山东省临沂相公中学2014_2015学年八年级数学下学期期末考试试题新人教版
- 格式:doc
- 大小:274.00 KB
- 文档页数:11
2014-2015学年度下学期期末考试数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1-x 在实数X 围内有意义,则x 的取值X 围是>0 ≤1 C.x ≥1 >1A.123=-B.2363=•C.532=+D.5)5(2-=-3.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩(m)人数 1 2 4 3 3 2这些运动员跳高成绩的众数分别 A .1.65 B .1.70 C .1.80 D .4A.1、2、3B.5、12、13C.1、1、3D.6、7、8 5.直线y=-2x+1经过的象限是A.三、二、一B.三、四、一C.二、三、四D.二、一、四6.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =,MN 与AC 交于点O ,连接BO .若∠DAC =28°,则∠OBC 的度数为 A . 28° B . 52°C . 62°D . 72°7.如图,函数y =3x 和y =ax +4的图象相交于点A (1,3),则不等式2x ≥ax +4的解集为 A. 1≥x B.3≤x C. 1≤x D.3≥x8.我市开展了“寻找雷锋足迹”的活动,某中学为了了解八年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了八年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,估计该校八年级800名学生在“学雷锋活动月”中做好事不少于5次的人数有 A .384B .256 C .160D .4169.如图,正方形ABCD 的边长为5,点M 是边BC 上的点,DE ⊥AM 于点E ,BF ∥DE ,交AM 于点F.若E 是AF 的中点,则DE 的长为5A.52B.4C.32D.10.如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连接EF ,则线段EF 的最小值是 B.2.4 C二、填空题(共6小题,每小题3分,共18分) 11.计算:312 =.12.已知一次函数y=(k+2)x-k,函数y 的值随自变量x 的值的增大而增大,则k 的取值X 围是为.13.某校女子排球队队员的年龄分布如下表:年龄 13 14 15 人数47414.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF=AE+FC ,则边BC 的长为. 15.周末,小华骑自行车从家出发到植物园游玩,从家出发0.5小时后,因自行车损坏修理了一段时间后,按原速前往植物园,小华离家1小时20分后,爸爸开车沿相同路线前往植物园.如图是他们离家的路程y(km)y与小华离家的时间x(h)的函数图象,已知爸爸开车的速度是小华骑车速度的3倍.若爸爸比小华早10分达到植物园,则从小华家到植物园的路程是_________km.16.(1)△ABC中,AB=15,BC=14,AC=13,则BC边上的高为;(2)如图,△ABC中,AB=AC,∠A=30°,点D在AB上,∠ACD=15°,AD=2,则BC=.三、解答题(共8小题,共72分)17.(本题8分)在平面直角坐标系中,直线y=kx﹣2经过点A(﹣2,0),求不等式kx+3≤0的解集.18.(本题8分)如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠证:四边形ABCD是矩形.19.(本题8分)某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图某某息,解决下列问题:(1)七年级共有人参加了兴趣小组;(2)体育兴趣小组对应扇形圆心角的度数为;(3)以各小组人数组成一组新数据,求这组新数据的中位数.20(本题8分)如图,点D,E分别是△ABC的边AB,AC的中点.点O是△ABC内的动点,点G,F分别是OB,OC的中点.(1)求证:四边形DGFE是平行四边形;(2)若四边形DGFE是正方形,请直接给出OA应满足的条件是.21. (本题8分)如图,四边形OABC的边OA,OC分别在y轴、x轴的正半轴,且OA=OC=4,∠OCB=90°,AB=10.(1)直接写出四边形OABC的面积为;(2)点D在x轴上,且∠BAD=90°,则点D的坐标是;(3)点P在x轴上,且∠APO=∠BPC,请画出点P,并直接写出点P的坐标为.22. (本题10分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.A,B两种型号车的进货和销售价格如下表:(1)今年A 型车每辆售价多少元?(2)该车计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?23. (本题10分)如图1,正方形ABCD 的边长为6cm ,点E 从点B 出发,沿射线AB 方向以1cm/秒的速度移动,点F 从点D 出发,向点A 以1cm/秒的速度移动(不到点A ).设点E ,F 同时出发移动t 秒.(1)在点E ,F 移动过程中,连接CE ,CF ,EF ,则△CEF 的形状是,始终保持不变; (2)如图2,连接EF ,设EF 交BD 移动M ,当t=2时,求AM 的长;(3)如图3,点G ,H 分别在边AB ,CD 上,且GH=53cm ,连接EF ,当EF 与GH 的夹角为45°,求t 的值.24.(本题12分)平面直角坐标系中,直线l 1:321+-=x y 与x 轴交于点A ,与y 轴交于点B ,直线l 2:k kx y 2+=与x 轴交于点C ,与直线l 1交于点P. (1)当k=1时,求点P 的坐标;(2)如图1,点D 为PA 的中点,过点D 作DE ⊥x 轴于E ,交直线l 2于点F ,若DF=2DE ,求kA 型车B 型车进货价格(元) 1100 1400 销售价格(元)2000的值;(3)如图2,点P 在第二象限内,PM ⊥x 轴于M ,以PM 为边向左作正方形PMNQ ,NQ 的延长线交直线l 1于点R ,若PR=PC ,求点P 的坐标.2014---2015学年度下学期期末考试数学试卷参考答案二、11.2 12.k>-2 13.14 14.33 15.4516.(1)12, (2)2 (第1空1分,第2空2分)三、17. k= -1, ……4分 x ≥3 ……8分18. 在□ABCD 中, AO=CO ,BO=DO ……2分 ∵∠1=∠2 , ∴BO=CO , ……5分∴AO=BO=CO=DO ∴AC=BD , ……7分∴□ABCD 为矩形……8分19.(1)320; ……3分 (2)108°;……6分 (3)这组新数据为16、32、48、64、64、96. 中位数为5626448=+. ……8分20.(1)14 ;……3分(2)(-1,0);……5分(3)画图,……6分P ⎪⎭⎫⎝⎛0,716……8分 21.(1)∵D ,E 分别是AB ,AC 的中点, ∴DE ∥BC ,DE=21BC ……1分 又G ,F 分别是OB ,OC 的中点, ∴GF ∥BC ,GF=21BC ……2分 ∴DE ∥GF ,DE=GF ……3分 ∴四边形DGFE 是平行四边形. ……4分 (2)AO 的延长线经过BC 的中点. 理由如下:延长AO 至点H ,使OH=AO ,连接BH ,CH,……5分则CD ∥BH ,BE ∥CH, ∴OBHC 是平行四边形 ……7分 ∴OH 与BC 互相平分 , 即AO 的延长线经过BC 的中点. ……8分22.(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元, ……1分, ……3分解得:x =1600.经检验,x =1600是原方程的解. ……4分 答:今年A 型车每辆售价1600元. ……5分(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,y =(1600﹣1100)a +(2000﹣1400)(60﹣a )=﹣100a +36000. ……7分 ∵B 型车的进货数量不超过A 型车数量的两倍,于是60﹣a ≤2a , 60﹣a ≥ 0 ∴20≤a ≤60. ……8分 ∵k =﹣100<0,∴y 随a 的增大而减小. ……9分 ∴当a =20时,y 最大=34000元. ∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大. ……10分 23.(1)等腰直角三角形; ……2分(2)过点E 作EN ∥AB ,交BD 于点N ,∴∠END=∠ABD=∠EDN=45°, ∴EN=ED=BF ……4分 可证△EMN ≌△FMB , ∴EM=FM ……5分 Rt △AEF 中,AE=4,AF=8, EF=5484AF AE 2222=+=+∴AM=21EF=52……6分 (3)连接CE ,CF ,设EF 与GH 交于P , ……7分 由(1)得∠CFE=45°,又∠EPQ=45°, ∴GH ∥CF , ……8分 又AF ∥DC, ∴四边形GFCH 是平行四边形 , ……9分 ∴CF=GH=53,在Rt △CBF 中, 得BF=3,∴t=3.……10分24.(1)当k=1时,直线l 2为y=x+2. ……1分解方程组⎪⎩⎪⎨⎧+=+=321-y 2x y x , 解得⎪⎩⎪⎨⎧==38y 32x ,∴P (32,38) ……2分 (2)当y=0时,kx+2k=0 , ∵k ≠0,∴x=-2 ∴C(-2,0),OC=2 ……3分当y=0时,0321-=+x , ∴x=6 , ∴A(6,0), OA=6 ……4分 过点P 作PG ⊥DF 于点G ,易证△PDG ≌△ADE , ……5分 得DE=DG=21DF ,∴PD=PF, ∴∠PFD=∠PDF ∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°∴∠PCA=∠PAC , ∴PC=PA ……6分 过点P 作PH ⊥CA 于点H , ∴CH=21CA=4, ∴OH =2 ……7分 当x=2时,y=23221-=+⨯代入y=kx+2k ,得k=21……8分(3)先证Rt △PMC ≌Rt △PQR ,得CM=RQ , ∴NR=NC ……9分 设NR=NC=a ,则R (-a-2,a ), ……10分 代入321+-=x y ,得a =+-3)2a -21-(,解得,a=8 ……11分设P (m ,n),则⎪⎩⎪⎨⎧-=--=+nm n 823m 21-,解得⎪⎩⎪⎨⎧=-=316314m n ∴P ⎪⎭⎫⎝⎛316314-,……12分。
