中考数学模拟测试习题(三)
- 格式:docx
- 大小:320.03 KB
- 文档页数:7
2020年黑龙江省哈尔滨市中考数学测试试卷(三)一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣25.如图所示几何体的左视图是()A.B.C.D.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣38.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6二.填空题(共10小题)11.将9420000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:=.14.把多项式9m2﹣36n2分解因式的结果是.15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于cm.16.不等式组的整数解是.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a 【分析】根据合并同类项法则和幂的运算性质,计算后利用排除法求解.【解答】解:A、a3+a3=2a3,正确;B、a2•a3=a5,正确;C、应为(﹣a3)2=a6,故本选项错误;D、2a3÷a2=2a,正确.故选:C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣2【分析】根据反比例函数的性质得到关于m的不等式,解不等式可以得到m的取值范围.【解答】解:∵在每一象限内的双曲线y=上,y都随x的增大而增大,∴m+2<0,解得,m<﹣2,故选:B.5.如图所示几何体的左视图是()A.B.C.D.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,故选:A.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米【分析】作PC⊥AB,根据正切的定义用PC分别表示出AC、BC,根据题意列式计算,得到答案.【解答】解:作PC⊥AB交AB的延长线于点C,由题意得,∠PAC=30°,∠PBC=60°,在Rt△ACP中,tan∠PAC=,∴AC==PC,在Rt△BCP中,tan∠PBC=,∴BC==PC,由题意得,PC﹣PC=50,解得,PC=25,即点P到直线AB的距离为25米,故选:D.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%【分析】要求每次降价的百分率,应先设每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,又知经两次降价后每件243元,由两次降价后每件价钱相等为等量关系列出方程求解.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=【分析】由平行线分线段成比例定理即可得出结论.【解答】解:∵DE∥BC,EF∥AB,∴=,A、B、D选项正确;∵四边形BDEF是平行四边形,∴DE=BF,∴,故C选项错误;故选:C.10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.二.填空题(共10小题)11.将9420000用科学记数法表示为9.42×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106.故答案为:9.42×106.12.在函数y=中,自变量x的取值范围是x≠2 .【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.【解答】解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.计算:=2.【分析】首先化简各二次根式,进而合并同类项得出即可.【解答】解:=﹣=.故答案为:2.14.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于πcm.【分析】连接OB,如图,先利用菱形的性质可判断△OAB和△OBC都是等边三角形,则∠AOB=∠BOC=60°,于是可根据弧长公式计算出弦AC所对的劣弧的长.【解答】解:连接OB,如图,∵四边形OABC为菱形,∴OA=AB=BC=OC,∴△OAB和△OBC都是等边三角形,∴∠AOB=∠BOC=60°,∴弦AC所对的劣弧的长==π,故答案为π.16.不等式组的整数解是 2 .【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由不等式①得x>1,由不等式②得x<3,其解集是1<x<3,所以整数解是2.故答案为:2.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是9 .【分析】先根据旋转的性质得BE=BD,AE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD=4,所以△AED的周长=DE+AC,再利用等边三角形的性质得AC=BC=5,则易得△AED的周长为9.【解答】解:∵△BCD绕点B逆时针旋转60°得到△BAE,∴BE=BD,AE=CD,∠DBE=60°,∴△BDE为等边三角形,∴DE=BD=4,∴△AED的周长=DE+AE+AD=DE+CD+AD=DE+AC,∵△ABC为等边三角形,∴AC=BC=5,∴△AED的周长=DE+AC=4+5=9.故答案为9°.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是144 .【分析】根据等腰三角形三线合一的性质可得到AD是底边BC的中线,从而得到点G为△ABC的重心,从而不难求得DG,BG的长,再根据勾股定理求得BD的长,最后根据三角形面积公式求解即可.【解答】解:如图,∵在等腰△ABC中,AB=AC,AD⊥BC于D,∴AD是底边BC的中线,∵CE=AC,∴G为△ABC的重心,∵AD=18,BE=15,∴DG=AD=6,BG=BE=10,∴在直角△BDG中,由勾股定理得到:BD==8,∴S△ABC=BC×AD=144.故答案是:144.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.【分析】连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,根据全等三角形的性质得到DE=DH=1,AH=CD,根据线段垂直平分线的性质得到AB=AF,求得∠ABF=∠AFB,根据平行四边形的性质得到AB=CD,AB∥CD,求得∠BCD=∠AFC,根据全等三角形的性质得到DF=AC=5,根据勾股定理即可得到结论.【解答】解:连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,∵∠AGC=∠AHC=90°,∠AOG=∠COH,∴∠DAH=∠ECD,∵∠AHD=∠EDC=90°,AD=CE,∴△ADH≌△CED(AAS),∴DE=DH=1,AH=CD,∵点A在BF的垂直平分线上,∴AB=AF,∴∠ABF=∠AFB,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF+∠BCD=180°,∴∠BCD=∠AFC,∵CF=CF,∴△AFC≌△DCF(SAS),∴DF=AC=5,设CH=x,则AH=CD=x+1,∵AH2+CH2=AC2,∴(x+1)2+x2=52,解得:x=3(负值舍去),∴AH=4,∴AD==,故答案为:.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=[﹣]•,=•,=,当x=4×﹣2×1=2﹣2时,原式==.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.【分析】(1)根据△ABD和△ACD都是轴对称图形,即可得到格点D的位置;(2)依据勾股定理进行计算,即可得到线段BD的长度之和.【解答】解:(1)如图所示,△ABD和△ACD即为所求;(2)两个图形中线段BD的长度之和为+2=.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.【分析】(1)根据条形统计图求得各类的人数的和即可;(2)利用(1)中所求总人数,再利用参加“音乐”活动项目的人数,求出所占百分比即可;(3)根据样本中美术所占的百分比估计总体.【解答】解:(1)12+16+6+10+4=48(人);(2)参加“音乐”活动项目的人数占抽查总人数的百分比为:12÷48×100%=25%;(3)6÷48×2400=300(名),估计该校参加“美术”活动项目的人数约为300人.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.【分析】(Ⅰ)根据对称轴方程,列式求出b的值,从而求得二次函数的解析式;(Ⅱ)先由y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2知函数有最大值﹣2,然后求出x=﹣2和x =0时y的值即可得答案.【解答】解:(Ⅰ)∵函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1,∴m﹣1=2,﹣=1,∴m=3,b=2.∴该二次函教的解析式为y=﹣x2+2x﹣3.(Ⅱ)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,函数y有最大值﹣2,当x=﹣2时,y=﹣11;当x=0时,y=﹣3;∵﹣2<0<1,∴当﹣2≤x≤0时,求该二次函数的函数值y的取值范围为﹣11≤y≤﹣3.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.【分析】(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,根据关键语句“每个进价多了5元”可得方程,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【解答】解:(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,可得:﹣=5,解得:x=10,经检验:x=10是原分式方程的解,=30,答:该商贩第一批购进水果每箱30元;(2)设水果的售价为y元,根据题意得:30y﹣(300+700)﹣20×10%y≥400,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF【分析】(1)如图1,连接OD,并延长DO交⊙O于H,由切线的性质和圆周角定理可得∠DBH=∠ODP=90°,可得∠ODB+∠BDP=90°,∠BDH+∠H=90°,可得∠H=∠BDP=∠BAD;(2)在CE上截取KE=DE,连接BK,由圆周角可得∠BAD=∠BDP=∠BCD,∠CAB=∠CDB =2∠BDP=2∠BCD,由线段垂直平分线的性质可得BK=BD,由等腰三角形的性质和外角的性质可得BK=CK=BD,即可得结论;(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由“AAS”可知△CRK≌△FHB,可得FH=CR,由三角形面积公式可求BC的长,由角的数量关系可证AB=AC=10,由勾股定理可求AE,BE,CE的长,由锐角三角函数可求解.【解答】解:(1)如图1,连接OD,并延长DO交⊙O于H,∵DP为⊙O的切线.∴∠ODP=90°,∴∠ODB+∠BDP=90°,∵DH是直径,∴∠DBH=90°,∵∠BDH+∠H=90°,∴∠H=∠BDP,∵∠H=∠BAD,∴∠BAD=∠BDP;(2)如图2,在CE上截取KE=DE,连接BK,∵∠CAB=2∠BAD,∠BAD=∠BCD,∠BAD=∠BDP,∠CAB=∠CDB,∴∠BAD=∠BDP=∠BCD,∠CAB=∠CDB=2∠BDP=2∠BCD,∵KE=DE,AB⊥CD,∴BK=BD,∴∠BKD=∠BDK=2∠BCD,∵∠BKD=∠BCD+∠CBK,∴∠BCD=∠CBK,∴BK=CK,∴CE=KE+CK=DE+BK,∴CE=DE+BD(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由(2)可知,CK=BK,∴CR=BR,∵BF=BD,CK=BK=BD,∴CK=BF=BD=BK,∵∠KRC=∠FPH=90°,∠CBE=∠FBH,∴∠BCE=∠BFH,且CK=BF,∠CRK=∠FHB,∴△CRK≌△FHB(AAS),∴FH=CR,设FH=CR=BR=x,∴BC=2x,∵S△BCF=20=×BC×FH,∴20=×2x×x∴x=2(负值舍去),∴FH=CR=BR=2,BC=4,∵∠BAD=∠BCD,∠BAC=2∠BAD,∴∠BAC=2∠BCD,∵∠CBA=90°﹣∠BCD,∠BAC+∠ACB+∠ABC=180°,∴∠ACB=90°﹣∠BCD,∴∠ACB=∠ABC,∴AC=AB=10,∵CE2=AC2﹣AE2,CE2=CB2﹣BE2,∴AC2﹣AE2=CB2﹣BE2,∴100﹣AE2=80﹣(10﹣AE)2,∴AE=6,∴BE=4,∴EC===8∵∠ECB=∠EAD,∴tan∠ECB=tan∠EAD,∴,∴,∴DE=3.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.【分析】(1)解方程得到OB=2,OA=﹣4,过D作DX⊥BC于X,根据平行线分线段成比例定理得到DX=8,求得D(2,8),解方程组即可得到结论;(2)过点P作PY∥BC交CD于Y,求得P(t,2t+4),Y(﹣t+4,2t+4)根据平行线的性质和解直角三角形即可得到结论;(3)如图3,延长FN到点T,使PN=NT,连接PT,于是得到MT=MN+NT=NE+PN=PE,过点T作TV⊥BK交BK的延长线于V,根据全等三角形的性质得到BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠由全等三角形的性质得到QR=VR=BM,过点F 作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,推出△FML≌△ZRQ(ASA),求得RZ=FM 根据全等三角形的性质得到∠PRQ=∠QPR,求得∠ZRQ=∠QPK,过点P作SW∥BC,过B 作BS⊥SB于S,过E作EW⊥SW于W根据余角的性质得到∠WPE=∠SBP,推出△SPB≌△WEP(AAS),得到BS=PW,SP=WE,设P(t,2t+4),求得E(3t+4,t+2),解方程即可得到结论.【解答】解:(1)在y=2x+4中,令y=0,则x=﹣2,令x=0,则y=4,∴B(﹣2,0),A(0,4),∴OB=2,OA=﹣4,过D作DX⊥BC于X,∵DB=DC,∴BX=XC=BC=4,∴OX=2,∵∠AOB=∠DXB=90°,∴OA∥DX,∴=,∴DX=8,∴D(2,8),∵OC=BC﹣OB=6,C(6,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的解析式为y=﹣2x+12;(2)过点P作PY∥BC交CD于Y,∵点P的横坐标为t,∴P(t,2t+4),∴Y(﹣t+4,2t+4),∴PY=﹣2t+4,∵PY∥BC,∴∠DCB=∠DYP,∵BD=CD,∴∠DBC=∠DCB,∴∠DCB=∠DYP,∴tan∠DBC=tan∠DYP,∵tan∠DBC==2,∴tan∠DYP=2,∴=2,∴PH=2HY,在Rt△PHY中,PY===HY,∴==,∴PH=(﹣2t+4)=﹣t+(﹣2≤t<2);(3)如图3,延长FN到点T,使PN=NT,连接PT,∴MT=MN+NT=NE+PN=PE,∵PE=PB,∴MT=PB,过点T作TV⊥BK交BK的延长线于V,∵∠PFN=2∠KMN=2∠FMB,∴∠FBM=∠FMB,∴∠PBM=∠VMT,∵∠PQB=∠V=90°,∴△PQB≌△TVM(AAS),∴BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠PRQ=∠TRV,∠PQR=∠V,PQ=VT,∴△PQR≌△TVR(AAS),∴QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,∵∠FBM=∠FMB,∴BF=FM,∴ML=BM,∴QR=ML,∵RZ∥FN,∴∠ZRQ=∠KMN,∴∠FML=∠ZRQ,∵∠FLM=∠ZQR=90°,∴△FML≌△ZRQ(ASA),∴RZ=FM,∴BF=RZ,∵BF=PK,∴RZ=PK,∵PN=NT,∴∠NPT=∠NTP,∵RZ∥FN,∴∠PRZ=∠NTP,∴∠NPT=∠PRZ,∵PR=PR,∴△PRK≌△RPZ(ASA),∴∠PRQ=∠QPR,∴∠ZRQ=∠QPK,∴∠PBM=∠ZRQ,∴∠PBM=∠QPK,∵∠PBM+∠BPM=90°,∴QPK+∠BPM=90°,∴∠BPE=90°,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W,∴∠SPB+∠WPE=90°,∵∠SPB+∠SBP=90°,∴∠WPE=∠SBP,∵∠S=∠W=90°,PB=PE,∴△SPB≌△WEP(AAS),∴BS=PW,SP=WE,设P(t,2t+4),∴E(3t+4,t+2),∵点E在直线CD上,∴t+2=﹣2(3t+4)+12,解得:t=,∴P(,).。
2022年中考热身模拟试卷数学(三)(满分150分时间120分钟)考生注意:1.本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150分。
考试时间 120分钟。
2.请将各题答案填在答题卡上,答在试卷上无效。
3.本试卷考查范围:中考范围。
一、选择题:本题共12个小题,每小题3分,共36 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列运算正确的是()A. a2+2a2=3a4B. a6÷a3=a2C. a3+a3=2a6D. (a2)3=a62.下列不等式3-x的非负整数解是()+(2<)33A. 0B. 1C. 2D. 33.下图中的几何体是由六个完全相同的小正方体组成的,它的俯视图是()A. B. C. D.4.某市图书馆和山区小学建立帮扶关系,一年五次向该小学赠送书籍的数量分别如下(单位:本):300,200,300,300,400这组数据的众数、中位数、平均数分别是()A. 300,150,300B. 300,200,200C. 600,300,200D. 300,300,3005.高度每增加1 km,气温大约下降5 ℃,现在地面温度是20 ℃,某飞机在该地上空5 km处,则此时飞机所在高度的气温为( )A. -9 ℃B. -6℃C. -5 ℃D. 5℃6.如果a<b,那么下列结论不正确的是()A. a+3<b+3B. a﹣3<b﹣3C. ma>mbD. B. −2a>−2b7.数轴上一动点A 向左移动3个单位长度到达点B ,再向右移动7个单位长度到达点C ,若点 C 表示的数是2,则点 A 表示的数为()A. -1B. 3C. -3D. -28.如图所示,在△ABC中,D为AB上一点,E为BC上一点,且AC = CD = BD = BE,∠A = 50°,则∠BDE的度数为()A. 50°B. 77.5°C. 60°D.第8题第9题第12题9.小芳将贵州健康码打印在面积为16dm2的正方形纸上,为了估计图中健康码部分的面积,在纸内随机掷点,经过大量重复试验,发现点落入健康码外部分的频率稳定在0.4左右,据此可以估计健康码部分的面积约为()A. 2.4dm2B. 4dm2C. 6.4dm2D. 9.6dm210.关于x的一元二次方程x2-4x+a=0的两实数根分别为x1、x2,且x1+2x2=3,则a的值为()A. 4B. 5C. -5D. 011.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问买5只羊总共是多少?()A. 800钱B. 775钱C. 750钱D. 725钱12.如图,在四边形ABCD中,AB//CD,AB=CD,∠B=60°,AD=83,分别以B和C为圆心,以大于1BC的长为半径作弧,两弧相交于点P和Q,直线PQ与BA2延长线交于点E,连接CE,则ΔBCE的内切圆圆心到B点距离是()A. 4B. 43C. 8D. 23一、填空题(每小题5分,共20分)13.若分式2x+2有意义,则x的取值范围为________.x2−114.关于x的方程(m+2)x|m|+2mx+2=0是一元一次方程,则m的值为________.15.已知实数a在数轴上的位置如图所示,则化简|1-a|﹣a2的结果为________.16.如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF 是腰AC的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为 .第15题第16题三、解答题(本大题共9小题,共94分)17.(本题满分6分)已知=3,3a+b﹣1的平方根是±2,c是的整数部分,求2a+b+6c的算术平方根.18.(本题满分10分)九年级将要参加体育中考,某校领导非常重视,决定对九年级年级学生体育体育达标测试,来了解学生的中考体育成绩,在九年级各班随机抽取了部分学生的体育测试成绩,按A、B、C、D四个等级进行统计(A级:45分~50分;B级:40分~45分;C级:35分~40分;D级:35分以下).并将统计结果绘制成两个如图所示的不完整的统计图,请你结合统计图中所给信息解答下列问题:第18题(1)学校在九年级各班共随机调查了 名学生;(2)在扇形统计图中,A级所在的扇形圆心角是 ;(3)请把条形统计图补充完整;(4)若该校九年级有1000名学生,请根据统计结果估计全校九年级体育测试中B 级和C 级学生各约有多少名.19.(本题满分10分)如图,AB 是⊙O 的弦,点D 是⊙O 内一点,连接AD ,圆心O 在AD 上,AD ⊥BC ,垂足为D ,BD 交⊙O 于点C 若AD =6cm ,AD =2BD .(1)求弦BC 的长;(2)求⊙O 半径的长.第19题20.(本题满分10分)如图:某地打算建立一个信号站在居民房A 和居民房B 之间的C 处,信号站C 在居民房A 的北偏东60°方向上,居民房A 距离信号站C 有20米,信号站C 处在居民房B 处西北方向上。
广水市九年级中考模拟考试数 学 试 题(测试时间120分钟 满分120分)一、选择题(本题有10个小题,每小题3分,共30分. 每小题给出的四个选项中,只有一个是正确的) 1.计算(﹣2018)0 + 9 ÷(﹣3)的结果是A .﹣1B .﹣2C .﹣3D .﹣42.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是ABCD3.下列运算正确的是A .a 3·a 2=a 6B .(a ﹣3)2=a 2+9C .532=+D .2a +3a =5a4.如图所示的物体由两个紧靠在一起的圆柱体组成,它的左视图是5.如图,直线a ∥b ,直角三角形BCD 按如图放置,∠DCB =90°.若∠1+∠B =70°,则∠2的度数为A .20°B .40°C .30°D .25°6、下列调查中,最适合采用全面调查(普查)方式的是A .对广水市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查7.如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .过一点有且只有一条直线和已知直线平行8. 为了节约用水,某市从今年1月1日起调整居民用水价格,每吨水费上涨31。
小慧家去年12月份的水费是15元,而今年5月的水费则是30元。
已知小慧家今年5月的用水量比去年12月的用水量多5吨,求该市今年居民用水的价格。
设去年居民用水价格为x 元/吨,根据题意列方程,正确的是A .515)311(30=-+xxB .515)311(30=--xx C .5)311(1530=+-xxD .5)311(1530=--xx 9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,则第2018个图案中有白色纸片的个数为A .6055B .6058C .6061D .606410.抛物线y 1=ax 2+bx +c (a ≠0)的图象的一部分如图所示,抛物线的顶点坐标是A (1,3),与x 轴的一个交点是B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点,下列结论:①4a -2b +3c >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2<y 1;⑤x (ax +b )-b ≤ a .其中正确的结论有A .5个B .4个C .3个D .2个二、填空题(本大题共6小题,每小题3分,共18分)11. 随州风电、光伏发电产业迅速崛起,已累计投产这两类新能源装机169.6万千瓦。
上海中考数学模拟测试题(3)一.选择题(共6小题,满分24分,每小题4分)1.(4分)2016的相反数是()A.B.﹣2016C.﹣D.20162.(4分)下列运算正确的()A.3m3﹣2m2=m B.2m2•m3=2m5C.(﹣2a﹣b)(2a+b)=4a2﹣b2D.(﹣2x2y3)2=4x4y53.(4分)对于反比例函数y=,下列说法正确的是()A.这个函数的图象分布在第二、四象限B.这个函数的图象既是轴对称图形又是中心对称图形C.点(﹣1,4)在这个函数图象上D.y随x的增大而增大4.(4分)某同学对数据16,20,20,36,5■,51进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.中位数B.平均数C.方差D.众数5.(4分)下列命题的逆命题是真命题的是()A.等边三角形是锐角三角形B.如果两个实数相等,那么它们的平方相等C.两直线平行,同位角相等D.如果两个角是直角,那么它们相等6.(4分)如图是一个等边三角形,若将它绕着它的中心O旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.120°B.90°C.60°D.30°二.填空题(共12小题,满分48分,每小题4分)7.(4分)计算:﹣2a2b+5a2b=.8.(4分)已知f(x)=,f()+f()+⋯⋯+f()+f()+f()+ ++f()+⋯⋯+f()的值等于.9.(4分)方程组的解是.10.(4分)关于x的一元二次方程(x﹣2)2=a﹣1有实数根,则a的取值范围是.11.(4分)为迎接理化生实验操作考试,某校成立了物理、化学、生物实验兴趣小组,要求每名学生从物理、化学、生物三个兴趣小组中随机选取一个参加,则小华和小强都选取生物小组的概率是.12.(4分)一个农业合作社以64000元的成本收获了某种农产品80吨,目前可以以1200元/吨的价格售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.那么储藏个星期再出售这批农产品可获利122000元.13.(4分)某校对同学每周课外阅读时间进行统计,得到频数分布直方图(每组含前一个边界值,不含后一个边界值).如图所示,课外阅读时间不少于6小时的学生人数是人.14.(4分)已知点A(x1,y1)、B(x1﹣3,y2)在直线y=﹣2x+3上,则y1y2(用“>”、“<”或“=”填空)15.(4分)如图,已知点E在▱ABCD的边AD上,若=,=,=,那么=.16.(4分)如图,某下水管道的横截面为圆形,水面宽AB的长为8dm,水面到管道上部最高处点D的距离为2dm,则管道半径为dm.17.(4分)如图,已知在△ABC中,D,E分别是AB,AC上的点,DE∥BC,=.若DE=2,则BC的长是.18.(4分)直线和圆有,即直线和圆相切时,这条直线叫做圆的切线.三.解答题(共7小题,满分78分)19.(10分)计算下列各题:(1)+﹣+(﹣)4;(2)﹣2×(﹣)÷().20.(10分)解不等式组.21.(10分)(1)已知一次函数的图象经过点(0,1)和(1,3),求这个函数的表达式.(2)已知y是x的反比例函数,且当x=2时,y=3,求当x=﹣3时y的值.22.(10分)如图,已知电线杆AB上有一盏路灯A.灯光下,身高1.2米的小明在点C处时,他的影子是CD,他从C处沿BC方向行走2.1米,到点E处时,他的影子是EF.在A处测得D、F的俯角分别是53°、37°.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)(1)影子长CD、EF分别是多少米?(2)求电线杆AB的高度.23.(12分)如图,在△ABC中,AB=AC,D是BC上一点、E是AD上一点,恰使∠CED =2∠BED=∠A.(1)探究∠BAD与∠ECA的关系并说明理由;(2)探究BD与CD的数量关系并说明理由;(3)若∠BAC=60°,DE=2,直接写出BC的长为:.24.(12分)如图1,抛物线y=﹣x2+bx+5与y轴相交于点A,过点A的直线y=﹣x+m 与抛物线相交于点B,且点B的横坐标为3.(1)求抛物线的解析式;(2)如图2,点D为对称轴右侧直线AB上方抛物线上一点,连接AD、BD,点D的横坐标为t,△ABD的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,点E为x轴上一点,连接AE、OD,AE与OD相交于点F,若AE=OD,tan∠AFD=,求△ABD的面积.25.(14分)如图,在平行四边形ABCD中,AB=4,BC=6,∠B=45°,点E为CD 上一动点,经过A、C、E三点的⊙O交BC于点F.(1)【操作与发现】当E运动到AE⊥CD处,利用直尺与圆规作出点E与点F.(保留作图痕迹)(2)在(1)的条件下,证明=.(3)【探索与证明】点E运动到任何一个位置时,求证=.(4)【延伸与应用】点E在运动的过程中,直接写出EF的最小值.。
