2013届高考数学第一轮复习教案26
- 格式:doc
- 大小:1022.00 KB
- 文档页数:19
高考数学第一轮复习教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学第一轮复习教案高考数学第一轮复习教案七篇高考数学第一轮复习教案都有哪些?新的数学方法和概念,常常比解决数学问题本身更重要。
2.1 等差数列(一)课时目标 1.理解等差数列的概念.2.掌握等差数列的通项公式.1.如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做________数列,这个常数叫做等差数列的________,公差通常用字母d 表示. 2.若三个数a ,A ,b 构成等差数列,则A 叫做a 与b 的__________,并且A =________.3.若等差数列的首项为a 1,公差为d ,则其通项a n =____________.4.等差数列{a n }中,若公差d >0,则数列{a n }为______数列;若公差d <0,则数列{a n }为________数列.一、选择题1.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-32.△ABC 中,三内角A 、B 、C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120°3.在数列{a n }中,a 1=2,2a n +1=2a n +1(n ∈N +),则a 101的值为( )A .49B .50C .51D .524.一个等差数列的前4项是a ,x ,b,2x ,则ab 等于( ) A.14 B.12 C.13 D.23 5.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .66.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n}的通项公式是() A.a n=2n-2 (n∈N+) B.a n=2n+4 (n∈N+) C.a n=-2n+12 (n∈N+) D.a n=-2n+10 (n∈N+) 二、填空题7.已知a=13+2,b=13-2,则a、b的等差中项是__________.8.一个等差数列的前三项为:a,2a-1,3-a.则这个数列的通项公式为________.9.若m≠n,两个等差数列m、a1、a2、n与m、b1、b2、b3、n的公差为d1和d2,则d1d2的值为________.10.首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是________.三、解答题11.已知成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.12.已知数列{a n}满足a1=4,a n=4-4a n-1(n≥2),令b n=1a n-2.(1)求证:数列{b n}是等差数列;(2)求数列{a n}的通项公式.能力提升13.一个等差数列的首项为a 1=1,末项a n =41 (n ≥3)且公差为整数,那么项数n 的取值个数是( )A .6B .7C .8D .不确定14.已知数列{a n }满足a 1=15,且当n >1,n ∈N +时,有a n -1a n=2a n -1+11-2a n ,设b n =1a n,n ∈N +.(1)求证:数列{b n }为等差数列.(2)试问a 1a 2是否是数列{a n }中的项?如果是,是第几项; 如果不是,请说明理由.1.判断一个数列{a n }是否是等差数列,关键是看a n +1-a n 是否是一个与n 无关的常数.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1、d 、n 、a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.3.三个数成等差数列可设为:a -d ,a ,a +d 或a ,a +d ,a +2d ;四个数成等差数列可设为:a -3d ,a -d ,a +d ,a +3d 或a ,a +d ,a +2d ,a +3d .§2 等差数列 2.1 等差数列(一)答案知识梳理1.等差 公差 2等差中项 a +b2 3.a 1+(n -1)d 4.递增 递减作业设计1.C 2.B 3.D 4.C[⎩⎨⎧2x =a +b ,2b =x +2x ,∴a =x 2,b =32x . ∴a b =13.]5.B [设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,∴d >0,即d =2,∴a 1=2.] 6.D [由⎩⎪⎨⎪⎧a 2·a 4=12,a 2+a 4=8,d <0,⇒⎩⎨⎧a 2=6,a 4=2,⇒⎩⎨⎧a 1=8,d =-2,所以a n =a 1+(n -1)d ,即a n =8+(n -1)×(-2),得a n =-2n +10.] 7.38.a n =14n +1解析 ∵a +(3-a )=2(2a -1),∴a =54.∴这个等差数列的前三项依次为54,32,74.∴d =14,a n =54+(n -1)×14=n4+1. 9.43解析 n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13(n -m )14(n -m )=43. 10.83<d ≤3解析 设a n =-24+(n -1)d ,由⎩⎨⎧a 9=-24+8d ≤0a 10=-24+9d >0解得:83<d ≤3.11.解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得⎩⎨⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,∴⎩⎨⎧4a =26,a 2-d 2=40.解得⎩⎪⎨⎪⎧a =132,d =32或⎩⎪⎨⎪⎧a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.12.(1)证明 ∵a n =4-4a n -1(n ≥2),∴a n +1=4-4a n(n ∈N +).∴b n +1-b n =1a n +1-2-1a n -2=12-4a n-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.∴b n +1-b n =12,n ∈N +.∴{b n }是等差数列,首项为12,公差为12.(2)解 b 1=1a 1-2=12,d =12.∴b n =b 1+(n -1)d =12+12(n -1)=n2. ∴1a n -2=n 2,∴a n =2+2n . 13.B [由a n =a 1+(n -1)d ,得41=1+(n -1)d ,d =40n -1为整数,且n ≥3. 则n =3,5,6,9,11,21,41共7个.]14.(1)证明 当n >1,n ∈N +时,a n -1a n =2a n -1+11-2a n ⇔1-2a na n =2a n -1+1a n -1⇔1a n -2=2+1a n -1⇔1a n -1a n -1=4⇔b n -b n -1=4,且b 1=1a 1=5.∴{b n }是等差数列,且公差为4,首项为5. (2)解 由(1)知b n =b 1+(n -1)d =5+4(n -1)=4n +1.∴a n =1b n =14n +1,n ∈N +.∴a 1=15,a 2=19,∴a 1a 2=145. 令a n =14n +1=145,∴n =11.即a 1a 2=a 11,∴a 1a 2是数列{a n }中的项,是第11项.2.1 等差数列(二)课时目标 1.进一步熟练掌握等差数列的通项公式.2.熟练运用等差数列的常用性质.1.等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是关于n 的常函数;当d ≠0时,a n 是关于n 的一次函数;点(n ,a n )分布在以____为斜率的直线上,是这条直线上的一列孤立的点. 2.已知在公差为d 的等差数列{a n }中的第m 项a m 和第n 项a n (m≠n ),则a m -a nm -n=____.3.对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间的关系为______________.一、选择题1.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .102.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( )A. 3 B .±3C .-33 D .-3 3.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( )A .12B .8C .6D .44.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( )A .14B .21C .28D .35 5.设公差为-2的等差数列{a n },如果a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( )A .-182B .-78C .-148D .-826.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0C .-(p +q ) D.p +q2二、填空题7.若{a n }是等差数列,a 15=8,a 60=20,则a 75=_____________________________.8.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=________.9.已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 4=6,a 6=4,则a 10=___________________________.10.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=________.三、解答题11.等差数列{a n }的公差d ≠0,试比较a 4a 9与a 6a 7的大小.12.已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.能力提升13.在3与27之间插入7个数,使这9个数成等差数列,则插入这7个数中的第4个数值为()A.18 B.9C.12 D.1514.已知两个等差数列{a n}:5,8,11,…,{b n}:3,7,11,…,都有100项,试问它们有多少个共同的项?2.1等差数列(二)答案知识梳理1.d 2.d 3.a m+a n=a p+a q作业设计1.C [由a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16,∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8.] 2.D [由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3. ∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.]3.B [由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32, ∴a 8=8,又d ≠0, ∴m =8.]4.C [∵a 3+a 4+a 5=3a 4=12,∴a 4=4.∴a 1+a 2+a 3+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.]5.D [a 3+a 6+a 9+…+a 99=(a 1+2d )+(a 4+2d )+(a 7+2d )+…+(a 97+2d ) =(a 1+a 4+…+a 97)+2d ×33 =50+2×(-2)×33 =-82.]6.B [∵d =a p -a q p -q =q -pp -q =-1,∴a p +q =a p +qd =q +q ×(-1)=0.] 7.24解析 ∵a 60=a 15+45d ,∴d =415,∴a 75=a 60+15d =20+4=24. 8.1解析 ∵a 1+a 3+a 5=105,∴3a 3=105,a 3=35. ∴a 2+a 4+a 6=3a 4=99. ∴a 4=33,∴d =a 4-a 3=-2. ∴a 20=a 4+16d =33+16×(-2)=1. 9.125解析 1a 6-1a 4=14-16=2d ,即d =124.所以1a 10=1a 6+4d =14+16=512,所以a 10=125.10.12解析 由题意设这4个根为14,14+d ,14+2d ,14+3d .则14+⎝ ⎛⎭⎪⎫14+3d =2,∴d =12, ∴这4个根依次为14,34,54,74,∴n =14×74=716,m =34×54=1516或n =1516,m =716,∴|m -n |=12.11.解 设a n =a 1+(n -1)d ,则a 4a 9-a 6a 7=(a 1+3d )(a 1+8d )-(a 1+5d )(a 1+6d )=(a 21+11a 1d +24d 2)-(a 21+11a 1d +30d 2)=-6d 2<0,所以a 4a 9<a 6a 7.12.解 ∵a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15,∴a 4=5. 又∵a 2a 4a 6=45,∴a 2a 6=9,即(a 4-2d )(a 4+2d )=9,(5-2d )(5+2d )=9,解得d =±2. 若d =2,a n =a 4+(n -4)d =2n -3; 若d =-2,a n =a 4+(n -4)d =13-2n .13.D [设这7个数分别为a 1,a 2,…,a 7,公差为d ,则27=3+8d ,d =3. 故a 4=3+4×3=15.]14.解 在数列{a n }中,a 1=5,公差d 1=8-5=3. ∴a n =a 1+(n -1)d 1=3n +2.在数列{b n }中,b 1=3,公差d 2=7-3=4, ∴b n =b 1+(n -1)d 2=4n -1.令a n =b m ,则3n +2=4m -1,∴n =4m3-1. ∵m 、n ∈N +,∴m =3k (k ∈N +),又⎩⎪⎨⎪⎧0<m ≤1000<n ≤100,解得0<m ≤75. ∴0<3k ≤75,∴0<k ≤25, ∴k =1,2,3,…,25∴两个数列共有25个公共项.2.2 等差数列的前n 项和(一)课时目标 1.掌握等差数列前n 项和公式及其性质.2.掌握等差数列的五个量a 1,d ,n ,a n ,S n 之间的关系.1.把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做____________________________.例如a 1+a 2+…+a 16可以记作______;a 1+a 2+a 3+…+a n -1=______ (n ≥2).2.若{a n }是等差数列,则S n 可以用首项a 1和末项a n 表示为S n =__________;若首项为a 1,公差为d ,则S n 可以表示为S n =____________.3.等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为________.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.(3)设两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,则a nb n=S 2n -1T 2n -1.一、选择题1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .632.等差数列{a n }中,S 10=4S 5,则a 1d 等于( ) A.12 B .2 C.14 D .43.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( ) A .-9 B .-11 C .-13 D .-154.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36.则a 7+a 8+a 9等于( )A .63B .45C .36D .275.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .6636.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( ) A .3 B .-3 C .-2 D .-1二、填空题7.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.8.两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S nT n=7n +2n +3,则a 5b 5的值是________. 9.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 的值为________.10.等差数列{a n }的前m 项和为30,前2m 项和为100,则数列{a n }的前3m 项的和S 3m 的值是________.三、解答题11.在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .12.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .能力提升13.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29 14.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n 为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .51.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五2.2 等差数列的前n 项和(一)答案知识梳理1.S n S 16 S n -1 2.n (a 1+a n )2 na 1+12n (n -1)d 3.(1)d 2 作业设计1.C [S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.] 2.A [由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ), ∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.]3.D [由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.] 4.B [数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6),∵S 3=9,S 6-S 3=27,则S 9-S 6=45.∴a 7+a 8+a 9=S 9-S 6=45.]5.B [因a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.] 