八年级期末数学模拟考试试题一、选择题(每小题3分,共30分)1、在函数y=1x-3 中,自变量x 的取值范围是 ( )A .3x ≠B .0x ≠C .3x >D .3x =2、下列计算正确的是 ( )A .623x x x =B .()248139x x --= C.111362a a a --= D.()021x +=3、下列说法中错误的是 ( ) A .两条对角线互相平分的四边形是平行四边形; B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的 ( )A .平均数B .中位数C .众数D .方差5、点P (3,2)关于x 轴的对称点'P 的坐标是 ( ) A .(3,-2) B .(-3,2) C .(-3,-2) D .(3,2)6、下列运算中正确的是 ( )A .1y x x y +=B .2233x y x y +=+C .221x y x y x y +=--D . 22x y x y x y +=++7、如图,已知P 、Q 是△ABC 的BC 边上的两点,且BP=PQ=QC=AP=AQ,则∠BAC 的大小为 ( )A .120°B .110°C .100°D .90°8、如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为 ( )A. 6B. 4C. 3D. 29、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程s (米)关于时间t (分)的函数图象,那么符合这个同学行驶情况的图像大致是C Q P B AE CBD Ayxoyxoyxoyxo( )A .B .C .D .10、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( ) A.梯形的下底是上底的两倍 B.梯形最大角是120° C.梯形的腰与上底相等 D.梯形的底角是60° 二、填空题(每小题3分,共30分)11、若分式x2-4x2-x-2的值为零,则x 的值是 .12、已知1纳米=1109 米,一个纳米粒子的直径是35纳米,这一直径可用科学计数法表示为米.13、如图,已知OA=OB ,点C 在OA 上,点D 在OB 上,OC=OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有 对.14、如图,ACB DFE BC EF ==∠∠,,要使ABC DEF △≌△,则需要补充一个条件,这个条件可以是 .15、已知y 与x-3成正比例,当x=4时,y=-1;那么当x=-4时,y= 。
新人教版2014-2015学年八年级下期末数学试题2015.8.6一、选择题(每小题3分,满分36分)1.(2015春•博兴县期末)下列二次根式中,是最简二次根式的是()A.B.C。
D.2.(2015春•博兴县期末)下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23 3.(2003•南宁)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形4.(2015春•博兴县期末)下列函数,y随x增大而减小的是()A.y=x B.y=x﹣1 C.y=x+1 D.y=﹣x+1 5.(2015•蓬溪县校级模拟)下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③6.(2015•滨州)顺次连接矩形ABCD各边中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C正方形D.菱形7.(2015春•博兴县期末)函数y=kx+2,经过点(1,3),则y=0时,x=()A.﹣2 B.2 C.0 D.±28.(2015春•博兴县期末)等边三角形的边长为2,则该三角形的面积为()A.B.C.D.39.(2015春•博兴县期末)初二(1)班5位同学在“爱心捐助”捐款活动中,捐款如下(单位:元):4,6,8,16,16,那么这组数据的中位数、众数分别为()A.6,16 B.7,16 C.8,16 D.12,16 10.(2015春•博兴县期末)已知a<b,则化简二次根式的正确结果是()A.B. C ,D.11.(2015春•博兴县期末)如图,直线y=kx+b经过点A(2,1),则下列结论中正确的是()A当y≤2时,x≤1 B.当y≤1时,x≤2C.当y≥2时,x≤1D.当y≥1时,x≤212.(2015春•博兴县期末)平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为()A.6<AC<10 B.6<AC<16 C.10<AC<16 D.4<AC<16二、填空题:(每小题4分,满分24分)13.(4分)(2015•滨州)计算(+)(﹣)的结果为.(2015春•博兴县期末)如图,菱形ABCD的边长为8cm,∠BAD=60°,14.(4分)则对角线AC的长为.15.(4分)(2015春•博兴县期末)有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.16.(4分)(2015•滨州)把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为.17.(4分)(2015•滨州)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为,.17题图 18题图18.(4分)(2015春•博兴县期末)如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要米.三、解答题:(满分60分)19.(10分)(2015春•博兴县期末)计算:(1)×(2)(3﹣)(1+)20.(8分)(2015春•博兴县期末)如图,已知AC=4,BC=3,BD=12,AD=13,∠ACB=90°,试求阴影部分的面积.21.(9分)(2011•潮州校级模拟)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.22.(10分)(2015春•博兴县期末)王老师为了从班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了5次测验,测验成绩情况如图表所示:.请利用图表中提供的数据,解答下列问题:(1)根据图中分别写出甲、乙五次的成绩:甲:;乙:.(2)填写完成下列表格:平均成绩中位数众数方差甲13 无 4乙13(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由..23.(10分)(2015春•博兴县期末)如图,平行四边形ABCD的对角线AC,BD交于点0,E,F在AC上,G,H在BD上,且AF=CE,BH=DG.求证:FG∥HE.24.(13分)(2015春•博兴县期末)如图,直线OC、BC的函数关系式分别是y1=x和y2=﹣2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?八年级(下)期末数学试题答案一、选择题1.故选;B. 2.故选:B. 3.故选:D. 4.故选D. 5.故选:D.6.故选:D. 7.故选A. 8.故选C 9.故选C. 10.故选A.11.故选:B. 12.故选D.二、填空题:13.故答案为:﹣1. 14.故答案为8cm15.3或. 16.故答案为y=﹣x+1. 17.故答案为:(10,3)18.故答案为7.三、解答题:本大题共6小题,满分60分19.解答:解:(1)原式=﹣=4﹣;(2)原式=(3﹣)•(1+)=(3﹣)•==2.20.解答:解:连接AB,∵∠ACB=90°,∴AB==5,∵AD=13,BD=12,∴AB2+BD2=AD2,∴△ABD为直角三角形,阴影部分的面积=AB×BD﹣AC×BC=30﹣6=24.答:阴影部分的面积是24.21.解答:解:设一次函数为y=kx+b(k≠0),(1分)因为它的图象经过(3,5),(﹣4,﹣9),所以解得:,所以这个一次函数为y=2x﹣1.(5分)22.解答:解:(1)用折线统计图得甲的成绩为:10,13,12,14,16;乙的成绩为:13,14,12,12,14;(2)甲的平均数=(10+13+12+14+16)=13,乙的成绩按由小到大排列为:12,12,13,14,14,所以乙的中位数为13,众数为12和14,方差=[(12﹣13)2+[(12﹣13)2+[(13﹣13)2+[(14﹣13)2+[(14﹣13)2]=0.8;(3)选乙去竞赛.理由如下:甲乙两人的平均数相同,中位数相等,但乙的成绩比较稳定,所以选乙去.故答案为10,13,12,14,16;13,14,12,12,14;13,13,12和14,0.8.23.解答:证明:如右图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AF=CE,BH=DG,∴AF﹣OA=CE﹣OC,BH﹣OB=DG﹣OD,∴OF=OE,OG=OH,∴四边形EGFH是平行四边形,∴GF∥HE.24.解答:解:(1)依题意得解方程组,得,∴C点坐标为(2,2);根据图示知,当x>2时,y1>y2;(2)如图,过C作CD⊥x轴于点D,则D(2,0),∵直线y2=﹣2x+6与x轴交于B点,∴B(3,0),①当0<x≤2,此时直线m左侧部分是△P′Q′O,∵P′(x,0),∴OP′=x,而Q′在直线y1=x上,∴P′Q′=x,∴s=x2(0<x≤2);②当2<x<3,此时直线m左侧部分是四边形OPQC,∵P(x,0),∴OP=x,∴PB=3﹣x,而Q在直线y2=﹣2x+6上,∴PQ=﹣2x+6,∴S=S△BOC﹣S△PBQ==﹣x2+6x﹣6(2<x<3);(3)直线m平分△BOC的面积,则点P只能在线段OD,即0<x<2.又∵△COB的面积等于3,故x2=3×,解之得x=.∴当x=时,直线m平分△COB的面积.。