2024年新疆中考乌鲁木齐第三次模拟测试(5月测评)数学试题一、单选题1.下列实数中.属于有理数的是( )A .227 B .2π C D .sin 60︒ 2.在以下四个标志中,是轴对称图形的是( )A .B .C .D .3.2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为( ) A .110.22310⨯ B .102.2310⨯ C .922.310⨯ D .822310⨯ 4.如图,AOB ∠的一边OA 为平面镜,35AOB ∠=︒,在OB 上有一点E .从E 点射出一束光线经OA 上一点D 反射,反射光线DC 恰好与OB 平行,已知ADC ODE ∠=∠,则D E B ∠的度数是( )A .80︒B .60︒C .70︒D .75︒5.2024年央视春晚的主题为“龙行龘龘,欣欣家国”.“龙行龘龘”寓意中华儿女奋发有为、昂扬向上的精神风貌.将分别印有“龙”“行”“龘”“龘”四张质地均匀、大小相同的卡片放入盒中,从中随机抽取一张不放回,再从中随机抽取一张,则抽取的两张卡片上恰有一张印有汉字“龘”的概率为( )A .23 B .12 C .13 D .166.如图,AB 是半圆O 的直径,点C ,D 在半圆O 上.若50ABC ∠=︒,则BDC ∠的度数为( )A .90︒B .100︒C .130︒D .140︒7.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校开展师生阅读活动,打造书香校园.据统计,九(1)班第一周参与阅读100人次,阅读人次每周递增,第三周参与阅读达到361人次.设阅读人次的周平均增长率为x ,则可得方程( )A .()1001361x +=B .()21001361x += C .()()210011001361x x +++= D .()()210010*********x x ++++= 8.如图,ABC V 的顶点()4,0A -,()1,4B -,点C 在y 轴的正半轴上,AB AC =,将ABC V 向右平移得到A B C '''V ,若A B ''经过点C ,则点B '的坐标为( )A .3,34⎛⎫ ⎪⎝⎭B .7,34⎛⎫ ⎪⎝⎭C .3,44⎛⎫ ⎪⎝⎭D .7,44⎛⎫ ⎪⎝⎭9.如图1,四边形ABCD 中,AB CD P ,90A ∠=︒,BD BC =,动点E 从点A 出发,沿折线A B C D ---方向以1单位/秒的速度匀速运动,在整个运动过程中,ADE V 的面积S 与运动时间t (秒)的函数图象如图2所示,则四边形ABCD 的面积是( )A .15B .16C .17D .18二、填空题10.不等式组2(1)3213x x +≤⎧⎪-⎨>-⎪⎩的解集为. 11.如图,将ABC V 绕点A 旋转得到ADE V ,若90B ??,30C ∠=︒,2AB =,则AE 的长为.12.有甲,乙两组数据如下,选择一个成绩稳定的,你会选择.(填“甲”或“乙”)13.点()13,A y ,()25,B y 是反比例函数2y x=的图象上的两点,则1y 2y (填“>”,“=”或“<”). 14.阅读材料:如图,已知直线l 及直线l 外一点P . 按如下步骤作图:①在直线l 上任取两点A ,B ,作射线AP ,以点P 为圆心,PA 长为半径画弧,交射线AP 于点C ;②连接BC ,分别以点B ,C 为圆心,大于12BC 的长为半径画弧,两弧分别交于点M ,N ,作直线MN ,交BC 于点Q ;③作直线PQ .若CPQ V 与CAB △的面积分别为1S ,2S ,则12:S S =.15.如图,在Rt ABC △中,90ABC ∠=︒,4BA BC ==,点D 为BC 边上的中点.连接AD ,过点B 作BE AD ⊥于点E ,延长BE 交AC 于点F ,则EF 的长为.三、解答题16.(1)计算:1012sin 601(2024π)2-⎛⎫+︒-+- ⎪⎝⎭; (2)解方程:61133x x x-+=--. 17.(1)先化简,再求值:524223-⎛⎫+-⋅ ⎪--⎝⎭m m m m ,从1,2,3,4中选取一个适当的数代入求值;(2)甲、乙两人同时骑摩托车从相距160km 的两地相向而行,经过4h 相遇,甲每小时比乙慢6km ,甲、乙的速度分别是多少?18.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,CF AE =,连接AF(1)求证:四边形BFDE 是矩形;(2)若AF 平分DAB ∠,3CF =,5DF =,求四边形BFDE 的面积.19.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x (单位:分)进行统计: 七年级 86 94 79 84 71 90 76 83 90 87八年级 88 76 90 78 87 93 75 87 87 79整理如下:根据以上信息,回答下列问题:(1)填空:=a _______,b =________.A 同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由. 20.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的函数关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在开挖后6h 内,每小时挖_________m ;(2)当26x <<时,求y 乙与x 之间的函数关系式;(3)直接写出开挖后几小时,甲、乙两队挖的河渠的长度相差5m .21.秋千是我国民间传统的体育运动,在木架或铁架两边悬挂绳索,下拴横板,人在板上,身躯随之前后向空中摆动.如图,秋千链子静止状态OC 的长度为2m ,当摆角BOC ∠为26︒时,座板离地面的高度BM 为0.8m ;当摆动至最高位置时,摆角AOC ∠为50︒.(1)求CN 的长.(2)座板离地面的最大高度为多少m(结果精确到0.1m ,参考数据:sin 260.44︒≈,cos260.90︒≈,tan 260.49︒≈,sin500.77︒≈,cos500.64︒≈,tan50 1.2︒≈)22.如图,在ABC V 中,AB AC =,以AB 为直径的O e 交BC 于点D ,交AC 于点G ,过D 作EF AC ⊥于点E ,交AB 的延长线于点F .(1)求证:EF 是O e 的切线;(2)当60C ∠=︒,4AB =时,求EG 的长;(3)当5AB =,6BC =时,求BF 的值.23.在平面直角坐标系中,点O 为坐标原点,抛物线2y x bx c =-++(b 、c 是常数)经过点()3,1A --、()0,2B ,点()1,P m y 在该抛物线上.(1)求该抛物线对应的函数表达式并写出顶点的坐标.(2)当点P 关于x 轴的对称点在直线AB 上时,求m 的值.(3)过点P 作PQ x ⊥轴于点Q ,当2m >-时,在线段AB 上取点M ,点N 坐标为()0,1,当QMN V 的周长最小时,求这个最小值以及点M 的坐标.(4)点212,2R m y ⎛⎫-- ⎪⎝⎭也在该抛物线上,当抛物线在PR 两点之间部分(含P 、R 两点)对应的函数最大值与最小值差为34m 时,直接写出所有满足条件的m 的值.。
2023年中考数学模拟试题问卷考生注意:考试时量120分钟,满分150分;一、选择题(本大题共10个小题,每小题4分,满分40分.每小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填涂在答题卡上的相应位置)1. 对于整数2023下列说法错误的是()A. 2023有平方根B. 2023有立方根C. 2023的绝对值是它本身D. 2023的相反数是它本身2. 永州市教育局高度重视校园安全教育,要求各级各类学校学生从认识安全警告标志入手开展安全教育,下列安全图标不是轴对称的是( )A. B. C. D.3. 据报道,2023年湖南省高考报名人数为65.5万,比2022年增加了近8万,将65.5万用科学记数法表示为()A. B. C. D. 4. “杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A. 23,24B. 23,23C. 23,25D. 24,255.如图,已知AC 是⊙O 的直径,过点C 的弦CD 平行于半径OB ,若∠C 的度数是40°,则∠B 的度数是( )A .15°B .20°C.30°D .40°6. 如图,,为等边三角形,,则等于() A. . B. C. D. 45°465.510⨯46.5510⨯56.5510⨯60.65510⨯cm AB CD ∥ACE △40DCE ∠=︒EAB ∠20︒30︒40︒(第5题) (第6题) (第10题)7. 一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-3.14,0,.从中随机地摸取一个小球,则这个小球所标数字是无理数的概率为( )A. B. C. D. 8. 不等式组的整数解的和为( ) A. 1 B. 0 C. -1D. -29. 对于实数、,定义一种新运算“”为:,这里等式右边是实数运算.例如:.则方程的解是( ) A. B. C. D.无解10.二次函数的图像的一部分如图所示,已知图像经过点,其对称轴为直线.下列结论:①;②;③;④点是抛物线上的两点,若,则;⑤ 若抛物线经过点,则关于的一元二次方程的两根分别为-3,5;其中正确的有( )A .2个B .3个C .4个D .5个二、填空题(本大题共8个小题,每小题4分,满分32分,请把答案填写在答题卡上的相应位置)11. 分解因式:______.12.已知x 1,x 2分别为一元二次方程x 2﹣2024x ﹣4=0的两个实数解,则的值为______.13. 已知点,,都在反比例函数(k 为常数,且)的图象上,则,,之间的大小关系是______.(用“<”连接)14.如图,是的内接三角形,,连接,,则(劣弧)的长是__________.π1413123451341233x x x x ->-⎧⎪⎨-≤-⎪⎩a b ⊗21a b a b ⊗=-21118133==--⊗2(2)14x x ⊗-=--5x =6x =7x =()20y ax bx c a =++≠()1,0-1x =0abc <240b ac -<80a c +<()()1122,,C x y D x y 12x x <12y y <()3,n -x ()200ax bx c n a ++-=≠33222m n m n mn ++=1211+x x ()11A y ,()23B y ,()34C y -,2k y x-=0k ≠1y 2y 3y ABC △O AB =60ACB ∠=︒OA OB AB15. 如图,点P为正六边形ABCDEF的边AF的中点,连接PC、PD,若,则的面积为______.16. 一个物体的三视图如下,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积是___________.(第14题)(第15题)(第17题)(第18题)17.如图,在中,,以点A为圆心,AB长为半径作弧交BC于点D,交AC于点E.再分别以点C,D为圆心,大于的长为半径作弧,两弧相交于F,G两点.作直线FG.若直线FG经过点E,则的度数为________.18. 我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点到以原点为圆心,以1为半径的圆的最短距离为__________.最长距离为__________.三、解答题(本大题共8个小题,满分78分,请把必要的解答过程写在答题卡上的相应位置)2AB=PCDABCAC BC=12CDAEG∠()2,1A20.(8分)解方程:21.(8分)风筝起源于中国,最早的风筝是由古代哲学家墨翟制造的,中国风筝问世后,很快被用于传递信息,飞跃险阻等军事需要,唐宋以后传入民间,成为人们休闲娱乐的玩具.上周末,小伟和爸爸一起去野外放风筝,不慎,两个风筝在空中P 处缠绕在一起,如图,小伟在地面上的A 处测得点P 的仰角为30°,爸爸在距地面2米高的C 处(即米)测得点P 的仰角为60°,已知A 、B 、D 在一条直线上,,,米,求此时风筝P 处距地面的高度PD .(结果保留根号)22. (10分)从甲、乙两班各随机抽取10名学生(共20人)参加数学素养测试,将测试成绩分为如下5组(满分为100分):组:,组:,组:,组:,组:,分别制成频数分布直方图和扇形统计图如图.(1)根据图中数据,补充完整频数分布直方图;(2)参加测试的学生被随机安排到4个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;(3)若甲、乙两班参加测试的学生成绩统计如下:甲班:62,64,66,76,76,77,82,83,83,91;乙班:51,52,69,70,71,71,88,89,99,100.则可计算得两班学生的样本平均成绩为,;样本方差为,.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.23. (10分)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶型消毒液和3瓶型清毒液共需41元,5瓶型消毒液和2瓶型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且型消毒液的数量不少于型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24. (10分) 如图,、为的直径,弦于点,点在延长线上,交弦于点,为的中点,.(1)求证:为的切线;(2)当 11222x x x-=---2BC =PD AD ⊥CB AD ⊥160AB =A 5060x ≤<B 6070x ≤<C 7080x ≤<D 8090x ≤<E 90100x ≤≤76x =甲76x =乙280S =甲2275.4S =乙A B A B B A 13AB CN O CD OB ⊥E F AB CN AD M B OF 1sin 2ADO ∠=CF O CE =25. (12分)如图1,在矩形中,点,分别在,边上,,于点.(1)求证:四边形是正方形;(2)延长到点,使得.判断的形状,并说明理由.(3)如图2,在菱形中,点,分别在,边上,与相交于点,,,,,请类比(2),求的长.26. (12分)如图,抛物线与轴交于点,,与轴交于点,已知,两点坐标分别是,,连接,.(1)求抛物线的表达式和所在直线的表达式;(2)将沿所在直线折叠,得到,点的对应点是否落在抛物线的对称轴上,若点在对称轴上,请求出点的坐标;若点不在对称轴上,请说明理由;(3)若点是抛物线位于第三象限图象上的一动点,连接交于点,连接,的面积记为,的面积记为,求的值最大时点的坐标.ABCD E F AB BC DE AF =DE AF ⊥G ABCD CB H BH AE =AHF △ABCD E F AB BC DE AF G DE AF =60AED ∠=︒6AE =2BF =DE 232y ax x c =++x A B y C A C ()1,0A ()0,2C -AC BC AC ABC △BC DBC △A D D D D P AP BC Q BP BPQ △1S ABQ △2S 12S S P2023年中考数学模拟试题参考答案一、选择题号12345678910答案D D C A B A C B A B二、填空题11. mn(mn+1) 212. -506 13. <<, 14.15. 2√3 16.3 17.126度 18.√5-1 √5+1三、解答题19. 解:-420. 解:x=2 经检验x=2 是增根,原方程无解21. 解:( 80√3 -1)米22. 解:(1)组人数为:(人),组人数为:(人),补充完整频数分布直方图如下:(2)把4个不同的考场分别记为:1、2、3、4,画树状图如图:共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,∴小亮、小刚两名同学被分在不同考场的概率为;(3)∵样本方差为,,∴,∴甲班的成绩稳定,∴甲班的数学素养总体水平好.23. 解:(1)设种消毒液的单价是元,型消毒液的单价是元.由题意得:,解之得,,答:种消毒液的单价是7元,型消毒液的单价是9元.1y 2y 3y 43ππD 2025%5⨯=C ()2024536-+++=123164=280S =甲2275.4S =乙22S S <甲乙A xB y 23415253x y x y +=⎧⎨+=⎩79x y =⎧⎨=⎩A B(2)设购进种消毒液瓶,则购进种瓶,购买费用为元.则,∴随着的增大而减小,最大时,有最小值.又,∴.由于是整数,最大值为67,即当时,最省钱,最少费用为元.此时,.最省钱的购买方案是购进种消毒液67瓶,购进种23瓶.24.(1)(2)2/3-√3 /225. 解:(1)证明:∵是的直径,∴(直径所对的圆周角是直角)即,∵,∴(等边对等角)∵,∴(同弧或等弧所对的圆周角相等)∴,∵,∴,∴,即,∴,又∵是的直径,∴是的切线.(2)解:∵,,∴,∵,,∴(两个角分别相等的两个三角形相似)∴,∴,∴六、综合探究题(本大题共2个小题,每小题10分,满分20分)25. 解:(1)证明:如图,∵四边形是矩形,∴,∴,∵,∴,∴.又∵,∴,∴.∴矩形是正方形.(2)是等腰三角形.理由如下:∵,,,∴,∴.又∵,∴,即是等腰三角形.(3)如图,延长到点,使得,连接.∵四边形是菱形,∴,,∴.∵,∴,∴,.又∵,∴,∵,∴是等边三角形,A aB ()90a -W 79(90)2810W a a a =+-=-+W a a W 1903a a -≥67.5a ≤a a 67a =810267676-⨯=906723-=A B πAD O 90ABD ∠=︒90ABC CBD ∠+∠=︒AB AC =ABC C ∠=∠AB AB =ADB C ∠=∠ABC ADB ∠=∠BC DF ∥CBD FDB ∠=∠90ADB FDB ∠+∠=︒90ADF ∠=︒AD DF ⊥AD O DF O 12AB AC ==15AF =3BF AF AB =-=F F ∠=∠90FBD FDA ∠=∠=︒~FBD FDA △△FB FD FD FA=231545FD FB FA =⋅=⨯=DF =ABCD 90ABC DAB ∠=∠=︒90BAF GAD ∠+∠=︒DE AF ⊥90ADG GAD ∠+∠=︒BAF ADG ∠=∠AF DE =ABF DAE ≅△△AB AD =ABCD AHF △AB AD =90ABH DAE ∠=∠=︒BH AE =ABH DAE ≅△△AH DE =DE AF =AH AF =AHF △CB H 6BH AE ==AH ABCD AD BC ∥AB AD =ABH BAD ∠=∠BH AE =ABH DAE ≅△△AH DE =60AHB DEA ∠=∠=︒DE AF =AH AF =60AHB ∠=︒AHF △∴,∴.26. 解:(1)∵抛物线过,,∴,解得:,∴抛物线的表达式为.设所在直线的表达式为,∴,解得,∴所在直线的表达式为;(2)点不在抛物线的对称轴上,理由是:∵抛物线的表达式是,∴令,则,解得,,∴点坐标为.∵,,∴.又∵,∴.∴.∴,∴.∴将沿折叠,点的对应点一定在直线上.如下图,延长到点,使 ,过点作轴,垂足为点.又∵,∴,∴,∴点的横坐标为-1,∵抛物线的对称轴是直线,∴点不在抛物线的对称轴上;(3)设过点,的直线表达式为,∵点坐标是,点坐标是,∴过点,的直线表达式为.AH HF =628DE AH HF HB BF ===+=+=232y ax x c =++()1,0A ()0,2C -3022a c c ⎧++=⎪⎨⎪=-⎩122a c ⎧=⎪⎨⎪=-⎩213222y x x =+-AC y kxb =+02k b b +=⎧⎨=-⎩22k b =⎧⎨=-⎩AC 22y x =-D 213222y x x =+-0y =2132022x x +-=14x =-21x =B ()4,0-1OA =2OC =OA OC OC OB=90AOC COB ∠=∠=︒~AOC COB △△ACO CBO ∠=∠90ACO BCO CBO BCO ∠+∠=∠+∠=︒AC BC ⊥ABC △BC A D AC AC D DC AC =D DE y ⊥E ACO DCE ∠=∠()ACO DCE AAS ≅△△1DE OA ==D 32x =-D B C 11y k x b =+C ()0,2-B ()4,0-B C 122y x =--过点作轴的垂线交的延长线于点,则点坐标为,如下图,过点作轴的垂线交于点,垂足为点,设点坐标为,则点坐标为,∴,∵,∴,∵若分别以,为底计算与的面积,则与的面积的比为,即.∴,∵,∴当时,的最大值为,将代入,得,∴当取得最大值时,点坐标为.A x BC M M 51,2⎛⎫-⎪⎝⎭P x BC N H P 213,222m m m ⎛⎫+- ⎪⎝⎭N 1,22m m ⎛⎫-- ⎪⎝⎭2211312222222PN m m m m m ⎛⎫=---+-=-- ⎪⎝⎭~AQM PQN △△PQ PN AQ AM=PQ AQ BPQ △BAQ △BPQ △BAQ △PQ AQ12S PQ S AQ=22212124142(2)555552m m S PN m m m S AM ---===-=-++105-<2m =-12S S 452m =-213222y x x =+-3y =-12S S P ()2,3--。
2021年中考数学模拟试卷三一、选择题1.3的相反数是( )A.﹣3 B. C.3 D.±32.据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为( )A.7.01×104 B.7.01×1011 C.7.01×1012 D.7.01×10133.由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()4.下表表示对x的每个取值某个代数式所对应的值,则满足表中所列条件的代数式是( )A.x+2B.2x - 3C.3x - 10D. - 3x+25.下列运算正确的是( )A.a•a2=a3 B.a6÷a2=a3 C.2a2﹣a2=2 D.(3a2)2=6a46.若※是新规定的运算符号,设a*b=ab+ab+b,则在2*x=-16中,x的值( )A.-8B.6C.8D.-67.如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.如果∠ABC=135°,∠BCD=65°,则∠CDE的度数应为( )A.135°B.115°C.110°D.105°8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与D重合,折痕为EF,则BE的长为()A.3cmB.4cmC.5cmD.6cm9.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为( )A. B. C. D.10.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°11.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A. B. C. D.12.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()二、填空题13.使式子有意义,则x的值为.14.已知一次函数y=2x+b,它的图象与两坐标轴围成的面积等于4,则b= .15.把抛物线y=ax2+bx+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=x2-3x+5,则a+b+c= .16.若数据1、﹣2、3、x的平均数为2,则x= .17.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.18.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为 .三、解答题19.计算:﹣14+(2022﹣π)0﹣(﹣)﹣1+|1-|﹣2sin60°.20.如图,已知D、E两点在线段BC上,AB=AC,AD=AE.证明:BD=CE.21.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.22.某班数学兴趣小组为了测量建筑物AB的高度,他们选取了地面上一点E,测得DE的长度为8.65米,并以建筑物CD的顶端点C为观测点,测得点A的仰角为45°,点B的俯角为37°,点E的俯角为30°.(1)求建筑物CD的高度;(2)求建筑物AB的高度.(参考数据:≈1.73,sin37°≈0.6,cos37°≈0.6,tan37°≈0.75)23.为了抓住文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件, B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24.如图,直线y=kx+1分别交x轴,y轴于点A、B,交反比例函数y2=(x>0)的图象于点C,1CD⊥y轴于点D,CE⊥x轴于点E,S△OAB=1,=.(1)点A的坐标为;(2)求直线和反比例函数的解析式;(3)根据图象直接回答:在第一象限内,当x取何值时,y1≥y2.25.如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.26.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案27.答案为:A.28.答案为:C.29.A.30.答案为:D31.答案为:A.32.答案为:D.33.答案为:C;34.C.35.答案为:D.36.答案为:D37.答案为:A.38.A39.答案为:x≥﹣2且x≠1.40.答案为:4或﹣4.41.答案:1142.答案为:6.43.答案为:.44.答案为:45.解:原式=1.46.证明:过A作AF⊥BC于F,∵AB=AC,AD=AE,AF⊥BC,∴BF=CF,DF=EF,∴BF﹣DF=CF﹣EF,∴BD=CE.47.解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.48.49.解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组8a+3b=950,5a+6b=800解方程组得a=100,b=50.∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元.(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100-x)∴100x+50(100-x)≥7500,100x+50(100-x)≤7650解得50≤x≤53∵x为正整数,∴共有4种进货方案.(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,获最大利润是2500元.50.解:(1)当x=0时,y=kx+1=1,即OB=1.∵S△OAB=1,∴OA=2.∴A点的坐标为(﹣2,0).故答案为(﹣2,0);(2)把A(﹣2,0)代入y1=kx+1,得k=.∴直线解析式为y1=x+1.∵OB∥CE,∴△AOB∽△AEC.∴.所以CE=,OE=3,∴点C坐标为(3,).∴m=3×=7.5.∴反比例函数解析式为y2=.(3)从图象可看出当x≥3时,y1≥y2.51.解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,52.解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(x C﹣x B)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).。