6.B [由⎩⎪⎨⎪⎧a 1+a 3+…+a 2n -1=na 1+n (n -1)2×(2d )=90,a 2+a 4+…+a2n =na 2+n (n -1)2×(2d )=72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.]7.15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,S 6=6a 1+6×52d =6a 1+15d =24, 即2a 1+5d =8.由⎩⎨⎧a 1+d =1,2a 1+5d =8,解得⎩⎨⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15. 8.6512解析 a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512.9.10解析 S 奇=(n +1)(a 1+a 2n +1)2=165, S 偶=n (a 2+a 2n )2=150. ∵a 1+a 2n +1=a 2+a 2n ,∴n +1n =165150=1110,∴n =10. 10.210解析 方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列, ∴2S 2m 2m =S m m +S 3m3m . 即S 3m =3(S 2m -S m )=3×(100-30)=210. 11.解由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d ,得⎩⎪⎨⎪⎧a 1+2(n -1)=11,na 1+n (n -1)2×2=35,解方程组得⎩⎨⎧n =5a 1=3或⎩⎨⎧n =7,a 1=-1.12.解 设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d ,∵S 7=7,S 15=75,∴⎩⎨⎧7a 1+21d =715a 1+105d =75,即⎩⎨⎧a 1+3d =1a 1+7d =5,解得⎩⎨⎧a 1=-2d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12,∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12, ∴T n =n ×(-2)+n (n -1)2×12=14n 2-94n .13.B [钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个. ∴钢管总数为:1+2+3+…+n =n (n +1)2. 当n =19时,S 19=190. 当n =20时,S 20=210>200.∴n =19时,剩余钢管根数最少,为10根.]14.D [a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7(n +1)+12n +1=7+12n +1,∴n =1,2,3,5,11.]2.2 等差数列的前n 项和(二)课时目标 1.熟练掌握等差数列前n 项和的性质,并能灵活运用.2.掌握等差数列前n 项和的最值问题.3.理解a n 与S n 的关系,能根据S n 求a n .1.前n 项和S n 与a n 之间的关系对任意数列{a n },S n 是前n 项和,S n 与a n 的关系可以表示为a n =⎩⎪⎨⎪⎧(n =1), (n ≥2).2.等差数列前n 项和公式S n =____________=______________. 3.等差数列前n 项和的最值 (1)在等差数列{a n }中当a 1>0,d <0时,S n 有________值,使S n 取到最值的n 可由不等式组________ 确定;当a 1<0,d >0时,S n 有________值,使S n 取到最值的n 可由不等式组____________确定.(2)因为S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有________值;当d <0时,S n 有________值;且n 取最接近对称轴的自然数时,S n 取到最值. 一个有用的结论:若S n =an 2+bn ,则数列{a n }是等差数列.反之亦然.一、选择题1.已知数列{a n }的前n 项和S n =n 2,则a n 等于( ) A .n B .n 2 C .2n +1 D .2n -1 2.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .13.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( )A .9B .8C .7D .64.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310B.13C.18 D.195.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2 D.126.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5D .S 6与S 7均为S n 的最大值二、填空题7.数列{a n}的前n项和为S n,且S n=n2-n,(n∈N+),则通项a n=________.8.在等差数列{a n}中,a1=25,S9=S17,则前n项和S n的最大值是________.9.在等差数列{a n}中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n=________.10.等差数列{a n}中,a1<0,S9=S12,该数列在n=k时,前n 项和S n取到最小值,则k的值是________.三、解答题11.设等差数列{a n}满足a3=5,a10=-9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n及使得S n最大的序号n的值.12.已知等差数列{a n}中,记S n是它的前n项和,若S2=16,S4=24,求数列{|a n|}的前n项和T n.能力提升13.数列{a n }的前n 项和S n =3n -2n 2 (n ∈N +),则当n ≥2时,下列不等式成立的是( )A .S n >na 1>na nB .S n >na n >na 1C .na 1>S n >na nD .na n >S n >na 1 14.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的范围;(2)问前几项的和最大,并说明理由.1.公式a n =S n -S n -1并非对所有的n ∈N +都成立,而只对n ≥2的正整数才成立.由S n 求通项公式a n =f (n )时,要分n =1和n ≥2两种情况分别计算,然后验证两种情况能否用统一解析式表示,若不能,则用分段函数的形式表示. 2.求等差数列前n 项和的最值(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意n ∈N +,结合二次函数图像的 对称性来确定n 的值,更加直观.(2)通项法:当a 1>0,d <0,⎩⎨⎧a n ≥0,a n +1≤0时,S n 取得最大值;当a 1<0,d >0,⎩⎨⎧a n ≤0,a n +1≥0时,S n 取得最小值.3.求等差数列{a n }前n 项的绝对值之和,关键是找到数列{a n }的正负项的分界点.2.2 等差数列的前n 项和(二)答案知识梳理1.S 1 S n -S n -1 2.n (a 1+a n )2na 1+n (n -1)2d 3.(1)最大 ⎩⎪⎨⎪⎧a n ≥0a n +1≤0 最小⎩⎪⎨⎪⎧a n ≤0a n +1≥0 (2)最小 最大 作业设计1.D2.B [等差数列前n 项和S n 的形式为:S n =an 2+bn , ∴λ=-1.] 3.B[由a n =⎩⎨⎧S 1, n =1S n -S n -1, n ≥2,∴a n =2n -10.由5<2k -10<8,得7.5<k <9,∴k =8.]4.A [方法一 S 3S 6=3a 1+3d 6a 1+15d =13⇒a 1=2d ,S 6S 12=6a 1+15d12a 1+66d =12d +15d 24d +66d=310.方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3,S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.]5.A [由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59,∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1.]6.C [由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0. 由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5.] 7.2n -2 8.169解析 方法一 利用前n 项和公式和二次函数性质.由S 17=S 9,得25×17+172×(17-1)d =25×9+92×(9-1)d ,解得d =-2,所以S n =25n +n2(n -1)×(-2)=-(n -13)2+169, 由二次函数性质可知,当n =13时,S n 有最大值169. 方法二 先求出d =-2,因为a 1=25>0,由⎩⎨⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212.所以当n =13时,S n 有最大值. S 13=25×13+13×(13-1)2×(-2)=169. 因此S n 的最大值为169.方法三 由S 17=S 9,得a 10+a 11+…+a 17=0, 而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14, 故a 13+a 14=0.由方法一知d =-2<0, 又因为a 1>0,所以a 13>0,a 14<0, 故当n =13时,S n 有最大值.S 13=25×13+13×(13-1)2×(-2)=169. 因此S n 的最大值为169. 9.10解析 由已知,a 1+a 2+a 3=15,a n +a n -1+a n -2=78,两式相加,得(a 1+a n )+(a 2+a n -1)+(a 3+a n -2)=93,即a 1+a n =31.由S n =n (a 1+a n )2=31n2=155,得n =10. 10.10或11解析 方法一 由S 9=S 12,得d =-110a 1,由⎩⎨⎧a n =a 1+(n -1)d ≤0a n +1=a 1+nd ≥0,得⎩⎪⎨⎪⎧1-110(n -1)≥01-110n ≤0,解得10≤n ≤11.∴当n 为10或11时,S n 取最小值, ∴该数列前10项或前11项的和最小. 方法二 由S 9=S 12,得d =-110a 1, 由S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,得S n =⎝ ⎛⎭⎪⎫-120a 1·n 2+⎝ ⎛⎭⎪⎫2120a 1·n =-a 120⎝⎛⎭⎪⎫n -2122+44180a 1 (a 1<0), 由二次函数性质可知n =212=10.5时,S n 最小. 但n ∈N +,故n =10或11时S n 取得最小值. 11.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎨⎧a 1+2d =5,a 1+9d =-9,可解得⎩⎨⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n . (2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2. 因为S n =-(n -5)2+25, 所以当n =5时,S n 取得最大值.12.解 由S 2=16,S 4=24,得⎩⎨⎧2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎨⎧2a 1+d =16,2a 1+3d =12.解得⎩⎨⎧a 1=9,d =-2.所以等差数列{a n }的通项公式为a n =11-2n (n ∈N +). (1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n .(2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n=2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎨⎧-n 2+10n (n ≤5),n 2-10n +50 (n ≥6).13.C[由a n =⎩⎨⎧S 1 (n =1)S n -S n -1 (n ≥2),解得a n =5-4n .∴a 1=5-4×1=1,∴na 1=n , ∴na n =5n -4n 2,∵na 1-S n =n -(3n -2n 2)=2n 2-2n =2n (n -1)>0. S n -na n =3n -2n 2-(5n -4n 2)=2n 2-2n >0. ∴na 1>S n >na n .]14.解 (1)根据题意,有:⎩⎪⎨⎪⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3.(2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…, 而S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0. 又S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0, ∴a 6>0.∴数列{a n }的前6项和S 6最大.。
4.10 三角函数的应用●知识梳理1.三角函数的性质和图象变换.2.三角函数的恒等变形.三角函数的化简、求值、证明多为综合题,突出对数学思想方法的考查.3.三角函数与其他数学知识的联系.特别要注意三角与几何、三角与平面向量的联系. ●点击双基1.已知sin x +cos x =51,0≤x ≤π,则tan x 等于A.-34或-43B.-34C.-43D.34或43解析:原式两边平方得2sin x cos x =-2524⇒-2sin x cos x =2524⇒1-2sin x cos x =2549⇒sin x -cos x =57, 可得sin x =54,cos x =-53.∴tan x =-34.答案:B2.(2001年春季北京)若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在A.第一象限B.第二象限C.第三象限D.第四象限解析:∵△ABC 为锐角三角形,∴A +B >2π.∴A >2π-B ,B >2π-A.∴sin A >cos B ,sin B >cosA.∴P 在第二象限. 答案:B3.(2004年北京西城区一模题)设0<|α|<4π,则下列不等式中一定成立的是A.sin2α>sin αB.cos2α<cos αC.tan2α>tan αD.cot2α<cot α解析:由0<|α|<4π,知0<2|α|<2π且2|α|>|α|, ∴cos2|α|<cos|α|.∴cos2α<cos α. 答案:B4.(2003年上海)若x =3π是方程2cos (x +α)=1的解,其中α∈(0,2π),则α=_________.解析:∵x =3π是方程2cos (x +α)=1的解,∴2cos (3π+α)=1,即cos (3π+α)=21.又α∈(0,2π),∴3π+α∈(3π,3π7).∴3π+α=3π5.∴α=3π4.答案:3π45.(2004年北京西城区二模题,理)函数y =sin x ·(sin x +3cos x )(x ∈R )的最大值是____________.解析:原式=sin 2x +3sin x cos x =22cos 1x +23sin2x =23sin2x -21cos2x +21=sin (2x -6π)+21,其最大值为1+21=23. 答案:23●典例剖析【例1】 化简cos (313+k π+α)+cos (313-k π-α)(k ∈Z ).剖析:原式=cos (k π+3π+α)+cos (k π-3π-α)=cos [k π+(3π+α)]+cos [k π-(3π+α)].解:原式=cos [k π+(3π+α)]+cos [k π-(3π+α)]=2cos kπcos (3π+α)=2(-1)k (cos 3πcos α-sin 3πsin α)=(-1)k (cos α-3sin α),k∈Z .【例2】 已知sin (α+β)=32,sin (α-β)=51,求βαtan tan 的值.解:由已知得⎪⎪⎩⎪⎪⎨⎧=-=+②①,.51sin cos cos sin 32sin cos cos sin βαβαβαβα所以sin αcos β=3013,cos αsin β=307.从而βαtan tan =βαβαsin cos cos sin =713.思考讨论由①②不解sin αcos β、cos αsin β,能求βαtan tan 吗?提示:①÷②,弦化切即可,读者不妨一试. 【例3】 求函数y =x x x x sin 42cos 3sin 1sin 2+--)(,x ∈(0,2π)的值域.剖析:将原函数中三角函数都化成单角的正弦函数,再换元将其转化为一元函数求解.解:y =xx x x sin 4sin 213sin 1sin 22+---)()(=1sin 2sin sin sin 22+++-x x x x .设t =sin x ,则由x ∈(0,2π)⇒t ∈(0,1). 对于y =1222+++-t t t t =2212131)()()(+-+++-t t t =-1+13+t -212)(+t ,令11+t =m ,m ∈(21,1),则y =-2m 2+3m -1=-2(m -43)2+81.当m =43∈(21,1)时,y max =81, 当m =21或m =1时,y =0. ∴0<y ≤81,即y ∈(0,81].评述:本题的解法较多,但此方法主要体现了换元转化的思想,在换元时要注意变量的范围.●闯关训练 夯实基础1.(2002年春季北京)若角α满足条件sin2α<0,cos α-sin α<0,则α在A.第一象限B.第二象限C.第三象限D.第四象限解析:∵sin2α<0,∴2α在第三、四象限. ∴α在第二、四象限.又∵cos α-sin α<0, ∴α在第二象限. 答案:B2.(2002年春季上海)在△ABC 中,若2cos B ·sin A =sin C ,则△ABC 的形状一定是A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形解析:∵2cos B ·sin A =sin C =sin (A +B )⇒sin (A -B )=0, 又A 、B 、C 为三角形的内角,∴A =B .答案:C3.(2005年启东市高三年级第二次调研考试题)在斜△ABC 中,sin A =-cos B cos C 且tan B tan C =1-3,则∠A 的值为 A.6πB.3πC.3π2D.6π5解析:由A =π-(B +C ),sin A =-cos B cos C 得sin (B +C )=-cos B cos C ,即sin B cos C +cos B sin C =-cos B cos C . ∴tan B +tan C =-1.