2015—2016学年第二学期期末八年级数学试题(时间:90分钟,满分100分)第Ⅰ卷 选择题(36分)一、选择题(共12小题,每小题3分,共36分.请将答案填入题后答案表格内.) 1. 式子32x ,1π,4a b-+,3a b +中是分式的有( )个A.1B.2C.3D.4 2. 下列命题是真命题的是( )A.若a >b ,则ac >bcB.若ac >bc ,则a >bC.若a >b ,则ac ²>bc ²D.若ac ²>bc²,则a >b 3. 下列图形中,既是轴对称图形,又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.等腰三角形 D.正六边形 4. 对整式3x 2-12y 2因式分解正确的是( )A. 3(x ²-4y ²)B. 3(x +2y )(x -2y )C. 3(2x +y )(2x -y )D. 3(x -2y )² 5. 下列不能判断四边形ABCD 是平行四边形的是( ) A. AB =CD ,AD =BC B. AB ∥CD ,AD =BC C. AB ∥CD ,AD ∥BC D.∠A =∠C,∠B =∠D6. 若点(a -3,2a +2)在第二象限,则a 的取值范围为( ) A. 3<a <-1 B. a <3 C. a >-1 D. -1<a <37. 如图,在△ABC 中,BC 的垂直平分线EF 交∠ABC 的 平分线BD 于点E ,如果∠BAC =60°,∠ACE =24°,那 么∠BCE 的大小是( )A. 24°B. 30°C. 32°D. 36°8. 已知等腰三角形的周长为8,其中一边长为2,则另两边长为( ) A. 3,3 B. 2,4或3,3 C. 2,4 D. 2,39. 如图所示,四边形ABCD 是菱形,AC=8,DB =6,DH ⊥AB 于H ,则DH =( )DA.245 B.125C.12D.24 10. 如图,在平行四边形ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( )A.7B.10C.11D.1211. 下列命题是真命题的是( )A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的平行四边形是矩形C. 四条边相等的四边形是菱形D. 正方形是轴对称图形,但不是中心对称图形 12. 如图,在Rt △ABC 中,AB =BC =4,D 到为BC 的中点,AC 边上存在一点E ,则△BDE 周长的最小值为( )A.2D. 2Ⅰ卷答题栏第Ⅱ卷 非选择题(64分)二、填空题(每小题3分,共18分)13. 一个多边形的每个外角都等于72°,则这个多边形的边数是___________.第9题图 第10题图A E DB C14.若代数式1x -有意义,则实数x 的取值范围是__________ 15. 分解因式:3222a a b ab -+=_____________________16. 如图所示,直线y =kx +b 经过A (-1,1)和B(,0)两点,则不等式0<kx +b <-x 的解集为_________________.17. 矩形ABCD 中,AB =5,BC =4,将矩形折叠,使得点B 落在线段CD 的点F 处,则线段BE 的长为______________.18. 在等边△ABC 中,点D ,E 分别为AB ,BC 边上的两个动点,且总使AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF=___________ 三、解答题(共7题,46分)19. (5分)解不等式组3(2)8123x x x x +<+⎧⎪-⎨≤⎪⎩20. (6分)先化简2213(2)22a a a a a ++÷-+++,然后从-2,-1,1,2四个数中选择一个合适的数第16题图第17题图A E第18题图AD作为a的值代入求值.21. (7分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=12 BC,连接CD和EF.⑴求证:DE=CF;⑵求EF的长.22(6分)列方程解应用题甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23. (7分)如图,在等边△ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.⑴求∠F的度数;⑵若CD=2,求DF的长.24. (6分)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.⑴试在图中做出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1; ⑵若点B 的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A 、C 两点的坐标; ⑶根据⑵的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2、C 2两点的坐标.25.(9分)如图⑴,在△ABC 和△EDC 中,AC =CE =CB =CD ,∠ACB =∠ECD =90°,边AB 与边CE 交于F ,边ED 与边AB 、BC 分别交于M 、H . ⑴求证:CF =CH ;⑵如图⑵,△ABC 不动,将△EDC 从△ABC 的位置绕点C 顺时针旋转,当旋转角 ∠BCD =45°时,试判断四边形ACDM 是什么四边形?并证明你的结论. ⑶当AC =2时,在⑵的条件下,求四边形ACDM 的面积.A图(1)图(2)八年级数学参考答案一、选择题(每小题3分,共36分)12二、填空题(每小题3分,共18分)13.五 14. x≥0且x≠1 15.a(a-b)² 16. <x<-1 17.5218.12三、解答题(共7题,共46分.阅卷时请根据实际情况给出步骤分):19.解:由①得,x<1由②得,x≤-2∴原不等式组的解集为:x≤-2……………………………5分20.原式=11aa+-,当a=2时,原式=3……………………………6分21解答:(1)证明:∵D、E分别为AB、AC的中点,∴DE 12 BC,∵延长BC至点F,使CF=12 BC,∴DE FC,即DE=CF;……………………………3分(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF……………………………7分22. 解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗。
2014-2015学年第一学期质量水平评估八年级数学试卷)A.2个 B.3个 C.4个 D.5个2.下列运算正确的是()A.yxyyxy--=--B.3232=++yxyxC.yxyxyx+=++22D.yxyxxy-=-+1223、二次根式21、12、30、x+2、240x、22yx+中,最简二次根式有()个。
A、1 个B、2 个C、3 个D、4个4.x的取值范围为().A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且x≠35.若方程2667=----xkxx无解,则k的值是( )A.-1 B.0 C.6 D.16、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C(C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC7.如图所示,函数xy=1和34312+=xy的图象相交于(-1,1),(2,2)两点.当21yy>时,x的取值范围是()评卷人ABCDEA .x <-1B .—1<x <2C .x >2D . x <-1或x >28.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( )A .1B .2C .3D .29.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个 10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .6511.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( ) A .2B .4C .4D .8⎝⎭-23-=______________________14、 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
班级 姓名 座号 成绩……………………………装…………………………订……………………………线………………………………2014-2015学年度(下)八年级期末质量检测数 学(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置. 一、精心选一选:本大题共8小题,每小题4分,共32分. 1、下列计算正确的是( ) A .234265= B 82=C 2733=D 2(3)3-=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是( ) A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7B .7,6.5C .5.5,7D .6.5,75、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是 ( ) (A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<06、如图,把直线L 沿x 轴正方向向右平移2个单位得到 直线L ′,则直线L /的解析式为( ) A.12+=x y B. 42-=x y C. 22y x =- D. 22+-=x y7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ) (A )4 cm (B )5 cm (C )6 cm (D )10 cm8、如图,ABC∆和DCE ∆都是边长为4的等边三角形,点A第7题BCDEDBA (第8题ABCD EFC A BD B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( ) (A )3(B )23(C )33(D )43二、细心填一填:本大题共8小题,每小题4分,共32分. 9、计算123-的结果是 . 10、实数p 在数轴上的位置如图所示,化简22(1)(2)_______p p -+-=。