某某省某某市富顺县2016年中考数学模拟试卷(三)一.选择题(共10个小题,每小题4分,共40分)1.在﹣3,4,﹣5,﹣6,7中,任取两个数相乘,积最大的是()A.15 B.18 C.28 D.302.下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9 C. =a﹣1 D.(﹣2x)3=﹣8x33.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C. a,D.,4.把分式的x、y均扩大为原来的10倍后,则分式的值()A.不变 B.为原分式值的10倍C.为原分式值的D.为原分式值的5.下列各式中,不能用完全平方公式分解的个数为()①x2﹣4x+8;②﹣x2﹣2x﹣1;③4m2+4m﹣1;④﹣m2+m﹣;⑤4a4﹣a2+.A.1个B.2个C.3个D.4个6.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个8.如若正方形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(x>0)的图象上,则E点的坐标是()A.B.C.D.(1,1)9.△ABC经过一定的运动得到△A1B1C1,然后以点A1为位似中心按比例尺A1B2:A1B1=2:1,△A1B1C1放大为△A1B2C2,如果△ABC上的点P的坐标为(a,b),那么这个点在△A1B2C2中的对应点P2的坐标为()A.(a+3,b+2) B.(a+2,b+3) C.(2a+6,2b+4)D.(2a+4,2b+6)10.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.二.填空题(共5个小题,每小题4分,共20分)11.已知在Rt△ABC中,∠C=90°,若sinA=,则tanA的值为______.12.一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P(A)=(M和D 分别表示相应区域的面积).如图,现有一边长为a的等边△ABC,分别以此三角形的三个顶点为圆心,以一边的一半长为半径画圆与△ABC的内切圆有重叠(见图中阴影部分);现在在等边△ABC内注射一个点,则该点落在△ABC内切圆中的概率是______.13.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为______.14.观察下列的有序数对:(3,﹣1),,根据你发现的规律,第2016个有序数对是______.15.二次函数y=ax2+bx+c(a、b、c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④2a+b=0;⑤b2﹣4ac<0;⑥当﹣1<x<3时,y>0.其中正确的是______ (把正确的序号都填上).三.解答题(共2个题,每题8分,共16分)16.计算:﹣2|1﹣|.17.解不等式组:,并在数轴上表示出解集.四、解答题(共2个题,每小题8分,共16分)18.在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2016•富顺县校级模拟)近几年我国高速公路的建设有了飞速的发展,现正在修建中的某段高速公路要招标.现有甲乙两个工程队,若甲、乙两队合作,24天可完成任务,需要费用120万元;若甲队单独做20天,剩下的工程由乙做,还需要40天才能完成此项工程,这样需要110万元,问:(1)甲乙两队单独完成此项工程,各需多少天?(2)甲乙两队单独完成此项工程,各需费用多少万元.五、解答题(共2个题,每题10分,共20分)20.(10分)(2016•富顺县校级模拟)在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边上的中点,点M是AB上的一动点(不与点A重合),延长ME交射线CD于点N,连结MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM=______ 时,四边形AMDN是矩形;②当AM=______ 时,四边形AMDN是菱形.21.(10分)(2016•富顺县校级模拟)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.六、解答题(本题满分12分)22.(12分)(2016•富顺县校级模拟)用换元法解分式方程: =2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即: =﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?七、解答题(本题满分12分)23.(12分)(2001•某某)如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否成立?请说明理由;(2)如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时,⊙O与AC相切?八、解答题(本题满分14分)24.(14分)(2009•某某)已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴交于A,B两点,与y轴交于点C,其中A(﹣3,0),C(0,﹣2).(1)求这条抛物线的函数表达式;(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.2016年某某省某某市富顺县中考数学模拟试卷(三)参考答案与试题解析一.选择题(共10个小题,每小题4分,共40分)1.在﹣3,4,﹣5,﹣6,7中,任取两个数相乘,积最大的是()A.15 B.18 C.28 D.30【考点】有理数大小比较.【分析】根据乘法法则:同号得正,异号得负计算,最大的两个正数相乘与最大的两个负数相乘,作比较,得出结论.【解答】解:﹣5×(﹣6)=30,4×7=28,故选D.【点评】本题考查了有理数的乘法和大小比较,熟练掌握乘法法则是关键;对于有理数的大小比较中,正数大于一切负数;本题属于易错题,容易漏乘.2.下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9 C. =a﹣1 D.(﹣2x)3=﹣8x3【考点】二次根式的性质与化简;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据二次根式的性质、完全平方公式、积的乘方,可得答案.【解答】解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、差的平方等于平方和减积的二倍,故B错误;C、二次根式开方是非负数,故C错误;D、积的乘方每一个因式分别乘方,再把所得的幂相乘,故D正确;故选:D.【点评】本题考查了二次根式的性质与化简,根据法则计算是解题关键.3.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C. a,D.,【考点】中位数;算术平均数.【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.【解答】解:由平均数定义可知:(a1+a2+a3+0+a4+a5)=×5a=a;将这组数据按从小到大排列为0,a5,a4,a3,a2,a1;由于有偶数个数,取最中间两个数的平均数.∴其中位数为.故选D.【点评】本题考查了平均数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.4.把分式的x、y均扩大为原来的10倍后,则分式的值()A.不变 B.为原分式值的10倍C.为原分式值的D.为原分式值的【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的结果不变,可得答案.【解答】解:分式的x、y均扩大为原来的10倍后,则分式的值变为原分式的,故选:C.【点评】本题考查了分式的基本性质,注意分母扩大了100倍,分子扩大了10倍.5.下列各式中,不能用完全平方公式分解的个数为()①x2﹣4x+8;②﹣x2﹣2x﹣1;③4m2+4m﹣1;④﹣m2+m﹣;⑤4a4﹣a2+.A.1个B.2个C.3个D.4个【考点】因式分解-运用公式法.【分析】利用完全平方公式的结构特征判断即可.【解答】解:①x2﹣4x+8,不能;②﹣x2﹣2x﹣1,能;③4m2+4m﹣1,不能;④﹣m2+m﹣,能;⑤4a4﹣a2+,不能,则不能用完全平方公式分解的个数为3个,故选C【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】根的判别式;一次函数的图象.【分析】一次函数y=kx+b的图象,根据k、b的取值确定直角坐标系的位置.在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在无实数根下必须满足△=b2﹣4ac<0.【解答】解:一元二次方程nx2﹣2x﹣1=0无实数根,说明△=b2﹣4ac<0,即(﹣2)2﹣4×n×(﹣1)<0,解得n<﹣1,所以n+1<0,﹣n>0,故一次函数y=(n+1)x﹣n的图象不经过第三象限.故选C【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.对于一次函数y=kx+b,当k<0,b>0时,它的图象经过一、二、四象限.7.如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个【考点】由三视图判断几何体.【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【解答】解:综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.8.如若正方形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(x>0)的图象上,则E点的坐标是()A.B.C.D.(1,1)【考点】反比例函数图象上点的坐标特征;解一元二次方程-公式法;反比例函数系数k的几何意义;正方形的性质.【分析】在正方形ABCO中四边都相等,由反比例函数比例系数k的几何意义可得,正方形OABC的面积为1,求得OA=1.若设AD=DE=m,则OD=1+m,再根据反比例函数图象上点的坐标特征,可列方程求得m的值,即可得出E点的坐标.【解答】解:依据反比例函数比例系数k的几何意义可得,正方形OABC的面积为1,∴OA的长为1,设AD=DE=m,则OD=1+m,∴E(1+m,m),将E(1+m,m)代入反比例函数y=可得,m(1+m)=1,解得,m1=,m2=(不合题意,舍去),∴1+m=,故点E的坐标是(,).故选(B)【点评】本题主要考查反比例函数图象上点的坐标特征,根据正方形的四条边都相等,并利用两正方形的边长表示出点B、E的坐标是解题的关键.在反比例函数y=图象上任取一点,过这点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,这是反比例函数比例系数k的几何意义.9.△ABC经过一定的运动得到△A1B1C1,然后以点A1为位似中心按比例尺A1B2:A1B1=2:1,△A1B1C1放大为△A1B2C2,如果△ABC上的点P的坐标为(a,b),那么这个点在△A1B2C2中的对应点P2的坐标为()A.(a+3,b+2) B.(a+2,b+3) C.(2a+6,2b+4)D.(2a+4,2b+6)【考点】位似变换;坐标与图形性质.【分析】观察图形,看△A1B1C1是如何从△ABC得到的,发现其变化规律.再根据位似变换,得到△A1B2C2中各点的坐标特点,从而得到P2的坐标.【解答】解:△A1B1C1是由△ABC通过平移得到的,其平移规律是右移三个单位后,再上移2个单位,所以点P移到P1的坐标为(a+3,b+2).△A1B2C2是由三角线A1B1C1通过位似变换得到的,所以在△A1B2C2上的各点坐标,都做了相应的位似变换,即乘以了2.∴点P1的对应点P2的坐标为(2a+6,2b+4).故选C.【点评】本题考查了平移变化和位似变化及相关知识,点的变化与平移规律和位似变化规律相一致.10.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.【考点】三角形的内切圆与内心;解一元一次方程;正方形的判定与性质;切线的性质;相似三角形的判定与性质.【分析】连接OE、OD,根据AC、BC分别切圆O于E、D,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD,设圆O的半径是r,证△ODB∽△AEO,得出=,代入即可求出r=;设圆的半径是x,圆切AC于E,切BC于D,且AB于F,同样得到正方形OECD,根据a﹣x+b ﹣x=c,求出x即可;设圆切AB于F,圆的半径是y,连接OF,则△BCA∽△OFA得出=,代入求出y即可.【解答】解:A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a﹣x+b﹣x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OFA,∴ =,∴=,解得:y=,故本选项错误;C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴=,=,解得:r=,故本选项正确;从上至下三个切点依次为D,E,F;并设圆的半径为x;容易知道BD=BF,所以AD=BD﹣BA=BF﹣BA=a+x﹣c;又∵b﹣x=AE=AD=a+x﹣c;所以x=,故本选项错误.故选:C.【点评】本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.二.填空题(共5个小题,每小题4分,共20分)11.已知在Rt△ABC中,∠C=90°,若sinA=,则tanA的值为.【考点】同角三角函数的关系.【分析】直接利用已知结合勾股定理表示出AC,BC的长,再利用锐角三角函数关系得出答案.【解答】解:如图所示:∵∠C=90°,sinA=,∴设BC=2x,AB=3x,则AC=x,故tanA的值为: ==.故答案为:.【点评】此题主要考查了同角三角函数关系、勾股定理等知识,正确表示出AC的长是解题关键.12.一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P(A)=(M和D 分别表示相应区域的面积).如图,现有一边长为a的等边△ABC,分别以此三角形的三个顶点为圆心,以一边的一半长为半径画圆与△ABC的内切圆有重叠(见图中阴影部分);现在在等边△ABC内注射一个点,则该点落在△ABC内切圆中的概率是.【考点】几何概率;等边三角形的性质;三角形的内切圆与内心.【分析】利用等边三角形以及其内切圆的性质以及锐角三角函数关系得出DO,AD的长,从而可以求得△ABC的面积和内切圆的面积,本题得以解决.【解答】解:作AD⊥BC于点D,作BE⊥AC于点E,∵等边△ABC的边长为a,∴∠OBD=30°,BD=,AD=∴OD=BD•tan30°=,∴内切圆⊙O的面积是:,等边△ABC的面积是:,∴该点落在△ABC内切圆中的概率是:,故答案为:.【点评】此题主要考查了几何概率以及三角形内切圆的性质以及等边三角形的性质等知识,得出等边三角形与内切圆的关系是解题关键.13.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm .【考点】勾股定理的应用.【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.14.观察下列的有序数对:(3,﹣1),,根据你发现的规律,第2016个有序数对是(﹣4033,).【考点】规律型:数字的变化类.【分析】先不看符号找规律:第一个数:连续奇数;第二个数是序号的倒数;再看符号的规律,最后得出答案.【解答】解:根据题意得:第一个数:3=2×1+1,﹣5=﹣(2×2+1),7=2×3+1,﹣9=﹣(2×4+1),…,所以第2016个有序数对的第一个数为:﹣(2×2016+1)=﹣4033,第二个数:﹣1,,﹣,,…,所以第2016个有序数对的第二个数为:,故答案为:(﹣4033,).【点评】本题是数字类的变化题,此类题应该从第一个数起,分析其形成过程及与其它数的关系,找出满足条件的通项公式,并一一检验,最后确定其变化规律.15.二次函数y=ax2+bx+c(a、b、c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④2a+b=0;⑤b2﹣4ac<0;⑥当﹣1<x<3时,y>0.其中正确的是①②③④(把正确的序号都填上).【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;由抛物线和x轴的交点个数判断b2﹣4ac的符号;然后由图象确定当x取何值时,y>0.【解答】解:①∵开口向下,∴a<0,∵对称轴在y轴右侧,∴﹣>0,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故正确;②∵对称轴为直线x=1,抛物线与x轴的一个交点横坐标在2与3之间,∴另一个交点的横坐标在0与﹣1之间;∴当x=﹣1时,y=a﹣b+c<0,故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故正确;④∵对称轴x=﹣=1,∴2a+b=0;故正确;⑤∵抛物线和x轴有2个交点,∴b2﹣4ac>0,故错误;⑥如图,当﹣1<x<3时,y不只是大于0.故错误;∴正确的有4个.故答案为①②③④.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c 决定抛物线与y轴交点,抛物线与y轴交于(0,c).三.解答题(共2个题,每题8分,共16分)16.计算:﹣2|1﹣|.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,算术平方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣8﹣6×+9×﹣2(﹣1)=﹣8﹣2+﹣2+2=﹣6﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.解不等式组:,并在数轴上表示出解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据解不等式组的方法可以求得不等式组的解集,从而可以将不等式组的解集在数轴上表示出来.【解答】解:,解不等式①,得x≥﹣12,解不等式②,得x<,不等式①、②的解集在数轴上表示如下图所示,故原不等式组的解集是﹣12≤x<.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.四、解答题(共2个题,每小题8分,共16分)18.在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2016•富顺县校级模拟)近几年我国高速公路的建设有了飞速的发展,现正在修建中的某段高速公路要招标.现有甲乙两个工程队,若甲、乙两队合作,24天可完成任务,需要费用120万元;若甲队单独做20天,剩下的工程由乙做,还需要40天才能完成此项工程,这样需要110万元,问:(1)甲乙两队单独完成此项工程,各需多少天?(2)甲乙两队单独完成此项工程,各需费用多少万元.【考点】二元一次方程组的应用;分式方程的应用.【分析】(1)两个等量关系为:甲工效+乙工效=;甲工效×20+乙工效×40=1.(2)两个等量关系为:(甲每天需要的工程费+乙每天需要的工程费)×24=120;甲每天需要的工程费×20+乙每天需要的工程费×40=110.【解答】解:(1)设甲队独做需a天,乙队独做需b天.建立方程组,解得a=30(天),b=120(天)经检验a=30,b=120是原方程组的解.答:甲队独做需30天,乙队独做需120天.(2)设甲队独做需x万元,乙队独做需y万元,建立方程组,解得x=135,y=60答:甲队独做需135万元,乙队独做需60万元.【点评】本题主要考查了分式方程以及二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:甲工效+乙工效=;甲工效×20+乙工效×40=1.(甲每天需要的工程费+乙每天需要的工程费)×24=120;甲每天需要的工程费×20+乙每天需要的工程费×40=110.列出方程组,再求解.五、解答题(共2个题,每题10分,共20分)20.(10分)(2016•富顺县校级模拟)在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边上的中点,点M是AB上的一动点(不与点A重合),延长ME交射线CD于点N,连结MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM= 1 时,四边形AMDN是矩形;②当AM= 2 时,四边形AMDN是菱形.【考点】矩形的判定;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.【解答】(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;故答案为:1;②当AM的值为2时,四边形AMDN是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定、以及等边三角形的判定和性质,解题的关键是掌握特殊图形的判定以及重要的性质.21.(10分)(2016•富顺县校级模拟)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.【考点】垂径定理;三角形中位线定理.【分析】(1)如图(1),根据垂径定理可得BD=BC,然后只需运用勾股定理即可求出线段OD的长;(2)连接AB,如图(2),用勾股定理可求出AB的长,根据垂径定理可得D和E分别是线段BC和AC的中点,根据三角形中位线定理就可得到DE=AB,DE保持不变;【解答】解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==4,即线段OD的长为4.(2)存在,DE保持不变.理由:连接AB,如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=,∴DE保持不变.【点评】本题考查了垂径定理、三角形中位线定理、等腰三角形的性质、三角函数、勾股定理等知识,运用垂径定理及三角形中位线定理是解决第(2)小题的关键.六、解答题(本题满分12分)22.(12分)(2016•富顺县校级模拟)用换元法解分式方程: =2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即: =﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?【考点】换元法解分式方程;分式方程的解.【分析】先仿照题例,设=m,将原方程化为m2﹣m﹣2=0,然后解这个整式方程,再还元求得原方程的解,另外要注意求代数式的值时,注意a的取值之合理性.【解答】解:()2﹣()﹣2=0设=m,则原方程可化为m2﹣m﹣2=0,解这个整式方程得:m1=2,m2=﹣1即: =2或=﹣1;解得:x=4或x=﹣经检验:x=4或 x=﹣是原方程的解.故原方程的解为:x1=4,x2=﹣.因为a是方程的根,所以,a=4或a=﹣=÷=÷=•=则①当a=4时,原式===2;②当a=﹣时,原式===﹣1即:所求代数式的值为2或﹣1【点评】此题是换元法解分式方程,换元法解分式方程是难点,关键是换元之后把方程化成整式方程,要将所解整式方程的解还原回来,求出原分式方程的解,并要进行验根;七、解答题(本题满分12分)23.(12分)(2001•某某)如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否成立?请说明理由;(2)如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时,⊙O与AC相切?【考点】切线的判定.【分析】(1)结论仍然成立.在连接OD后,因为OD=OB,AB=AC,则有∠ABC=∠ACB=∠ODB,所以OD和AC永远平行;又DE和AC垂直,所以DE和OD也垂直,即DE是⊙O的切线.(2)当⊙O与AC相切时,若假设切点为F,⊙O与AB相交于G,则OF和AC垂直,即△AOF 是一个以AO为斜边的直角三角形;从而根据三角函数求得OF,OB的长,即可确定圆心O在AB的什么位置时,⊙O与AC相切.【解答】解:(1)结论成立.理由如下:如图,连接OD;∵OD=OB,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠ODB,∴OD∥AC;又∵DE⊥AC,∴DE⊥OD,即DE是⊙O的切线.(2)当圆心O在AB上距B点为3x=时,⊙O与AC相切.如图所示,⊙O与AC相切于F,⊙O与AB相交于G.则OF⊥AC;在RT△AOF中,sinA=OF:AO=3:5;设OF=3x,AO=5x,则OB=OG=OF=3x,AG=2x,∴8x=AB=5,∴x=,此时OB=3x=时,即当圆心O在AB上距B点为3x=时,⊙O与AC相切.【点评】此题主要考查了切线的判定,以及圆中一些基本性质.八、解答题(本题满分14分)。