又tan (B +C )=CB CB tan tan 1tan tan -+=3tan tan C B +=31-=-33,∴-tan A =-33,tan A =33. 又∵0<A <π,∴A =6π.答案:A4.函数y =sin x -cos x 的图象可由y =sin x +cos x 的图象向右平移_______个单位得到.解析:由y 1=sin x +cos x =2sin (x +4π),得x 1=-4π(周期起点).由y 2=sin x -cos x =2sin (x -4π),得x 2=4π(周期起点).答案:2π5.函数y =21sin (4π-32x )的单调递减区间及单调递增区间分别是__________.解析:y =21sin (4π-32x )=-21sin (32x -4π).故由2k π-2π≤32x -4π≤2k π+2π⇒3k π-8π3≤x ≤3k π+8π9(k ∈Z ),为单调减区间;由2k π+2π≤32x -4π≤2k π+2π3⇒3k π+8π9≤x ≤3k π+8π21(k ∈Z ),为单调增区间.答案:[3k π-8π3,3k π+8π9](k ∈Z );[3k π+8π9,3k π+8π21](k ∈Z )6.已知0≤x ≤2π,则函数y =42sin x cos x +cos2x 的值域是________.解析:可化为y =3sin (2x +ϕ),其中cos ϕ=322,sin ϕ=31,且有ϕ≤2x +ϕ≤π+ϕ.∴y max =3sin 2π=3,y min =3sin (π+ϕ)=-3sin ϕ=-1.∴值域是[-1,3]. 答案:[-1,3] 培养能力7.设a =(sin x -1,cos x -1),b =(22,22).(1)若a 为单位向量,求x 的值;(2)设f (x )=a ·b ,则函数y =f (x )的图象是由y =sin x 的图象按c 平移而得,求c .解:(1)∵|a |=1,∴(sin x -1)2+(cos x -1)2=1,即sin x +cos x =1,2sin (x +4π)=1,sin (x +4π)=22,∴x =2k π或x =2k π+2π,k ∈Z .(2)∵a ·b =sin (x +4π)-2.∴f (x )=sin (x +4π)-2,由题意得c =(-4π,-2).8.求半径为R 的圆的内接矩形周长的最大值.解:设∠BAC =θ,周长为P ,则P =2AB +2BC =2(2R cos θ+2R sin θ)=42R sin(θ+4π)≤42R ,当且仅当θ=4π时,取等号.∴周长的最大值为42R .探究创新9.(2004年北京东城区高三第一次模拟考试)在△ABC 中,若sin C (cos A +cos B )=sin A +sin B .(1)求∠C 的度数;(2)在△ABC 中,若角C 所对的边c =1,试求内切圆半径r 的取值范围.解:(1)∵sin C (cos A +cos B )=sin A +sin B , ∴2sin C cos 2B A +·cos 2B A -=2sin 2B A +·cos 2B A -.在△ABC 中,-2π<2B A -<2π.∴cos 2B A -≠0.∴2sin 22C cos 2C =cos 2C ,(1-2sin 22C )cos 2C =0.∴(1-2sin 22C )=0或cos 2C =0(舍).∵0<C <π,∴∠C =2π.(2)设Rt △ABC 中,角A 和角B 的对边分别是a 、b ,则有a =sin A ,b =cos A .∴△ABC 的内切圆半径r =21(a +b -c )=21(sin A +cos A -1)=22sin (A +4π)-21≤212-. ∴△ABC 内切圆半径r 的取值范围是0<r ≤212-. ●思悟小结三角函数是中学教材中一种重要的函数,它的定义和性质有许多独特的表现,是高考中对基础知识和基本技能考查的重要内容之一,同时,由于三角函数和代数、几何知识联系密切,它又是研究其他各类知识的重要工具,因此应重视对知识理解的准确性,加强对三角知识工具性的认识.●教师下载中心 教学点睛1.因本节是三角函数的应用,建议教学中让学生自己总结一下三角函数本身有哪些应用,使知识能条理化并形成一个网络.2.总结本章涉及的数学思想方法,以及与三角相关联的一些知识点.拓展题例【例1】 已知cos B =cos θ·sin A ,cos C =sin θsin A . 求证:sin 2A +sin 2B +sin 2C =2.分析:本题为条件恒等式的证明,要从条件与要证的结论之间的联系入手,将结论中的sin 2B 、sin 2C 都统一成角A 的三角函数.证法一:sin 2A +sin 2B +sin 2C =sin 2A +[1-(cos θsin A )2]+[1-(sin θsin A )2]=sin 2A +1-cos 2θsin 2A +1-sin 2θsin 2A =sin 2A (1-sin 2θ)+1-cos 2θsin 2A +1 =sin 2A cos 2θ-sin 2A cos 2θ+2=2. ∴原式成立.证法二:由已知式可得cos θ=AB sin cos ,sin θ=AC sin cos .平方相加得cos 2B +cos 2C =sin 2A ⇒22cos 1B ++22cos 1C +=sin 2A⇒cos2B +cos2C =2sin2A -2.1-2sin 2B +1-2sin 2C =2sin 2A -2,∴sin 2A +sin 2B +sin 2C =2. 【例2】 函数f (x )=1-2a -2a cos x -2sin 2x 的最小值为g (a ),a ∈R ,(1)求g (a );(2)若g (a )=21,求a 及此时f (x )的最大值.解:(1)f (x )=1-2a -2a cos x -2(1-cos 2x )=2cos 2x -2a cos x -1-2a=2(cos x -2a)2-22a -2a -1.若2a <-1,即a <-2,则当cos x =-1时,f (x )有最小值g (a )=2(-1-2a)2-22a -2a -1=1;若-1≤2a ≤1,即-2≤a ≤2,则当cos x =2a 时,f (x )有最小值g (a )=-22a -2a -1;若2a >1,即a >2,则当cos x =1时,f (x )有最小值g (a )=2(1-2a)2-22a -2a -1=1-4a .∴g (a )=⎪⎪⎩⎪⎪⎨⎧>-≤≤-----<.24122122212)(),(),(a aa a aa(2)若g (a )=21,由所求g (a )的解析式知只能是-22a -2a-1=21或1-4a =21.由⇒⎪⎩⎪⎨⎧=---≤≤-21122222a a a a =-1或a =-3(舍).由⇒⎪⎩⎪⎨⎧=->21412a a a =81(舍). 此时f (x )=2(cos x +21)2+21,得f (x )max =5.∴若g (a )=21,应a =-1,此时f (x )的最大值是5.。
高中一轮复习教案数学第一课:函数及其性质
1.1 函数的定义和性质
概念:函数的定义和表示方法
性质:单调性、奇偶性、周期性等
1.2 函数的基本变换
平移、翻转、缩放等基本函数的变换方法
例题:给出函数图像,要求根据变换规律求新函数的图像1.3 复合函数
概念:复合函数的定义和计算方法
例题:计算复合函数的值,并分析其性质
1.4 反函数
概念:反函数的存在条件及求解方法
例题:给定函数,求其反函数,并验证是否合理
第二课:三角函数及其应用
2.1 三角函数的概念与性质
正弦、余弦、正切等三角函数的定义和性质
例题:解三角函数方程,证明恒等式等
2.2 三角函数的图像与变换
三角函数的图像特征及平移、翻转、缩放等变换规律
例题:给定函数图像,要求根据变换规律求新函数的图像2.3 三角函数的应用
三角函数在几何、物理等领域的应用
例题:实际问题中的三角函数应用
第三课:导数与微分
3.1 导数的概念与性质
导数的定义、导数与函数图像的关系等基本性质
例题:求函数的导数,研究导数的性质
3.2 导数的计算
常见函数的导数计算方法
例题:计算给定函数的导数,并分析其变化规律
3.3 微分的应用
微分的定义及在近似计算、最值问题等方面的应用
例题:利用微分求函数的极值点,解几何问题等
以上是高中数学一轮复习的教案范本,希望对你的备考有所帮助。
祝你取得优异的成绩!。
2013届高考数学(理)一轮复习教案:第三篇导数及其应用专题一高考函数与导数命题动向高考命题分析函数是数学永恒的主题,是中学数学最重要的主干知识之一;导数是研究函数的有力工具,函数与导数不仅是高中数学的核心内容,还是学习高等数学的基础,而且函数的观点及其思想方法贯穿于整个高中数学教学的全过程,高考对函数的考查更多的是与导数的结合,发挥导数的工具性作用,应用导数研究函数的性质、证明不等式问题等,体现出高考的综合热点.所以在高考中函数知识占有极其重要的地位,是高考考查数学思想、数学方法、能力和素质的主要阵地.高考命题特点函数与导数在高考试卷中形式新颖且呈现出多样性,既有选择题、填空题,又有解答题.其命题特点如下:(1)全方位:近年新课标的高考题中,函数的知识点基本都有所涉及,虽然高考不强调知识点的覆盖率,但函数知识点的覆盖率依然没有减小.(2)多层次:在近年新课标的高考题中,低档、中档、高档难度的函数题都有,且题型齐全.低档难度题一般仅涉及函数本身的内容,诸如定义域、值域、单调性、周期性、图象等,且对能力的要求不高;中、高档难度题多为综合程度较高的试题,或者函数与其他知识结合,或者是多种方法的渗透.(3)巧综合:为了突出函数在中学数学中的主体地位,近年高考强化了函数与其他知识的渗透,加大了以函数为载体的多种方法、多种能力(甚至包括阅读能力、理解能力、表述能力、信息处理能力)的综合程度.(4)变角度:出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考查,加大了函数应用题、探索题、开放题和信息题的考查力度,从而使函数考题显得新颖、生动、灵活.(5)重能力:以导数为背景与其他知识(如函数、方程、不等式、数列等)交汇命题.利用导数解决相关问题,是命题的热点,而且不断丰富创新.解决该类问题要注意函数与方程、转化与化归、分类讨论等数学思想的应用.综合考查学生分析问题、解决问题的能力和数学素养.高考动向透视函数的概念和性质函数既是高中数学中极为重要的内容,又是学习高等数学的基础.函数的基础知识涉及函数的三要素、函数的表示方法、单调性、奇偶性、周期性等内容.纵观全国各地的高考试题,可以发现对函数基础知识的考查主要以客观题为主,难度中等偏下,在解答题中主要与多个知识点交汇命题,难度中等.【示例1】►(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ).A .-3B .-1C .1D .3解析 法一 ∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x )=2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3.故选A.法二 设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x )=2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.答案 A本题考查函数的奇偶性和函数的求值,解题思路有两个:一是利用奇函数的性质,直接通过f (1)=-f (-1)计算;二是利用奇函数的性质,先求出x >0时f (x )的解析式,再计算f (1).指数函数、对数函数、幂函数指数函数在新课标高考中占有十分重要的地位,因此高考对指数函数的考查有升温的趋势,重点是指数函数的图象和性质,以及函数的应用问题.对于幂函数应重点掌握五种常用幂函数的图象及性质,此时,幂的运算是解决有关指数问题的基础,也要引起重视.对数函数在新课标中适当地降低了要求,因此高考对它的考查也会适当降低难度,但它仍是高考的热点内容,重点考查对数函数的图象和性质及其应用.【示例2】►(2011·天津)已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( ). A .a >b >c B .b >a >c C .a >c >b D .c >a >b解析因为c=5-log30.3=5log3103,又log23.4>log33.4>log3103>1>log43.6>0,且指数函数y=5x是R上的增函数,所以a>c>b.故选C.答案 C本题主要考查指数函数单调性的应用、对数式的大小比较.一般是利用指数函数单调性进行比较.对数式的比较类似指数式的比较,也可以寻找中间量.函数的应用函数的应用历来是高考重视的考点,新课标高考更是把这个考点放到了一个重要的位置.相对于大纲的高考,新课标高考无论在考查内容上还是力度上都有所加强,这主要体现在函数与方程方面,函数与方程已经成为新课标高考的一个命题热点,值得考生重视.【示例3】►(2011·山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为().A.6 B.7 C.8 D.9解析由f(x)=0,x∈[0,2)可得x=0或x=1,即在一个周期内,函数的图象与x 轴有两个交点,在区间[0,6)上共有6个交点,当x=6时,也是符合要求的交点,故共有7个不同的交点.故选B.答案 B本小题考查对周期函数的理解与应用,考查三次方程根的求法、转化与化归思想及推理能力,难度较小.求解本题的关键是将f(x)=x3-x进行因式分解,结合周期函数的性质求出f(x)=0在区间[0,6]上的根,然后将方程f(x)=0的根转化为函数图象与x轴的交点问题.导数的概念及运算从近两年的高考试题来看,利用导数的几何意义求曲线在某点处的切线方程是高考的热点问题,解决该类问题必须熟记导数公式,明确导数的几何意义是曲线在某点处切线的斜率,切点既在切线上又在曲线上.【示例4】►已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x -y=0,则点P的坐标为________.解析由题意知,函数f(x)=x4-x在点P处的切线的斜率等于3,即f′(x0)=4x30-1=3,∴x0=1,将其代入f(x)中可得P(1,0).答案(1,0)本题主要考查导数的几何意义及简单的逻辑推理能力.利用导数求函数的单调区间、极值、最值从近两年的高考试题来看,利用导数研究函数的单调性和极、最值问题已成为高考考查的热点.解决该类问题要明确:导数为零的点不一定是极值点,导函数的变号零点才是函数的极值点;求单调区间时一定要注意函数的定义域;求最值时需要把极值和端点值逐一求出,比较即可.【示例5】►已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为1010,若x=23时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.解(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0.①当x=23时,y=f(x)有极值,则f′⎝⎛⎭⎪⎫23=0,可得4a+3b+4=0②由①②解得a=2,b=-4. 设切线l的方程为y=3x+m由原点到切线l的距离为10 10,则|m|32+1=1010,解得m=±1.∵切线l不过第四象限∴m=1,由于切点的横坐标为x=1,∴f(1)=4,∴1+a+b+c=4∴c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,∴f′(x)=3x2+4x-4.令f′(x)=0,得x=-2,x=2 3.f(x)和f′(x)的变化情况如下表:在x=23处取得极小值f⎝⎛⎭⎪⎫23=9527.又f(-3)=8,f(1)=4,∴f(x)在[-3,1]上的最大值为13,最小值为95 27.在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.突出以函数与导数为主的综合应用高考命题强调“以能力立意”,就是以数学知识为载体,从问题入手,把握数学学科的整体意义,加强对知识的综合性和应用性的考查.中学数学的内容可以聚合为数和形两条主线,其中数是以函数概念来串联代数、三角和解析几何知识,我们可以把方程看作函数为零,不等式看成两个函数值的大小比较、数列、三角则是特殊的一类函数.所以,高考试题中涉及函数的考题面很广.新课标高考对有关函数的综合题的考查,重在对函数与导数知识理解的准确性、深刻性,重在与方程、不等式、数列、解析几何等相关知识的相互联系,要求考生具备较高的数学思维能力和综合分析问题能力以及较强的运算能力,体现了以函数为载体,多种能力同时考查的命题思想.【示例6】►(2011·福建)已知a,b为常数,且a≠0,函数f(x)=-ax+b+ax ln x,f(e)=2(e=2.718 28…是自然对数的底数).(1)求实数b的值;(2)求函数f(x)的单调区间.(3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.解 (1)由f (e)=2得b =2.(2)由(1)可得f (x )=-ax +2+ax ln x .从而f ′(x )=a ln x .因为a ≠0,故①当a >0时,由f ′(x )>0得x >1,由f ′(x )<0得0<x <1;②当a <0时,由f ′(x )>0得0<x <1,由f ′(x )<0得x >1.综上,当a >0时,函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1);当a <0时,函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)当a =1时,f (x )=-x +2+x ln x ,f ′(x )=ln x .由(2)可得,当x 在区间⎣⎢⎡⎦⎥⎤1e ,e 内变化时,f ′(x ),f (x )的变化情况如下表:又2-2e <2,所以函数f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 的值域为[1,2].据此可得,若⎩⎨⎧m =1,M =2.则对每一个t ∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点; 并且对每一个t ∈(-∞,m )∪(M ,+∞),直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都没有公共点.综上,当a =1时,存在最小的实数m =1,最大的实数M =2,使得对每一个t∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点.本题主要考查函数、导数等基础知识.考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.。