2014—2015学年下学期期末八年级数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共36分,答案请填在题后答题栏内;第Ⅱ卷为非选择题,共64分.Ⅰ、Ⅱ卷合计100分,考试时间为90分钟.第Ⅰ卷(选择题 共36分)一.选择题(每小题3分,共36分)1. 下列各式①x 2 ② y x +1③ 325y x - ④123-x 中 ,是分式的有( )A .①②④ B.②③④ C.①② D.①②③④ 2. 下列多项式,不能运用平方差公式分解因式的是( ) A.42+-m B.22y x -- C.122-y x D.()()22a m a m +--3. 将长度为6cm 的线段向上平移8cm 再向右平移6cm ,所得线段长为( ) A. 12cm B. 10cm C. 6cm D. 无法确定4. 如图所示,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( ) A .AB =DC B .∠1=∠2 C.AB =AD D .∠D =∠B5. 2015年3月26日起,也门局势紧张,在亚丁湾护航的护卫舰“潍坊舰”第一时间赶到亚丁港,全力撤离中国公民,并帮助美国等承认无法帮助公民离境的国家撤侨.舰上所有官兵全力以赴,提高效率,现在撤离350人所用的时间与原计划撤离250人所用的时间相同,已知每小时实际比原计划多撤离20人,求原计划与实际撤离人员的效率.设原计划x 人/小时,依题意列方程正确的是( )A .20350250-=x x B .20350250+=x xC .20250350-=x xD .20250350+=x x6. 已知三角形的3条中位线分别为3cm ,4cm ,5cm ,则这个三角形的面积是( ) A .6cm 2B .10cm 2C .24cm 2D .40cm 27. 已知关于x 的方程(m -1)x 2+x +1=0有一个根,则m 的值是( ) A .45 B . 1 C .45- D .1或45 8. 一种商品原价200元,由于市场情况不好,经过连续两次降价m %后售价为148元,则下面所列方程中正确的是( )A .200(1+m %)2=148 B .200(1-m %)2=14821DABCC .200(1-2m %)2=148D .200[1-(m %)2]=148 9. 已知12x x ,是一元二次方程122+=x x 的两个根,则2111x x +的值为( ) A.21-B.2C.21D.10. 如图,在平行四边形ABCD 中,AB =8,BC =12,A C 的垂直平分线交AD 于点E ,则△CDE 的周长是( )A. 14B. 20C. 22D. 2411. 菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积为( ) A. 48 B. 25 C. 24 D. 1212. 如图一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为F ,若BE =6cm ,则DE =( )A. 24cmB. 6cmC. 8cmD. 10cm第4题 第10题 第12题选择题答题栏: 第Ⅱ卷(非选择题 共64分)题号 一 二 三 总 分得分1920212223242526题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二.填空题(每小题3分,共18分)13. 如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是 .14. 分式方程xmxx-=+-313有增根,则m=.15. 章丘市体育馆是广大市民健身的好去处,小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍,则骑自行车的速度为.16. 如图,P是矩形ABCD内一点,将△ABP绕点B顺时针方向旋转一定的角度后,AB能与CB重合,如图.若PB=2,AB=3,BC=4,则P P′= .17.若9x2+kxy+y2是完全平方式,则k=.18.如图,在矩形ABCD中,AB=6cm BC=8cm点P由点A出发,沿AB边以1cm/s的速度向点B移动,点Q由点B出发,沿BC边以2cm/s的速度向点D移动,到A时,PQ同时终止. 如果点P,Q同时出发, 经过秒后,△PBQ的面积等于8cm².第13题第16题第18题三.解答题(本大题共8个小题,满分46分)19.(本小题3分)如图,已知四边形ABCD和点O,画四边形EFGH,使四边形EFGH和四边形ABCD关于点O成中心对称.得分评卷人得分评卷人20.(本题6分,每小题3分)应用因式分解进行化简⑴4x (y +z )2-4x 2(y +z )-(y +z )3⑵22199919981998-+ 21.(本小题5分)如图,在四边形ABCD 中,AD ∥BC ,AB =CD =2,BC =5,∠BAD 的平分线交BC 于点E ,且AE ∥CD ,试求四边形ABCD 的面积.得分 评卷人得分 评卷人第21题图 22.(本小题 6分)如图,在平行四边形ABCD 中,点E ,F 分别是AB ,CD 的中点.⑴求证:四边形AEFD 是平行四边形; ⑵若∠A =60°,AD =2,AB =4,求BD 的长.23. (本小题 6分)辨析纠错.已知:如图,在△ABC 中,AD 是∠BAC 的平分线,DE ∥AC ,DF ∥AB .求证:四边形AEDF 是菱形.对于这道题,小明是这样证明的.证明:∵AD 平分∠BAC ,∴ ∠1=∠2(角平分线的定义). ∵ DE ∥AC ,∴ ∠2=∠3(两直线平行,内错角相等). ∴ ∠1=∠3(等量代换).得分 评卷人得分 评卷人∴AE =DE (等角对等边).同理可证:AF =DF . ∴ 四边形AEDF 是菱形(菱形定义).老师说小明的证明过程有错误,你能看出来吗? ⑴请你帮小明指出他错在哪里. ⑵请你帮小明做出正确的解答.24.(本小题6分)一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间 相等,求江水的流速为多少? 25.(本小题6分)如图,在正方形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .⑴请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 .⑵在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.26.(本小题8分)得分评卷人已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.⑴如果x=-1是方程的根,试判断△ABC的形状,并说明理由;⑵如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;⑶如果△ABC是等边三角形,试求这个一元二次方程的根.八年级数学参考答案一.选择题(共36分,每题3分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B C D B C D B D B C A二.填空题(共18分,每题3分)13. 22.5° 14. -3 15.15千米/小时 16. 22 17. ±62618. 2或4或3三.解答题(共46分,阅卷时请根据实际情况给出步骤分)19. 3分,略20.每题3分,共6分:(1)-(y+z)(2x-y-z)2 (2)-199921. 以下仅供阅卷教师参考.解:过点A作AF⊥BC于点F.∵AD∥BC,∴∠DAE=∠AEB,又∵∠BAE=∠DAE,∴∠BAE=∠AEB,∵AE∥CD,∴∠AEB=∠C,∵AD∥BC,AB=CD=2,∴四边形是等腰梯形,…………2分∴∠B=∠C,∴△ABE是等边三角形,∴AB=A E=BE=2,∠B=60°,∴AF=AB•sin60°=2×=,…………3分∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∴AD=EC=BC﹣BE=5﹣2=3,…………4分∴梯形的面积=(AD+BC)×AF=×(3+5)×=4.…………5分22.解(1)∵四边形ABCD 是平行四边形 ∴AB ∥CD ,AB =CD ∴DF ∥AE ,DF = AE ,∴四边形AEFD 为平行四边形…………3分 (2)∵AE =21AB =2,AD =2 ∴AD = AE ,又∵∠A =60° ∴AD =AE =DE ∴∠AED =60° …………4分又∵DE =BE ∴∠EDB =∠EBD =30°∴∠ADB =90° …………5分 ∴BD =23 …………6分 23..解:能.⑴小明错用了菱形的定义. ………2分 ⑵改正:∵ ∥,∥,∴ 四边形是平行四边形.∵ 平分∠,∴ ∠∠2.∵ ∥,∴ ∠∠2,∴ ∠=∠3.∴ ,∴ 平行四边形是菱形. ………6分24.解:设江水的流速为x 千米/时,由题意得:xx -=+206020100 …………3分 解之,得:x =5经检验,x =5是所列方程的根 …………5分 答:江水的流速为5千米/时. …………6分25.解:(1)本题共2分,根据学生添加的条件,视学生答题情况而给分. (2)∵BH =CH ,EH =FH ,∴四边形BFCE 是平行四边形(对角线互相平分的四边形为平行四边形), …………4分 ∵当BH =EH 时,则BC =EF ,∴平行四边形BFCE 为矩形(对角线相等的平行四边形为矩形)6分 26.解:(1)△ABC 是等腰三角形;…………1分 理由:∵x =﹣1是方程的根,∴(a +c )×(﹣1)2﹣2b +(a ﹣c )=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,…………2分∴a=b,∴△ABC是等腰三角形;…………3分(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,…………4分∴4b2﹣4a2+4c2=0,∴a2=b2+c2,…………5分∴△ABC是直角三角形;…………6分(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,…………7分∴x2+x=0,解得:x1=0,x2=﹣1.…………8分11。
