20.已知若分式的值为0,则x的值为3.【考点】分式的值为零的条件;解一元二次方程-因式分解法.【分析】第一按照分式值为零的条件,可得;然后按照因式分解法解一元二次方程的步骤,求出x的值为多少即可.【解答】解:∵分式的值为0,∴解得x=3,即x的值为3.故答案为:3.【点评】(1)此题要紧考查了分式值为零的条件,要熟练把握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”那个条件不能少.(2)此题还考查了因式分解法解一元二次方程咨询题,要熟练把握,解答此题的关键是要明确因式分解法解一元二次方程的一样步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分不为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就差不多上原方程的解.三、解答题21.某地区2013年投入教育经费2500万元,2015年投入教育经费30 25万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)按照(1)所得的年平均增长率,估量2016年该地区将投入教育经费多少万元.【考点】一元二次方程的应用.【专题】增长率咨询题.【分析】(1)一样用增长后的量=增长前的量×(1+增长率),2014年要投入教育经费是2500(1+x)万元,在2014年的基础上再增长x,确实是2015年的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求2016年该地区将投入教育经费.【解答】解:设增长率为x,按照题意2014年为2500(1+x)万元,2 015年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故按照(1)所得的年平均增长率,估量2016年该地区将投入教育经费3327.5万元.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1 +年平均增长率)年数=增长后的量.22.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范畴;(2)当该方程的一个根为1时,求a的值及方程的另一根.【考点】根的判不式;一元二次方程的解;根与系数的关系.【分析】(1)关于x的方程x2﹣2x+a﹣2=0有两个不相等的实数根,即判不式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范畴.(2)设方程的另一根为x1,按照根与系数的关系列出方程组,求出a 的值和方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范畴是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.【点评】本题考查了一元二次方程根的判不式,一元二次方程根的情形与判不式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.白溪镇2012年有绿地面积57.5公顷,该镇近几年持续增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【考点】一元二次方程的应用.【专题】增长率咨询题.【分析】(1)设每绿地面积的年平均增长率为x,就能够表示出2014年的绿地面积,按照2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)按照(1)求出的年增长率就能够求出结论.【解答】解:(1)设绿地面积的年平均增长率为x,按照意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.【点评】本题考查了增长率咨询题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.24.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,咨询2015年建设了多少万平方米廉租房?【考点】一元二次方程的应用.【专题】增长率咨询题.【分析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.【解答】解:(1)设每年市政府投资的增长率为x,按照题意得:3(1+x)2=6.75,解得:x=0.5,或x=﹣2.5(不合题意,舍去),∴x=0.5=50%,即每年市政府投资的增长率为50%;(2)∵12(1+50%)2=27,∴2015年建设了27万平方米廉租房.【点评】本题考查了一元一次方程的应用;熟练把握列一元一次方程解应用题的方法,按照题意找出等量关系列出方程是解决咨询题的关键.25.某校在基地参加社会实践话动中,带队老师考咨询学生:基地打算新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长6 9米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请按照上面的信息,解决咨询题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判定谁的讲法正确,什么缘故?【考点】二次函数的应用.【分析】(1)设AB=x米,按照等式x+x+BC=69+3,能够求出BC的表达式;(2)得出面积关系式,按照所求关系式进行判定即可.【解答】解:(1)设AB=x米,可得BC=69+3﹣2x=72﹣2x;(2)小英讲法正确;矩形面积S=x(72﹣2x)=﹣2(x﹣18)2+648,∵72﹣2x>0,∴x<36,∴0<x<36,∴当x=18时,S取最大值,现在x≠72﹣2x,∴面积最大的不是正方形.【点评】本题要紧考查二次函数的应用,借助二次函数解决实际咨询题.其中在确定自变量取值范畴时要结合题目中的图形和长>宽的原则,找到关于x的不等式.26.先化简,再求值:(+)÷,其中a满足a2﹣4a﹣1=0.【考点】分式的化简求值.【分析】先按照分式混合运算的法则把原式进行化简,再按照a满足a 2﹣4a﹣1=0得出(a﹣2)2=5,再代入原式进行运算即可.【解答】解:原式=•=,由a满足a2﹣4a﹣1=0得(a﹣2)2=5,故原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.27.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.【考点】根的判不式;解一元二次方程-公式法.【专题】证明题.【分析】(1)求出方程根的判不式,利用配方法进行变形,按照平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,按照题意求出m 的值.【解答】(1)证明:△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.【点评】本题考查的是一元二次方程根的判不式和求根公式的应用,把握一元二次方程根的情形与判不式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.28.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?【考点】一元二次方程的应用.【专题】销售咨询题.【分析】设降价x元,表示出售价和销售量,列出方程求解即可.【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,按照题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定位56元.【点评】本题考查了一元二次方程应用,题找到关键描述语,找到等量关系准确的列出方程是解决咨询题的关键.此题要注意判定所求的解是否符合题意,舍去不合题意的解.29.已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.【考点】一元二次方程的解;根与系数的关系.【分析】把x=﹣1代入已知方程列出关于m的新方程,通过解该方程来求m的值;然后结合根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为x2,则﹣1+x2=﹣1,解得x2=0.把x=﹣1代入x2+x+m2﹣2m=0,得(﹣1)2+(﹣1)+m2﹣2m=0,即m(m﹣2)=0,解得m1=0,m2=2.综上所述,m的值是0或2,方程的另一实根是0.【点评】本题要紧考查了一元二次方程的解.一元二次方程的根确实是一元二次方程的解,确实是能够使方程左右两边相等的未知数的值.即用那个数代替未知数所得式子仍旧成立.。