2.5二次函数1.二次函数的定义与解析式(1)二次函数的定义形如:f(x)=ax2+bx+c (a≠0)的函数叫做二次函数.(2)二次函数解析式的三种形式①一般式:f(x)=______________________.②顶点式:f(x)=________________________.③零点式:f(x)=________________________.2.二次函数的图象和性质a<03.二次函数f(x)=11,0)、M2(x2,0),|M1M2|=|x1-x2|=Δ|a|.[难点正本疑点清源]1.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求.①已知三个点的坐标时,宜用一般式.②已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便. 2.二次函数对应的一元二次方程的区间根的分布讨论二次函数相应的二次方程的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置. 在讨论过程中,注意应用数形结合的思想.1.若二次函数f (x )=ax 2+bx +2满足f (x 1)=f (x 2),则f (x 1+x 2)=________.2.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________.3.若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =________.4.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围为____________.5.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( ) A.⎝⎛⎭⎫-∞,-52 B.⎝⎛⎭⎫52,+∞ C.(-∞,-2)∪(2,+∞)D.⎝⎛⎭⎫-52,+∞题型一 求二次函数的解析式例1 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此 二次函数.探究提高 二次函数的解析式有三种形式: (1)一般式:f (x )=ax 2+bx +c (a ≠0); (2)顶点式:f (x )=a (x -h )2+k (a ≠0); (3)两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0).已知函数的类型(模型),求其解析式,用待定系数法,根据题设恰当选用二次函数解析式的形式,可使解法简捷.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f(x)的值域.题型二二次函数的图象与性质例2已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.探究提高(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解.已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]内有一个最大值-5,求a 的值.题型三二次函数的综合应用例3若二次函数f(x)=ax2+bx+c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.探究提高二次函数、二次方程与二次不等式统称“三个二次”,它们常有机结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.(1)求f(x)与g(x)的解析式;(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围.2.分类讨论在二次函数中的应用试题:(14分)设a 为实数,函数f (x )=2x 2+(x -a )|x -a |. (1)若f (0)≥1,求a 的取值范围; (2)求f (x )的最小值;(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集.审题视角 (1)求a 的取值范围,是寻求关于a 的不等式,解不等式即可.(2)求f (x )的最小值,由于f (x )可化为分段函数,分段函数的最值分段求,然后综合在一起.(3)对a 讨论时,要找到恰当的分类标准. 规范解答解 (1)因为f (0)=-a |-a |≥1,所以-a >0, 即a <0,由a 2≥1知a ≤-1,因此,a 的取值范围为(-∞,-1].[3分] (2)记f (x )的最小值为g (a ),则有 f (x )=2x 2+(x -a )|x -a | =⎩⎨⎧3⎝⎛⎭⎫x -a 32+2a23,x >a ①(x +a )2-2a 2,x ≤a ② [5分](ⅰ)当a ≥0时,f (-a )=-2a 2,由①②知f (x )≥-2a 2,此时g (a )=-2a 2. [7分] (ⅱ)当a <0时,f ⎝⎛⎭⎫a 3=23a 2,若x >a ,则由①知f (x )≥23a 2. 若x ≤a ,由②知f (x )≥2a 2>23a 2.此时g (a )=23a 2,综上,得g (a )=⎩⎨⎧-2a 2,a ≥2a 23,a <0. [10分](3)(ⅰ)当a ∈⎝⎛⎦⎤-∞,-62∪⎣⎡⎭⎫22,+∞时,解集为(a ,+∞); (ⅱ)当a ∈⎣⎡⎭⎫-22,22时,解集为⎣⎢⎡⎭⎪⎫a +3-2a 23,+∞; (ⅲ)当a ∈⎝⎛⎭⎫-62,-22时,解集为 ⎝ ⎛⎦⎥⎤a ,a -3-2a 23∪⎣⎢⎡⎭⎪⎫a +3-2a 23,+∞.[14分]批阅笔记 分类讨论的思想是高考重点考查的数学思想方法之一.本题充分体现了分类讨论的思想方法.在解答本题时有两点容易造成失分:一是求实数a 的值时,讨论的过程中没注意a 自身的取值范围,易出错;二是求函数最值时,分类讨论的结果不能写在一起,不能得出最后的结论. 除此外,解决函数问题时,以下几点容易造成失分: 1.含绝对值问题,去绝对值符号,易出现计算错误;2.分段函数求最值时要分段求,最后写在一起时,没有比较大小或不会比较出大小关系;3.解一元二次不等式时,不能与一元二次函数、一元二次方程联系在一起,思路受阻.方法与技巧1.数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常结合图形寻找思路.2.含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,又例如涉及二次不等式需讨论根的大小等.3.关于二次函数y =f (x )对称轴的判断方法(1)对于二次函数y =f (x )对定义域内所有x ,都有f (x 1)=f (x 2),那么函数y =f (x )图象的对称轴方程为x =x 1+x 22.(2)对于二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立,那么函数y =f (x )图象的对称轴方程为x =a (a 为常数).(3)对于二次函数y =f (x )对定义域内所有x ,都有f (x +2a )=f (x ),那么函数y =f (x )图象的对称轴方程为x =a (a 为常数).注意:(2)(3)中,f (a +x )=f (a -x )与f (x +2a )=f (x )是等价的.(4)利用配方法求二次函数y =ax 2+bx +c (a ≠0)对称轴方程为x =-b 2a;(5)利用方程根法求对称轴方程.若二次函数y =f (x )对应方程f (x )=0的两根为x 1、x 2,那么函数y =f (x )图象的对称轴方程为x =x 1+x 22.失误与防范1.求二次函数的单调区间时要经过配方法,要熟练准确利用配方法.2.对于函数y =ax 2+bx +c 要认为它是二次函数,就必须认定a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.3.对于二次函数y =ax 2+bx +c (a ≠0)给定了定义域为一个区间[k 1,k 2]时,利用配方法求函数的最值4ac -b 24a 是极其危险的,一般要讨论函数图象的对称轴在区间外、内的情况,有时要讨论下列四种情况:①-b 2a <k 1;②k 1≤-b 2a <k 1+k 22;③k 1+k 22≤-b 2a <k 2;④-b2a ≥k 2.对于这种情况,也可以利用导数法求函数在闭区间的最值方法求最值.这两种方法运算量相当. 4.注意判别式作用,正确利用判别式.答案要点梳理1.(2)①ax 2+bx +c (a ≠0) ②a (x -m )2+n (a ≠0) ③a (x -x 1)(x -x 2) (a ≠0) 基础自测1.2 2.[1,2] 3.6 4.(-∞,-2] 5.B 题型分类·深度剖析例1 解 方法一 设f (x )=ax 2+bx +c (a ≠0), 依题意有⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解之,得⎩⎪⎨⎪⎧a =-4,b =4,c =7,∴所求二次函数为y =-4x 2+4x +7. 方法二 设f (x )=a (x -m )2+n ,a ≠0. ∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12.又根据题意函数有最大值为n =8, ∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1, 解之,得a =-4.∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7.方法三 依题意知:f (x )+1=0的两根为 x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1),a ≠0. 即f (x )=ax 2-ax -2a -1. 又函数有最大值y max =8, 即4a (-2a -1)-a 24a =8,解之,得a =-4或a =0(舍去). ∴函数解析式为f (x )=-4x 2+4x +7.变式训练1 解 (1)设顶点为P (3,4)且过点A (2,2)的抛物线的方程为y =a (x -3)2+4,将(2,2)代入可得a =-2, ∴y =-2(x -3)2+4,即x >2时,f (x )=-2x 2+12x -14. 当x <-2时,即-x >2.又f (x )为偶函数,f (x )=f (-x )=-2×(-x )2-12x -14, 即f (x )=-2x 2-12x -14.∴函数f (x )在(-∞,-2)上的解析式为 f (x )=-2x 2-12x -14. (2)函数f (x )的图象如图:(3)由图象可知,函数f (x )的值域为(-∞,4].例2 解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6]x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].变式训练2 解 f (x )=-4⎝⎛⎭⎫x -a 22-4a ,对称轴为x =a2,顶点为⎝⎛⎭⎫a 2,-4a . ①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5, ∴a =±1<2(舍去). ②当0<a2<1,即0<a <2时,y max =f ⎝⎛⎭⎫a 2=-4a ,令-4a =-5, ∴a =54∈(0,2).③当a2≤0,即a ≤0时,f (x )在区间[0,1]上递减,此时f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,即a 2+4a -5=0, ∴a =-5或a =1(舍去). 综上所述,a =54或a =-5.例3 解 (1)由f (0)=1得,c =1. ∴f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,∴⎩⎪⎨⎪⎧a =1b =-1. 因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减,∴g (x )min =g (1)=-m -1,由-m -1>0得,m <-1. 因此满足条件的实数m 的取值范围是(-∞,-1). 变式训练3 解 (1)∵f (x )=x 2+mx +n , ∴f (-1+x )=(-1+x )2+m (-1+x )+n =x 2-2x +1+mx +n -m =x 2+(m -2)x +n -m +1, f (-1-x )=(-1-x )2+m (-1-x )+n=x 2+2x +1-mx -m +n =x 2+(2-m )x +n -m +1. 又f (-1+x )=f (-1-x ), ∴m -2=2-m ,即m =2. 又f (x )的图象过点(1,3), ∴3=12+m +n ,即m +n =2, ∴n =0,∴f (x )=x 2+2x ,又y =g (x )与y =f (x )的图象关于原点对称,∴-g (x )=(-x )2+2×(-x ), ∴g (x )=-x 2+2x .(2)∵F (x )=g (x )-λf (x )=-(1+λ)x 2+(2-2λ)x ,当λ+1≠0时,F (x )的对称轴为x =2-2λ2(1+λ)=1-λλ+1,又∵F (x )在(-1,1]上是增函数.∴⎩⎪⎨⎪⎧ 1+λ<01-λ1+λ≤-1或⎩⎪⎨⎪⎧1+λ>01-λ1+λ≥1.∴λ<-1或-1<λ≤0.当λ+1=0,即λ=-1时,F (x )=4x 显然在(-1,1]上是增函数. 综上所述,λ的取值范围为(-∞,0].高γ考╓试╬题ω库。
第二编 函数与基本初等函数Ⅰ§2.1 函数及其表示基础自测1. 与函数f (x )=|x |是相同函数的有 (写出一个你认为正确的即可).答案 y =2x2.设M ={x |0≤x ≤2},N ={y |0≤y ≤3},给出下列四个图形(如图所示),其中能表示从集合M 到集合N 的函数关系的是 .(填序号).答案 ②③3.若对应关系f :A →B 是从集合A 到集合B 的一个映射,则下面说法正确的是 (填序号). ①A 中的每一个元素在集合B 中都有对应元素 ②A 中两个元素在B 中的对应元素必定不同③B 中两个元素若在A 中有对应元素,则它们必定不同④B 中的元素在A 中可能没有对应元素答案 ①③④4.如图所示,①②③三个图象各表示两个变量x ,y 的对应关系,则能表示y 是x 的函数的图象是 (填序号).答案 ②③ 5.已知f (x 1)=x 2+5x ,则f (x )= .答案 251x x +(x ≠0)例1给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c ,则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎨⎧=+=22444b a a ,∴⎩⎨⎧-==11b a ,又f (0)=3⇒c =3,∴f (x )=x 2-x +3.例2(1)求函数f (x )=229)2(1xx x g --(2)已知函数f (2x)的定义域是[-1,1],求f (log 2x )的定义域.解 (1,3302,090222⎩⎨⎧<<-<>⎪⎩⎪⎨⎧>->-x x x x x x 或即-3<x <0或2<x < 3.故函数的定义域是(-3,0)∪(2,3).(2)∵y =f (2x)的定义域是[-1,1],即-1≤x ≤1,∴21≤2x≤ 2. ∴函数y =f (log 2x )中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤ 4. 故函数f (log 2x )的定义域为[2,4]例3(14分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x , 同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x(2)为使本年度利润比上年有所增加,问投入成本增加的比例x解 (1)依题意,本年度每辆摩托车的成本为1+x (万元),而出厂价为1.2×(1+0.75x ) (万元),销售量为1 000×(1+0.6x )(辆).故利润y =[1.2×(1+0.75x )-(1+x )]×1 000×(1+0.6x), 5 整理得y =-60x 2+20x +200 (0<x <1). 7(2则y -(1.2-1)×1 000>0, 10分即-60x 2+20x +200-200>0,即3x 2-x <0. 12分解得0<x <31,适合0<x < 1. 故为保证本年度利润比上年有所增加,投入成本增加的比例x 的取值范围是0<x <31. 13答 (1)函数关系式为y =-60x 2+20x +200 (0<x <1). (2)投入成本增加的比例x 的范围是(0,31). 14例4 已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧<-=>.0,1,0,1,0,2x xx x x (1(2)求f (1),f (-1),f [f (-1)]的值.解 (1)分别作出f (x )在x >0,x =0, x <0段上的图象,如图所示,作法略. (2)f (1)=12=1,f (-1)=-11- =1,f [f (-1)]=f (1)=1.1.(1)已知f (12+x)=lg x ,求f (x(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x(3)已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解 (1)令x 2+1=t ,则x =12-t∴f (t )=lg12-t ,∴f (x )=lg 12-x ,x ∈(1,+∞). (2)设f (x )=ax +b3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴a =2,b =7,故f (x )=2x +7. (3)2f (x )+f (x1)=3x , ① 把①中的x 换成x 1,得2f (x 1)+f (x )=x3①×2-②得3f (x )=6x -x 3,∴f (x )=2x -x1. 2.(1)y =2)3(log 2+-x x +(2x -3)0;(2)y =log (2x +1)(32-4x).解 (1)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠->+>-.3log 2,303202032x ,x x x x x ,得∴定义域为(-2,log 23)∪(log 23,3).(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-><⎪⎪⎩⎪⎪⎨⎧≠+>+>-021,25,1120120432x ,x x x x x 得∴定义域为(-21,0)∪(0,25).3.等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =45°,作直线MN ⊥AD 交AD 于M ,交折线ABCD 于N ,记AM =x,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域.解 作BH ⊥AD ,H 为垂足,CG ⊥AD ,G依题意,则有AH =2a ,AG =23a .(1) 当M 位于点H 的左侧时,N ∈AB由于AM =x ,∠BAD =45°. ∴MN =x . ∴y =S △AMN =21x 2(0≤x ≤2a ).(2)当M 位于HG由于AM =x∴MN =2a ,BN =x -2a.∴y =S 直角梯形AMNB =2·21a [x +(x -2a )]=21ax -).232(82a x a a ≤<(3)当M 位于点G由于AM =x ,MN =MD =2a -x . ∴y =S 梯形ABCD -S △MDN=).223(45221)44(2143)2(21)2(2·21222222a x a a ax x x ax a a x a a a a ≤<-+-=+--=--+ 综上:y =⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈-+-⎥⎦⎤ ⎝⎛∈-⎢⎣⎡⎥⎦⎤∈a a x a ax x a a x a ax a x x 2,2345221.23,28212,02122224.