中考复习数学综合测试题(3)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------2005年中考复习数学综合测试题(3)一.大胆尝试,选择最佳:1.你认为下列各式正确的是()毛A. a2=(-a ) 2B.a3=(-a) 3C.-a2=D. a3=2 从甲站到乙站有两种走法。
从乙站到丙站有三种走法。
从乙站到丙站有______种走法。
A. 4B. 5C. 6D.73.通常C表示摄氏温度,f表示华氏温度,C与f之间的关系式为:,当华氏温度为68时,摄氏温度为()A. -20B. 20C.-19D. 1 94.从小明家到学校有两条路。
一条沿北偏东45度方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走200米,到学校后门。
若两条路的路程相等,学校南北走向。
学校的后门在小明家北偏东67.5度处。
学校从前门到后门的距离是()米。
A.200米;B.200米;C.200米;D.200米5.小红的妈妈问小兰今年多大了,小兰说:"小红是我现在的年龄时,我十岁;我是小红现在的年龄时,小红25岁。
"小红的妈妈立刻说出了小兰的岁数,小兰与小红差()岁。
A.10B.8C.5D.26.梯子跟地面的夹角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越小,梯子越陡。
B. cosA的值越小,梯子越陡。
C. tanA的值越小,梯子越陡。
D. 陡缓程度与∠A的函数值无关。
7.某兴趣小组做实验,将一个装满水的酒瓶倒置,并设法使瓶里的水从瓶口匀速流出,那么该倒置酒瓶内水面高度h随水流出时。
水面高度h与水流时间t之间关系的函数图象为()8. 一矩形纸片绕其一边旋转180度后,所得的几何体的主视图和俯视图分别为()A、矩形,矩形B、圆,半圆C、圆,矩形D、矩形,半圆9.二次函数y=-2(x-1)2+3的图象如何移动就得到y=-2x2的图象()A. 向左移动1个单位,向上移动3个单位。
2022年昆明市中考数学模拟试题(3)一.填空题(共6小题,满分18分,每小题3分)1.(3分)比较大小:﹣________﹣4.【答案】>【解析】因为﹣4=﹣,所以﹣>﹣4.2.(3分)国家林业和草原局发布的最新数据显示,“十三五”以来,中国荒漠化防治成效显著,全国累计完成防沙治沙任务8800000公顷,8800000用科学记数法表示为________.【答案】8.8×106.【解析】8800000=8.8×106.3.(3分)如图,将长方形纸片ABCD沿直线EN、EM进行折叠后(点E在AB边上),B′点刚好落在A′E上,若折叠角∠AEN=30°15′,则另一个折叠角∠BEM=________.【答案】59°45′.【解析】由折叠性质得:∠AEN=∠A′EN,∠BEM=∠B′EM,∴∠A′EN=30°15′,∠BEM=(180°﹣∠AEN﹣∠A′EN)=(180°﹣30°15′﹣30°15′)=59°45′,4.(3分)已知x﹣=3,则x2+=________.【答案】11.【解析】∵x﹣=3,∴x2+﹣2=9,∴x2+=11,5.(3分)某正比例函数的图象经过点(﹣1,2),则此函数关系式为________.【答案】y=﹣2x.【解析】设此函数的解析式为y=kx(k≠0),∵点(﹣1,2)在此函数图象上,∴﹣k=2,解得k=﹣2,∴此函数的关系式为y=﹣2x.6.(3分)如图,分别以正六边形ABCDEF的顶点A,D为圆心,以AB长为半径画弧BF,弧CE,若AB=1,则阴影部分的面积为________.【答案】﹣π.【解析】连接OB、OC,∵六边形ABCDEF是正六边形,∴∠A=∠D==120°,∠BOC=60°,∴△OBC为等边三角形,∴OB=BC=AB=1,∴阴影部分的面积=×1××6﹣×2=﹣π,二.选择题(共8小题,满分32分,每小题4分)7.(4分)从上面看如图几何体得到的平面图形是()A.B.C.D.【答案】A【解析】从上面看如图几何体得到的平面图形为:故选:A.8.(4分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【答案】B【解析】∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴Δ>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.9.(4分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算2(﹣1)的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【答案】B【解析】∵<<,又∵2(﹣1)=2﹣2,∴4<2<5,∴2<2﹣2<3,∴2(﹣1)的值在2和3之间;故选:B.10.(4分)下列说法正确的是()A.了解2017年报考飞行员的学生的视力情况应采取抽样调查B.打开电视机,正在播放“神奇的动物去哪里”制作花絮是必然事件C.为了初三1200名学生的体能状况,从中抽取了100名学生的成绩进行分析,1200是样本容量D.7,9,9,4,9,8,8,这组数据的众数是9【答案】D【解析】A、了解2017年报考飞行员的学生的视力情况应采取普查,故A不符合题意;B、打开电视机,正在播放“神奇的动物去哪里”制作花絮是随机事件,故B不符合题意;C、为了初三1200名学生的体能状况,从中抽取了100名学生的成绩进行分析,100是样本容量,故C不符合题意;D、7,9,9,4,9,8,8,这组数据的众数是9,故D符合题意;故选:D.11.(4分)已知△ABC的三个内角的大小关系为∠A﹣∠B=∠C,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【答案】B【解析】∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=∠B+∠C,即2∠A=180°,∠A=90°.∴△ABC为直角三角形,故选:B.12.(4分)下列计算正确的是()A.a6÷a2=a3B.(﹣2)﹣1=2C.(﹣3x)2•2x3=﹣6x6D.(3﹣π)0=1【答案】D【解析】(A)原式=a4,故A错误;(B)原式=,故B错误;(C)原式=9x2•2x3=18x5,故C错误;故选:D.13.(4分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.+20=B.=+C.=+20 D.+=【答案】B【解析】设乘公交车平均每小时走x千米,根据题意可列方程为:=+.故选:B.14.(4分)如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10 B.20 C.12 D.24【答案】A【解析】∵分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N,∴MN是AC的垂直平分线,∴AD=CD,AE=CE,∴∠CAD=∠ACD,∠CAE=∠ACE,∵CE∥AB,∴∠CAD=∠ACE,∴∠ACD=∠CAE,∴CD∥AE,∴四边形ADCE是平行四边形,∴四边形ADCE是菱形;∴OA=OC=AC=2,OD=OE,AC⊥DE,∵∠ACB=90°,∴DE∥BC,∴OD是△ABC的中位线,∴OD=BC=×3=1.5,∴AD==2.5,∴菱形ADCE的周长=4AD=10.故选:A.三.解答题(共9小题,满分70分)15.(6分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.【答案】见解析【解析】(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.16.(7分)先化简,再求值:﹣÷,其中x=﹣2tan30°【答案】见解析【解析】原式=,=,=,=﹣.当时,原式=.17.(7分)新学期,某校开设了“防疫宣传”“心理疏导”等课程,为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A 级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________名;(2)扇形统计图中表示A级的扇形圆心角α的度数是________,并把条形统计图补充完整;(3)该校八年级共有学生400名,如果全部参加这次测试,估计优秀的人数为多少?【答案】见解析【解析】(1)本次抽样测试的学生人数是:12÷30%=40(名),故答案为:40;(2)扇形统计图中表示A级的扇形圆心角α的度数是:360°×=54°,故答案为:54°,C级的人数为:40×35%=14,补充完整的条形统计图如右图所示;(3)400×=60(人),即优秀的有60人.18.(6分)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.【答案】见解析【解析】(1)树状图如下:(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为=.19.(7分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)【答案】见解析【解析】由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的长为6.0km,AB的长为1.7km.20.(8分)为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?【答案】见解析【解析】(1)设购买甲种树苗x棵,乙种树苗y棵,,解得,,即购买甲种树苗300棵,乙种树苗100棵;(2)设购买甲种树苗a棵,200a≥300(400﹣a)解得,a≥240,即至少应购买甲种树苗240棵.21.(8分)如图,AC是⊙O的直径,P A、PB是⊙O的切线,切点分别是点A、B (1)如图1,若∠BAC=25°,求∠P的度数.(2)如图2,若M是劣弧AB上一点,∠AMB=∠AOB,求∠P的度数.【答案】见解析【解析】(1)∵P A,PB是⊙O的切线,∴P A=PB,∴∠P AB=∠PBA,∵P A为切线,∴CA⊥P A.∴∠CAP=90°,∵∠BAC=25°,∴∠P AB=90°﹣∠BAC=65°,∴∠P=180°﹣2∠P AB=50°;(2)在弧AC上取一点D,连接AD,BD,∴∠AOB=2∠ADB,∵∠AMB+∠ADB=180°,∠AMB=∠AOB,∴∠ADB+2∠ADB=180°,∴∠ADB=60°,∴∠AOB=120°,∴∠P=360°﹣90°﹣90°﹣120°=60°.22.(9分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)直线l2:y=kx﹣5k+12与抛物线交于M、N两点,求△MNB面积的最小值.【答案】见解析【解析】(1)∵直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,∴点A(0,10),点B(5,0),∵BC=4,∴点C(9,0)或点C(1,0),∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.∴当x≥5时,y随x的增大而增大,当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去;当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意;∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),∴10=5a,∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;(2)由直线y=kx﹣5k+12=k(x﹣5)+12,令x=5,得y=12,即该直线必经过点D(5,12),设M(a1,b1),N(a2,b2),则M、N的坐标满足:,∴a1、a2是方程:kx﹣5k+12=2x2﹣12x+10,即:2x2﹣(12+k)x+5k﹣2=0的两个实数根,∴a1+a2=,a1•a2=,连结BM,BN,BD,∴S△BMN=×BD×h1+×BD×h2=×12×(h1+h2)=6|a1﹣a2|=6=6将a1+a2=,a1•a2=代入,原式=3,当k=8时,△BMN取得最小值,最小值为12.23.(12分)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=2,则DR的最小值=________.【答案】见解析【解析】证明:(1)设正方形ABEF的边长为a,∵AE是正方形ABEF的对角线,∴∠DAG=45°,由折叠性质可知AG=AB=a,∠FDC=∠ADC=90°,则四边形ABCD为矩形,∴△ADG是等腰直角三角形.∴AD=DG=,∴AB:AD=a:=:1.∴四边形ABCD为矩形;(2)①解:如图b,作OP⊥AB,OQ⊥BC,垂足分别为P,Q.∵四边形ABCD是矩形,∠B=90°,∴四边形BQOP是矩形.∴∠POQ=90°,OP∥BC,OQ∥AB.∴,.∵O为AC中点,∴OP=BC,OQ=AB.∵∠MON=90°,∴∠QON=∠POM.∴Rt△QON∽Rt△POM.∴=.∴tan∠OMN=.②解:如图c,作M关于直线BC对称的点P,连接DP交BC于点N,连接MN.则△DMN的周长最小,∵DC∥AP,∴,设AM=AD=a,则AB=CD=a.∴BP=BM=AB﹣AM=(﹣1)a.∴==2+,③如备用图,∵四边形ABCD为矩形,AB=2,∴BC=AD=2,∵BR⊥CM,∴点R在以BC为直径的圆上,记BC的中点为I,∴CI=BC=1,∴DR最小=﹣1=2故答案为:2。
杭州中考数学模拟测试卷(3)一.选择题(共10小题,满分30分,每小题3分)1.(3分)3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a22.(3分)已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm23.(3分)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°4.(3分)统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×102B.1.14×103C.1.14×104D.1.14×1055.(3分)下列图形是中心对称图形的是()A.B.C.D.6.(3分)下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=+17.(3分)圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°8.(3分)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的一个解C.a是8的算术平方根D.a满足不等式组9.(3分)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106C.518﹣x=2(106+x)D.518+x=2(106﹣x)10.(3分)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC 的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB二.填空题(共6小题,满分24分,每小题4分)11.(4分)已知直线a∥b,若∠1=40°50′,则∠2=.12.(4分)设实数x、y满足方程组,则x+y=.13.(4分)分解因式:m3n﹣4mn=.14.(4分)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=.15.(4分)函数y=x2+2x+1,当y=0时,x=;当1<x<2时,y随x的增大而(填写“增大”或“减小”).16.(4分)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为度(用关于α的代数式表示).三.解答题(共7小题,满分66分)17.(6分)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.18.(8分)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?19.(8分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.20.(10分)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一平面直角坐标系中画出当k取0时的函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.21.(10分)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.22.(12分)复习课中,教师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.23.(12分)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC 有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.。
中考数学专题复习2022年中考模拟试卷三(湖北武汉卷)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.-12020的倒数的相反数为()A.-2020B.1C.2020D.1 20202.式子3x 在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥﹣3C.x≥3D.x≤﹣33.在一个不透明的袋子中装有6个除颜色外其余完全相同的小球,其中黄球2个,红球2个,白球2个,“从中任意摸出2个球,它们的颜色相同”,这一事件是() A.必然事件B.不可能事件C.确定事件D.随机事件4.下列图形中是轴对称图形是()A.B.C.D.5.如图的几何体是由5个相同的小正方体搭成的,若从下列图形中选出该几何体的主视图、左视图和俯视图,则落选的是()A.B.C.D.6.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是()A.16B.14C.13D.127.已知点A是双曲线y=1x在第一象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx(x>0)上运动,则k的值是()A.3B.3C.﹣3D.﹣38.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,则乙在途中等候甲用了()秒A.200B.150C.100D.809.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2020次跳后它停的点所对应的数为()A.1B.2C.3D.510.如图,动点M从(0,3)出发,沿y轴以每秒1个单位长度的速度向下移动,同时动点N从(4,0)出发,沿x轴以每秒2个单位长度的速度向右移动,当点M移动到O点时,点M、N同时停止移动.点P在第一象限内,在M、N移动过程中,始终有PM PN⊥,且PM PN=.则在整个移动过程中,点P移动的路径长为()A.322B.332C.5D.253评卷人得分二、填空题11.在327、m、4、6、2a、12102a a⎛⎫-<<⎪⎝⎭中,二次根式有______. 12.如果a+b=2,那么a ba b b a+--22的值是_____.13.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_______.14.如图,在五边形ABCDE 中,3AB AE==,45CAD∠=︒,90E EAB B∠=∠=∠=︒,点A 到直线CD 的距离为__________15.关于x的方程412ax x-=-的解为正整数,且关于x的不等式组128263a xxx-≤⎧⎪-⎨+>⎪⎩有解且最多有7个整数解,则满足条件的所有整数a的值为_______.16.对于任意实数a,b,定义一种运算“&”如下:a&b=a(a-b)+b(a+b),如3&2=3×(3-2)+2×(3+2)=13,那么3&2________=.评卷人得分三、解答题17.已知三个互不相等的有理数,既可以表示为1,a,a+b的形式,又可以表示0,ba,b的形式,试求a2n-1a2n(n≥1)的值.18.如图,AB 和CD 相交于点O ,EF∥AB ,∥C =∥COA ,∥D =∥BOD .求证:∥A =∥F .19.某学校七年级、八年级各有500名学生,为了解两个年级的学生对垃圾分类知识的掌握情况,学校从七年级、八年级各随机抽取20名学生进行垃圾分类知识测试,满分100分,成绩整理分析过程如下,请补充完整: 【收集数据】七年级20名学生测试成绩统计如下:67,58,64,56,69,70,95,84,74,77,78,78,71,86,91,86,86,92,86,70【整理数据】按照如下分数段整理、描述两组样本数据:成绩 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤七年级 2 3 7 5 3 八年级 04574【分析数据】两组样本数据的平均数、中位数、众数、方差如下表所示:年级 平均数 中位数众数方差 七年级 76.9 a b126.2 八年级 79.28174100.4(1)请直接写出a ,b 的值;(2)根据抽样调查数据,估计七年级垃圾分类知识测试成绩在80分及其以上的大约有多少人?(3)通过以上分析,你认为哪个年级对垃圾分类知识掌握得更好,并说明推断的合理性(说明两条理由即可).20.如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积为,边长为.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是.(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是.21.如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数12(0)y xx=>图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连接AB.(1)求证:P为线段AB的中点;(2)求△AOB的面积.22.如图,在平面直角坐标系中,函数y=2x+8的图象分别交x轴、y轴于A、B两点,过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.(1)求直线AM的函数解析式.(2)试在直线AM上找一点P,使得S△ABP=S△AOB,求出点P的坐标.(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是平行四边形?若存在,请直接写出所有点H的坐标;若不存在,请说明理由.23.思维探索:在正方形ABCD中,AB=4,∥EAF的两边分别交射线CB,DC于点E,F,∥EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,∥CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求∥CEF的周长;拓展提升:如图3,在Rt∥ABC中,∥ACB=90°,CA=CB,过点B作BD∥BC,连接AD,在BC 的延长线上取一点E,使∥EDA=30°,连接AE,当BD=2,∥EAD=45°时,请直接写出线段CE的长度.24.已知抛物线21:65L y x x=-+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为M.(1)请求出C、M两点的坐标;(2)将抛物线21:65L y x x=-+绕平面内的某一点旋转180°,旋转后得到抛物线2L,抛物线2L的顶点为M',与x轴相交于E、P两点(点F在点E的右侧),使得抛物线2L 过点M,且以点C、M、M'、F为顶点的四边形为平行四边形,请求出所有满足条件的抛物线2L的顶点坐标.参考答案:1.C【解析】【分析】根据倒数和相反数的定义解答即可.【详解】解:﹣12020的倒数是﹣2020,﹣2020的相反数是2020.故选:C.【点睛】本题考查了倒数和相反数的定义,属于应知应会题型,熟练掌握基础知识是解题的关键.2.B【解析】【分析】根据二次根式有意义的条件解题即可.【详解】∥式子3x+在实数范围内有意义,30x∴+≥3x∴≥-故选:B.【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是关键.3.D【解析】【分析】直接利用随机事件的定义进而得出答案.【详解】解:∥黄球2个,红球2个,白球2个共6个小球,∥从中任意摸出2个球,它们的颜色相同是随机事件.故选D.【点睛】此题主要考查了随机事件,正确把握相关定义是解题关键.4.A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.B【解析】【分析】分别从正面,左面,上面看,得到该组合体的三种视图,从而可得出答案.【详解】解:从正面看得到主视图是,A故A不符合题意;从左面看得到左视图是C,故C不符合题意;从上面看得到的俯视图是D,故D不符合题意;所以落选的是B,故B符合题意;故选.B【点睛】本题考查的是简单组合体的三视图,掌握三种视图的知识是解题的关键.6.C【解析】【分析】列举出所有可能,进而求出和为偶数的概率.【详解】画树状图如下:由树状图知共有6种等可能结果,其中和为偶数的有2种结果,所以两个球上的数字之和为偶数的概率为26=13.故选C.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.C【解析】【分析】连接OC,根据反比例函数的中心对称性质,知OA=OB,根据等腰三角形三线合一,可得OC∥AB,且OC:OA=3,过点A作AD∥x轴,垂足为点D,过点C作CE∥x轴,垂足为点E,可证明△DOA∥△ECO,得EC=3DO,OE=3AD,把线段转化为坐标,结合反比例函数的解析式求解即可.【详解】如图,连接OC,根据反比例函数的中心对称性质,得OA=OB,∥△ABC是等边三角形,∥OC∥AB,∥OCA=30°,∥OC:OA=3,过点A作AD∥x轴,垂足为点D,过点C作CE∥x轴,垂足为点E,∥∥ADO=∥OEC=90°,∥∥AOD+∥OAD =90°,∥AOD+∥COE=90°,∥∥OAD=∥COE,∥△DOA∥△ECO,∥EC:DO=OE:AD=OC:AD,∥EC=3DO,OE=3AD,设点A(a,b),则DO=a,AD=b,ab=1,∥点C在第四象限,∥点C的坐标为(3b,-3a),∥点C始终在双曲线y=kx(x>0)上运动,∥k=(-3a)×3b= -3ab= -3,故选C.