2014-2015学年八年级下学期期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列图形中,不属于中心对称图形的是()A.圆B.等边三角形C.平行四边形D.线段2.(3分)下列多项式中,能用公式法分解因式的是()A.﹣m2+n2B.a2﹣2ab﹣b2C.m2+n2D.﹣a2﹣b23.(3分)把分式,,进行通分,它们的最简公分母是()A.x﹣y B.x+y C.x2﹣y2D.(x+y)(x﹣y)(x2﹣y2)4.(3分)一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.105.(3分)下列语句:①每一个外角都等于60°的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式有意义的条件是分子为零且分母不为零.其中正确的个数为()A.1B.2C.3D.46.(3分)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.9B.10 C.11 D.127.(3分)如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a >kx+b的解集正确的是()A.x>1 B.x>﹣1 C.x<1 D.x<﹣18.(3分)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3C.4D.59.(3分)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.cm D.cm10.(3分)若不等式ax<b的解集为x>2,则一次函数y=ax+b的图象大致是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)分解因式:2m3﹣8m=.12.(3分)若分式的值为0,则x的值为.13.(3分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE=.14.(3分)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD 的周长为cm.15.(3分)已知关于x的方式方程=2﹣会产生增根,则m=.16.(3分)已知△ABC的顶点A的坐标为(1,2),经过平移后的对应点A′的坐标为(﹣1,3),则顶点B(﹣2,1)平移后的对应点B′的坐标为.17.(3分)对于非零的两个实数a、b,规定a⊕b=,若2⊕(2x﹣1)=1,则x的值为.18.(3分)已知点A的坐标为(1,1),点O是坐标原点,在x轴的正半轴上确定点P,使△AOP是等腰三角形,则符合条件的点P的坐标为.三、(本题共2小题,每小题7分,共14分)19.(7分)解不等式组并把它的解集在数轴上表示出来.20.(7分)先化简:(﹣1)÷,再选择一个恰当的x值代入求值.四、(本题共3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组满足x﹣y≤0,求k的最大整数值.22.(8分)如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.23.(8分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C (﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.五、(本题共2小题,每小题9分,共18分)24.(9分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?25.(9分)如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE 于点D,BD与AC交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.六、(本题共10分)26.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.。
2014-2015年八年级下学期数学期末考试试题(临沂兰山区)2015.06 一、选择题(每题3分,共36分),每题有四个答案,将唯一答案填在题答题栏中。
1.下列式子一定是二次根式的是2.已知正比例的函数图像经过点(1,-3),则下列点不在函数图像的是A.(0,0)B.(2,-6)C.(5,-1.5)D.(m,-3m)3.下列计算错误的是D.4.下列命题中是真命题的是A.两边相等的平行四边形是菱形B.一组对边平行一组对边相等的四边形是平行四边形C.两条对角线相等的平行四边形是矩形D.对角线互相垂直且相等的四边形是正方形5.菱形和矩形都具有的性质是A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分6.直线y=x=+1与y=-2x-4交点在A.第一象限B.第二象限C.第三象限D.第四象限7.以下列各组数为一个三角形的三边长,能够成直角三角形的是A.2,3,4B.4,6,5C.14,13,12D.7,25,248.在三角形中,两条直角边长分别是6和8,则斜边上的中线长是A.5B.10C.4.8D.139.已知平行四边形ABCD中,∠B=4∠A,则∠C=A.18°B.36°C.72°D.144°10.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是157辆,那么这15天通过该路口汽车平均辆数为A.146B.150C.153D.160011.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OEAC交AD于E,则AE的长是A.1.6B.2.5C.3D.3.412.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为(A. 1个B.2个C.3个D.0个二、填空题(每题3分,共24分)13.若式子2在实数范围内有意义,则x的取值范围是.14.写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的增大而减小(2)图象经过点(1,-3)。
班级 姓名 座号 成绩……………………………装…………………………订……………………………线………………………………2014-2015学年度(下)八年级期末质量检测数 学(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置. 一、精心选一选:本大题共8小题,每小题4分,共32分. 1、下列计算正确的是( ) A .234265= B 82=C 2733=D 2(3)3-=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是( ) A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7B .7,6.5C .5.5,7D .6.5,75、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是 ( ) (A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<06、如图,把直线L 沿x 轴正方向向右平移2个单位得到 直线L ′,则直线L /的解析式为( ) A.12+=x y B. 42-=x y C. 22y x =- D. 22+-=x y7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ) (A )4 cm (B )5 cm (C )6 cm (D )10 cmA第7题BCDECB(第8题ABCD E F8、如图,ABC ∆和DCE ∆都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( ) (A )3(B )23(C )33(D )43二、细心填一填:本大题共8小题,每小题4分,共32分. 9、计算123-的结果是 . 10、实数p 在数轴上的位置如图所示,化简22(1)(2)_______p p -+-=。
2014-2015学年度八年级下期数学期末测试卷一、选择题(12小题,每题3分,共36分) 1.能判定一个四边形是菱形的条件是( )(A )对角线相等且互相垂直 (B )对角线相等且互相平分 (C )对角线互相垂直 (D )对角线互相垂直平分 2.下列命题是假命题的是( )A.平行四边形的对边相等B.四条边都相等的四边形是菱形C.矩形的两条对角线互相垂直D.等腰梯形的两条对角线相等 3.下列几组数据能作为直角三角形的三边长的是( )(A) 2,3,4 (B) 5,3,4 (C) 4,6,9 (D) 5,11,134.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误..的是( )A.众数是80 B.中位数是75 C.平均数是80 D.极差是15 5.下列图形中,既是轴对称又是中心对称的图形是( )(A)正三角形 (B)平行四边形 (C)等腰梯形 (D)正方形 6.在平面直角坐标系中,直线(00)y kx b k b =+<>,不经过( ) (A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限7. 直角三角形两直角边边长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm8.如图,平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别为(0,0), (5,0)、(2,3),则顶点C 的坐标是( ).(A) (3,7) (B) (5,3) (C) (7,3) (D)(8,2) 9.如图,将一张矩形纸片对折后再对折,然后沿着图中的虚线剪下,得到①、②两部分,将②展开后得到的平面图形是( ) (A) 矩形 (B)平行四边形 (C)梯形 (D) 菱形10.如图,□ABCD 的周长是28cm ,△ABC 的周长是22cm , 则AC 的长为 ( ) (A ) 6cm (B ) 12cm (C ) 4cm (D ) 8cm第DE FDCBA125a11.如图所示,有一张一个角为60开后,不能拼成的四边形是( )A .邻边不等的矩形B .等腰梯形C .有一角是锐角的菱形D .正方形12.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分....a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A 、1213a ≤≤B 、1215a ≤≤C 、512a ≤≤D 、513a ≤≤ 二、填空题(每题3分,共18分)13.20y =,那么x y +=_________14.若菱形的两条对角线长分别为6cm ,8cm ,则其周长为_________cm 。
新人教版2014-2015年八年级下学期期末质量检测数学试题及答案
2014-2015学年下期期末考试参考答案-八年级数学
一、选择题答案:1-5 DDACC,6-8 AAB。
二、解答题答案:
9.x≥-1 且x≠1
10.25°
11.2≤x≤3
12.27cm
13.±
14.6
15.3/5
16.化简得a=-1,代入得a^3=-1
17.15°或165°
18.先求出对角线长约为2.88m,国旗下垂时最低处离地面为10-2.88≈7.1m。
19.(1)90分;82分;(2)S2甲=26,S2乙=106,从方
差来看,甲的成绩比较稳定,所以应选派甲参加竞赛。
20.(简证)(1)由平行四边形ABCD可知,四边形AFCE是平行四边形;(2)四边形AFCE是平行四边形,所
以△MEC≌△NFA;(3)由(2)可知,∠MEC=∠NFA,所以∠MCB=∠NAF,又∠M=∠N,所以四边形MNCD是平行
四边形。
21.(1)y=x+2;(2)-2≤x≤∞;(3)y=x-1.