如右图所示,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,设直线x =t (0≤t ≤2)截这个三角形可得位于此直线左方的图形的面积为f (t ),则函数y =f (t )的图象(如下图所示)大致是 (填序号).答案一、填空题1.设函数f 1(x )=x 21,f 2(x )=x -1,f 3(x )=x 2,则[]))0072((123f f f = .答案007212.(2008·安徽文,13)函数f (x )=)1(log 1|21|2---x 的定义域为 .答案 []+∞,3 3.若f (x )=⎩⎨⎧≥<+)6(log )6()3(2x xx x f ,则f (-1)的值为 . 答案 34.已知f (2211)11x x x x +-=+-,则f(x )的解析式为 . 答案 f (x )=212x x +5.函数f (x )=xx -132 +lg(3x +1)的定义域是 .答案 (-31,1) 6.(2008·陕西理,11)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R ),f (1)=2,则f (-3)= . 答案 6 7.已知函数f (x ),g (x)则f [g (1)]的值为 ,满足f [g (x )]>g [f (x )]的x 的值是. 答案 1 28.已知函数ϕ (x)=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且ϕ(31)=16, ϕ (1)=8,则 ϕ(x )= .答案 3x +x5二、解答题 9.求函数f (x )=21)|lg(|xx x --的定义域.解 由,110010||2⎩⎨⎧<<-<⎪⎩⎪⎨⎧>->-x x x x x ,得 ∴-1<x <0. ∴函数f (x )=21)|lg(|xx x --的定义域为(-1,0).10.(1)设f (x )是定义在实数集R 上的函数,满足f (0)=1,且对任意实数a 、b ,有f (a -b )=f (a )-b (2a -b +1),求f (x ); (2)函数f (x ) (x ∈(-1,1))满足2f (x )-f (-x )=lg(x +1),求f (x ). 解 (1)依题意令a =b =x ,则f (x -x )=f (x )-x (2x -x +1), 即f (0)=f (x )-x 2-x , 而f (0)=1,∴f (x )=x 2+x +1. (2)以-x 代x ,依题意有2f (-x )-f (x )=lg(1-x ) ①又2f (x )-f (-x )=lg(1+x ) ②两式联立消去f (-x )得3f (x )=lg(1-x )+2lg(1+x ), ∴f (x )=31lg(1+x -x 2-x 3)(-1<x <1). 11.如图所示,有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,且上底CD 的端点在圆周上,写出梯形周长y 关于腰长x 的函数关系式,并求出它的定义域.解 AB =2R ,C 、D 在⊙o的半圆周上,设腰长AD =BC =x ,作DE ⊥AB,垂足为E ,连接BD , 那么∠ADB 是直角,由此Rt △ADE ∽Rt △ABD.∴AD 2=AE ×AB ,即AE =R x 22,∴CD =AB -2AE =2R -Rx 2,所以y =2R +2x +(2R -Rx 2),即y =-Rx 2+2x +4R.再由⎪⎪⎪⎩⎪⎪⎪⎨⎧>->>0202022R x R R xx ,解得0<x <2R .所以y =-R x 2+2x +4R ,定义域为(0,2R ). 12.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解 (1)当每辆车的月租金定为3 600元时,未租出的车辆数为5000036003-=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=(100-500003)150)(500003----x x x ×50. 整理得f (x )=-502x +162x -21 000=-501(x -4 050)2+307 050. 所以,当x =4 050时,f (x )最大,最大值为f (4 050)=307 050.即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大月收益为307 050元.§2.2函数的单调性与最大(小)值基础自测1.已知函数y =f (x )是定义在R 上的增函数,则下列对f (x )=0的根说法不正确的是 (填序号).有且只有一个 ②有2个至多有一个 ④没有根答案 ①②2. 已知f (x )是R 上的增函数,若令F (x )=f (1-x )-f (1+x ),则F (x )是R 上的 函数(用“增”、“减”填空). 答案 减3.若函数f (x )=x 2+(a 2-4a +1)x +2在区间(-∞,1]上是减函数,则a 的取值范围是 .答案 [1,3]4.(2009·徐州六县一区联考)若函数f (x )是定义在(0,+∞)上的增函数,且对一切x >0,y >0满足f (xy )=f (x )+f (y ),则不等式f (x +6)+f (x )<2f (4)的解集为 . 答案 (0,2)5.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围为 . 答案 [1,2]例1已知函数f (x )=a x+12+-x x (a >1).证明:函数f (x )在(-1,+∞)上为增函数.证明 方法一 任取x 1,x 2∈(-1,+∞), 不妨设x 1<x 2,则x 2-x 1>0,12x x a->1且a1x >0,∴a ,0)1(12112>-=--x x x x x a a a 又∵x 1+1>0,x 2+1>0, ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=a12x x a -+12121122+--+-x x x x >0,故函数f (x )在(-1,+∞)上为增函数. 方法二 f (x )=a x+1-13+x (a >1), 求导数得f ′(x )=a xln a +2)1(3+x ,∵a >1,∴当x >-1时,a xln a >0,2)1(3+x >0,f ′(x )>0在(-1,+∞)上恒成立,则f (x )在(-1,+∞)上为增函数. 方法三 ∵a >1,∴y =a x为增函数,又y =13112+-+=+-x x x ,在(-1,+∞)上也是增函数. ∴y =a x+12+-x x 在(-1,+∞)上为增函数. 例2判断函数f (x )=12-x 在定义域上的单调性.解 函数的定义域为{x |x ≤-1或x ≥1}, 则f (x )= 12-x , 可分解成两个简单函数.f (x )=)(,)(x u x u =x 2-1的形式.当x ≥1时,u (x )为增函数,)(x u 为增函数.∴f (x )=12-x 在[1,+∞)上为增函数.当x ≤-1时,u (x )为减函数,)(x u 为减函数,∴f (x )=12-x 在(-∞,-1]上为减函数. 例3(1)y =4-223x x -+;(2)y =2x -x 21-;(3)y =x +x4;(4)y =4)2(122+-++x x . 解 (1)由3+2x -x 2≥0得函数定义域为[-1,3],又t =3+2x -x 2=4-(x -1)2.∴t ∈[0,4],t ∈[0,2],从而,当x =1时,y min =2,当x =-1或x =3时,y max =4.故值域为[2,4]. (2) 方法一 令x 21-=t (t ≥0),则x =212t -.∴y =1-t 2-t =-(t +)212+45.∵二次函数对称轴为t =-21,∴在[0,+∞)上y =-(t +)212+45故y max =-(0+)212+45=1.故函数有最大值1,无最小值,其值域为(-∞,1].方法二 ∵y =2x 与y=-x 21-均为定义域上的增函数,∴y =2x -x 21-是定义域为{x |x ≤21}上的增函数, 故y max =2×212121⨯--=1,无最小值.故函数的值域为(-∞,1]. (3)方法一 函数y =x +x4是定义域为{x |x ≠0}上的奇函数,故其图象关于原点对称,故只讨论x >0时,即可知x <0时的最值. ∴当x >0时,y =x +x 4≥2xx 4⋅=4,等号当且仅当x =2时取得. 当x <0时,y ≤-4,等号当且仅当x =-2时取得.综上函数的值域为(-∞,-4]∪[4,+∞),无最值. 方法二 任取x 1,x 2,且x 1<x 2, 因为f (x1)-f (x 2)=x 1+14x -(x 2+24x )=,)4)((212121x x x x x x --所以当x ≤-2或x ≥2时,f (x )递增,当-2<x <0或0<x <2时,f (x )递减. 故x =-2时,f (x )最大值=f (-2)=-4,x =2时,f (x )最小值=f (2)=4,所以所求函数的值域为(-∞,-4]∪[4,+∞),无最大(小)值. (4y =2222)20()2()10()0(++-+-+-x x ,可视为动点M (x ,0)与定点A (0,1)、B (2,-2)距离之和,连结AB ,则直线AB 与x 轴的交点(横坐标)即为所求的最小值点.ymin =|AB |=13)21()20(22=++-,可求得x=32时,y min =13.显然无最大值.故值域为[13,+∞).例4 (14分)函数f (x )对任意的a 、b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )是R(2)若f (4)=5,解不等式f (3m 2-m -2)<3.解 (1)设x1,x 2∈R ,且x 1<x 2,则x2-x 1>0,∴f (x 2-x 1)>1. 2f (x2)-f (x 1)=f ((x 2-x 1)+x 1)-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1>0. 5分∴f (x 2)>f (x 1).即f (x )是R 上的增函数. 7分 (2)∵f (4)=f (2+2)=f (2)+f (2)-1=5∴f (2)=3, 10分∴原不等式可化为f (3m 2-m -2)<f (2),∵f (x )是R 上的增函数,∴3m 2-m -2<2, 12分 解得-1<m <34,故解集为(-1, 34). 14分1.讨论函数f (x )=x +xa(a >0)的单调性.解 方法一 显然f (x )为奇函数,所以先讨论函数f (x )在(0,+∞)上的单调性,设x 1>x 2>0,f (x 1)-f (x 2) =(x 1+1x a )-(x 2+2x a)=(x 1-x 2)·(1-21x x a ).∴当0<x 2<x 1≤a 时,21x x a>1, 则f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在(0,a ]上是减函数. 当x 1>x 2≥a 时,0<21x x a<1,则f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在[a ,+∞)上是增函数.∵f (x ∴f (x )分别在(-∞,-a ]、[a ,+f (x )分别在[-a ,0)、(0,a ]上为减函数. 方法二 由f ′(x )=1-2x a =0可得x =±a当x >a 时或x <-a 时,f ′(x )>0,∴f (x )分别在(a ,+∞)、(-∞,-a ]上是增函数. 同理0<x <a 或-a <x <0时,f ′(x )<0即f (x )分别在(0,a ]、[-a ,0)上是减函数. 2.求函数y =21log (4x -x 2)的单调区间.解 由4x -x 2>0,得函数的定义域是(0,4).令t =4x -x 2,则y = 21log t .∵t =4x -x 2=-(x -2)2+4,∴t =4x -x 2的单调减区间是[2,4),增区间是(0,2]. 又y =21log t 在(0,+∞)上是减函数,∴函数y =21log (4x -x 2)的单调减区间是(0,2],单调增区间是[2,4).3.在经济学中,函数f (x )的边际函数Mf (x )定义为Mf (x )=f (x +1)-f (x ).某公司每月最多生产100台报警系统装置,生产x (x >0)台的收入函数为R (x )=3 000x -20x 2(单位:元),其成本函数为C (x )=500x +4 000(单位:元),利润是收入与成本之差.(1)求利润函数P (x )及边际利润函数MP (x(2)利润函数P (x )与边际利润函数MP (x解 (1)P (x )=R (x )-C (x )=(3 000x -20x 2)-(500x +4 000) =-20x 2+2 500x -4 000(x ∈[1,100]且x ∈N ).MP (x )=P (x +1)-P (x )=-20(x +1)2+2 500(x +1)-4 000-(-20x 2+2 500x -4 000) =2 480-40x (x ∈[1,100]且x ∈N ). (2)P (x )=-20(x -)21252+74 125,当x =62或63时,P (x )max =74 120(元).因为MP (x )=2 480-40x 是减函数,所以当x =1时,MP (x )max =2 440(元). 因此,利润函数P (x )与边际利润函数MP (x )不具有相同的最大值. 4.已知定义在区间(0,+∞)上的函数f (x )满足f ()21x x =f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)(2)判断f (x(3)若f (3)=-1,解不等式f (|x |)<-2.解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则21x x >1, 由于当x >1时,f (x )<0, 所以f )(21x x <0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)由f (21x x )=f (x 1)-f (x 2)f ()39=f (9)-f (3),而f (3)=-1,所以f (9)=-2. 由于函数f (x )在区间(0,+由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.一、填空题1.函数f (x )=ln(4+3x -x 2)的单调递减区间是 .答案 [23,4) 2.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则下列对方程f (x )=0在区间[a ,b ]上根的分布情况的判断有误的是 (填序号).①至少有一实根 ②至多有一实根 ③没有实根 ④必有惟一的实根 答案 ①③3.函数y =lg(x 2+2x +m )的值域是R ,则m 的取值范围是 . 答案 m ≤14.函数f (x )(x ∈R )的图象如下图所示,则函数g (x )=f (log a x ) (0<a <1)的单调减区间是 . 答案 [a ,1]5.已知f (x )=⎩⎨⎧≥<+-)1(log )1(4)13(x xx a x a a 是(-∞,+∞)上的减函数,那么a 的取值范围是 .答案 [71,31) 6.若函数f (x )=(m -1)x 2+mx +3 (x ∈R )是偶函数,则f (x )的单调减区间是 .答案 [0,+∞)7.已知y =f (x )是定义在(-2,2)上的增函数,若f (m -1)<f (1-2m ),则m 的取值范围是 .答案 (-)32,21 8.已知下列四个命题:①若f (x )为减函数,则-f (x )为增函数;②若f (x )为增函数,则函数g (x )=)(1x f 在其定义域内为减函数;③若f (x )与g (x )均为(a ,b )上的增函数,则f (x )·g (x )也是区间(a ,b )上的增函数;④若f (x )与g (x )在(a ,b )上分别是递增与递减函数,且g (x )≠0,则)()(x g x f 在(a ,b )上是递增函数.其中命题正确的是 (填序号) 答案 ① 二、解答题9.已知f (x )在定义域(0,+∞)上为增函数,且满足f (xy )=f (x )+f (y ),f (3)=1,试解不等式f (x )+f (x -8)≤2. 解 根据题意,由f (3)=1,得f (9)=f (3)+f (3)=2. 又f (x )+f (x -8)=f [x (x -8)],故f [x (x -8)]≤f (9).∵f (x )在定义域(0,+∞)上为增函数,∴⎪⎩⎪⎨⎧≤->->,9)8(080x x x x ,,解得8<x ≤9.10.函数f (x )对任意的实数m 、n 有f (m +n )=f (m )+f (n ),且当x >0时有f (x )>0. (1)求证:f (x )在(-∞,+∞)上为增函数;(2)若f (1)=1,解不等式f [log 2(x 2-x -2)]<2. (1)证明 设x 2>x 1,则x 2-x 1>0.∵f (x 2)-f (x 1)=f (x 2-x 1+x 1)-f (x 1)=f (x 2-x 1)+f (x 1)-f (x 1)=f (x 2-x 1)>0, ∴f (x 2)>f (x 1),f (x )在(-∞,+∞)上为增函数. (2)解 ∵f (1)=1,∴2=1+1=f (1)+f (1)=f (2). 又f [log 2(x 2-x -2)]<2,∴f [log 2(x 2-x -2)]<f (2).∴log 2(x 2-x -2)<2,于是⎪⎩⎪⎨⎧<-->--.060222x x x x ,∴⎩⎨⎧<<->-<,32,21x x x 或即-2<x <-1或2<x <3.∴原不等式的解集为{x |-2<x <-1或2<x <3}. 11.已知f (x )=ax x-(x ≠a).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=.)2)(2()(22221212211++-=+-+x x x x x x xx∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=.))(()(21122211a x a x x x a a x x a x x ---=---∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立, ∴a ≤1.综上所述知0<a ≤1.12.已知函数y =f (x )对任意x ,y ∈R 均有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-32.(1)判断并证明f (x )在R 上的单调性; (2)求f (x )在[-3,3]上的最值. 解 (1)f (x )在R上是单调递减函数证明如下:令x =y =0,f (0)=0,令x =-y 可得:f (-x )=-f (x ),在R 上任取x 1<x 2,则x 2-x 1>0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1).又∵x >0时,f (x )<0,∴f (x 2-x 1)<0,即f (x 2)<f (x 1).由定义可知f (x )在R 上为单调递减函数. (2)∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数.∴f (-3)最大,f (3)最小.f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=3×(-)32=-2.