【点睛】本题考查了反比例函数的对称性,等腰三角形三线合一的性质,三角形的相似,坐标与线段之间的关系,熟练掌握反比例函数的对称性,灵活选择方法证明三角形的相似是解题的关键.8.C【解析】【分析】首先求得C点的纵坐标,即a的值,则CD段的路程可以求得,时间是560-500=60秒,则乙跑步的速度即可求得.【详解】解:根据图象可以得到:甲共跑了900米,用了600秒,则速度是:900÷600=1.5米/秒;甲跑500秒时的路程是:500×1.5=750米,则CD段的长是900﹣750=150米,时间是:560﹣500=60秒,则速度是:150÷60=2.5米/秒;甲跑150米用的时间是:150÷1.5=100秒,则甲比乙早出发100秒.乙跑750米用的时间是:750÷2.5=300秒,则乙在途中等候甲用的时间是:500﹣300﹣100=100秒.故选:C .【点睛】本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息是关键. 9.A【解析】【分析】先得出青蛙前4次跳后它停的点所对应的数,再归纳类推出一般规律,由此即可得出答案.【详解】由题意得:青蛙第1次跳到的那个点是3,青蛙第2次跳到的那个点是5,青蛙第3次跳到的那个点是2,青蛙第4次跳到的那个点是1, 归纳类推得:青蛙跳后它停的点所对应的数是以3,5,2,1循环往复的,因为20204505=⨯,所以经2020次跳后它停的点所对应的数与经4次跳后它停的点所对应的数相同,即为1, 故选:A .【点睛】本题考查了数字变化类的规律型问题,依据题意,正确归纳类推出一般规律是解题关键. 10.A【解析】【分析】由题意过P 点作PD ON ⊥交于D 点,作PE OM ⊥交于E 点,并利用全等三角形判定()PEM PDN AAS ≅,得出PE PD =,从而分当0=t 时,有M (0,3),N (4,0),设P 点坐标为(,)m m 以及当3t =时,有M 、O (0,0),N 、H (10,0),设P 点坐标为(,)n n ,求出P 点坐标,继而由点P 移动的路径为一条线段利用两点间距离公式求得点P 移动的路径长.【详解】解:由题意过P 点作PD ON ⊥交于D 点,作PE OM ⊥交于E 点,如图,∥PM PN ⊥,∥NPD DPM DPM EPM ∠+∠=∠+∠,∥NPD EPM ∠=∠,∥90NPD EPM PEM PDN PM PN ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∥()PEM PDN AAS ≅,即有PE PD =,由题意可知03t ≤≤,当0=t 时,有M (0,3),N (4,0),设P 点坐标为(,)m m , 由PE PD =,即有()()()()22220340m m m m -+-=-+-,解得72m =, 即此时P 点坐标为77(,)22; 当3t =时,有M 、O (0,0),N 、H (10,0),设P 点坐标为(,)n n ,由PM PN =即图上PO PH =,即有()()()()222200100n n n n -+-=-+-,解得5n =,即此时P 点坐标为(5,5);由图可知点P 移动的路径为一条线段,则点P 移动的路径长为:22277552322⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 故选:A.【点睛】本题考查平面直角坐标系点的运动问题,熟练掌握全等三角形的性质和判定以及两点间距离公式是解题的关键.11.4、6和2a【解析】【分析】根据二次根式的定义:一般地,形如a(a≥0)的代数式叫做二次根式,逐一判定即可.【详解】根据题意,得327和12102a a⎛⎫-<<⎪⎝⎭不符合定义,故不是二次根式;m不能确定m的取值,故不能确定是否是二次根式;4、6、2a符合定义,故是二次根式.【点睛】此题主要考查对二次根式的理解,熟练掌握,即可解题.12.2【解析】【分析】先将原式化为同分母分式的减法,再依据法则计算、化简,继而将a+b的值代入计算可得.【详解】解:原式=2-aa b﹣2ba b-=22 a b a b--=()() a b a ba b+--=a+b,当a+b=2时,原式=2,故答案为:2.【点睛】此题主要考查分式的化简求值,解题的关键是熟练掌握分式的运算顺序和运算法则.13.28【解析】【详解】解:把这一组数据从小到大依次排列为20,24,27,28,31,34,38,最中间的数字是28,所以这组数据的中位数是28故答案为:2814.3【解析】【分析】延长ED与BC交于点F,作AH∥DC于点H,先证明出四边形AEFB是正方形,然后将∥ABC逆时针旋转90°得到∥AEG,通过证明∥GAD∥∥CAD证明出AH=AE最终得出答案.【详解】如图,延长ED与BC交于点F,作AH∥DC于点H,∥90E EAB B∠=∠=∠=︒,∥四边形AEFB是矩形,∥AB=AE,∥四边形AEFB是正方形,将∥ABC逆时针旋转90°得到∥AEG,如图所示,则AG=AC,∥GAE=∥CAB,∥45CAD∠=︒,∥∥CAB+∥DAE=45°,∥∥GAD=∥GAE+∥DAE=45°,∥∥GAD=∥CAD,在∥GAD与∥CAD中,∥GA=CA,∥GAD=∥CAD,AD=AD,∥∥GAD∥∥CAD(SAS),∥AH=AE=3,故答案为3.【点睛】本题主要考查了正方形与全等三角形的综合运用,熟练掌握相关概念是解题关键. 15.﹣2,﹣1【解析】【分析】表示出分式方程的解,由分式方程的解为正整数确定出a的值,表示出不等式组的解集,由不等式组最多有7个整数解,即可得到a的取值范围,从而得出满足条件的所有整数a 的值.【详解】解:分式方程去分母得:8﹣4x=ax﹣x,解得:x=83a+,由分式方程解为正整数,得到a+3=1,2,4,8,解得:a=﹣2,﹣1,1,5,又∥x≠2,∥a≠1,∥a=﹣2,﹣1,5,不等式组整理得:5xx a<⎧⎨≥⎩,解得:a≤x<5,由不等式组有解且最多有7个整数解,得到整数解为4,3,2,1,0,﹣1,﹣2,∥﹣3<a<5,∥整数解为4,3,2,1,0,﹣1,﹣2,则满足题意a的值为﹣2,﹣1,故答案为:﹣2,﹣1.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握各自的解法是解本题的关键.16.5【详解】3&23(32)2(32)36625 =-++=-++=.17.-1.【解析】【分析】由于ba有意义,则a≠0,则应有a+b=0,则ba=-1,故只能b=1,a=-1了,再代入代数式求解.【详解】解:由题可得:a≠0,a+b=0,∥ba=-1,b=1,∥a=-1,又∥2n-1为奇数,-1的奇数次方得-1;2n为偶数,-1的偶数次方得1,∥a2n-1•a2n=(-1)2n-1×(-1)2n=-1×1=-1.【点睛】本题主要考查了实数的运算,解决问题的关键是根据已知条件求出未知数a,b的值.18.见解析.【解析】【分析】求出∥C=∥D,根据平行线的判定得出AC∥DF,根据平行线的性质得出∥A=∥DBO,∥F =∥DBO,即可得出答案.【详解】证明:∥∥AOC=∥DOB,∥C=∥COA,∥D=∥BOD,∥∥C=∥D,∥AC∥DF,∥∥A=∥DBO,∥EF∥AB,∥∥F=∥DBO,∥∥A=∥F.本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.19.(1)a=77.5,b=86,(2)200人,(3)八年级对垃圾分类知识掌握得更好.理由见解析.【解析】【分析】(1)根据中位数、众数的意义可求;(2)求出样本中七年级垃圾分类知识测试成绩在80分及其以上的百分比,再用它来估计总体;(3)根据平均数和方差可判断.【详解】解:(1)将七年级的数据从小到大排列,56,58,64,67,69,70,70,71,74,77,78,78,84,86,86,86,86,91,92,95.中位数是:(77+78) ÷2=77.5,众数是:86,故a=77.5,b=86.=200(人),(2)500×820答:根据抽样调查数据,估计七年级垃圾分类知识测试成绩在80分及其以上的大约有200人;(3)因为八年级平均数比七年级的高,方差比七年级的低,我认为八年级对垃圾分类知识掌握得更好.【点睛】本题考查了数据的分析和根据数据对统计结果进行估计,解题关键是明确中位数、众数、方差的意义.20.(1)5,5;(2)51 ;(3)6【解析】【分析】(1)根据题意可得,5个小正方形的面积和是拼成的正方形的面积,求得面积的算术平方根即为大正方形的边长;(2)利用勾股定理得出直角三角形的斜边长,进而根据线段的和差关系求出点A表示的数;(3)图中阴影部分的面积相当于6个小正方形的面积,然后求面积的算术平方根即为新正方形的边长.【详解】(1)∥5个小正方形拼成一个大正方形后,面积不变,∥拼成的正方形的面积是:5×1×1=5,边长=5,故答案是:5,5;(2)根据勾股定理可求出图中直角三角形的斜边长=5,∥A点表示的数是51-,故答案是:51-;(3)∥阴影部分的面积是6个小正方形的面积,即为6,∥拼成的新正方形的面积是6,∥新正方形的边长=6,故答案是:6.21.(1)证明见解析;(2)S△AOB=24.【解析】【详解】试题分析:(1)利用圆周角定理的推论得出AB是∥P的直径即可;(2)首先假设点P坐标为(m,n)(m>0,n>0),得出OA=2OM=2m,OB=2ON=2n,进而利用三角形面积公式求出即可.试题解析:(1)证明:∥∥AOB=90°,且∥AOB是∥P中弦AB所对的圆周角,∥AB是∥P的直径.(2)过点P作PM∥x轴于点M,PN∥y轴于点N,设点P 坐标为(m,n)(m>0,n>0),∥点P是反比例函数y=(x>0)图象上一点,∥mn=12.则OM=m,ON=n.由垂径定理可知,点M为OA中点,点N为OB中点,∥OA=2OM=2m,OB=2ON=2n,∥S△AOB=12BO•OA=12×2n×2m=2mn=2×12=24.考点: 反比例函数综合题.22.(1)y=x+4;(2)点P的坐标为(-12,-8)或(4,8);(3)存在,(-4,-4),(-4,4)或(4,12).【解析】【分析】(1)通过函数y=2x+8求出A、M两点坐标,由两点坐标求出直线AM的函数解析式;(2)设出P点坐标,按照等量关系“S△ABP=S△AOB”即可求出;(3)设点H的坐标为(m,n),然后分三种情况进行讨论即可.【详解】(1)当x=0时,y=2x+8=8,∥点B的坐标为(0,8);当y=0时,2x+8=0,解得:x=-4,∥点A的坐标为(-4,0).∥点M为线段OB的中点,∥点M的坐标为(0,4).设直线AM的函数解析式为y=kx+b(k≠0),将A(-4,0),B(0,4)代入y=kx+b,得:404k bb-+=⎧⎨=⎩,解得:14kb=⎧⎨=⎩,∥直线AM的函数解析式为y=x+4.(2)设点P的坐标为(x,x+4),∥S△ABP=S△AOB,∥12BM•|xP-xA|=12OA•OB,即12×4×|x+4|=12×4×8,解得:x1=-12,x2=4,∥点P的坐标为(-12,-8)或(4,8).(3)存在,(-4,-4),(-4,4)或(4,12).设点H的坐标为(m,n).分三种情况考虑(如图所示):∥当AM为对角线时,040804mn+=-+⎧⎨+=+⎩,解得:44mn=-⎧⎨=-⎩,∥点H1的坐标为(-4,-4);∥当AB为对角线时,040408mn+=-+⎧⎨+=+⎩,解得:44mn=-⎧⎨=⎩,∥点H2的坐标为(-4,4);∥当BM为对角线时,-400 048mn+=+⎧⎨+=+⎩,解得:412mn=⎧⎨=⎩,∥点H3的坐标为(4,12).综上所述:在坐标平面内存在点H,使以A、B、M、H为顶点的四边形是平行四边形,点H的坐标为(-4,-4),(-4,4)或(4,12).【点睛】此题考查一次函数综合题,解题关键在于求出A、M两点坐标,再利用待定系数法求解析式.23.思维探索:(1)8;(2)12;拓展提升:CE=3﹣1.【解析】【分析】思维探索:(1)利用旋转的性质,证明∥AGE∥∥AFE即可;(2)把∥ABE绕点A逆时针旋转90°到AD,交CD于点G,证明∥AEF∥∥AGF即可求得EF=DF﹣BE;拓展提升:如图3,过A作AG∥BD交BD的延长线于G,推出四边形ACBG是矩形,得到矩形ACBG是正方形,根据正方形的性质得到AC=AG,∥CAG=90°,在BG上截取GF=CE,根据全等三角形的性质得到AE=AF,∥EAC=∥F AG,∥ADF=∥ADE=30°,解直角三角形得到DE=DF=4,BE=23,设CE=x,则GF=CE=x,BC=BG=23﹣x,根据线段的和差即可得到结论.【详解】思维探索:(1)如图1,将∥ADF绕点A顺时针旋转90°得到∥ABG,∥GB=DF,AF=AG,∥BAG=∥DAF,∥四边形ABCD为正方形,∥∥BAD=90°,∥∥EAF=45°,∥∥BAE+∥DAF=45°,∥∥BAG+∥BAE=45°=∥EAF,在∥AGE和∥AFE中AG AFGAE EAF AE AE=⎧⎪∠=∠⎨⎪=⎩∥∥AGE∥∥AFE(SAS),∥GE=EF,∥GE=GB+BE=BE+DF,∥EF=BE+DF,∥∥CEF的周长=CE+CF+EF=CE+BE+DF+CF=BC+CD=8,故答案为:8;(2)如,2,把∥ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得∥AEF∥∥AGF,∥EF=GF,且DG=BE,∥EF=DF﹣DG=DF﹣BE,∥∥CEF的周长=CE+CF+EF=CE+CF+DF﹣BE=BC+DF+CF=4+4+2+2=12;拓展提升:如图3,过A作AG∥BD交BD的延长线于G,∥BD∥BC,∥ACB=90°,∥∥ACB=∥CBG=∥G=90°,∥四边形ACBG是矩形,∥AC=BC,∥矩形ACBG是正方形,∥AC=AG,∥CAG=90°,在BG上截取GF=CE,∥∥AEC∥∥AGF(SAS),∥AE=AF,∥EAC=∥F AG,∥∥EAD=∥BAC=∥GAB=45°,∥∥DAF=∥DAE=45°,∥AD=AD,∥∥ADE∥∥ADF(SAS),∥∥ADF=∥ADE=30°,∥∥BDE=60°,∥∥DBE=90°,BD=2,∥DE=DF=4,BE=23,设CE=x,则GF=CE=x,BC=BG=23﹣x,∥DG=2+23﹣x,∥DG﹣FG=DF,即2+23﹣x﹣x=4,∥x=3﹣1,∥CE=3﹣1.【点睛】本题以正方形为背景,结合旋转,三角形全等,解直角三角形进行综合性考查,熟知常见的全等模型,旋转性质,三角形的判定及性质,正方形,矩形的性质是解题的关键.24.(1)()0,5C、()3,4M-;(2)()1313,9M'-、()2313,9M'+【解析】【分析】(1)将x=0代入即可求得点C坐标,将函数关系式配成顶点式即可求得点M的坐标;(2)先根据中心对称可得点M'在抛物线21:65L y x x=-+的图像上,当点M'抛物线1L对称轴的右侧时,过点M作MG∥y轴于点G,过点M'作M'G∥x轴于点H,根据平行四边形的性质可得CM∥M'F,CM=M'F,进而可证得∥CGM∥∥M'HF,从而可得点M'的纵坐标,代入抛物线21:65L y x x=-+即可求得点M'的坐标,当点M'抛物线1L对称轴的左侧时,同理可得.【详解】解:(1)当x=0时,y=5,则点C坐标为(0,5),∥2265(3)4y x x x=-+=--,∥顶点M的坐标为(3,-4),(2)∥抛物线21:65L y x x=-+绕平面内的某一点旋转180°,旋转后得到抛物线2L,∥1L与2L关于该点成中心对称∥2L经过1L的顶点M,∥1L经过2L的顶点M',如图,当点M'抛物线1L对称轴的右侧时,过点M作MG∥y轴于点G,过点M'作M'G∥x轴于点H,当四边形CM FM'为平行四边形时,则CM∥M'F,CM=M'F,∥∥CGM∥∥M'HF,∥点C坐标为(0,5),点M的坐标为(3,-4),∥M'H=CG=5-(-4)=9,∥点M'的纵坐标为9,将y=9代入265y x x=-+得2659x x-+=,解得12313,313x x=-=+∥此时点M'的坐标为()313,9+,如图,当点M '抛物线1L 对称轴的左侧时,同理可得,此时点M'的坐标为()313,9-,综上所述,此时点M'的坐标为()313,9-或()313,9+【点睛】本题考查了二次函数的图像性质、平行四边形的性质及全等三角形的判定及性质,根据平行四边形的性质求得点M'的纵坐标是解决本题的关键.。
2024年海南省海口市中考数学第三次模拟测试一、单选题(本大题共12小题,每题3分,共36分)1.(3分)实数﹣3的绝对值是( )A.﹣3B.3C.D.±32.(3分)下列运算正确的是( )A.a+a=a2B.a2•a3=a5C.(ab)2=ab2D.(a2)3=a53.(3分)当m=﹣1时,代数式m+3的值是( )A.﹣1B.0C.1D.24.(3分)《热辣滚烫》是一部励志电影,讲述了一个女人在绝望中努力奋斗,最终实现自我突破的故事,故事启示我们“命运只负责洗牌,出牌的永远是自己,一切都来得及”,截止2月底,电影全国票房累计约3300000000元.数据3300000000用科学记数法表示为( )A.33×108B.3.3×108C.3.3×109D.3.3×10105.(3分)分式方程的解是( )A.x=﹣1B.x=1C.x=15D.x=86.(3分)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的左视图是( )A.B.C.D.7.(3分)若反比例函数y=的图象在一、三象限,则m的值可以是( )A.1B.2C.3D.48.(3分)某男子排球队20名队员的身高如下表:则此男子排球队20名队员的身高的众数和中位数分别是( )身高(cm)180186188192208人数(个)46532A.186cm,186cm B.186cm,187cmC.208cm,188cm D.188cm,187cm9.(3分)将一副三角板如图摆放,斜边DF∥AB,AC与DE相交于点O,∠A=60°,∠D=45°,则∠AOD的度数等于( )A.135°B.120°C.115°D.105°10.(3分)如图,在△ABC中,∠ACB=90°,AC=BC,∠BAC的平分线交BC于点D,CD=3.以点D为圆心,DB的长为半径作弧,交AB于点B,M,分别以点B,M为圆心,大于的长为半径作弧,两弧相交于点N,作直线DN交AB于点E,保留作图痕迹,则BD的长为( )A.B.3C.D.611.(3分)如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=50°,则∠OCD为( )A.15°B.20°C.25°D.30°12.(3分)如图,矩形ABCD中,AB=12,BC=5,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是( )A.B.7C.8D.二、填空题(本大题共4小题,每题3分,共12分)13.(3分)分解因式:2x﹣4x2= .14.(3分)正十边形的每个内角等于 度.15.(3分)如图,在∠AOB的内部有一点P,点M、N分别是点P关于OA,OB的对称点,MN分别交OA ,OB于C,D点,若△PCD的周长为30cm,则线段MN的长为 cm.16.(3分)如图,正方形ABCD中,AB=6,点E在CD边上,且CE=2DE.将△ADE沿AE对折至△AFE ,延长EF交边BC于点G,连结AG、CF.则∠EAG= ,S△FGC= .三、解答题(本大题共6小题,共72分)17.(12分)(1)计算:;(2)解不等式组:.18.(10分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的A、B两种书籍.若购买2本A种书籍和3本B种书籍需用160元;若购买6本A种书籍与购买7本B种书籍的费用相同.求每本A种书籍和每本B种书籍的价格各为多少元.19.(10分)2023年兔年春晚以“欣欣向荣的新时代中国,日新月异的更美好生活”为主题,荟袭歌舞、荟萃、相声、小品、武术、杂技、少儿等多种类型节目,在开心,奋进拼搏的氛围中,陪伴全球华人开开心心过大年.为了解学生最喜欢的节目,某校从“歌舞、相声、小品、其他”四种类型的节目对学生进行了一次抽样调查,每个学生只选择以上四种节目类型中的一种,现将调查的结果绘制成了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)抽取的总人数是 ,并补全条形统计图;(2)估计该校3000名学生中,喜欢小品节目类型的人数;(3)若老师从九年级(1)班学生喜欢歌舞类型的2名男生和2名女生中随机抽取2名学生,将他们确定为班级节目表演重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.20.(10分)三亚南山海上观音圣像是世界上最高的观音像,某数学实践小组利用所学的数学知识测量观音圣像的高度AB,如图,该数学实践小组在点C处测得观音圣像顶端A的仰角为45°,然后沿斜坡CD 行走40m到点D处,在点D处测得观音圣像顶端A的仰角为32°,已知∠ACD=105°.(点A,B,C,D在同一平面内)(1)过点D作DE⊥BC交BC的延长线于点E,则∠DCE= °;(2)填空:DE= m,CE= m;(结果精确到1m,参考数据:≈1.4,≈1.7)(3)求三亚南山海上观音圣像的高度AB.(结果精确到1m,参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)21.(15分)如图,在平行四边形ABCD中,AC是一条对角线,且AB=AC=5,BC=6,E、F是AD边上两点,点F在点E的右侧,AE=DF,连接CE,CE的延长线与BA的延长线相交于点G.(1)如图1,连接CF,求证:△AEC≌△DFC;(2)如图2,M是BC边上一点,连接AM、MF,MF与CE相交于点N.①若AE=,求AG的长;②在满足①的条件下,若AM⊥BC,求证:MN=FN;(3)如图3,连接GF,H是GF上一点,连接EH.若∠EHG=∠EFG+∠CEF,且GH=GF,求EF 的长.22.(15分)如图,已知抛物线y=x2+bx+c(b,c是常数)与x轴交于A(1,0),B(﹣3,0)两点,顶点为C,点P为线段AB上的动点(不与A、B重合),过P作PQ∥BC交抛物线于点Q,交AC于点D.(1)求该抛物线的表达式;(2)求△CPD面积的最大值;(3)连接CQ,当CQ⊥PQ时,求点Q的坐标;(4)点P在运动过程中,是否存在以A、O、D为顶点的三角形是等腰三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.参考答案与试题解析一、单选题(本大题共12小题,每题3分,共36分)1.(3分)实数﹣3的绝对值是( )A.﹣3B.3C.D.±3【解答】解:|﹣3|=3,故选:B.2.(3分)下列运算正确的是( )A.a+a=a2B.a2•a3=a5C.(ab)2=ab2D.(a2)3=a5【解答】解:A、a+a=2a,故此选项错误;B、a2•a3=a5,故此选项正确;C、(ab)2=a2b2,故此选项错误;D、(a2)3=a6,故此选项错误;故选:B.3.(3分)当m=﹣1时,代数式m+3的值是( )A.﹣1B.0C.1D.2【解答】解:将m=﹣1代入m+3=﹣1+3=2.故选:D.4.(3分)《热辣滚烫》是一部励志电影,讲述了一个女人在绝望中努力奋斗,最终实现自我突破的故事,故事启示我们“命运只负责洗牌,出牌的永远是自己,一切都来得及”,截止2月底,电影全国票房累计约3300000000元.数据3300000000用科学记数法表示为( )A.33×108B.3.3×108C.3.3×109D.3.3×1010【解答】解:数据3300000000用科学记数法表示为3.3×109,故选:C.5.(3分)分式方程的解是( )A.x=﹣1B.x=1C.x=15D.x=8【解答】解:方程两边都乘x﹣8,得x﹣8=7,解得:x=15,检验:当x=15时,x﹣8≠0,所以x=15是分式方程的解,即分式方程的解是x=15.故选:C.6.(3分)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的左视图是( )A.B.C.D.【解答】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形.故选:D.7.(3分)若反比例函数y=的图象在一、三象限,则m的值可以是( )A.1B.2C.3D.4【解答】解:∵反比例函数的图象在一、三象限,∴2﹣m>0,解得:m<2.结合选项可知,只有1符合题意.故选:A.8.(3分)某男子排球队20名队员的身高如下表:则此男子排球队20名队员的身高的众数和中位数分别是( )身高(cm)180186188192208人数(个)46532A.186cm,186cm B.186cm,187cmC.208cm,188cm D.188cm,187cm【解答】解:身高为186cm的队员数最多为6人,众数为6;中位数是第10、11位队员的身高的平均数,即(186+188)÷2=187cm.故选:B.9.(3分)将一副三角板如图摆放,斜边DF∥AB,AC与DE相交于点O,∠A=60°,∠D=45°,则∠AOD的度数等于( )A.135°B.120°C.115°D.105°【解答】解:过O点作OH∥AB,∵DF∥AB,∴DF∥AB∥OH,∴∠D=∠DOH,∠A=∠AOH,∴∠AOD=∠DOH+∠AOH=∠D+∠A=60°+45°=105°,故选:D.10.(3分)如图,在△ABC中,∠ACB=90°,AC=BC,∠BAC的平分线交BC于点D,CD=3.以点D为圆心,DB的长为半径作弧,交AB于点B,M,分别以点B,M为圆心,大于的长为半径作弧,两弧相交于点N,作直线DN交AB于点E,保留作图痕迹,则BD的长为( )A.B.3C.D.6【解答】解:∵CA=CB,∠C=90°,∴∠A=∠ABC=45°,∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DE=DC=3,∵∠DEB=90°,∴∠EDB=∠EBD=45°,∴DE=EB=3,∴BD=3.故选:A.11.(3分)如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=50°,则∠OCD为( )A.15°B.20°C.25°D.30°【解答】解:连接OA,如图,∵AB切⊙O于点A,∴OA⊥AB,∴∠OAB=90°,∵∠B=50°,∴∠AOB=90°﹣50°=40°,∴∠ADC=∠AOB=20°,∵AD∥OB,∴∠OCD=∠ADC=20°.故选:B.12.(3分)如图,矩形ABCD中,AB=12,BC=5,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是( )A.B.7C.8D.【解答】解:连接EF交AC于点O,如图所示,∵四边形ABCD是矩形,∴∠ABC=90°,DC∥AB,∴∠FCO=∠EAO,∵AB=12,BC=5,∴AC===13,∵四边形EGFH是菱形,∴EF⊥GH,OF=OE,∴∠AOE=∠COF=90°,∴△COF≌△AOE(AAS),∴OC=OA=,∵∠AOE=90°,∠ABC=90°,∴∠AOE=∠ABC,又∵∠OAE=∠BAC,∴△AOE∽△ABC,∴,即,解得AE=,故选:D.二、填空题(本大题共4小题,每题3分,共12分)13.(3分)分解因式:2x﹣4x2= 2x(1﹣2x) .【解答】解:2x﹣4x2=2x(1﹣2x).故答案为:2x(1﹣2x).14.(3分)正十边形的每个内角等于 144 度.【解答】解:(10﹣2)×180÷10=8×180÷10=1440÷10=144(度)∴正十边形的每个内角等于144度.故答案为:144.15.(3分)如图,在∠AOB的内部有一点P,点M、N分别是点P关于OA,OB的对称点,MN分别交OA ,OB于C,D点,若△PCD的周长为30cm,则线段MN的长为 30 cm.