22.(1)y=-400x+;(2)x≥10,最大利润为元。
23.(简证)(1)由∠PEB=∠ABE,∠PBE=∠ABE可得
到∠PEB=∠PBE,即EP=BP,同理可证FP=BP,所以EP=FP;(2)四边形BFCE是平行四边形,且∠EBF=90°;(3)在(2)的基础上证明,如果矩形BFCE是正方形,那么EB=FB,那么∠BEF=∠BFE=45°,与∠EBF=90°矛盾,所以XXX不是
正方形。
新人教版2014-2015学年八年级(下)期末数学试卷A卷(100分)一、选择题(本题共30分,每小题3分)1.(2015春•西城区期末)下列图案中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(2015春•西城区期末)下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.2,2,3 B. 3,4,5 C. 5,12,13 D. 1,,3.(2013•黔西南州)已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B. 160°C. 80°D. 60°4.(2015春•西城区期末)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4 B.C. 3 D. 54题图5题图6题图5.(2012•铜仁地区)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C. 4 D.﹣46.(2015春•西城区期末)某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B. 7,7 C. 9,9 D. 9,7 7.(2014•绵阳)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形8.(2015春•西城区期末)某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米.若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是()A.2000(1+x)2=2880 B. 2000(1﹣x)2=2880C.2000(1+2x)=2880 D. 2000x2=28809.(2015春•西城区期末)若一直角三角形的两边长分别是6,8,则第三边长为()A.10 B.C. 10或D.14 10.(2015春•西城区期末)如图,以线段AB为边分别作直角三角形ABC和等边三角形ABD,其中∠ACB=90°.连接CD,当CD的长度最大时,此时∠CAB的大小是()A.75°B.45°C.30°D. 15°10题图12题图15题图二、填空题(本题共24分,每小题3分)11.(2015春•西城区期末)若x=2是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为.12.(2014•成都)如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是m.13.(2015春•西城区期末)2015年8月22日,世界田径锦标赛将在北京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.6秒,甲、乙、丙、丁的成绩的方差分别是0.07,0.03,0.05,0.02.则当天这四位运动员中“110米跨栏”的训练成绩最稳定运动员的是.14.(2015春•西城区期末)双曲线y=经过点A(2,y1)和点B(3,y2),则y1y2.(填“>”、“<”或“=”)15.(2015春•绿园区期末)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD= .16.(2015春•西城区期末)将一元二次方程x2+8x+3=0化成(x+a)2=b的形式,则a+b的值为.17.(2015春•西城区期末)如图,将▱ABCD绕点A逆时针旋转30°得到▱AB′C′D′,点B′恰好落在BC边上,则∠DAB′= °.17题图18题图18.(2015春•西城区期末)如图,在平面直角坐标系xOy中,菱形OABC的顶点B在x轴上,OA=1,∠AOC=60°.当菱形OABC开始以每秒转动60度的速度绕点O逆时针旋转时,动点P同时从点O出収,以每秒1个单位的速度沿菱形OABC的边逆时针运动.当运动时间为1秒时,点P的坐标是;当运动时间为2015秒时,点P的坐标是.三、解答题(本题共20分,第19题10分,其余每小题10分)19.(10分)(2015春•西城区期末)解方程:(1)(x﹣5)2﹣9=0;(2)x2+2x﹣6=0.20.(5分)(2015春•西城区期末)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.21.(5分)(2015春•西城区期末)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣4,1),C(﹣3,3).△ABC关于原点O对称的图形是△A1B1C1.(1)画出△A1B1C1;(2)BC与B1C1的位置关系是平行,AA1的长为2;(3)若点P(a,b)是△ABC 一边上的任意一点,则点P经过上述变换后的对应点P1的坐标可表示为.四、解答题(本题共12分,每小题6分)22.(6分)(2015春•西城区期末)“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.根据以上信息回答下列问题:(1)本次共随机抽取了50 名学生进行调查,听写正确的汉字个数x在21≤x<31 范围的人数最多;(2)补全频数分布直方图;(3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;听写正确的汉字个数x 组中值1≤x<11 611≤x<21 1621≤x<31 2631≤x<41 36(4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.23.(6分)(2015春•西城区期末)已知关于x的一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.五、解答题(本题共14分,每小题7分)24.(7分)(2015春•西城区期末)如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,AB∥y轴,且点B的纵坐标为1,双曲线y=经过点B.(1)求a的值及双曲线y=的解析式;(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为.①求直线BC的解析式;②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.25.(7分)(2015春•西城区期末)已知:在矩形ABCD和△BEF中,∠DBC=∠EBF=30°,∠BEF=90°.(1)如图1,当点E在对角线BD上,点F在BC边上时,连接DF,取DF的中点M,连接ME,MC,则ME与MC的数量关系是,∠EMC= °;(2)如图2,将图1中的△BEF绕点B旋转,使点E在CB的延长线上,(1)中的其他条件不变.①(1)中ME与MC的数量关系仍然成立吗?请证明你的结论;②求∠EMC的度数.B卷(50分)一、填空题(本题6分)26.(6分)(2015春•西城区期末)若一个三角形的三条边满足:一边等于其他两边的平均数,我们称这个三角形为“平均数三角形”.(1)下列各组数分别是三角形的三条边长:①5,7,5;②3,3,3;③6,8,4;④1,,2.其中能构成“平均数三角形”的是;(填写序号)(2)已知△ABC的三条边长分别为a,b,c,且a<b<c.若△ABC既是“平均数三角形”,又是直角三角形,则的值为.二、解答题(本题共14分,每小题7分)27.(7分)(2015春•西城区期末)阅读下列材料:某同学遇到这样一个问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点A(1,t)在反比例函数(x>0)的图象上,求点A到直线l的距离.如图1,他过点A作AB⊥l于点B,AD∥y轴分别交x轴于点C,交直线l于点D.他发现OC=CD,∠ADB=45°,可求出AD的长,再利用Rt△ABD求出AB的长,即为点A到直线l的距离.请回答:图1中,AD= ,点A到直线l的距离= .参考该同学思考问题的方法,解决下列问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点M(a,b)是反比例函数(x>0)的图象上的一个动点,且点M在第一象限,设点M到直线l的距离为d.(1)如图2,若a=1,d=,则k= ;(2)如图3,当k=8时,①若d=,则a= ;②在点M运动的过程中,d的最小值为.28.(7分)(2015春•西城区期末)已知:四边形ABCD是正方形,E是AB边上一点,连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF.(1)如图1,求证:DE=DF;(2)若点D关于直线EF的对称点为H,连接CH,过点H作PH⊥CH交直线AB于点P.①在图2中依题意补全图形;②求证:E为AP的中点;(3)如图3,连接AC交EF于点M,求的值.答案:一、选择题1.故选B.2.故选:A.3.故选C.4.故选:A.5.故选D.6.故选D.7.故选:C.8.故选A.9.故选C.10.故选:B.二、填空题(本题共24分,每小题3分)11.故答案是:﹣11.12.故答案为:64.13.故答案为:丁.14.故答案为:>.15.故答案为:10.16.故答案为:17.17.故答案为:75.18.故答案为:(0,﹣1);(0,0)三、解答题(本题共20分,第19题10分,其余每小题10分)19.解答:解:(1)方程整理得:(x﹣5)2=9,开方得:x﹣5=±3,即x﹣5=3,或x﹣5=﹣3,解得:x1=8,x2=2;(2)这里a=1,b=2,c=﹣6,∵△=b2﹣4ac=22﹣4×1×(﹣6)=28>0,∴方程有两个不相等的实数根,则x=﹣1±.20.解答:证明:(1)如图:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠1=∠2,∵AE∥CF,∴∠3=∠4,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS);(2)∵△AEB≌△CFD,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.21.解答:解:(1)根据题意画出△A1B1C1,如图所示;(2)由题意得:BC∥B1C1,AA1==2;(3)利用中心对称图形性质得:点P经过上述变换后的对应点P1的坐标为(﹣a,﹣b).故答案为:(2)平行,2;(2)(﹣a,﹣b)四、解答题(本题共12分,每小题6分)22.解答:解:(1)抽取的学生总数是10÷20%=50(人),听写正确的汉字个数21≤x<31范围内的人数最多,故答案是:50,21≤x<31;(2)11≤x<21一组的人数是:50×30%=15(人),21≤x<31一组的人数是:50﹣5﹣15﹣10=20.;(3)=23(个).答:被调查学生听写正确的汉字个数的平均数是23个.(4)(人).答:估计该校本次“汉字听写”比赛达到良好的学生人数约为810人.23.解答:解:(1)∵一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根,∴△=b2﹣4ac=(2m+2)2﹣4×1×(m2﹣4)=8m+20>0,∴;(2)∵m为负整数,∴m=﹣1或﹣2,当m=﹣1时,方程x2﹣3=0的根为:,(不是整数,不符合题意,舍去),当m=﹣2时,方程x2﹣2x=0的根为x1=0,x2=2都是整数,符合题意.