∴f (-3)=-f (3)=2.即f (x )在[-3,3]上最大值为2,最小值为-2.§ 2.3 函数的奇偶性基础自测1.(2008·福建理,4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 .答案02.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),则f (6)的值为 . 答案03.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1) f (b +2)(用“≤”,“≥”,“<”,“>”填空).答案>4.已知f (x )=122)12(+-+xx a 是奇函数,则实数a 的值为 .答案15.函数f (x ),g (x )在区间[-a ,a ] (a >0)上都是奇函数,则下列结论:①f (x )-g (x )在[-a ,a ]上是奇函数;②f (x )+g (x )在[-a ,a ]上是奇函数;③f (x )·g (x )在[-a ,a ]上是偶函数;④f (0)+ g (0)=0,则其中正确结论的个数是 . 答案 4例1判断下列函数的奇偶性.(1)f (x )=2211x x -⋅-;(2)f (x )=log2(x +12+x ) (x ∈R ); (3)f (x )=lg|x -2|.解 (1)∵x 2-1≥0且1-x 2≥0,∴x =±1,即f (x )的定义域是{-1,1}. ∵f (1)=0,f (-1)=0,∴f (1)=f (-1),f (-1)=-f (1), 故f (x )既是奇函数又是偶函数.(2)方法一 易知f (x )的定义域为R , 又∵f (-x )=log 2[-x +1)(2+-x ]=log 2112++x x =-log 2(x +12+x )=-f (x ),∴f (x )是奇函数.方法二 易知f (x )的定义域为R ,又∵f (-x )+f (x )=log 2[-x +1)(2+-x ]+log 2(x +12+x )=log 21=0,即f (-x )=-f (x ),∴f (x )为奇函数.(3)由|x -2|>0,得x ≠2.∴f (x )的定义域{x |x ≠2}关于原点不对称,故f (x )为非奇非偶函数. 例2已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ). (1)求证:f (x )(2)如果x ∈R +,f (x )<0,并且f (1)=-21,试求f (x )在区间[-2,6]上的最值. (1)证明∵函数定义域为R ,其定义域关于原点对称.∵f (x +y )-f (x )+f (y ),令y =-x,∴f (0)=f (x )+f (-x ).令x =y =0, ∴f (0)-f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ), ∴f (x )为奇函数.(2)解 方法一 设x ,y ∈R +,∵f (x +y )=f (x )+f (y∴f (x +y )-f (x )=f (y ).x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值. ∵f (1)=-21,∴f (-2)=-f (2)=-2f (1)=1, f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3. 方法二 设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减. ∴f (-2)为最大值,f (6)为最小值.∵f (1)=-21∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3. 例3(16分)已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=21x ,求使f (x )=-21在[0,2 009]上的所有x 的个数.(1)证明 ∵f (x +2)=-f (x∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), 2∴f (x )是以4为周期的周期函数, 4(2)解 当0≤x ≤1时,f (x )=21x , 设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=21(-x )=-21x . ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴-f (x )=-21x ,即f (x )=21x . 7 故f (x )=21x (-1≤x ≤1) 8又设1<x <3,则-1<x -2<1,∴f (x -2)=21(x -2), 10分 又∵f (x -2)=-f (2-x )=-f ((-x )+2)=-[-f (-x )]=-f (x∴-f (x )=21(x -2∴f (x )=-21(x -2)(1<x <3). 11∴f (x )=⎪⎪⎩⎪⎪⎨⎧<<--≤≤-)31()2(21)11(21x x x x12由f (x )=-21,解得x =-1. ∵f (x )是以4为周期的周期函数. ∴f (x )=-21的所有x =4n -1 (n ∈Z). 14令0≤4n -1≤2 009,则41≤n ≤20051, 又∵n ∈Z ,∴1≤n ≤502 (n ∈Z ), ∴在[0,2 009]上共有502个x 使f (x )=-21. 16分1.(1)f (x )=(x -2)xx -+22(2)f (x )=2|2|)1lg(22---xx(3)f (x )=⎪⎩⎪⎨⎧>+-≤-<+.1(2),1|(|0),1(2)x x x x x 解 (1)由xx-+22≥0,得定义域为[-2,2),关于原点不对称,故f (x )为非奇非偶函数. (2)由⎪⎩⎪⎨⎧≠-->-.02|2|0122x x ,得定义域为(-1,0)∪(0,1).这时f (x )=2222)1lg(2)2()1lg(x x x x --=----.∵f (-x )=-[]),()1lg()()(1lg 2222x f x x x x =--=---∴f (x )为偶函数.(3)x <-1时,f (x )=x +2,-x >1, ∴f (-x )=-(-x )+2=x +2=f (x ). x >1时,f (x )=-x +2-x <-1,f (-x )=x +2=f (x ). -1≤x ≤1时,f (x )=0,-1≤-x ≤1f (-x )=0=f (x ).∴对定义域内的每个x 都有f (-x )=f (x ). 因此f (x )是偶函数.2.已知函数y =f (x )的定义域为R ,且对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b ),且当x >0时,f (x )<0恒成立,f (3)=-3. (1)证明:函数y =f (x )是R(2)证明:函数y =f (x )(3)试求函数y =f (x )在[m ,n ](m ,n ∈Z )上的值域.(1)证明 设∀x 1,x 2∈R ,且x 1<x 2,f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1). ∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)=f (x 1)+f (x 2-x 1)<f (x 1). 故f (x )是R 上的减函数.(2)证明 ∵f (a +b )=f (a )+f (b )恒成立,∴可令a =-b =x ,则有f (x )+f (-x )=f (0又令a =b =0,则有f (0)=f (0)+f (0),∴f (0)=0.从而∀x ∈R ,f (x )+f (-x )=0∴f (-x )=-f (x ).故y =f (x )是奇函数. (3)解 由于y =f (x )是R∴y =f (x )在[m ,n ]上也是减函数,故f (x )在[m ,n ]上的最大值f (x )max =f (m ),最小值f (x )min =f (n ). 由于f (n )=f (1+(n -1))=f (1)+f (n -1)=…=nf (1),同理f (m )=mf (1). 又f (3)=3f (1)=-3,∴f (1)=-1,∴f (m )=-m , f (n )=-n . ∴函数y =f (x )在[m ,n ]上的值域为[-n ,-m ].3.设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21]都有f (x 1+x 2) =f (x 1)·f (x 2),且f (1)=a >0. (1)求f (21)及f (41) (2)证明:f (x(3)记an =f (2n +)21n,求a n . (1)解 ∵对x 1、x 2∈⎥⎦⎤⎢⎣⎡21,0 都有f (x 1+x 2)=f (x 1)·f (x 2∴f (x )=f ()2()2()22xf x f x x ⋅=+≥0,x ∈[0,1].∴f (1)=f (,)21()21()21()21212⎥⎦⎤⎢⎣⎡=⋅=+f f ff (2)41()41()41()4141()21⎥⎦⎤⎢⎣⎡=⋅=+=f f f f .∵f (1)=a >0, ∴f (.)41(,)214121a f a ==(2)证明 ∵y =f (x )的图象关于直线x =1∴f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R .又由f (x )是偶函数知,f (-x )=f (x ),x ∈R∴f (-x )=f (2-x ),x ∈R .将上式中-x 用x 代换,得f (x )=f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期. (3)解 由(1)知f (x )≥0,x ∈[0,1].∵f (⎥⎦⎤⎢⎣⎡⋅-+=⋅=n n n f nn f 21)1(21)21()21=f (=⎥⎦⎤⎢⎣⎡⋅-⋅n n f n 21)1()21…=f (⋅⋅)21()21n f n …·f (.)21()21nn f n ⎥⎦⎤⎢⎣⎡=又f (.2121)21(,)21n a n f a =∴=∵f (x )的一个周期是2,∴a n =f (2n +n 21)=f (n21),∴a n =a n 21.一、填空题1.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的 条件.答案 充分不必要2.设函数f (x )=(x +1)(x +a )为偶函数,则a = . 答案 -13.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (0)=2,则f (2 008)的值为 .答案 24.已知函数y =f (x )是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号). ①y =f (|x |);②y =f (-x );③y =x ·f (x );④y =f (x )+x . 答案5.(2009· 徐州六县一区联考)设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x-3,则f (-2)= . 答案 -16.已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则在R 上f (x )的表达式为 .答案 f(x)=x (|x |-2)7.已知函数f (x )=g (x )+2,x ∈[-3,3],且g (x )满足g (-x )=-g (x ),若f (x )的最大值、最小值分别为M 、N ,则M +N = .答案 48.f (x )、g (x )都是定义在R 上的奇函数,且F (x )=3f (x )+5g (x )+2,若F (a )=b ,则F (-a )= .答案 -b +4二、解答题9.已知f (x )是实数集R 上的函数,且对任意x ∈R ,f (x )=f (x +1)+f (x -1)恒成立. (1)求证:f (x )是周期函数. (2)已知f (3)=2,求f (2 004).(1)证明 ∵f (x )=f (x +1)+f (x -1),∴f (x +1)=f (x )-f (x -1),则f (x +2)=f []).1()()1()()()1(1)1(--=---=-+=++x f x f x f x f x f x f x ∴f (x +3)=f [][]).(1)1(2)1(x f x f x -=-+-=++ ∴f (x +6)=f []).()3(3)3(x f x f x =+-=++ ∴f (x )是周期函数且6是它的一个周期. (2)解 f (2 004)=f (334×6)=f (0)=-f (3)=-2.10.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解 ∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg (2+x ),即f (x )=-x lg (2+x ) (x >0).∴f (x )=⎩⎨⎧≥+-<--).0()2lg(),0()2lg(x x x x x x即f (x )=-x lg(2+|x |) (x ∈R ). 11.已知函数f (x )=x 2+|x -a |+1,a ∈R .(1)试判断f (x )的奇偶性;(2)若-21≤a ≤21,求f (x )的最小值. 解 (1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ),此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x ) 为非奇非偶函数. (2)当x ≤a 时,f (x )=x 2-x +a +1=(x -21)2+a +43,∵a ≤21,故函数f (x )在(-∞,a ]上单调递减, 从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1. 当x ≥a 时,函数f (x )=x 2+x -a +1=(x +21)2-a +43,∵a ≥-21,故函数f (x )在[a ,+∞)上单调递增,从而函数f (x )在[a ,+∞)上的最小值为f (a )=a 2+1. 综上得,当-21≤a ≤21时,函数f (x )的最小值为a 2+1. 12.设函数f (x )在(-∞,+∞)上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上,只有f (1)=f (3)=0. (1)试判断函数y =f (x )的奇偶性;(2)试求方程f (x )=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论. 解 (1)由),10()()14()4()14()()4()()7()7()2()2(+=⇒-=-⇒⎩⎨⎧-=-=⇒⎩⎨⎧+=-+=-x f x f x f x f x f x f x f x f x f x f x f x f 从而知函数y =f (x )的周期为T =10.又f (3)=f (1)=0,而f (7)≠0,故f (-3)≠0. 故函数y =f (x )是非奇非偶函数. (2)由(1)知y =f (x )的周期为10.又f (3)=f (1)=0,f (11)=f (13)=f (-7)=f (-9)=0,故f (x )在[0,10]和[-10,0]上均有两个解,从而可知函数y =f (x )在[0,2 005]上有402个解,在[-2 005,0]上有400个解,所以函数y =f (x )在[-2 005,2 005]上有802个解.§2.4指数与指数函数基础自测1. 已知a <41,则化简42)14(-a 的结果是 . 答案 a 41-2.设指数函数f (x )=a x(a >0且a ≠1),则下列等式正确的有 (填序号). ①f (x +y )=f (x )·f (y ) ②f (xy )n=f n(x )·f n(y ) ③f (x -y )=)()(y f x f ④f (nx )=f n(x )答案 ①③④3.函数f (x )=a x-b的图象如图所示,其中a 、b 为常数,则下列结论不正确的有 (填序号).①a >1,b <0 ②a >1,b >0 ③0<a <1,b >0 ④0<a <1,b <0 答案①②③4.关于函数f (x )=2x-2-x(x ∈R )①f (x )的值域为R②f (x )是R③对任意x ∈R ,有f (-x )+f (x )=0成立.其中正确结论的序号是 .答案 ①②③5.已知集合M ={}⎭⎬⎫⎩⎨⎧∈<<=-+Z x x N x ,4221|,1,11,则M N= .答案 {}1-例1已知a =91,b =9.求: (1);315383327a a a a ⋅÷--(2)111)(---+ab b a .解 (1)原式=3127⨯a .3123⨯-a÷[a21)38(⨯-·21315⨯a= 2167-a )2534(+--=a 21-.∵a =91,∴原式=3. (2)方法一 化去负指数后解..11)(11b a abab b a ab b a ab ba+=+=+=+--∵a =,9,91=b ∴a +b =.982方法二 利用运算性质解. .11)(11111111111a b a b b a b b a a ab b a +=+=+=+-----------∵a =,9,91=b ∴a +b =.982例2函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x) f (c x).(用“≤”,“≥”,“<”,“>”填空)答案例3(1)f (x )=3452+-x x;(2)g (x )=-(5)21(4)41++x x .解 (1)依题意x 2-5x +4≥0, 解得x ≥4或x ≤1,∴f (x )的定义域是(-∞,1]∪[4,+∞).令u =,49)25(4522--=+-x x x ∵x ∈(-∞,1]∪[4,+∴u ≥0,即452+-x x ≥0,而f (x )=3452+-x x ≥30=1,∴函数f (x )的值域是[1,+∞).∵u =49)25(2--x ,∴当x ∈(-∞,1]时,u当x ∈[4,+∞)时,u 是增函数.而3>1,∴由复合函数的单调性可f (x )=3452+-x x 在(-∞,1]上是减函数,在[4,+∞)上是增函数.故f (x )的增区间是[4,+∞),减区间是(-∞,1]. (2)由g (x )=-(,5)21(4)21(5)21(4)412++-=++x x xx∴函数的定义域为R ,令t =()21x (t >0),∴g (t )=-t 2+4t +5=-(t -2)2+9,∵t >0,∴g (t )=-(t -2)2+9≤9,等号成立条件是t =2,即g (x )≤9,等号成立条件是(x )21=2,即x =-1,∴g (x )的值域是(-∞,9].由g (t )=-(t -2)2+9 (t >0),而t =(x )21是减函数,∴要求g (x )的增区间实际上是求g (t )求g (x )的减区间实际上是求g (t )的增区间. ∵g (t )在(0,2]上递增,在[2,+由0<t =(x )21≤2,可得x ≥-1,t =(x )21≥2,可得x ≤-1.∴g (x )在[-1,+∞)上递减,在(-∞,-1故g (x )的单调递增区间是(-∞,-1],单调递减区间是[-1,+∞). 