【解答】解:∵点P关于OA、OB的对称点分别为C、D,∴MC=PC,ND=PD,∴MN=CM+CD+ND=PC+CD+PD=30cm.故答案为:30.16.(3分)如图,正方形ABCD中,AB=6,点E在CD边上,且CE=2DE.将△ADE沿AE对折至△AFE ,延长EF交边BC于点G,连结AG、CF.则∠EAG= 45° ,S△FGC= .【解答】解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CE=2DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG(HL),∵△ADE沿AE折叠得到△AFE,∴△DAE≌△FAE.∴∠DAE=∠FAE.∵△ABG≌△AFG,∴∠BAG=∠FAG.∵∠BAD=90°,∴∠EAG=∠EAF+∠GAF=×90°=45°.∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴==,∵S△GCE=×3×4=6,∴S△CFG=×6=,故答案为:45°;.三、解答题(本大题共6小题,共72分)17.(12分)(1)计算:;(2)解不等式组:.【解答】解:(1)原式===4;(2)解不等式组:,解不等式①,得:x≤4,解不等式②,得:,∴原不等式组的解集是.18.(10分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的A、B两种书籍.若购买2本A种书籍和3本B种书籍需用160元;若购买6本A种书籍与购买7本B种书籍的费用相同.求每本A种书籍和每本B种书籍的价格各为多少元.【解答】解:设每本A种书籍的价格为x元,每本B种书籍的价格为y元,根据题意得:,解得:.答:每本A种书籍的价格为35元,每本B种书籍的价格为30元.19.(10分)2023年兔年春晚以“欣欣向荣的新时代中国,日新月异的更美好生活”为主题,荟袭歌舞、荟萃、相声、小品、武术、杂技、少儿等多种类型节目,在开心,奋进拼搏的氛围中,陪伴全球华人开开心心过大年.为了解学生最喜欢的节目,某校从“歌舞、相声、小品、其他”四种类型的节目对学生进行了一次抽样调查,每个学生只选择以上四种节目类型中的一种,现将调查的结果绘制成了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)抽取的总人数是 100 ,并补全条形统计图;(2)估计该校3000名学生中,喜欢小品节目类型的人数;(3)若老师从九年级(1)班学生喜欢歌舞类型的2名男生和2名女生中随机抽取2名学生,将他们确定为班级节目表演重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.【解答】解:(1)由题意可知抽取的总人数是=40÷40%=100(人),所以小品的人数=100×(1﹣10%﹣40%﹣20%)=30(人),补全条形图如图所示:(2)∵该校3000名学生中,∴喜欢小品节目类型的人数有3000×30%=900名;(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是一名男生和一名女生结果数为8,所以抽取的两人恰好是一名男生和一名女生概率=.20.(10分)三亚南山海上观音圣像是世界上最高的观音像,某数学实践小组利用所学的数学知识测量观音圣像的高度AB,如图,该数学实践小组在点C处测得观音圣像顶端A的仰角为45°,然后沿斜坡CD 行走40m到点D处,在点D处测得观音圣像顶端A的仰角为32°,已知∠ACD=105°.(点A,B,C,D在同一平面内)(1)过点D作DE⊥BC交BC的延长线于点E,则∠DCE= 30 °;(2)填空:DE= 20 m,CE= 34 m;(结果精确到1m,参考数据:≈1.4,≈1.7)(3)求三亚南山海上观音圣像的高度AB.(结果精确到1m,参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【解答】解:(1)由题意得:∠ACB=45°,∵∠ACD=105°,∴∠DCE=180°﹣∠ACB﹣∠ACD=30°,故答案为:30;(2)∵DE⊥CE,∴∠DCE=90°,在Rt△DCE中,∠DCE=30°,CD=40m,∴DE=CD=20(m),CE=DE=20≈34(m),故答案为:20;34;(3)过点D作DF⊥AB于点F,由题意得:BF=DE=20m,DF=BE,设AB=x m,在Rt△ABC中,∠ACB=45°,∴BC==x(m),∴AF=AB﹣BF=(x﹣20)m,DF=BE=BC+CE=(x+34)m,在Rt△ADF中,∠ADF=32°,∴AF=DF•tan32°≈0.62(x+34)m,∴x﹣20=0.62(x+34),解得:x≈108,∴AB=108m,答:三亚南山海上观音圣像的高度AB约为108m.21.(15分)如图,在平行四边形ABCD中,AC是一条对角线,且AB=AC=5,BC=6,E、F是AD边上两点,点F在点E的右侧,AE=DF,连接CE,CE的延长线与BA的延长线相交于点G.(1)如图1,连接CF,求证:△AEC≌△DFC;(2)如图2,M是BC边上一点,连接AM、MF,MF与CE相交于点N.①若AE=,求AG的长;②在满足①的条件下,若AM⊥BC,求证:MN=FN;(3)如图3,连接GF,H是GF上一点,连接EH.若∠EHG=∠EFG+∠CEF,且GH=GF,求EF 的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∵AB=AC,∴AC=CD,∴∠CAE=∠D,∵AE=DF,∴△AEC≌△DFC(SAS);(2)①解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,DC=AB=5,AD=BC=6,∴∠GAE=∠CDE,∠AGE=∠DCE,∴△AGE∽△DCE,∴=,∵AE=,∴DE=,∴AG=5×,∴AG=;②证明:∵AB=AC,AM⊥BC,∴BM=CM=3,∵AE=,AE=DF,∴DF=,∴EF=AD﹣AE﹣DF=3,∵AD∥BC,∴∠EFN=∠CMN,∵∠ENF=∠CNM,EF=CM,∴△ENF≌△CNM(AAS),∴MN=FN;(3)解:连接CF,∵AB=AC,AB=DC,∴AC=DC,∴∠CAD=∠CDA,∵AE=DF,∴△AEC≌△DFC(SAS),∴CE=CF,∴∠CFE=∠CEF,∵∠EHG=∠EFG+∠CEF,∴∠EHG=∠EFG+∠CFE=∠CFG,∴EH∥CF,∴=,∵GH=GF,∴=,∵AB∥CD,∴∠GAE=∠CDE,∠AGE=∠DCE,∴△AGE∽△DCE,∴=,∴=,∴DE=2AE,设AE=x,则DE=2x,∵AD=6,∴x+2x=6,∴x=2,即AE=2,∴DF=2,∴EF=AD﹣AE﹣DF=2.22.(15分)如图,已知抛物线y=x2+bx+c(b,c是常数)与x轴交于A(1,0),B(﹣3,0)两点,顶点为C,点P为线段AB上的动点(不与A、B重合),过P作PQ∥BC交抛物线于点Q,交AC于点D.(1)求该抛物线的表达式;(2)求△CPD面积的最大值;(3)连接CQ,当CQ⊥PQ时,求点Q的坐标;(4)点P在运动过程中,是否存在以A、O、D为顶点的三角形是等腰三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,∴,解得:,∴该抛物线的表达式为y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点C(﹣1,﹣4).∵A(1,0),B(﹣3,0),∴OA=1,OB=3.过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图,则CE=4,OE=1,∴AE=OA+OE=2.设P(t,0),则AP=1﹣t,AB=OA+OB=4,∵PQ∥BC,∴△APD∽△ABC,∴.∵CE⊥x轴,DF⊥x轴,∴CE∥DF,∴△ADF∽△ACE,∴,∴∴DF=1﹣t.∴S△CPD=S△ACP﹣S△ADP=AP•CE﹣AP•DF=(1﹣t)×4﹣(1﹣t)2=﹣﹣t+=﹣+2,∵﹣<0,∴当t=﹣1时,△CPD面积的最大值为2;(3)设直线BC的解析式为y=kx+n,∴,解得:,∴直线BC的解析式为y=﹣2x﹣6,∵CQ⊥PQ,PQ∥BC,∴CQ⊥BC.∴设直线CQ的解析式为y=x+m,∴﹣+m=﹣4,∴m=﹣,∴直线CQ的解析式为y=x﹣.∴,解得:或.∴Q(﹣,﹣);(4)点P在运动过程中,存在以A、O、D为顶点的三角形是等腰三角形,理由:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图,AC===2.①当AD=AO=1时,∵PQ∥BC,∴△ADP∽△ACB,∴,∴,∴P(1﹣,0);②当AD=DO时,∵DF⊥x轴,∴FO=FA=.∴D的横坐标为.设直线AC的解析式为y=ax+d,∴,解得:,∴直线AC的解析式为y=2x﹣2.当x=时,y=﹣1,∴D(,﹣1).由(3)知:直线BC的解析式为y=﹣2x﹣6,∵PQ∥BC,∴设直线PQ的解析式为y=﹣2x+e,∴﹣2×+e=﹣1,∴e=0,∴直线PQ的解析式为y=﹣2x,∴P(0,0);③当AO=DO=1时,则∠OAD=∠ODA,由题意:CE垂直平分AB,∴CB=CA,∴∠CAB=∠CBA,∴∠OAD=∠ODA=∠CAB=∠CBA,∴△OAD∽△CBA,∴,∴AD=.∵CE⊥x轴,DF⊥x轴,∴CE∥DF,∴△AFD∽△AEC,∴,∴.∴AF=,∴OF=1﹣AF=.∴D的横坐标为.当x=时,y=2×﹣2=﹣.∴D(,﹣).设直线PQ的解析式为y=﹣2x+f,∴﹣2×+f=﹣.∴f=.∴直线PQ的解析式为y=﹣2x+,令y=0,则﹣2x+=0,∴x=.∴P(,0).综上,点P在运动过程中,存在以A、O、D为顶点的三角形是等腰三角形,点P的坐标为(1﹣,0)或(0,0)或(,0).。
安徽省2022届中考全真模拟测试卷(三)数 学(本卷共23小题,满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
一、选择题(每小题4分,共40分) 1.数23,0,12-,1-中最大的是( ) A .23B .0C .1?2D .1-2.我国60岁以上老年人总数达2.64亿人,截至2021年11月29日,60岁以上老年人新冠疫苗接种覆盖人数为21517.9万人,将21517.9万用科学记数法表示为( ) A .82.1517910⨯B .721.517910⨯C .92.1517910⨯D .90.21517910⨯3.下列计算正确的是( ) A .246a a a +=B .235()a a =C .235a a a ⋅=D .623a a a ÷=4.如图正三棱柱的左视图是( )A .B .C .D .5.两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45F ∠=︒,60B ∠=︒,AC 与DE 交于点M .若//BC EF ,则DMC ∠的大小为( )A .100︒B .105︒C .115︒D .120︒6.有三个实数1a ,2a ,3a 满足12230a a a a -=->,若130a a +=,则下列判断中正确的是( ) A .10a <B .20a >C .120a a +<D .230a a ⋅=7.若点1(4,)A y -,2(3,)B y -,3(1,)C y 在抛物线24y x x m =+-上,则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,在平面直角坐标系中,以(2,4)M 为圆心,AB 为直径的圆与x 轴相切,与y 轴交于A ,C 两点,则点B 的坐标是( )A .(4-4)B .(4,4-C .(4,4-D .(4,3)9.如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为( )A .13B .49 C .59D .2310.将一张长方形纸片ABCD 按如图所示方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B '、D ',若8B AD ∠''=︒,则EAF ∠的度数为( )A .40︒B .40.5︒C .41︒D .42︒二.填空题(共4小题。
2015---2016年中考模拟(三)一、选择题1.如图,直线l 1// l2// l3,直线AC分别交l1, l2, l3于点A.B.C;直线DF分别交l1, l2, l3于点D.E.F .AC与DF相较于点H,且AH=2,HB=1,BC=5,则的值为()A.0.5B.2C.0.6D.0.42.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l与点Q .”分别作出了下列四个图形. 其中做法错误的是()3.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A. B. C. D.4.若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)5.如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:投资额60 28 24 23 14 16 15AB6.如图,设k=(a >b >0),则有( ) A .k >2 B .1<k <2 C . D .7.如图是某几何体的三视图,则该几何体的体积是( )A .B .C .D . 8.如图,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30︒,再往大树的方向前进4 m ,测得仰角为60︒,已知小敏同学身高(AB )为1.6m ,则这棵树的高度为( )(结果精确到0.1m ,3≈1.73).A .3.5mB .3.6 mC .4.3mD .5.1m9.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 最小的值是( )A .2B .3C .4D .510.如图,抛物线y=-x 2+2x+m+1交x 轴于点A (a ,0)和B (B ,0),y 轴于点C ,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P (x 1,y 1)和Q (x 2,y 2),若x 1<1< x 2,且x 1+ x 2>2,则y 1> y 2;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是( ) A.①B.②C.③D.④ 二、填空题11.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.12.一张三角形纸片ABC ,AB=AC=5.折叠该纸片使点A 落在边BC 的中点上,折痕经过AC 上的点E ,则线段AE 的长为________.13.已知√a(a-√3)<0,若b=2-a ,则b 的取值范围是________ .14.在矩形ABCD 中 ,AB =4 , BC =3 , 点P 在AB 上。
2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(三)——《圆》一.选择题1.(2020•武汉模拟)如图,AB为半圆⊙O的直径,AB=10,AC为⊙O的弦,AC=8,D 为的中点,DM⊥AC于M,则DM的长为()A.B.C.1D.2.(2020•武汉模拟)在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定3.(2020•武汉模拟)已知⊙O的半径等于8cm,圆心O到直线l上某点的距离为8cm,则直线l与⊙O的公共点的个数为()A.0B.1或0C.0或2D.1或2 4.(2020•武汉模拟)直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定5.(2020•武汉模拟)小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160mm,直角顶点到轮胎与底面接触点AB长为320mm,请帮小名计算轮胎的直径为()mm.A.350B.700C.800D.400 6.(2020•武汉模拟)如图,BC为⊙O直径,弦AC=2,弦AB=4,D为⊙O上一点,I 为AD上一点,且DC=DB=DI,AI长为()A.B.C.D.7.(2020•武汉模拟)如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2,MO交圆于E,EM=6,则圆的半径为()A.4B.2C.D.8.(2020•武汉模拟)已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O 的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定9.(2020•江岸区校级模拟)如图,AB为半圆O的直径,BC⊥AB且BC=AB,射线BD交半圆O的切线于点E,DF⊥CD交AB于F,若AE=2BF,DF=2,则⊙O的半径长为()A.B.4C.D.10.(2020•江夏区模拟)如图,BC是⊙O的直径,AB切⊙O于点B,AB=BC=8,点D 在⊙O上,DE⊥AD交BC于E,BE=3CE,则AD的长是()A.B.C.4D.3二.填空题11.(2020•武汉模拟)如图,在△ABC中,∠A=62°,⊙O截△ABC三边所得的弦长相等,则∠BOC的度数是.12.(2020•蔡甸区模拟)已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为.13.(2020•武汉模拟)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为.14.(2020•武汉模拟)如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD=°.15.(2019•武汉模拟)如图,正五边形ABCDE和正△AFG都是⊙O的内接多边形,则∠FOC=.16.(2019•武汉模拟)矩形ABCD的边AB=4,边AD上有一点M,连接BM,将MB绕M点逆时针旋转90°得MN,N恰好落在CD上,过M、D、N作⊙O,⊙O与BC相切,Q为⊙O上的动点,连BQ,P为BQ中点,连AP,则AP的最小值为.17.(2019•武汉模拟)圆心角为125°的扇形的弧长是12.5π.则扇形的面积为.18.(2019•江岸区校级模拟)已知圆锥的侧面积是其底面积的3倍,这个圆锥的侧面展开图的扇形角的度数为.19.(2019•江岸区校级模拟)如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.20.(2019•硚口区模拟)已知⊙O的直径AB为4cm,点C是⊙O上的动点,点D是BC 的中点,AD延长线交⊙O于点E,则BE的最大值为.21.(2019•江夏区校级模拟)如图,四边形ABCD内接于⊙O,连结AC,若∠BAC=35°,∠ACB=40°,则∠ADC=°.22.(2019•硚口区模拟)如图,⊙O是正△ABC的外接圆.若正△ABC的边心距为1,则⊙O的周长为.23.(2019•武昌区模拟)用48m长的篱笆在空地上围成一个正六边形的绿化场地,则其面积为m2三.解答题24.(2020•武汉模拟)如图1,在△ABC中,AB=CB且∠BAC=45°,以AB为直径作⊙O,线段AC交⊙O于点E,连接OC.(1)求证:AE=CE;(2)如图2,取CE的中点M,连接BM交OC于N,连接EN,求的值.25.(2020•武汉模拟)如图,⊙O过正方形ABCD的顶点A、D,且与BC相切于点M,⊙O 分别交AB、CD于E、F两点,连接MO并延长交AD于点N.(1)求证:AN=DN;(2)连接BF交⊙O于点G,连接EG.若AD=8,求EG的长.26.(2020•江岸区校级模拟)如图,AB为⊙O的直径,C为⊙O上的一点,AD⊥CD于点D,AC平分∠DAB.(1)求证:CD是⊙O的切线.(2)设AD交⊙O于E,=,△ACD的面积为6,求BD的长.27.(2020•武汉模拟)如图,在△ABC中,AB=AC,∠BAC=90°,点D在以AB为直径的⊙O上,且CD=CA.(1)求证:CD是⊙O切线.(2)求tan∠AEC的值.28.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.29.(2020•硚口区模拟)已知如图:在⊙O中,直径AB⊥弦CD于G,E为DC延长线上一点,BE交⊙O于点F.(1)求证:∠EFC=∠BFD;(2)若F为半圆弧AB的中点,且2BF=3EF,求tan∠EFC的值.30.(2020•武汉模拟)如图,A,B,C三点在⊙O上,=,AD⊥AB,DE∥AB交BC 于点E,在BC的延长线上取一点F,使得EF=ED.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,BF=10,求tan∠AFD的值.参考答案一.选择题1.解:如图,连接OD交AC于H,连接BC.∵AB是直径,∴∠ACB=90°,∴BC==6,∵=,∴OD⊥AB,∵∠OAH=∠CAB,∠AOH=∠ACB=90°,∴△AOH∽△ACB,∴==∴==∴OH=,AH=,∵DH=OD﹣OH=5﹣=,∵DM⊥AC,∵∠DMH=∠AOH=90°,∠DHM=∠AHO,∴△DMH∽△AOH,∴=,∴=,∴DM=1,故选:C.2.解:∵圆心P的坐标为(﹣10,1),∴OP==.∵⊙O的半径为10,∴>10,∴点P在⊙O外.故选:B.3.解:∵⊙O的半径等于8cm,圆心O到直线l的距离为8cm,即圆心O到直线l的距离小于或等于圆的半径,∴直线l和⊙O相切或相交,∴直线l与⊙O公共点的个数为1或2.故选:D.4.解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,∴斜边上的高为:=4.8,∴d=4.8cm=r=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.5.解:如图,连接OB,OC,作CD⊥OB于D.设⊙O半径为xmm,在Rt△OCD中,由勾股定理得方程,(x﹣160)2+3202=x2,解得,x=400,∴2x=800,答:车轱辘的直径为800mm.故选:C.6.解:如图,连接IC,作IE⊥AC于E,IF⊥AB于F,IG⊥BC于G.∵DB=DC,∴=,∠DBC=∠DCB,∴∠BAD=∠CAD,∵DI=DC,∴∠DIC=∠DCI,∵∠DIC=∠DAC+∠ACI,∠DCI=∠DCB+∠ICB,∠DBC=∠DAC,∴∠ICA=∠ICB,∴点I为△ABC内心,∴IE=IF=IG,∵BC是直径,∴∠BAC=90°,∴BC===2,∵S=•AB•AC=•IE•(AB+AC+BC),△ABC∴IE=3﹣,∵∠IAE=∠AIE=45°,∴AI=IE=3﹣,故选:D.7.解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,设圆的半径是x,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(6﹣x)2,解得:x=,所以圆的半径长是.故选:D.8.解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.9.解:连接AD,CF,作CH⊥BD于H,如图所示:∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∴△ADF∽△BDC,∴==,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴AE=AF,∵AE=2BF,∴BC=AB=3BF,设BF=x,则AE=2x,AB=BC=3x,∴BE==x,CF==,由切割线定理得:AE2=ED×BE,∴ED===x,∴BD=BE﹣ED=,∵CH⊥BD,∴∠BHC=90°,∠CBH+∠BCH=∠CBH+∠ABE,∴∠CBH=∠ABE,∵∠BAE=90°=∠BHC,∴△BCH∽△EBA,∴==,即==,解得:BH=x,CH=x,∴DH=BD﹣BH=x,∴CD2=CH2+DH2=x2,∵DF⊥CD,∴CD2+DF2=CF2,即x2+(2)2=()2,解得:x=,∴AB=3,∴⊙O的半径长为;故选:A.10.解:连接AE、BD、DC,∵AB与⊙O相切于点B,∴∠ABC=90°,∵BC=8,BE=3CE,∴CE=2,BE=6,∵AB=8,∴由勾股定理得:AE===10,∵BC是直径,∴∠BDC=90°,∵∠ADE=90°,∴∠ABD+∠CBD=90°,∠DCE+∠CBD=90°,∴∠ABD=∠DCE,∵∠ADE=∠ABE=90°,∴∠DAB+∠DEB=360°﹣90°﹣90°=180°,∵∠DEC+∠DEB=180°,∴∠DEC=∠DAB,∴△DCE∽△DBA,∴===,∴AD=4DE,在Rt△ADE中,AE2=AD2+DE2,∴102=(4DE)2+DE2,∴DE=,∴AD=,故选:A.二.填空题(共13小题)11.解:∵△ABC中∠A=62°,⊙O截△ABC的三条边所得的弦长相等,∴O到三角形三条边的距离相等,即O是△ABC的内心,∴∠1=∠2,∠3=∠4,∠1+∠3=(180°﹣∠A)=(180°﹣62°)=59°,∴∠BOC=180°﹣(∠1+∠3)=180°﹣59°=121°.故答案是:121°.12.解:当以点C为圆心,r为半径的圆与斜边AB只有一个公共点时,过点C作CD⊥AB于点D,∵AC=3,BC=4.,∴AB=5,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有一个交点,∴3<r≤4,故答案为:3<r≤4或r=.13.解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故答案为:60πcm2;14.解:∵∠BOD=100°,∴∠A=50°.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣50°=130°.故答案为:130.15.解:连接OA,OB,∵五边形ABCDE是正五边形,∴∠AOB=∠BOC==72°,∵△AFG是正三角形,∴∠AOF==120°,∴∠BOF=∠AOF﹣∠AOB=48°,∴∠FOC=∠BOC﹣∠BOF=72°﹣48°=24°,故答案为:24°.16.解:设⊙O与BC的交点为F,连接OB、OF,如图1所示.∵△MDN为直角三角形,∴MN为⊙O的直径,∵BM与⊙O相切,∴MN⊥BM,∵将MB绕M点逆时针旋转90°得MN,∴MB=MN,∴△BMN为等腰直角三角形,∵∠AMB+∠NMD=180°﹣∠AMN=90°,∠MBA+∠AMB=90°,∴∠NMD=∠MBA,且BM=NP,∠A=∠NMD=90°,∴△ABM≌△DMN(AAS),∴DM=AB=4,DN=AM,设DN=2a,则AM=2a,OF=4﹣a,BM==2,∵BM=MP=2OF,∴2=2×(4﹣a),解得:a=,∴DN=2a=3,OF=4﹣=,∴⊙O半径为,如图2,延长BA,使AH=AB=4,连接HQ,OH,过O作OG⊥AB于G,∵AB=AH,BP=PQ,∴AP=HQ,HQ∥AP,∴当HQ取最小值时,AP有最小值,∴当点Q在HO时,HQ的值最小,∵HG=4+4﹣=,GO=3+4﹣2=5,∴OH===,∴HQ的最小值=﹣=,∴AP的最小值为,故答案为:.17.解:∵圆心角为125°的扇形的弧长是12.5π,∴12.5π=,解得:r=18,故扇形的面积为:×18×12.5π=112.5π.