综上所述m=﹣2.五、解答题(本题共14分,每小题7分)24解答:解:(1)∵点A(a,)在直线y=﹣上,∴﹣a﹣=,解得a=2,则A(2,﹣),∵AB∥y轴,且点B的纵坐标为1,∴点B的坐标为(2,1).∵双曲线y=经过点B(2,1),∴m=2×1=2,∴反比例函数的解析式为y=;(2)①设C(t,),∵A(2,﹣),B(2,1),∴×(2﹣t)×(1+)=,解得t=﹣1,∴点C的坐标为(﹣1,﹣2),设直线BC的解析式为y=kx+b,把B(2,1),C(﹣1,﹣2)代入得,解得,∴直线BC的解析式为y=x﹣1;②当y=1时,﹣=1,解得x=﹣1,则D(﹣1,1),∵直线BCy=x﹣1为直线y=x向下平移1个单位得到,∴直线BC与x轴的夹角为45°,而BD∥x轴,∴∠DBC=45°,当△PBD为等腰直角三角形时,以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,若∠BPD=90°,则点P在BD的垂直平分线上,P点的横坐标为,当x=时,y=x﹣1=﹣,此时P(,﹣),若∠BDP=90°,则PD∥y轴,P点的横坐标为﹣1,当x=﹣1时,y=x﹣1=﹣2,此时P(﹣1,﹣2),综上所述,满足条件的P点坐标为(﹣1,﹣2)或(,).25答:解:(1)如图1,,∵∠BEF=90°,∴∠DEF=90°,∵点M是DF的中点,∴ME=MD,∵∠BCD=90°,点M是DF的中点,∴MC=MD,∴ME=MC;∵ME=MD,∴∠MDE=∠MED,∴∠EMF=∠MDE+∠MED=2∠MDE,∵MC=MD,∴∠MDC=∠MCD,∴∠CMF=∠MDC+∠MCD=2∠MDC,∴∠EMC=∠EMF+∠CMF=2(∠MDE+∠MDC)=2∠BDC,又∵∠DBC=30°,∴∠BDC=90°﹣30°=60°,∴∠EMC=2∠BDC=2×60°=120°.(2)①ME=MC仍然成立.证明:如图2,分别延长EM,CD交于点G,,∵四边形ABCD是矩形,∴∠DCB=90°.∵∠BEF=90°,∴∠FEB+∠DCB=180°.∵点E在CB的延长线上,∴FE∥DC.∴∠1=∠G.∵M是DF的中点,∴FM=DM.在△FEM和△DGM中,,∴△FEM≌△DGM,∴ME=GM,∴在Rt△GEC中,MC=EG=ME,∴ME=MC.②如图3,分别延长FE,DB交于点H,,∵∠4=∠5,∠4=∠6,∴∠5=∠6.∵点E在直线FH上,∠FEB=90°,∴∠HEB=∠FEB=90°.在△FEB和△HEB中,,∴△FEB≌△HEB.∴FE=HE.∵FM=MD,∴EM∥HD,∴∠7=∠4=30°,∵ME=MC,∴∠7=∠8=30°,∴∠EMC=180°﹣∠7﹣∠8=180°﹣30°﹣30°=120°.故答案为:ME=MC,120.一、填空题(本题6分)26.是②③;(填写序号)(2).二、解答题(本题共14分,每小题7分)27解答:解:图1中,把x=1代入反比例解析式得:t=3,即A(1,3),即AC=3,把x=1代入y=﹣x得:y=﹣1,即CD=1,∴AD=AC+CD=3+1=4,点A到直线l的距离AB=×4=2;(1)由题意得:△MBD为等腰直角三角形,∴MB=BD=MD=5,即MD=10,把x=1代入y=﹣x得:y=﹣1,即CD=1,∴MC=9,则k=1×9=9;(2)①由k=8,得到ab=8(i),如图2所示,得到BM=BD=AD=3,即AD=6,把x=a代入y=﹣x得:b=﹣a,即MD=MC+CD=b+a=6(ii),联立(i)(ii)得:a=2,b=4或a=4,b=2,则a=2或4;②由题意得:ab=8,∵a+b≥2=4,∴MD的最小值为4,则BM的最小值为4,即d的最小值为4.故答案为:4;2;(1)9;(2)①2或4;②428.解答:解:(1)∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠ADC=∠DCB=90°.∴∠DCF=180°﹣90°=90°.∴∠DAE=∠DCF.∵DF⊥DE,∴∠EDF=90°.∵∠ADE+∠CDE=90°,∠CDE+∠CDF=90°,∴∠ADE=∠CDF.在△DAE和△DCF中,∴△DAE≌△DCF.∴DE=DF.(2)①所画图形如图2所示.②连接HE,HF,如图3.∵点H与点D关于直线EF对称,∴EH=ED,FH=FD.∵DE=DF,∴EH=FH=ED=FD.∴四边形DEHF是菱形.∵∠EDF=90°,∴四边形DEHF是正方形.∴∠DEH=∠EHF=∠HFD=90°.∴∠AED+∠PEH=90°,∠HFC+∠DFC=90°.∵△DAE≌△DCF,∴∠AED=∠DFC,AE=CF.∴∠PEH=∠HFC.∵PH⊥CH,∴∠PHC=90°.∵∠PHE+∠EHC=90°,∠EHC+∠FHC=90°,∴∠PHE=∠PHC.在△HPE和△HCF中,,∴△HPE≌△HCF.∴PE=CF.∴AE=PE.∴点E是AP的中点.(3)过点F作GF⊥CF交AC的延长线于点G,如图4.则∠GFC=90°.∵正方形ABCD中,∠B=90°,∴∠GFC=∠B.∴AB∥GF.∴∠BAC=∠G.∵四边形ABCD是正方形,∴AB=BC,∴∠BAC=∠BCA=90°=45°.∴∠BAC=∠BCA=∠FCG=∠G=45°.∴FC=FG.∵△DAE≌△DCF,∴AE=CF.∴AE=FG.在△AEM和△GFM中,,∴△AEM≌△GFM.∴AM=GM.∴AG=2AM,在Rt△ABC中,.同理,在Rt△CFG中,.∴.∴.∴.。
2014-2015学年新人教版八年级(下)期末数学模拟试卷一、选择题(本题共10小题,满分共30分)1.(3分)(2014春•嘉峪关校级期末)二次根式、、、、、中,最简二次根式有()个.A.1个B.2个C.3个D.4个2.(3分)(2013•济宁三模)若式子有意义,则x的取值范围为() A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠33.(3分)(2014春•西华县校级期末)如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.3,4,5C.3,4,5 D.4,7,84.(3分)(2005•天津)在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.A C=BD,AB∥CD,AB=CD B.A D∥BC,∠A=∠CC.A O=BO=CO=D O,AC⊥BD D.A O=CO,BO=DO,AB=BC5.(3分)(2011•防城港)如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40°B.50°C.60°D.80°6.(3分)(2001•常州)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n 为常数,且mn≠0)的图象的是()A.B.C.D.7.(3分)(2014春•西华县校级期末)在方差公式中,下列说法不正确的是()A.n是样本的容量B.x n是样本个体C.是样本平均数D.S是样本方差8.(3分)(2013•西华县校级模拟)如图所示,函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<﹣1 B.﹣1<x<2 C.x>2 D.x<﹣1或x>29.(3分)(2011•嘉兴)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月10.(3分)(2013秋•册亨县校级期末)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.B.C.D.二、填空题(本题共10小题,满分共20分)11.(3分)(2015•杭州模拟)﹣+﹣30﹣=.12.(3分)(2014春•西华县校级期末)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为.13.(3分)(2014春•西华县校级期末)平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.14.(3分)(2014春•西华县校级期末)在直角三角形ABC中,∠C=90°,CD是AB边上的中线,∠A=30°,AC=5,则△ADC的周长为.15.(3分)(2014春•西华县校级期末)如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB=5,AC=6,DB=8,则四边形ABCD的周长为.16.(3分)(2013•资阳)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.17.(3分)(2014春•天河区校级期末)某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.18.(3分)(2011•常州)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25、28、30、29、31、32、28,这周的日最高气温的平均值是℃,中位数是℃.19.(3分)(2011•绍兴)为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0。
山东省临沂市2014-2015学年八年级数学下学期期末统考试题八年级单元作业参考答案2015.715.9 16.y =3x +2 17.∠A =90°或AD =BC 或AB ∥CD 18.三 19.8三、解答题 (本题共7个小题,共63分)20.(本题满分7分) 0)21(8143124-⨯⨯-⨯ 128⨯-=.............................................................................................3分222-=................................................................................................5分2=............................................................................................................7分21.(本题满分7分)22.(本题满分7分)解:∵AB =AD =8cm ,∠A =60°,∴△ABD 是等边三角形,......................................................1分 ∵∠ADC =150°∴∠CDB =150°-60°=90°,∴△BCD 是直角三角形,......................................................2分 又∵四边形的周长为32cm ,∴CD +BC=32-AD -AB =32-8-8=16cm ,.....................................3分设CD =x ,则BC =16-x ,..........................................................4分23.(本题满分9分) 解:(1)由图可知,A 比B 后出发1小时;B 的速度:60÷3=20(km/h ); (2)分(2)由图可知点D (1,0),C (3,60),E (3,90),设OC 的解析式为s =kt,则3k =60,解得k =20,所以,s =20t ,...........................................................4分设DE 的解析式为s =mt +n ,则⎩⎨⎧=+=+9030n m n m ,解得⎩⎨⎧-==4545n m , 所以,s =45t -45,....................................................7分分24.