例4(14分)设a >0,f (x )=x x aa ee +是R 上的偶函数. (1)求a 的值;(2)求证:f (x )在(0,+∞)上是增函数.(1)解 ∵f (x )是R 上的偶函数,∴f (-x )=f (x ), 2分∴,e e ee x x x x a a a a +=+--∴(a -)e 1e )(1x x a -=0对一切x 均成立, 4分∴a -a1=0,而a >0,∴a =1. 6分 (2)证明 在(0,+∞)上任取x 1、x 2,且x 1<x 2, 8分则f (x 1)-f (x 2)=1e x +1e 1x -2e x -2e 1x=)e e (12x x - ().1e 121-+x x10分∵x 1<x 2,∴,e e 21x x <有.0e e 12>-xx∵x 1>0,x 2>0,∴x 1+x 2>0,∴21e x x +>1, 12分21e 1x x +-1<0.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数. 14分1.化简下列各式(其中各字母均为正数):(1);)(65312121132ba b a b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a解 (1)原式=.100653121612131656131212131=⋅=⋅=⋅-+-+--b a b a b a b a b a(2)原式=-)(45)4(25233136121332361------÷-=⋅÷b a b a b a b a.4514545232321ab abab b a -=⋅-=⋅-=--2.已知实数a 、b 满足等式b a )31()21(=,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b.其中不可能成立的有 (填序号).答案③④3.求下列函数的单调递增区间:(1)y =(226)21x x -+;(2)y =262--x x .解 (1)函数的定义域为R . 令u =6+x -2x 2,则y =(u )21.∵二次函数u =6+x -2x 2的对称轴为x =41, 在区间[41,+∞)上,u =6+x -2x 2是减函数, 又函数y =()21u是减函数,∴函数y =(226)21x x -+在[41,+∞)上是增函数.故y =(226)21x x -+的单调递增区间为[41,+∞).(2)令u =x 2-x -6,则y =2u, ∵二次函数u =x 2-x -6的对称轴是x =21, 在区间[21,+∞)上u =x 2-x -6是增函数. 又函数y =2u为增函数,∴函数y =262--x x 在区间[21,+∞)上是增函数. 故函数y =262--x x 的单调递增区间是[21,+∞). 4.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=142+xx.(1)求f (x )在[-1,1]上的解析式; (2)证明:f (x )在(0,1)上是减函数.(1)解 当x ∈(-1,0)时,-x ∈(0,1). ∵f (x )是奇函数,∴f (x )=-f (-x )=-.142142+-=+--x x x x .由f (0)=f (-0)=-f (0),且f (1)=-f (-1)=-f (-1+2)=-f (1),得f (0)=f (1)=f (-1)=0.∴在区间[-1,1]上,有f (x )={}⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-∈-∈+-∈+1,0,10)0,1(142)1,0(142x x x xx xx (2)证明 当x ∈(0,1)时,f (x )=.142+xx设0<x 1<x 2<1,则f (x 1)-f (x 2)=,)14)(14()12)(22(1421422211222111++--=+-++x x x x x x x x x x∵0<x 1<x 2<1,∴22x -12x >0,212x x + -1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.一、填空题1.2311213,)32(,-的大小顺序为 .答案 213121)32(3-<< 2.若a <0,则2a ,,)21(a (0.2)a的大小顺序为 . 答案 (0.2)a>a )21(>2a3.若函数y =4x-3·2x+3的定义域为集合A ,值域为[1,7],集合B =(-∞,0]∪[1,2],则集合A 与集合B 的关系为 . 答案 A =B4.若f (x )=-x 2+2ax 与g (x )=(a +1)1-x在区间[1,2]上都是减函数,则a 的取值范围是 .答案 (0,1]5.(2009·常州二中期中)当函数f (x )=2-|x -1|-m 的图象与x 轴有公共点时,实数m 的取值范围是 .答案 (0,1]6.当x >0时,函数f (x )=(a 2-1)x的值总大于1,则实数a 的取值范围是 .答案 a >2或a <-27.若函数f (x )=a x-1 (a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于 .答案 38.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大2a,则a 的值是 . 答案21或23二、解答题9.要使函数y =1+2x+4xa 在x ∈(-∞,1]上y >0恒成立,求a 的取值范围.解 由题意得1+2x+4xa >0在x ∈(-∞,1]上恒成立,即a >-xx 421+在x ∈(-∞,1]上恒成立.又∵-xx 421+=-(,4121)21()21()2122+⎥⎦⎤⎢⎣⎡+-=-x x x∵x (],1,-∞∈∴(⎪⎭⎫⎢⎣⎡+∞∈,21)21x .令t =(.,21,41)21()(,)212⎪⎭⎫⎢⎣⎡+∞∈++-=t t t f x 则则f (t )在[21,+∞)上为减函数,f (t )≤f ()21=-(,4341)21212-=++即f (t )∈⎥⎦⎤ ⎝⎛-∞-43,.∵a >f (t ),∴a ∈(-43,+∞). 10.已知函数f (x )=(.)211213x x +-(1)求f (x )的定义域;(2)讨论f (x )的奇偶性;(3)证明:f (x )>0.(1)解 由2x-1≠0⇒x ≠0,∴定义域为(-∞,0)∪(0,+∞).(2)解 f (x )=(3)21121x +- 可化为f (x )=,)12(2123x x x -⋅+ 则f (-x )=).()12(212)()12(21233x f x x xx xx =-⋅+=--⋅+--∴f (x )=()21121+-x x 3是偶函数. (3)证明 当x >0时,2x>1,x 3>0. ∴()21121+-x x 3>0. ∵f (x )为偶函数,∴当x <0时,f (x )=f (-x )>0. 综上可得f (x )>0. 11.已知函数f (x )=12-a a (a x -a -x) (a >0,且a ≠1).(1)判断f (x )的单调性;(2)验证性质f (-x )=-f (x ),当x ∈(-1,1)时,并应用该性质求满足f (1-m )+f (1-m 2)<0的实数m 的范围.解 (1)设x 1<x 2,x 1-x 2<0,1+211x x a+>0.若a >1,则21x x a a <,12-a a >0,所以f (x 1)-f (x 2)=)11)((121212x x x x a a a a a ++--<0,即f (x 1)<f (x 2),f (x )在(-∞,+∞)上为增函数; 同理,若0<a <1,则21x x a a >,12-a a <0, f (x 1)-f (x 2)=)(1212x x a a a a --(1+211x x a+)<0,即f (x 1)<f (x 2),f (x )在(-∞,+∞)上为增函数. 综上,f (x )在R 上为增函数. (2)f (x )=),(12x x a a a a ---则f (-x )=)(1x x a a a a ---,。
2013高考数学教案和学案(有答案)--第1章学案1第1章集合与常用逻辑用语学案1 集合的概念与运算导学目标: 1.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用Venn图表达集合的关系及运算.自主梳理12?表示. 3.集合的表示法:列举法、描述法、图示法、区间法. 4.集合间的基本关系对任意的x∈A,都有x∈B,则A?B(或B?A).若A?B,且在B中至少有一个元素x∈B,但x?A,则 A B(或B A).若A?B且B?A,则A=B. 5.集合的运算及性质设集合A,B,则A∩B={x|x∈A且x∈B},A∪B={x|x∈A 或x∈B}.设全集为S,则?SAA∩?=?,A∩B?AA∩B=A?A?B.A∪?=A,A∪B?A,A∪B?B, A∪B=B.A∩?UA=?;A∪?UA=U. 自我检测 1.(2011·无锡高三检测)下列集合表示同一集合的是________(填序号).①M={(3,2)},N={(2,3)};②M={(x,y)|x+y=1},N={y|x+y=1};③M={4,5},N={5,4};④M={1,2},N={(1,2)}.答案③ 2.(2009·辽宁改编)已知集合M={x|-3<x≤5},N={x|-5<x<5},则M∩N=________. 答案{x|-3<x<5}解析画数轴,找出两个区间的公共部分即得M∩N={x|-3<x<5}. 3.(2010·湖南)已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________. 答案 3解析∵A∩B={2,3},∴3∈B,∴m=3.224.(2010·常州五校联考)集合M={y|y=x-1,x∈R},集合N={x|y=-x,x∈R},则M∩N=________. 答案 [-1,3]解析∵y=x2-1≥-1,∴M=[-1,+∞).又∵y=9-x2,∴9-x2≥0.∴N=[-3,3].∴M∩N=[-1,3].5.已知集合A={1,3,a},B={1,a2-a+1},且B?A,则a=________. 答案-1或2解析由a2-a+1=3,∴a=-1或a=2,经检验符合.由a2-a+1=a,得a=1,但集合中有相同元素,舍去,故a=-1或2.探究点一集合的基本概念b例1 若a,b∈R,集合{1,a+b,a}={0,b},求b-a的值.a解题导引解决该类问题的基本方法为:利用集合中元素的特点,列出方程组求解,但解出后应注意检验,看所得结果是否符合元素的互异性.b解由{1,a+b,a}={0,b}可知a≠0,则只能a+b=0,则有以下对应法则:aa+b=0,a+b=0,??b?a=a,??b=1由①得???b=a,①或?b??a1.②??a=-1,?b=1,? 符合题意;②无解.∴b-a=2.变式迁移1 设集合A={1,a,b},B={a,a2,ab},且A =B,求实数a,b. 解由元素的互异性知,a≠1,b≠1,a≠0,又由A=B,22???a=1,?a=b,得?或?解得a=-1,b=0. ?ab=b,?ab =1,??探究点二集合间的关系例2 设集合M={x|x=5-4a+a2,a∈R},N={y|y=4b2+4b+2,b∈R},则M与N之间有什么关系?解题导引一般地,对于较为复杂的两个或两个以上的集合,要判断它们之间的关系,应先确定集合中元素的形式是数还是点或其他,属性如何.然后将所给集合化简整理,弄清每个集合中的元素个数或范围,再判断它们之间的关系.解集合M={x|x=5-4a+a2,a∈R}={x|x=(a-2)2+1,a∈R}={x|x≥1}, N={y|y=4b2+4b+2,b∈R}={y|y=(2b+1)2+1,b∈R}={y|y≥1}.∴M=N.2变式迁移2 设集合P={m|-1<m<0},Q={m|mx+4mx -4<0对任意实数x恒成立,且m∈R},则集合P与Q之间的关系为________.答案 P Q解析 P={m|-1<m<0},??m<0,Q:?或m=0.∴-1<m≤0. 2?Δ=16m+16m<0,?∴Q={m|-1<m≤0}.∴P Q.探究点三集合的运算例3 设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(?RA)∩B=B,求实数a的取值范围.解题导引解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论、数形结合思想的应用以及空集的特殊性.1解 (1)A={x≤x≤3}.2当a=-4时,B={x|-2<x<2},1∴A∩B={x≤x<2},2A∪B={x|-2<x≤3}.1(2)?RA={x|x<或x>3}.2当(?RA)∩B=B时,B??RA,即A∩B=?.①当B=?,即a≥0时,满足B??RA;②当B≠?,即a<0时,B={x|-a<x<a},11要使B??RA-a≤a<0.241综上可得,a的取值范围为a≥.4变式迁移 3 已知A={x||x-a|<4},B={x||x-2|>3}. (1)若a=1,求A∩B;(2)若A∪B=R,求实数a的取值范围.解 (1)当a=1时,A={x|-3<x<5}, B={x|x<-1或x>5}.∴A∩B={x|-3<x<-1}.(2)∵A={x|a-4<x<a+4},B={x|x<-1或x>5},且A∪B=R, ??a-4<-1∴??1<a<3. ?a+4>5?∴实数a的取值范围是(1,3).分类讨论思想在集合中的应用2例 (14分)(1)若集合P={x|x+x-6=0},S={x|ax+1=0},且S?P,求由a的可取值组成的集合;(2)若集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B?A,求由m的可取值组成的集合.【答题模板】解 (1)P={-3,2}.当a=0时,S=?,满足S?P;[2分]1当a≠0时,方程ax+1=0的解为x,[4分]a11为满足S?P3=2,aa11即a=a.[6分]3211故所求集合为{0,}.[7分]32(2)当m+1>2m-1,即m<2时,B=?,满足B?A;[9分] 若B≠?,且满足B?A,如图所示,∴2≤m≤3.[13分]?m+1≤2m-1,?则?m+1≥-2,??2m-1≤5,?m≥2,?即?m≥-3,??m≤3,故m<2或2≤m≤3,即所求集合为{m|m≤3}.[14分]【突破思维障碍】在解决两个数集关系问题时,避免出错的一个有效手段即是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论,分类时要遵循“不重不漏”的分类原则,然后对于每一类情况都要给出问题的解答.【易错点剖析】(1)容易忽略a=0时,S=?这种情况.(2)想当然认为m+1<2m-1忽略“>”或“=”两种情况.解答集合问题时应注意五点:1.注意集合中元素的性质——互异性的应用,解答时注意检验.2.注意描述法给出的集合的元素.如{y|y=2x},{x|y=2x},{(x,y)|y=2x}表示不同的集合.3.注意?的特殊性.在利用A?B解题时,应对A是否为?进行讨论. 4.注意数形结合思想的应用.在进行集合运算时要尽可能借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图表示,元素连续时用数轴表示,同时注意端点的取舍.5.注意补集思想的应用.在解决A∩B≠?时,可以利用补集思想,先研究A∩B=?.的情况,然后取补集.(满分:90分)一、填空题(每小题6分,共48分) 1.(2010·北京改编)集合P={x∈Z|0≤x<3},M={x∈Z|x2≤9},则P∩M=________. 答案 {0,1,2}解析由题意知:P={0,1,2},M={-3,-2,-1,0,1,2,3},∴P∩M={0,1,2}. 2.(2011·南京模拟)设P、Q为两个非空集合,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q=________________. 答案{1,2,3,4,6,7,8,11}解析 P+Q={1,2,3,4,6,7,8,11}.3.满足{1}A?{1,2,3}的集合A的个数是________.答案 3解析 A={1}∪B,其中B为{2,3}的子集,且B非空,显然这样的集合A有3个,即A={1,2}或{1,3}或{1,2,3}. 4.(2010·天津改编)设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R}.若A∩B=?,则实数a 的取值范围是______________.答案 a≤0或a≥6解析由|x-a|<1得-1<x-a<1,即a-1<x<a+1.由图可知a+1≤1或a-1≥5,所以a≤0或a≥6. 5.设全集U是实数集R,2M={x|x2>4},N={x|≥1},则如图中阴影部分所表示的集合是________.x-1答案 {x|1<x≤2}解析题图中阴影部分可表示为(?UM)∩N,集合M为{x|x>2或x<-2},集合N为 {x|1<x≤3},由集合的运算,知(?UM)∩N={x|1<x≤2}. 6.(2011·泰州模拟)设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数为________.答案 4解析由题意知B的元素至少含有3,因此集合B可能为{3}、{1,3}、{2,3}、{1,2,3}.*7.(2009·天津)设全集U=A∪B={x∈N|lg x<1},若A ∩(?UB)={m|m=2n+1,n=0,1,2,3,4},则集合B=______________. 答案 {2,4,6,8}*解析 A∪B={x∈N|lg x<1}={1,2,3,4,5,6,7,8,9},A ∩(?UB)={1,3,5,7,9},∴B={2,4,6,8}.28.(2010·江苏)设集合A={-1,1,3},B={a+2,a+4},A∩B={3},则实数a=____. 答案 12解析∵3∈B,由于a+4≥4,∴a+2=3,即a=1. 二、解答题(共42分)229.(14分)集合A={x|x+5x-6≤0},B={x|x+3x>0},求A∪B和A∩B. 解∵A={x|x2+5x-6≤0} ={x|-6≤x ≤1}.(3分)B={x|x2+3x>0}={x|x<-3或x>0}.(6分)如图所示,∴A∪B={x|-6≤x≤1}∪{x|x<-3或x>0}=R.(10分) A∩B={x|-6≤x≤1}∩{x|x<-3或x>0} ={x|-6≤x<-3,或0<x≤1}.(14分)110.(14分)(2011·南通模拟)已知集合A={x|0<ax+1≤5},集合B={x|<x≤2}.若2B?A,求实数a的取值范围.解当a=0时,显然B?A;(2分)当a<0时,若B?A,如图,41-,a2则(6分)1-,a???a≥-8,??1∴?∴-a<0;(8分) 12?a>-2.?当a>0时,如图,若B?A,1-,?-1a2则?4?a2, (11分)??a≤2,∴?∴0<a≤2.(13分) ?a≤2.?1综上知,当B?A时,-a≤2.(14分) 2x-5211.(14分)已知集合A={x|≤0},B={x|x-2x-m<0}, x+1(1)当m=3时,求A∩(?RB);(2)若A∩B={x|-1<x<4},求实数m的值.x-5解由≤0, x+1所以-1<x≤5,所以A={x|-1<x≤5}.(3分)(1)当m=3时,B={x|-1<x<3},则?RB={x|x≤-1或x≥3},(6分)所以A∩(?RB)={x|3≤x≤5}.(10分)(2)因为A={x|-1<x≤5},A∩B={x|-1<x<4},(12分)所以有42-2×4-m=0,解得m=8.此时B={x|-2<x<4},符合题意,故实数m的值为8.(14分)荐小学数学教案[1000字] 荐初二数学教案(800字) 荐生活中的数学教案[1000字] 荐人教版初一上数学教案(全册) [1500字]荐工程数学教案 (500字)。