故答案为:112.5π.18.解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=,解得n=120°.故答案为:120°.19.解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.20.解:如图,以OB为直径作⊙K,当直线AE切⊙K于D时,BE的值最大.∵AE是⊙K的切线,∴DK⊥AE,∴∠ADK=90°,∵AB是直径,∴∠AEB=90°,∴∠ADK=∠AEB,∴DK∥BE,∴=,∴=,∴BE=,故答案为.21.解:∠ABC=180°﹣∠BAC﹣∠ACB=105°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣∠ABC=75°,故答案为:75.22.解:延长AO交BC于D,连接OB,如图,∵△ABC为等边三角形,∴∠ABC=60°,AB=AC,∵OB=OC,∴AO垂直平分BC,即OD⊥BC,∴OD=1,AD平分∠BAC,同理OB平分∠ABC,∴∠OBD=30°,在Rt△OBD中,OB=2OD=2,∴⊙O的周长=2π×2=4π.故答案为4π.23.解:由题意得:AB=48÷6=8m,过O作OC⊥AB,∵AB=BO=AO=8m,∴CO==4m,∴正六边形面积为:4×8××6=96m2,故答案为:96.三.解答题(共7小题)24.(1)证明:如图1中,∵AB是直径,∴∠AEB=90°,∴BE⊥AC,∵AB=CB,∴AE=EC.(2)解:如图2中,连接OE,BE,过点C作CT⊥EN交EN的延长线于T.∵BA=BC,∠ACB=45°,∴∠BAC=∠ACB=45°,∴∠ABC=90°,∵AE=EC,∴∠ABE=∠CBE=∠ABC=45°,∵BE⊥AC,∴EB=EC=EA,∵EM=MC,OA=OB,∴tan∠EBM==,tan∠OCB==,∴tan∠EBM=tan∠OCB,∴∠EBM=∠OCB,∵AO=OB.AE=EC,∴OE∥BC,∴∠EOC=∠OCB,∴∠EON=∠EBN,∴O,E,N,B四点共圆,∴∠EOB+∠ENB=180°,∵EA=EB,AO=OB,∴EO⊥AB,∴∠BOE=∠ENB=90°,∵∠BEN+∠EBN=90°,∠BEN+∠CET=90°,∴∠EBN=∠CET,∵EB=EC,∴△EBN≌△CET(AAS),∴EN=CT,∵∠ONE=∠CNT=∠EBO=45°,CT⊥NT,∴CT=TN,∴EN=NT,CN=NT,∴CN=EN,∴=.25.解:(1)证明:∵⊙O与BC相切于点M,∴∠BMN=90°,∵四边形ABCD是正方形,∴AD∥BC,∴∠ONA=90°,由垂径定理得,AN=DN;(2)如图,连接DE,EF,DG,∵∠DAE=90°,∴∠DFE=90°,∴DE是⊙O的直径,且四边形AEFD是矩形,由(1)知四边形ABMN是矩形,∴MN=AB=8,设OD=r,则ON=8﹣r,DN=4,在Rt△ODN中,根据勾股定理,得42+(8﹣r)2=r2,解得r=5,∴DE=10,∵AD=8,∴AE=6,∴BE=2,∵EF=AD=8,∴BF==2,∵∠BFE=∠EDG,∴sin∠BFE=sin∠EDG,∴=,即=,解得EG=.26.(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,∴∠OCE=∠ADC=90°,∴CD是⊙O的切线;(2)解:∵=,∴设AC=5x,CD=3x,∴AD=4x,∵△ACD的面积为6,∴AD•CD==6,∴x=1(负值舍去),∴AD=4,CD=3,AC=5,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠ADC,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴=,∴=,∴AB=,∵∠DAC=∠CAB,∴=,连接BE交OC于F,∴OC⊥BE,BF=EF,∵AB为⊙O的直径,∴∠AEB=∠DEB=90°,∴四边形CDEF是矩形,∴EF=CD=3,∴BE=6,∴AE==,∴DE=4﹣=,∴BD==.27.(1)证明:连接OC,OD,∵OA=OD,AC=CD,OC=OC,∴△AOC≌△DOC(SSS),∴∠CDO=∠CAB=90°,∵OD为⊙O的半径,∴CD是⊙O切线;(2)解:过B作BH⊥AB交AD的延长线于H,∴∠BAC=∠ABH=90°,∵CD=AD,OD=OA,∴OC⊥AD于T,∴∠OTA=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,在△ACO和△BAH中,∴△ACO≌△BAH(ASA),∴BH=AO,设OA=OB=r,则AC=AB=2r,BH=r,在Rt△OAC中,OC===r,在Rt△ABC中,BC===2r,∵∠BAC+∠ABH=180°,∴BH∥AC,∴△BEH∽△CEA,∴,∴CE=BC=r,∴cos∠1==,∴CT=,在Rt△CET中,ET==r,∴tan∠AEC===3.28.(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.29.(1)证明:如图,连接BD,∵AB⊥CD且AB为直径,∴=.∴∠BFD=∠CDB.又∵∠EFC+∠CFB=180°,而∠CFB+∠CDB=180°,∴∠EFC=∠CDB.∴∠EFC=∠BFD;(2)解:如图,连OF,OC,BC,可知∠EFC=∠BFD=∠BCG,又F为半圆AB的中点,∴∠FOB=∠FOA=90°,∴OF∥CD,∴OG:OB=EF:FB=2:3.设OG=2x,则0B=OC=3x,则CG=x.∴tan∠EFC=tan∠BCG==.30.(1)证明:连接BD,∵AD⊥AB,∴BD是⊙O的直径,∵=,∴BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠ABD=∠BDE.∴∠CBD=∠BDE.∵ED=EF,∴∠EDF=∠EFD.∵∠EDF+∠EFD+∠EDB+∠EBD=180°,∴∠BDF=∠BDE+∠EDF=90°.∴OD⊥DF.∵OD是半径,∴DF是⊙O的切线.(2)解:连接DC,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°.∵∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD(AAS).∴CD=AD=4,AB=BC.∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴DE=BE,∴DE=EF=EB=BF=5,∴EC===3,EF=DE=5.∴BC=BE+EC=8,∴BD===4,连接AC交BD于H,设BD与AF交于N,∵=,∴AC⊥BD,∴AH=CH===,∴DH==,∵∠DCF=∠BDF=90°,∴∠DBF+∠DFB=∠DFC+∠CDF=90°,∴∠DBC=∠CDF,∴△BDF∽△DCF,∴=,∴DF==2,∵DF⊥BD,AC⊥BD,∴AC∥DF,∴∠CAF=∠AFD,∴△AHN∽△FDN,∴=,∴=,∴DN=,∴tan∠AFD===.。
成都市中考数学模拟试题(3)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是()A.2 B.﹣1 C.﹣3 D.﹣4【答案】D【解析】(﹣1)+(﹣3)=﹣4.故选:D.2.(3分)八个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【答案】C【解析】从正面看,共有三列,每列的小正方形个数分别为2、1、2,故选:C.3.(3分)据央视网消息,全国广大共产党员积极响应党中央号召,踊跃捐款,表达对新冠肺炎疫情防控工作的支持.据统计,截至2020年3月26日,全国已有7901万多名党员自愿捐款,共捐款82.6亿元.82.6亿用科学记数法可表示为()A.0.826×1010B.8.26×109C.8.26×108D.82.6×108【答案】B【解析】82.6亿=8 260 000 000=8.26×109,故选:B.4.(3分)将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A.(﹣1,﹣1)B.(﹣1,3)C.(5,﹣1)D.(5,3)【答案】B【解析】将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(﹣1,3).故选:B.5.(3分)一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是()A.30°B.35°C.40°D.45°【答案】B【解析】如图,延长ME,交CD于点F,∵AB∥CD,∠1=55°,∴∠MFC=∠1=55°,在Rt△NEF中,∠NEF=90°,∴∠3=90°﹣∠MFC=35°,∴∠2=∠3=35°,故选:B.6.(3分)下列计算正确的是()A.(a﹣b)(﹣a﹣b)=a2﹣b2B.2a3+3a3=5a6C.6x3y2÷3x=2x2y2D.(﹣2x2)3=﹣6x6【答案】C【解析】(a﹣b)(﹣a﹣b)=b2﹣a2,故选项A错误;2a3+3a3=5a3,故选项B错误;6x3y2÷3x=2x2y2,故选项C正确;(﹣2x2)3=﹣8x6,故选项D错误;故选:C.7.(3分)方程=的解为()A.﹣2 B.﹣1 C.1 D.2【答案】A【解析】方程两边都乘以2x(x﹣2),得:2x=x﹣2,移项,得:2x﹣x=﹣2,合并同类项,得:x=﹣2.经检验,x=﹣2是原方程的根.所以,原方程的根为x=﹣2.故选:A.8.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如图所示,则这些运动员成绩的中位数为()A.160 B.165 C.170 D.175【答案】B【解析】把这些数从小到大排列,中位数是第8个数,则这些运动员成绩的中位数为165cm.故选:B.9.(3分)如图,⊙O是正六边形ABCDEF的外接圆,P是弧AB上一点,则∠CPD的度数是()A.30°B.40°C.45°D.60°【答案】A【解析】连接OC,OD,∵六边形ABCDEF是正六边形,∴∠COD==60°,∴∠CPD=COD=30°,故选:A.10.(3分)抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①b=2a;②4a+2b+c>0;③若n>m>0,则x=1+m时的函数值小于x=1﹣n时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】C【解析】∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∵抛物线开口向下,∴当x=2时,y>0,∴4a+2b+c>0,故②正确;∵抛物线开口向下,对称轴为直线x=1,∴横坐标是1﹣n的点的对称点的横坐标为1+n,∵若n>m>0,∴1+n>1+m,∴x=1+m时的函数值大于x=1﹣n时的函数值,故③错误;∵b=﹣2a,∴抛物线为y=ax2﹣2ax+c,∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a+4a+c=0,即8a+c=0,∴c=﹣8a,∴﹣=4,∵点(﹣2,0)的对称点是(4,0),∴点(﹣,0)一定在此抛物线上,故④正确,故选:C.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x﹣3和1﹣4x互为相反数,则x的值是________.【答案】﹣1.【解析】∵2x﹣3和1﹣4x互为相反数,∴2x﹣3+1﹣4x=0,解得:x=﹣1.12.(4分)一个等腰三角形一腰上的高与另一腰的夹角为36°,则此三角形顶角度数为________.【答案】54°或126°【解析】当△ABC是锐角三角形时,∠ACD=36°,∠ADC=90°,∴∠A=54°,当△ABC是钝角三角形时,∴∠ACD=36°,∠ADC=90°,∴∠BAC=∠ADC+∠ACD=126°13.(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是________.【答案】0<k<2.【解析】∵一次函数y=(k﹣2)x+k的图象经过第一、二、四象限,∴k﹣2<0且k>0;∴0<k<2,14.(4分)如图,在▱ABCD中,CD=2,∠B=60°,BE:EC=2:1,依据尺规作图的痕迹,则▱ABCD的面积为________.【答案】3.【解析】如图,过点A作AH⊥BC于H,由作图可知,EF垂直平分线段AB∴EA=EB,∵∠B=60°,∴△ABE是等边三角形,∴AB=BE=AE,∵四边形ABCD是平行四边形,∴AB=CD=2,∴BE=AB=2,∵AH⊥BE,∴BH=EH=1,∴AH===,∵BE:EC=2:1,∴EC=1,BC=BE+EC=3,∴平行四边形ABCD的面积=BC•AH=3,三.解答题(共6小题,满分54分)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.【答案】见解析【解析】(1)原式=2+1﹣2×+﹣1=2+1﹣+﹣1=2;(2)由①得:x>2.5,由②得:x≤4,则不等式组的解集为2.5<x≤4.16.(6分)先化简,再求值:(+)÷,其中m=9.【答案】见解析【解析】原式=×=,当m=9时,原式==.17.(8分)新学期,某校开设了“防疫宣传”“心理疏导”等课程,为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B 级为良好,C级为及格,D级为不及格.将测试结果绘制了两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________名;(2)扇形统计图中表示A级的扇形圆心角α的度数是________,并把条形统计图补充完整;(3)该校八年级共有学生400名,如果全部参加这次测试,估计优秀的人数为多少?【答案】见解析【解析】(1)本次抽样测试的学生人数是:12÷30%=40(名),故答案为:40;(2)扇形统计图中表示A级的扇形圆心角α的度数是:360°×=54°,故答案为:54°,C级的人数为:40×35%=14,补充完整的条形统计图如右图所示;(3)400×=60(人),即优秀的有60人.18.(8分)如图,某办公楼AB的右边有一建筑物CD,在建设物CD离地面2米高的点E处观测办公楼顶A点,测得的仰角∠AEM=22°,在离建设物CD25米远的F点观测办公楼顶A点,测得的仰角∠AFB=45°(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:)【答案】见解析【解析】(1)如图,过点E作EM⊥AB于点M,设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,,则,解得:x=20.即办公楼的高20m;(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE===48,即A、E之间的距离约为48m.19.(10分)如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为________;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为________.【答案】见解析【解析】(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2, 故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).20.(10分)如图,过点P作P A,PB,分别与以OA为半径的半圆切于A,B,延长AO交切线PB于点C,交半圆与于点D.(1)若PC=5,AC=4,求BC的长;(2)设DC:AD=1:2,求的值.【答案】见解析【解析】(1)∵P A,PB是⊙O的切线∴P A=PB,∠P AC=90°∴AP==3∴PB=AP=3∴BC=PC﹣PB=2(2)连接OB,∵CD:AD=1:2,AD=2OD∴CD=OD=OB∴CO=2OB∵PB是⊙O切线∴OB⊥PC∴∠OBC=90°=∠P AC,且∠C=∠C∴△OBC∽△P AC∴∴PC=2P A,∴=B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)估算:≈________.(结果精确到1)【答案】7.【解析】≈7;22.(4分)设x1、x2是方程x2+mx﹣5=0的两个根,且x1+x2﹣x1x2=1,则m=________.【答案】4.【解析】∵x1、x2是方程x2+mx﹣5=0的两个根,∴x1+x2=﹣m,x1x2=﹣5.∵x1+x2﹣x1x2=1,即﹣m﹣(﹣5)=1,∴m=4.23.(4分)一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要________位.【答案】3.【解析】因为取一位数时一次就拨对密码的概率为,取两位数时一次就拨对密码的概率为,取三位数时一次就拨对密码的概率为,故密码的位数至少需要3位.24.(4分)如图,在边长为2的菱形ABCD中,∠ABC=60°,将△BCD沿直线BD平移得到△B′C′D′,连接AC′、AD′,则AC′+AD′的最小值为________.【答案】2.【解析】如图,连接BC',连接直线CC',∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵将△BCD沿直线BD平移得到△B′C′D′,∴AB∥C'D',AB=C'D',∴四边形ABC'D'是平行四边形,∴AD'=BC',∴AC′+AD′=AC'+BC',∵点C′在过点C且平行于BD的定直线CC'上,∴作点B关于定直线CC'的对称点E,连接AE,连接BE交CC'于H,则AE的长度即为AC′+AD′的最小值,在Rt△BHC中,∠BCH=∠DBC=30°,AD=2,∴∠CBH=60°,BH=EH=BC=1,∴BE=2,∴BE=AB,∵∠ABE=∠EBB′+∠DBA=90°+30°=120°,∴∠E=∠BAE=30°,∴AE=2×AB=2.25.(4分)如图,在平面直角坐标系中,A(3,0),B(0,4),C(2,0),D(0,1),连接AD、BC交于点E,则三角形ABE的面积为________.【答案】.【解析】连接OE,如图,∵A(3,0),B(0,4),C(2,0),D(0,1),∴AO=3,OB=4,OC=2,OD=1,设E(m,n),∵S△OAD=,∴S△OAD=S△OED+S△OAE=;∵S△OCB==4,∴S△OEB+S△OEC=2m+n=4;解方程组得,,∴S△BEA=S△BCA﹣S△AEC==.二.解答题(共3小题,满分30分)26.(8分)某汽车清洗店,清洗一辆汽车定价20元时每天能清洗45辆,定价25元时每天能清洗30辆,假设清洗汽车辆数y(辆)与定价x(元)(x取整数)是一次函数关系(清洗每辆汽车成本忽略不计).(1)求y与x之间的函数表达式;(2)若清洗一辆汽车定价不低于15元且不超过50元,且该汽车清洗店每天需支付电费、水和员工工资共计200元,问:定价为多少时,该汽车清洗店每天获利最大?最大获利多少?【答案】见解析【解析】(1)设y与x的一次函数式为y=kx+b,由题意可知:,解得:,∴y与x之间的函数表达式为y=﹣3x+105;(2)设汽车美容店每天获利润为w元,由题意得:w=xy﹣200=x(﹣3x+105)﹣200=﹣3(x﹣17.5)2+718.75,∵15≤x≤50,且x为整数,∴当x=17或18时,w最大=718(元).∴定价为17元或18元时,该汽车清洗店每天获利最大,最大获利是718元.27.(10分)【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.【答案】见解析【解析】(1):如图①,过点A作AP∥EF,交BC于P,过点B作BQ∥GH,交CD于Q,BQ交AP于T.∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BGHQ都是平行四边形, ∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠BAT+∠ABT=90°.∵四边形ABCD是矩形,∴∠ABP=∠C=90°,AD=BC,∴∠ABT+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP∽△BCQ,∴=,∴=.(2)如图②中,连接BD.∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,∴BD===,∵D,B关于EF对称,∴BD⊥EF,∴=,∴=,∴EF=.(3)如图③中,过点F作FH⊥EG于H,过点P作PJ⊥BF于J.∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=3,∠A=90°,∴=,∴DG=,∴AG===1,由翻折可知:ED=EG,设ED=EG=x,在Rt△AEG中,∵EG2=AE2+AG2,∴x2=AG2+AE2,∴x2=(3﹣x)2+1,∴x=,∴DE=EG=,∵FH⊥EG,∴∠FHG=∠HGP=∠GPF=90°,∴四边形HGPF是矩形,∴FH=PG=CD=2,∴EH===,∴GH=FP=CF=EG﹣EH=﹣=1,∵PF∥EG,EA∥FB,∴∠AEG=∠IPF,∵∠A=∠FJP=90°,∴△AEG∽△JFP,∴==,∴==,∴FJ=,PJ=,∴BJ=BC﹣FJ﹣CF=3﹣﹣1=,在Rt△BJP中,BP===.解法二:作PH垂直AB于H,证△AEG∽△HGP,求出GH,HP,然后在直角三角形BPH,勾股定理求出BP.28.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)直接写出抛物线的解析式为:________;(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴和y轴分别交于点G,H,设点D的横坐标为m.①求DF+HF的最大值;②连接EG,若∠GEH=45°,求m的值.【答案】见解析【解析】(1)将点A(﹣1,0),B(3,0)代入抛物线y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3;(2)①当x=0时,y=﹣x2+2x+3=3,∴点C(0,3),又∵B(3,0),∴直线BC的解析式为:y=﹣x+3,∵OB=OC=3,∴∠OBC=∠OCB=45°,作FK⊥y轴于点K,又∵FH⊥BC,∴∠KFH=∠KHF=45°,∴FH=KF=OE,∴DF+HF=DE﹣EF+OE=(﹣m2+2m+3)﹣(﹣m+3)+m=﹣m2+(3+)m,由题意有0<m<3,且0<﹣=<3,﹣1<0,∴当m=时,DF+HF取最大值,DF+HF的最大值为:﹣+(3+)×=;②作GM⊥y轴于点M,记直线FH与x轴交于点N,∵FK⊥y轴,DE⊥x轴,∠KFH=45°,∴∠EFH=∠ENF=45°,∴EF=EN,∵∠KHF=∠ONH=45°,∴OH=ON,∵y=﹣x2+2x+3的对称轴为直线x=1,∴MG=1,∵HG=MG=,∵∠GEH=45°,∴∠GEH=∠EFH,又∠EHF=∠GHE,∴△EHG∽△FHE,∴HE:HG=HF:HE, ∴HE2=HG•HF=×m=2m,在Rt△OEH中,OH=ON=|OE﹣EN|=|OE﹣EF|=|m﹣(﹣m+3)|=|2m﹣3|,OE=m,∴HE2=OE2+OH2=m2+(2m﹣3)2=5m2﹣12m+9,∴5m2﹣12m+9=2m, 解得:m=1或.。