(本题满分9分)(1)证明:在▱ABDC 中,∠BAC =∠D ,AB =CD ,AC =BD ,...............................................1分∵E 、F 分别是AC 、BD 的中点,∴AE =DF ,...........................................................2分在△ABE 和△DCF 中,⎪⎩⎪⎨⎧=∠=∠=DF AE D BAC CD AB ,∴△ABE ≌△DCF (SAS );................................3分(2)解:∠P =90°时,四边形BECF 是菱形..........................4分理由如下:25.(本题满分12分)∴直线l 2的解析式为y =23x −6;.................................6分26.(1)PB=PQ,.............................................................. ....1分证明:过P作PE⊥BC,PF⊥CD, (2)分∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,.∴四边形PECF为正方形,.............................................3分∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,...................................................... ...4分∴Rt△PQ F≌Rt△PBE, (5)分∴PB=PQ;............................................................ .........6分。
2014—2015学年下学期期末八年级数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共36分,答案请填在题后答题栏内;第Ⅱ卷为非选择题,共64分.Ⅰ、Ⅱ卷合计100分,考试时间为90分钟.第Ⅰ卷(选择题 共36分)一.选择题(每小题3分,共36分)1. 下列各式①x 2 ② yx +1③ 325y x - ④123-x 中 ,是分式的有( )A .①②④ B.②③④ C.①② D.①②③④ 2. 下列多项式,不能运用平方差公式分解因式的是( ) A.42+-m B.22y x -- C.122-y x D.()()22a m a m +--3. 将长度为6cm 的线段向上平移8cm 再向右平移6cm ,所得线段长为( ) A. 12cm B. 10cm C. 6cm D. 无法确定4. 如图所示,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( ) A .AB =DC B .∠1=∠2 C.AB =AD D .∠D =∠B5. 2015年3月26日起,也门局势紧张,在亚丁湾护航的护卫舰“潍坊舰”第一时间赶到亚丁港,全力撤离中国公民,并帮助美国等承认无法帮助公民离境的国家撤侨.舰上所有官兵全力以赴,提高效率,现在撤离350人所用的时间与原计划撤离250人所用的时间相同,已知每小时实际比原计划多撤离20人,求原计划与实际撤离人员的效率.设原计划x 人/小时,依题意列方程正确的是( )A .20350250-=x x B .20350250+=x x C .20250350-=x x D .20250350+=x x 6. 已知三角形的3条中位线分别为3cm ,4cm ,5cm ,则这个三角形的面积是( ) A .6cm 2B .10cm 2C .24cm 2D .40cm 27. 已知关于x 的方程(m -1)x 2+x +1=0有一个根,则m 的值是( ) A .45 B . 1 C .45- D .1或45 8. 一种商品原价200元,由于市场情况不好,经过连续两次降价m %后售价为148元,则下面所列方程中正确的是( )A .200(1+m %)2=148 B .200(1-m %)2=148C.200(1-2m%)2=148 D.200[1-(m%)2]=1489. 已知12x x,是一元二次方程122+=xx的两个根,则2111xx+的值为()A.21- B.2 C.21D.10. 如图,在平行四边形ABCD中,AB=8,BC=12,A C的垂直平分线交AD于点E,则△CDE的周长是()A. 14B. 20C. 22D. 2411. 菱形的两条对角线长分别是方程x2-14x+48=0的两实根,则菱形的面积为()A. 48B. 25C. 24D. 1212. 如图一张矩形纸片ABCD,AD=10cm ,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为F,若BE=6cm,则DE=()A. 24cm B. 6cm C. 8cm D. 10cm第4题第10题第12题选择题答题栏:第Ⅱ卷(非选择题共64分)二.填空题(每小题3分,共18分)13. 如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC , 则∠BCE 的度数是 .14. 分式方程xm x x -=+-313有增根,则m = . 15. 章丘市体育馆是广大市民健身的好去处,小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍,则骑自行车的速度为 .16. 如图,P 是矩形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转一定的角度后,AB 能与CB 重合,如图.若PB =2,AB =3,BC =4,则P P′=. 17.若9x 2+kxy +y 2是完全平方式,则k = .18.如图,在矩形ABCD 中,AB =6cm BC =8cm 点P 由点A 出发,沿AB 边以1cm/s 的速度向点B 移动,点Q 由点B 出发,沿BC 边以2cm/s 的速度向点D 移动,到A 时,PQ 同时终止. 如果点P ,Q 同时出发, 经过 秒后,△PBQ 的面积等于8cm².第13题 第16题 第18题三.解答题(本大题共8个小题,满分46分) 19.(本小题3分)如图,已知四边形ABCD 和点O ,画四边形EFGH ,使四边形EFGH 和四边形ABCD 关于点O 成中心对称.20.(本题6分,每小题3分)应用因式分解进行化简⑴4x (y +z )2-4x 2(y +z )-(y +z )3⑵22199919981998-+ 21.(本小题5分)如图,在四边形ABCD 中,AD ∥BC ,AB =CD =2,BC =5,∠BAD 的平分线交BC 于点E ,且AE ∥CD ,试求四边形ABCD 的面积.第21题图 22.(本小题 6分)如图,在平行四边形ABCD 中,点E ,F 分别是AB ,CD 的中点.⑴求证:四边形AEFD 是平行四边形; ⑵若∠A =60°,AD =2,AB =4,求BD 的长.23. (本小题 6分)辨析纠错.已知:如图,在△ABC 中,AD 是∠BAC 的平分线,DE ∥AC ,DF ∥AB .求证:四边形AEDF 是菱形.对于这道题,小明是这样证明的.证明:∵AD 平分∠BAC ,∴ ∠1=∠2(角平分线的定义). ∵ DE ∥AC ,∴ ∠2=∠3(两直线平行,内错角相等). ∴ ∠1=∠3(等量代换).∴AE =DE (等角对等边).同理可证:AF =DF . ∴ 四边形AEDF 是菱形(菱形定义).老师说小明的证明过程有错误,你能看出来吗? ⑴请你帮小明指出他错在哪里. ⑵请你帮小明做出正确的解答.24.(本小题6分)一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间 相等,求江水的流速为多少? 25.(本小题6分)如图,在正方形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .⑴请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 .⑵在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.26.(本小题8分)为△ABC三边的长.⑴如果x=-1是方程的根,试判断△ABC的形状,并说明理由;⑵如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;⑶如果△ABC是等边三角形,试求这个一元二次方程的根.八年级数学参考答案一.选择题(共36分,每题3分)二.填空题(共18分,每题3分)13. 22.5° 14. -3 15.15千米/小时 16. 22 17. ±62618. 2或4或3三.解答题(共46分,阅卷时请根据实际情况给出步骤分)19. 3分,略20.每题3分,共6分:(1)-(y+z)(2x-y-z)2 (2)-199921. 以下仅供阅卷教师参考.解:过点A作AF⊥BC于点F.∵AD∥BC,∴∠DAE=∠AEB,又∵∠BAE=∠DAE,∴∠BAE=∠AEB,∵AE∥CD,∴∠AEB=∠C,∵AD∥BC,AB=CD=2,∴四边形是等腰梯形,…………2分∴∠B=∠C,∴△ABE是等边三角形,∴AB=A E=BE=2,∠B=60°,∴AF=AB•sin60°=2×=,…………3分∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∴AD=EC=BC﹣BE=5﹣2=3,…………4分∴梯形的面积=(AD+BC)×AF=×(3+5)×=4.…………5分22.解(1)∵四边形ABCD 是平行四边形 ∴AB ∥CD ,AB =CD ∴DF ∥AE ,DF = AE ,∴四边形AEFD 为平行四边形…………3分 (2)∵AE =21AB =2,AD =2 ∴AD = AE ,又∵∠A =60° ∴AD =AE =DE ∴∠AED =60° …………4分又∵DE =BE ∴∠EDB =∠EBD =30°∴∠ADB =90° …………5分 ∴BD =23 …………6分 23..解:能.⑴小明错用了菱形的定义. ………2分⑵改正:∵ ∥,∥,∴ 四边形是平行四边形.∵ 平分∠,∴ ∠∠2.∵ ∥,∴ ∠∠2,∴ ∠=∠3.∴ ,∴ 平行四边形是菱形. ………6分24.解:设江水的流速为x 千米/时,由题意得:xx -=+206020100 …………3分解之,得:x =5经检验,x =5是所列方程的根 …………5分 答:江水的流速为5千米/时. …………6分25.解:(1)本题共2分,根据学生添加的条件,视学生答题情况而给分. (2)∵BH =CH ,EH =FH ,∴四边形BFCE 是平行四边形(对角线互相平分的四边形为平行四边形), …………4分 ∵当BH =EH 时,则BC =EF ,∴平行四边形BFCE 为矩形(对角线相等的平行四边形为矩形)6分 26.解:(1)△ABC 是等腰三角形;…………1分 理由:∵x =﹣1是方程的根,∴(a +c )×(﹣1)2﹣2b +(a ﹣c )=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,…………2分∴a=b,∴△ABC是等腰三角形;…………3分(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,…………4分∴4b2﹣4a2+4c2=0,∴a2=b2+c2,…………5分∴△ABC是直角三角形;…………6分(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,…………7分∴x2+x=0,解得:x1=0,x2=﹣1.…………8分11。