∙2013届高三数学一轮复习教案:等比数列
∙考试要求:
1.通过实例,理解等比数列的概念。
2.探索并掌握等比数列的通项公式与前几
项和的公式。
3.能在具体的问题情境中,发现数列的等比关系,并能用有关知识解决相应的
问题。
4.体会等比数列与指数函数的关系。
二、知识梳理:
1.等比数列的定义
2.等比数列的通项前几项和
3.等比中项
若a、b、c成等比,则b为a、c的等比中项,即=ac.正数m、n的等比中项为
4.等比数列的性质①若数列等比数列,则若则②当或时,数列为递增数列。
当或时,数列为递减数列。
当=1时,数列为常数列;当<0时,数列为摆动数列。
三、典型例题
例1一个等比数列有三项,如果把第二项加上4,那么所得的三项就成为等差数列;如果再把这个等差数列的第三项加上32那么所得的三项又成为等比数列,
求原来的等比数列。
例2若数列满足关系a1=2,an+1=3an+2求数列的通项公式。
例3设等比数列的前n项和为Sn,若求公比q.。
圆锥曲线1、求轨迹方程的几个步骤:(建-设-列-化-证)a.建系(建立平面直角坐标系,多数情况此步省略)b.设点(求哪个点的轨迹,就设它(x,y))c.列式(根据条件列等量关系)d.化简(化到可以看出轨迹的种类)e.证明(改成:修正)(特别是①三角形、②斜率、③弦的中点问题)2、求动点轨迹方程的几种方法a.直接法:题目怎么说,列式怎么列。
b.定义法:先得到轨迹名称c.代入法(相关点法):设所求点(x,y)另外点()找出已知点和所求点的关系c.参数法:(x,y)中x,y都随另一个量变化而变化—消参e.待定系数法:先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程例题一:定义法求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。
例1:已知的顶点A,B的坐标分别为(-4,0),(4,0),C 为动点,且满足求点C的轨迹。
【解析】由可知,即,满足椭圆的定义。
令椭圆方程为,则,则轨迹方程为(,图形为椭圆(不含左,右顶点)。
【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。
(1)圆:到定点的距离等于定长(2)椭圆:到两定点的距离之和为常数(大于两定点的距离)(3)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4)到定点与定直线距离相等。
【变式1】:1:已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
解:设动圆的半径为R,由两圆外切的条件可得:,。
∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。
故所求轨迹方程为2:一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆 C:椭圆 D:双曲线一支【解答】令动圆半径为R,则有,则|MO|-|MC|=2,满足双曲线定义。
2013年普通高考数学科一轮复习精品教案第26讲 平面向量的数量积及应用一.课标要求:1.平面向量的数量积①通过物理中"功"等实例,理解平面向量数量积的含义及其物理意义; ②体会平面向量的数量积与向量投影的关系;③掌握数量积的坐标表达式,会进行平面向量数量积的运算;④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
2.向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。
二.命题走向本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。
重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。
平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。
预测2013年高考:(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。
(2)一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;三.要点精讲1.向量的数量积(1)两个非零向量的夹角已知非零向量a 与a ,作=,=,则∠A OA =θ(0≤θ≤π)叫与的夹角;说明:(1)当θ=0时,与同向; (2)当θ=π时,与反向; (3)当θ=2π时,与垂直,记⊥; (4)注意在两向量的夹角定义,两向量必须是同起点的,范围0︒≤θ≤180︒。
(2)数量积的概念C已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积)。
规定00a ⋅=;向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影。
投影的绝对值称为射影;(3)数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积。
2013届高考数学基础知识总复习教案一、集合⒈集合的概念:某些指定的对象集在一起就成为一个集合,简称集;集合中的每一个对象叫集合的元素.元素a在集合M内的表示法,元素a不在集合M内的表示法.⒉集合中的元素必须具备“三性”:、、.⒊空集的意义及记号:不含任何元素的集合叫空集,空集记作Ø;⒋常用数集及记号:⑴非负整数集(零和正整数的全体)——N;⑵正整数集——N*或N+;⑶整数集——Z;⑷有理数集——Q;⑸实数集——R.⑹无理数集——CRQ⒌集合的分类(按集合中的元素个数来分):⑴有限集——⑵无限集——⒍集合的表示法:⑴列举法——把集合中元素一一列举出来写在大括号内;⑵描述法——把集合中元素的公共熟性用语言或式子描述出来写在大括号内,其基本模式是{x|p(x)}.⒎集合的形象表示法——韦恩图,即用一条封闭的曲线围成的图形(内部)表示集合.⒏子集、交集、并集、补集:Ⅰ子集⑴子集、真子集的意义:对于两个集合A、B,如果集合A的任何一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A B;如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作AB.⑵子集的性质:(用、填空)①AA,ØA,若A≠Ø,则ØA;②若A B,B C,则AC;③若AB,B C,则AC;④若A B,BC,则AC;④若AB,BC,则AC.⑶子集的个数:若集合A中有n个元素,则①集合A的子集个数是2n;②集合A的真子集个数是2n−1;③集合A的非空真子集个数是2n−2.⑷集合相等的意义:若集合A与B含有相同的元素,称它们相等,记作A=B;集合相等的充要条件:A=B A B且B A.Ⅱ交集⑴交集的意义:由所有属于集合A且属于集合B的元素组成的集合叫做A、B的交集,记作A∩B,即A∩B={x|x∈A且x∈B}请根据右面的韦恩图打出A∩B的阴影.⑵交集的性质:①A∩A=;②A∩Ø=;③A∩B=B∩A;④若A∩B A,则A∩B B;⑤若A∩B A,则A B.Ⅲ并集⑴并集的意义:由所有属于集合A或者属于集合B的元素所组成的集合,叫做集合A、B的并集,记作A∪B,即A∪B={x|x∈A或x∈B}请根据右面的韦恩图打出A∪B的阴影.⑵并集的性质:①A∪A=;②A∪Ø=;③A∪B=B∪A;④A∪B A;⑤A∪B B;⑥A∪B=A B AⅣ补集⑴全集、补集的意义:如果集合S含有我们所要研究的各个集合的全部元素,这个集合叫做全集,全集通常用U表示;设S是一个集合,A是S的一个子集(即A S),由S中所有不属于A的元素组成的集合,叫做集合A的补集(或余集),记作CSA,即CSA={x|x∈S且x A}.请根据右面的韦恩图打出CSA的阴影.⑵补集的性质:①A∪CUA=;②A∩CUA=;③CUU=;④CUØ=;⑤CU(CUA)=;二、简易逻辑⒈命题概念:可以判断真假的语句叫做命题.⒉逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.⒌真值表:表示命题的真假的表叫真值表.⑴非p形式复合命题的真值表(填“真”或“假”)p非p真假⑵p且q形式复合命题的真值表(填“真”或“假”)pqP且q真真真假假真假假⑶p或q形式复合命题的真值表(填“真”或“假”)pqP或q真真真假假真假假⒍四种命题:⑴逆命题及逆命题的概念:⑷四种命题的一般形式:(用符号“┐”表示否定)①原命题:若p则q;②逆命题:;③否命题:;④逆否命题:.⑸四种命题之间的关系:在下列双箭头符号旁填上相应的文字)⑹一个命题的真假与其他三个命题的真假关系:①原命题为真,它的逆命题;②原命题为真,它的否命题;③原命题为真,它的逆否命题.⒎充分条件和必要条件:⑴充分条件和必要条件的概念:若p则q,即p q,我们说,p是q的条件,q是p的条件.⑵充要条件的概念:若p则q,且若q则p,即p q,我们说p是q的条件,q是p的条件.精心整理,仅供学习参考。
2013年普通高考数学科一轮复习精品学案第13讲直线与圆的方程一.课标要求:1.直线与方程(1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;(2)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;(3)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;2.圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。
二.命题走向直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,可与三角知识联系;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程。
预测2013年对本讲的考察是:(1)2道选择或填空,解答题多与其他知识联合考察,本讲对于数形结合思想的考察也会是一个出题方向;(2)热点问题是直线的倾斜角和斜率、直线的几种方程形式和求圆的方程。
三.要点精讲1.倾斜角:一条直线L向上的方向与X轴的正方向所成的最小正角,叫做直线的倾斜角,范围为[)π,0。
2.斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=a nα;当直线的倾斜角等于900时,直线的斜率不存在。
过两点p 1(x 1,y 1),p 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式:k=t a n 1212x x y y --=α(若x 1=x 2,则直线p 1p 2的斜率不存在,此时直线的倾斜角为900)。
4.直线方程的五种形式确定直线方程需要有两个互相独立的条件。
确定直线方程的形式很多,但必须注意各种形式的直线方程的适直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。
5.圆的方程圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 。
特殊地,当0==b a 时,圆心在原点的圆的方程为:222r y x =+。
r k 解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D 。
点评:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力。
例2.过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,求PA PB ·||的值最小时直线l 的方程。
解析:依题意作图,设∠BA O =θ,则PA PB ==12sin cos θθ,,B 两点,分别过点A 、B 作y 轴的平行线与函数y =lo g 2x 的图象交于C 、D 两点。
(1)证明点C 、D 和原点O 在同一条直线上。
(2)当BC 平行于x 轴时,求点A 的坐标。
解析:(1)如图,实数x ,y 满足的区域为图中阴影部分(包括边x界),而yx y x =--0表示点(x ,y )与原点连线的斜率,则直线A O 的斜率最大,其中A 点坐标为132,⎛⎝⎫⎭⎪,此时k OA =32,所以yx的最大值是32。
y y,x 将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).点评:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力。
例4.当02<<x π时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值是( )A .2BC .4D .43A4,殊形式的方程。
解析:(1)将()y x -=--1342移项、展开括号后合并,即得斜截(2)因为点(2,1)、(0,52)均满足方程()y x -=--1342,故它们为直线上的两点。
由两点式方程得:y x --=--1521202 即y x -=--13222 (3)由y x =-+3452知:直线在y 轴上的截距b =52又令y =0,得x =103故所求直线l 的方程为:x y-+=5241,或x y 521+-=。
即85200x y -+=,或25100x y --=点评:要求l 的方程,须先求截距a 、b 的值,而求截距的方法也有三种:(1)从点的坐标()0,b中直接观察出来;a,0或()(2)由斜截式或截距式方程确定截距;(3)在其他形式的直线方程中,令x=0得y轴上的截距b;令y=0得出x轴上的截距a。
总之,在求直线方程时,设计合理的运算途径比训练提高运算能,y=4时,y有8个,x=5或6时,y分别有7个,类推:x=13时y有2个,x=14或15时,y分别有1个,共91个整点.故选B。
解析二:将x=0,y=0和2x+3y=30所围成的三角形补成一个矩形.如图所示。
对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个)点评:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径。
B(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3。
所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316。
|且|⎩⎨⎧即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23。
又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2,|BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256。
当∠CAB 为钝角时,c o sA =||||2||||||222AC AB BC AC AB ⋅-+<0。
即|BC |2 >|AC |2+|AB |2,即9256334928342822++->++y y y y ,38)2。
圆心(332,35-)到直线l :x =-1的距离为38, 所以,以AB 为直径的圆与直线l 相切于点G (-1,-332)。
当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角。
因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角。
过点A 且与AB 垂直的直线方程为)1(332-=-x y 。
充分体现了―注重学科知识的内在联系‖.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力。
比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度。
题型4:圆的方程例7.(1)已知△ABC的三个项点坐标分别是A(4,1),B(6,-3),C(-3,0),求△ABC外接圆的方程。
分析:如果设圆的标准方程222-+-=,将三个顶点坐标x a y b r()()分别代入,即可确定出三个独立参数a,b,r,写出圆的标准方程;),线段BC的中点为(,)-,22∴AB 的垂直平分线方程为11(5)2y x +=-,BC 的垂直平分线方程333()22y x +=- 解由①②联立的方程组可得⎧⎨⎩它们的坐标都是方程①的解,将它们的坐标分别代入方程①,得到关于D ,E ,F 的一个三元一次方程组:22222241406(3)630(3)0300D E F D E F D E F ⎧++++=⎪+-+-+=⎨⎪-+-+⋅+=⎩,解得2615D E F =-⎧⎪=⎨⎪=-⎩。
所以,圆的方程是2226150x y x y +-+-=。
圆心是坐标(1,-3),半径为5r ==。
点评:―待定系数法‖是求圆的方程的常用方法.一般地,在选用圆的方程形式时,若问题涉及圆心和半径,则选用标准方程比较方便,否则选用一般方程方便些。
,半径2422F E D r -+=,其中0422>-+F E D 。
题型5:圆的综合问题例9.如图2,在平面直角坐标系中,给定y 轴正半轴上两点A (0,a ),B (0,b )(a b >>0),试在x 轴正半轴上求一点C ,使∠ACB取得最大值。
Cp)(p>0),圆心O′在抛物线x2=2p y上运动,MN为圆O′截x轴所得的弦,令|A M|=d1,|A N|=d2,∠M A N=θ。
(1)当O′点运动时,|MN|是否有变化?并证明你的结论;(2)求21d d +12d d 的最大值,并求取得最大值的θ值。
解析:设O′(x 0,y 0),则x 02=2p y 0 (y 0≥0),⊙O′的半径|O′A |=2020)(p y x -+,⊙O′的方程为(x -x 0)2+(y -y 0)2=x 02+(y 0-p)2。
令y =0,2222,,≤2则θ=2∠MO′N=45°。
点评:数形结合既是数学学科的重要思想,又是数学研究的常用方法。
五.思维总结抓好―三基‖,把握重点,重视低、中档题的复习,确保选择题的成功率。
本讲所涉及到的知识都是平面解析几何中最基础的内容.它们渗透到平面解析几何的各个部分,正是它们构成了解析几何问题的基础,又是解决这些问题的重要工具之一.这就要求我们必须重视对―三基‖的学习和掌握,重视基础知识之间的内在联系,注意基本方法的相互配合,注意平面几何知识在解析几何中的应用,注重挖掘基础知识的能力因素,提高通性通法的熟练程度,着眼于低、中档题的顺利解决。
在解答有关直线的问题时,应特别注意的几个方面:(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次要注意倾角的范围;(2)在利用直线的截距式解题时,要注意防止由于―零截距‖造成丢解的情况.如题目条件中出现直线在两坐标轴上的―截距相等‖―截距互为相反数‖―在一坐标轴上的截距是另一坐标轴上的截距的m倍(m>0)‖等时,采用截距式就会出现―零截距‖,从而丢解.此时最好采用点斜式或斜截式求解;(3)在利用直线的点斜式、斜截式解题时,要注意防止由于―无斜率‖,从而造成丢解.如在求过圆外一点的圆的切线方程时或讨论直线与圆锥曲线的位置关系时,或讨论两直线的平行、垂直的位置关系时,一般要分直线有无斜率两种情况进行讨论;(4)首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。