2022届江苏省南京市新城中学中考三模数学测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为()A.10000x﹣10=14700(140)0x+B.10000x+10=14700(140)0x+C.10000(140)0x-﹣10=14700xD.10000(140)0x-+10=14700x2.把不等式组11xx<-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.3.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-104.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC 的长为()A.8 B.10 C.12 D.145.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A .28cm 2B .27cm 2C .21cm 2D .20cm 26.如图所示:有理数,a b 在数轴上的对应点,则下列式子中错误..的是( )A .0ab >B .0a b +<C .1ab< D .0a b -<7.下列成语描述的事件为随机事件的是( )A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼 8.用配方法解方程2230x x +-=时,可将方程变形为( ) A .2(1)2x += B .2(1)2x -= C .2(1)4x -= D .2(1)4x +=9.已知x 2+mx+25是完全平方式,则m 的值为( ) A .10B .±10C .20D .±2010.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数ky x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤11.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )A .πB .32π C .2π D .3π12.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是( )A .28B .29C .30D .31二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次函数()2y ax bx c a 0=++≠中的自变量x 与函数值y 的部分对应值如下表:x…32-1-12-12132…y…54- 2-94-2-54-74…则2ax bx c 0++=的解为________.14.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .15.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.16.函数y=13x -+1x -的自变量x 的取值范围是_____. 17.如图,反比例函数3y x=(x >0)的图象与矩形OABC 的边长AB 、BC 分别交于点E 、F 且AE=BE ,则△OEF的面积的值为 .18.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC ,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,且BF 是⊙O 的切线,BF 交AC 的延长线于F .(1)求证:∠CBF=12∠CAB.(2)若AB=5,sin∠CBF=55,求BC和BF的长.20.(6分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.21.(6分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.22.(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB 平行.(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km2≈1.143)23.(8分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x 1+5x +6,翻开纸片③是3x 1﹣x ﹣1.解答下列问题求纸片①上的代数式;若x 是方程1x =﹣x ﹣9的解,求纸片①上代数式的值.24.(10分)先化简后求值:已知:x=3﹣2,求2284111[(1)()]442x x x x+--÷--的值.25.(10分)如图,在等边△ABC 中,点D 是 AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE .求证:AE ∥BC .26.(12分)如图,在平行四边形ABCD 中,24BC AB ==,点E 、F 分别是BC 、AD 的中点. (1)求证:ABE ∆≌CDF ∆;(2)当AE CE =时,求四边形AECF 的面积.27.(12分)如图,AB 为⊙O 的直径,点C 在⊙O 上,AD ⊥CD 于点D ,且AC 平分∠DAB ,求证: (1)直线DC 是⊙O 的切线; (2)AC 2=2AD•AO .2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【答案解析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【题目详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【答案点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.2、C【答案解析】求得不等式组的解集为x<﹣1,所以C是正确的.【题目详解】解:不等式组的解集为x<﹣1.故选C.【答案点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3、C【答案解析】根据多项式乘以多项式的法则进行计算即可.【题目详解】故选:C.【答案点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.4、B【答案解析】测试卷分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.5、B【答案解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【题目详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则AB BD DF DC设DF=xcm,得到:68 = x6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1.【答案点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.6、C【答案解析】从数轴上可以看出a 、b 都是负数,且a <b ,由此逐项分析得出结论即可. 【题目详解】由数轴可知:a<b<0,A 、两数相乘,同号得正,ab >0是正确的; B 、同号相加,取相同的符号,a+b <0是正确的;C 、a <b <0,1a b>,故选项是错误的; D 、a-b=a+(-b )取a 的符号,a-b <0是正确的. 故选:C . 【答案点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答. 7、B【答案解析】测试卷解析:水涨船高是必然事件,A 不正确; 守株待兔是随机事件,B 正确; 水中捞月是不可能事件,C 不正确 缘木求鱼是不可能事件,D 不正确; 故选B . 考点:随机事件. 8、D 【答案解析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可. 【题目详解】 解:2230x x +-=223x x += 2214x x ++=()214x +=故选D. 【答案点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键. 9、B 【答案解析】根据完全平方式的特点求解:a 2±2ab +b 2. 【题目详解】∵x 2+mx +25是完全平方式, ∴m =±10, 故选B . 【答案点睛】本题考查了完全平方公式:a 2±2ab +b 2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x 和1的乘积的2倍. 10、D 【答案解析】设直线y=x 与BC 交于E 点,分别过A 、E 两点作x 轴的垂线,垂足为D 、F ,则A (1,1),而AB=AC=2,则B (3,1),△ABC 为等腰直角三角形,E 为BC 的中点,由中点坐标公式求E 点坐标,当双曲线与△ABC 有唯一交点时,这个交点分别为A 、E ,由此可求出k 的取值范围.解:∵2AC BC ==,90CAB ∠=︒.()1,1A .又∵y x =过点A ,交BC 于点E ,∴2EF ED ==, ∴()2,2E ,∴14k ≤≤.故选D.11、D 【答案解析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可. 【题目详解】∵△ABC 为等边三角形, ∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积=2 1203360π⨯=3π.故选D.【答案点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.12、C【答案解析】根据中位数的定义即可解答.【题目详解】解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,最中间的两个数的平均数是:29+312=30,则这组数据的中位数是30;故本题答案为:C.【答案点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x2=-或1【答案解析】由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.【题目详解】解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),∴此抛物线的对称轴为:直线x=-12,∵此抛物线过点(1,0),∴此抛物线与x轴的另一个交点为:(-2,0),∴ax2+bx+c=0的解为:x=-2或1.故答案为x=-2或1.【答案点睛】此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.14、16【答案解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15、404033【答案解析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【题目详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x =404033+. 即该船行驶的速度为404033+海里/时; 故答案为:404033+. 【答案点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.16、x≥1且x≠3【答案解析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【题目详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠故答案为:1x ≥且 3.x ≠【答案点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.17、94【答案解析】测试卷分析:如图,连接OB .∵E 、F 是反比例函数(x >0)的图象上的点,EA ⊥x 轴于A ,FC ⊥y 轴于C ,∴S △AOE =S △COF =32×1=32. ∵AE=BE ,∴S △BOE =S △AOE =32,S △BOC =S △AOB =1.∴S △BOF =S △BOC ﹣S △COF =1﹣32=32.∴F 是BC 的中点. ∴S △OEF =S 矩形AOCB ﹣S △AOE ﹣S △COF ﹣S △BEF =6﹣32﹣32﹣32×32=. 18、20π【答案解析】利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.【题目详解】底面直径为8,底面半径=4,底面周长=8π,由勾股定理得,母线长2243 ,故圆锥的侧面积=12×8π×5=20π, 故答案为:20π.【答案点睛】本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明略;(2)BC=52,BF=320. 【答案解析】测试卷分析:(1)连结AE.有AB 是⊙O 的直径可得∠AEB=90°再有BF 是⊙O 的切线可得BF ⊥AB ,利用同角的余角相等即可证明;(2)在Rt △ABE 中有三角函数可以求出BE ,又有等腰三角形的三线合一可得BC=2BE,过点C 作CG ⊥AB 于点G .可求出AE,再在Rt △ABE 中,求出sin ∠2,cos ∠2.然后再在Rt △CGB 中求出CG ,最后证出△AGC ∽△ABF 有相似的性质求出BF 即可.测试卷解析:(1)证明:连结AE.∵AB 是⊙O 的直径, ∴∠AEB=90°,∴∠1+∠2=90°.∵BF 是⊙O 的切线,∴BF ⊥AB , ∴∠CBF +∠2=90°.∴∠CBF =∠1.∵AB=AC ,∠AEB=90°, ∴∠1=21∠CAB.∴∠CBF=21∠CAB.(2)解:过点C 作CG ⊥AB 于点G .∵sin ∠CBF=55,∠1=∠CBF , ∴sin ∠1=55. ∵∠AEB=90°,AB=5. ∴BE=AB·sin ∠1=5.∵AB=AC ,∠AEB=90°, ∴BC=2BE=52.在Rt △ABE 中,由勾股定理得5222=-=BE AB AE .∴sin ∠2=552,cos ∠2=55. 在Rt △CBG 中,可求得GC=4,GB=2. ∴AG=3.∵GC ∥BF , ∴△AGC ∽△ABF. ∴ABAG BF GC =, ∴320=⋅=AG AB GC BF . 考点:切线的性质,相似的性质,勾股定理.20、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【答案解析】(1)根据利润y=(A 售价﹣A 进价)x+(B 售价﹣B 进价)×(100﹣x )列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x 的正整数值即可;(3)利用y 与x 的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【题目详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x )=140x+6000.由700x+100(100﹣x )≤40000得x≤50.∴y 与x 之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:(3)∵140>0,∴y随x的增大而增大.∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【答案点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.21、(1)证明见解析;(2)24 5.【答案解析】测试卷分析:利用矩形角相等的性质证明△DAE∽△AMB. 测试卷解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=245.22、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.【答案解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD,CB的长,进而求出现在从A地到达B地可比原来少走的路程. 【题目详解】解:(1)作CH⊥AB于点H,如图所示,∵BC=12km,∠B=30°,∴162CH BC==km,BH=63km,即桥DC与直线AB的距离是6.0km;(2)作DM⊥AB于点M,如图所示,∵桥DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=6==62sin4522DMkm,AM=DM=6km,∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=62+12-6-63=6+62-63 4.1≈km,即现在从A地到达B地可比原来少走的路程是4.1km.【答案点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.23、(1)7x1+4x+4;(1)55.(1)根据整式加法的运算法则,将(4x 1+5x+6)+(3x 1﹣x ﹣1)即可求得纸片①上的代数式;(1)先解方程1x =﹣x ﹣9,再代入纸片①的代数式即可求解.【题目详解】解:(1)纸片①上的代数式为:(4x 1+5x+6)+(3x 1﹣x ﹣1)=4x 1+5x+6+3x 1-x-1=7x 1+4x+4(1)解方程:1x =﹣x ﹣9,解得x =﹣3代入纸片①上的代数式得7x 1+4x+4=7×(-3)²+4×(-3)+4 =63-11+4=55即纸片①上代数式的值为55.【答案点睛】本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.24 【答案解析】先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【题目详解】解:原式=1﹣()()8x 2x 2+-•(2444x x x +-÷x 22x -)=1﹣()()8x 2x 2+-•()224x x -•2x 2x -=1﹣42x +=x 22x -+,当﹣2时,原式33-. 【答案点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.25、见解析测试卷分析:根据等边三角形的性质得出AC=BC ,∠B =∠ACB =60°,根据旋转的性质得出CD=CE ,∠DCE =60°,求出∠BCD =∠ACE ,根据SAS 推出△BCD ≌△ACE ,根据全等得出∠EAC =∠B =60°,求出∠EAC =∠ACB ,根据平行线的判定得出即可.测试卷解析:∵△ABC 是等边三角形,∴AC=BC ,∠B =∠ACB =60°,∵线段CD 绕点C 顺时针旋转60°得到CE ,∴CD=CE ,∠DCE =60°,∴∠DCE =∠ACB ,即∠BCD +∠DCA =∠DCA +∠ACE ,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE ∥BC.26、(1)见解析;(2)【答案解析】(1)根据平行四边形的性质得出AB=CD ,BC=AD ,∠B=∠D ,求出BE=DF ,根据全等三角形的判定推出即可; (2)求出△ABE 是等边三角形,求出高AH 的长,再求出面积即可.【题目详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,BC AD =,B D ∠∠=,∵点E 、F 分别是BC 、AD 的中点, ∴1BE BC 2=,1DF AD 2=, ∴BE DF =,在ΔABE 和ΔCDF 中AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABE ≌ΔCDF (SAS );(2)作AH BC ⊥于H ,∵四边形ABCD 是平行四边形,∴AD//BC ,AD BC =,∵点E 、F 分别是BC 、AD 的中点,BC 2AB 4==, ∴1BE CE BC 22===,1DF AF AD 22===, ∴AF //CE ,AF CE =,∴四边形AECF 是平行四边形,∵AE CE =,∴四边形AECF 是菱形,∴AE AF 2==,∵AB 2=,∴AB AE BE 2===,即ΔABE 是等边三角形,BH HE 1==, 由勾股定理得:22AH 213=-=∴四边形AECF 的面积是2323=【答案点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.27、(1)证明见解析.(2)证明见解析.【答案解析】分析:(1)连接OC ,由OA=OC 、AC 平分∠DAB 知∠OAC=∠OCA=∠DAC ,据此知OC ∥AD ,根据AD ⊥DC 即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴AC ADAB AC,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.。
山东莒县教研室编写的2017届中考模拟测试(三)数学试题(考试时间100分钟,满分120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.下列运算正确的是A.39±=B.33-=-C.39-=-D.932=- 2.方程12222x x x-+=--的解是 A.1x = B.1x =- C.2x = D.2x =- 3.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为A .42110-⨯千克 B .62.110-⨯千克 C .52.110-⨯千克 D .42.110-⨯千克 4.将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图1所示,那么在这个正方体中,和“强”相对的字是A .文 B.明 C.民5.如图2,把一块含有45°角的直角三角板的两个非直角顶点放在直尺的对边上.如果 ∠1=20°,那么∠2的度数是A .30° B.25° C.20° D.15°6.如图3,直线334y x =+与x 、y 轴分别交于A 、B 两点,则cos ∠BAO 的值是A .54 B.53 C.34 D.457.数据3,6,7,4,x 的平均数是5, 则这组数据的中位数是A.4B.4.5C.5D.68.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 A.12 B.14 C.16 D.1129.已知反比例函数y =kx的图象经过点(1,-2),则k 的值为 A .2 B .-12C .1D .-2 10.把x 3﹣9x 分解因式,结果正确的图2 富 强 民 主 文 明 图1图8A .()29x x - B .()23x x - C .()()33x x x +- D .()23x x +11.如图4,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r =5,AC则∠B 的度数是A .30° B.45° C.50° D.60°12.海口市2011年平均房价为每平方米8000元,2013年平均房价降到每平方米7000元,设这两年平均房价年平均降低率为x ,根据题意,下面所列方程正确的是 A .8000(1+x )2=7000 B .8000(1﹣x )2=7000 C .7000(1﹣x )2=8000 D .7000(1+x )2=8000 13.如图5,△ABC 的两条中线BE 、CD 交于O ,则:EDO ADE S S ∆∆=A .1∶2B .1∶3C .1∶4D .1∶614.如图6,△ABC 的面积为2,将△ABC 沿AC 方向平移至△DFE ,且AC =CD ,则四边形AEFB 的面积为A .6B .8C .10D .12二、填空题(本大题满分16分,每小题4分)15.一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重______千克. 16.函数y =x 的取值范围是____________. 17.如图7,矩形ABCD 中,AB =8,BC =4,,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F ,那么BF = .18.如图8,PA 、PB 切⊙O 于A 、B 两点,若∠P =600,⊙O 的半径为3,则阴影部分的面积为 .三、解答题(本大题满分62分) 19.(满分10分,每小题5分)AB O C图4 DA C E D 图6B F O图5 B DC A E(1)计算:()()()242-÷---;(2)解不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩,并写出它的整数解.20.(满分8分)举世瞩目的世界博览会在上海隆重开园,开幕式前,某旅行社组织甲、乙两个公司的部门主管赴上海观摩开幕式的盛况,其中预订的一类门票,二类门票的数量和所花费用如下表:根据下表给出的信息,分别求出一类门票和二类门票的单价.21.(满分8分)“端午节”吃“粽子”是我国的传统习俗.某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图9的两幅统计图(尚不完整).请根据以上信息回答: (1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.22.(满分9分)如图10,一搜救船在海面A 处测得亚航失事客机的第一个黑匣子的俯角∠EAC为600,第二个黑匣子的俯角∠EAB 为300,此处海底的深度AD 为3千米. 求两个黑匣子的距离BC1.73≈,精确到0.1千米)23.(满分13分)如图11,正方形ABCD 中,直线a 经过点A ,且BE ⊥a 于E ,DF ⊥a 于F .(1)当直线a 绕点A 旋转到图11.1的位置时,求证:①△ABE ≌△DAF ;②EF=BE+DF ;图9A C E D 图10 B(2)当直线a 绕点A 旋转到图11.2的位置时,试探究EF 、BE 、DF 具有怎样的等量关系?请写出这个等量关系,并加以证明;(3)当直线a 绕点A 旋转到图11.3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,不证明.24.(满分14分)如图12,抛物线c x b x a y ++=2经过点A (5,0),B (-3,0),C (0,4).(1)求这条抛物线的函数关系式;(2)过C 作CD ∥x 轴交抛物线于D , 连续BC 、AD ,两个动点P 、Q 分别从A 、B 两点同时出发,都以每秒1个单位长度的速度运动.其中,点P 沿着线段AB 向B 点运动,点Q 沿着折线B→C→D 的路线向D 点运动.设这两个动点运动的时间为t (秒)(0<t <7),△PQB 的面积记为S .①求S 与t 的函数关系式;②当t 为何值时,S 有最大值,最大值是多少?③是否存在这样的t 值,使得△PQB 是直角三角形?若存在,请直接写出t 的值;若不存在,请说明理由.参考答案及评分标准一、选择题:1.C,2.A,3.C,4.A,5.B,6.A,7.C,8.C,9.D,10.C,11.D,12.B,13.B,14.C.aA BCD EF 图11.1aA BCDEF图11.2aA B C DEF图11.3x二、填空题: 15.25x -,16.1x ≥且2x ≠3π. 三、解答题:19.(1)解:原式=12÷(-4)-1…(3分) (2)解:解不等式①得3x < …(1分)=-3-1 ………(4分) 解不等式②得13x >…(3分) =-4 ………(5分) ∴不等式组的解集是133x << …(4分)不等式组的整数解是1和2 …(5分) 20.解:设一类门票和二类门票的单价分别是x 、y 元,依题意得…(1分)25180061600x y x y +=⎧⎨+=⎩ ……………(4分) 解得400200x y =⎧⎨=⎩ ……………(7分) 答:一类门票和二类门票的单价分别是400和200元. …(8分)21.解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.……………(2分) (2)画图略; ……………(4分) (3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.……………(6分) (4) 树状图略P (C 粽)=312=14. ……………(8分)22. 解:由题意知:∠DAC =30°,△ADC 是直角三角形,在Rt △ADC 中,cos30°=ADAC, ……………(3分) ∴AC =2 ……………(6分) ∵∠CAB =∠ABC =30º,∴BC=AC =2≈3.5(千米) ……………(8分)答:两个黑匣子的距离BC 的长为3.5千米. ……………(9分)23.(1)①证明:∵四边形ABCD 是正方形∴AB=AD ,∠BAD=90º.∴∠BAE+∠DAF=90º ……(2分) 又∵BE ⊥a ,DF ⊥a , ∴∠AEB=∠DFA=90º ∴∠BAE+∠ABE=90º∴∠ABE=∠DAF ……(3分) ∴ΔABE ≌ΔDAF. ……(4分) ②∵ΔABE ≌ΔDAF∴AE=DF,BE=AF ……(5分) 又∵EF=AE+AF∴EF=BE+DF ……(6分) (2)EF=DF-BE ……(7分) 证明:∵四边形ABCD 是正方形∴AB=AD ,∠BAD=90º,∴∠BAE+∠DAF=90º……(8分) 又∵BE ⊥a ,DF ⊥a ,∴∠AEB=∠DFA=90º ∴∠BAE+∠ABE=90º ∴∠ABE=∠DAF∴ΔABE ≌ΔDAF. ……(10分) ∴AE=DF,BE=AF 又∵EF=AE-AF∴EF=DF-BE ……(11分) (3)EF=BE-DF ……(13分) 24.(1)∵抛物线c x b x a y ++=2经过A(5,0),B(-3,0)∴设y =a (x +3)(x -5). ………(3分)∴4=a (0+3)(0-5),解得a =-415. ………(4分) ∴抛物线的函数关系式为y =-415(x +3)(x -5),即24841515y x x =-++.……(5分) (注:用其它方法求抛物线的函数关系式参照以上标准给分.)(2)①易求D (3,4)(ⅰ)当0<t ≤5时,QB=t ,PB=8-t .过点Q 作QF ⊥x 轴于F ,则QF=45t ,∴S=21PB ·QF 14(8)25t t =-⋅221655t t =-+. ……(7分)(ⅱ)当5≤t <7时,Q 点的纵坐标为4,PB=8-t .S=1(8)42t -⨯216t =-+. ……………………(8分) ②(ⅰ)当0<t ≤5时,22216232(4)5555S t t t =-+=--+.∵25-<,∴当t =4时,S 有最大值,最大值S=325. ……(9分) (ⅱ)当5≤t <7时,S 216t =-+.∵ 20-<,∴S 随着t 的增大而减小.∴当t =5时,S 有最大值,最大值s=6. ……(10分)综合(ⅰ)(ⅱ),当t =4时,S 有最大值,最大值为325. ……(11分) ③ 存在. …………………………(12分)当点Q 在线段BC 上(不与C 重合)时,要使得△PQB 是直角三角形,必须使得∠PQB=90°,x这时ΔBOC~ΔBQP,∴BQ OBBP BC=,即t38t5=-,∴3t=. ……(13分)当点Q与C重合时,符合要求,此时t=5. ………………(14分)(注:用其它方法求解参照以上标准给分.)。