重庆南开中学初2012级初一(上)期末考试--数学
- 格式:doc
- 大小:369.50 KB
- 文档页数:4
七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.以下四个数中,最大的数是( )A. 0B.C. 1D.−6−22.如图是由6个大小相同的小立方体搭成的几何体,从正面看到的图形是( )A.B.C.D.3.下列运算正确的是( )A. B. C. D.x2+x3=x5x2⋅x3=x6(3x3)2=6x6x6÷x3=x3 4.某校为了了解初一年级1200名学生的视力情况,从中随机抽取了300名学生进行视力情况的调查,下列说法错误的是( )A. 总体是1200名学生的视力情况B. 样本容量是300C. 样本是抽取的300名学生D. 个体是每名学生的视力情况5.如图,点A位于点O的( )A. 南偏东方向上B. 东偏南方向上25°65°C. 南偏东方向上D. 南偏东方向上65°55°6.下列调查中,最适合全面调查普查的是()( )A. 对某班全体同学出生日期的调查B. 对重庆市七年级学生使用手机情况的调查C. 对嘉陵江重庆段水质情况的调查D. 对一批牛奶中某种添加剂的含量检测7.下列说法正确的是( )A. 射线AB 和射线BA 是同一条射线B. 六边形的对角线一共有9条C. 两点之间,直线最短D. 连接两点的线段叫两点间的距离8.小蓉在某月的日历上提出了如图所示的四个数a 、b 、c 、d ,则这四个数的和可能是( )A. 24B. 27C. 28D. 309.甲队有100人,乙队有170人,在总人数不变的情况下,如果要求甲队人数是乙队人数的,应从甲队调多少人去乙队,如果设应从甲队调x 人到乙队,列出的方程12正确的是( )A. B. 100+x =12(170−x)12(100+x)=170−x C. D. 100−x =12(170+x)12(100−x)=170+x10.下列图形都是由相同大小的方块按照一定规律组成的.其中第个图形中一共有4①个方块,第个图形中一共有7个方块,第个图形中一共有10个方块,,照②③…此规律排列下去,第个图形中方块的个数为⑧( )A. 22B. 25C. 28D. 3111.按如图所示的运算程序,能输出的结果为20的是( )A. ,B. ,x =2y =2x =−3y =2C. ,D. ,x =−3y =−2x =3y =−212.设一列数、、、、中任意三个相邻数之和都是20,已知,a 1a 2a 3…a 2014…a 2=2x ,,那么a 18=13a 65=6−x a 2020=( )A. 2B. 3C. 4D. 13二、填空题(本大题共14小题,共42.0分)13.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为,数字用科学记数法表示为______.0.00000156m 0.0000015614.单项式的系数是______.−2x 2y315.如图是正方体的表面展开图,则与“细”字相对的字是______.16.若a 与b 互为相反数,c 与d 互为倒数,则______.2021a +cd +2021b =17.若方程是关于x 的一元一次方程,则x 的值为______.(1−a)x a−3+a =018.若,,则______2021m =62021n =420212m−n =19.今天下午的数学考试将在4:30结束,此时时针与分针的夹角为______度.20.九章算术中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出《》八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,那么这个物品的价格是______元.21.如图,一纸片沿直线AB 折成的V 字形图案,已知图中,则的度数______.∠1=62°∠2=22.若关于x 的方程有无数解,则ab 的值为______.3x2+ax +23=b 23.已知有理数a 、b 、c 在数轴上的对应点如图所示且,化简:|a|>|b|______.|c|−|a +b|−|c−b|=24.若,则的值为______.x 2+2x−5=0x 3+3x 2−3x−525.如图,将一根绳子对折后用线段AB 表示,现从P 处将绳子剪断,剪断后的各段绳子中最长的一段为60cm ,若,则这条绳子的原AP =23PB 长为______cm .26.某商店新进一批衬衣和数对暖瓶一对为2件,暖瓶的对数正好是衬衣件数的一半,()每件衬衣的进价是40元,每对暖瓶的进价是60元暖瓶成对出售,商店将这批物()品以高出进价的价格售出,最后留下了17件物品未卖出,这时,商店发现卖10%出物品的总售价等于所有货物总进价的,则最初购进这批暖瓶______对.90%三、计算题(本大题共3小题,共25.0分)27.(1)−12019+(23)−2+(π−3)0+|14−1|(2)−112÷3+36×(59+16−712)28.(1)2a 2⋅4a 4b 3+(−2a 2b )3−a 5÷a 3(2)x(y−1)−(x−y )2⋅(y−x )3÷(x−y )429.列一元一次方程解决问题()2018年末,“诺如”病毒突现山城,某药店计划购进A 、B 两种瓶装的免洗消毒液共1200瓶这两种消毒液的进价,售价如下表所示:A 种B 种进价元瓶(/)2040售价元瓶(/)3055要使该商场售完这批消毒液的利润恰好为总进价的,A 种消毒液应购进多少45%瓶?四、解答题(本大题共6小题,共47.0分)30.(1)x−6=8−4(x +1)(2)2x−0.30.5−x +0.40.3=131.,其中,.2x 2−[−3(−23x 2+xy)−2xy ⋅y 2]−y(3x +xy )2x =12y =−132.如图,已知B 是线段AC 的中点,D 是线段CE 的中点,若,,求线段BD 的长.AB =4CE =34AC33.2018是我国改革开放四十周年,某校政治组采取随机抽样的方法对该校学生进行了“改革开放四十周年成果”的问卷调查,调查结果分别为A“非常了解”、B“比较了解”、C“基本了解”和D“不了解”四个等级.老师根据调查结果绘制了如下统计图,请根据图中提供的信息解答下列问题(1)本次参与调查问卷的学生有______人;扇形统计图中“基本了解”部分所对应的扇形圆心角是______度;(2)请补全条形统计图;(3)估计该校2000名学生中对“改革开放四十周年成果”不了解的人数约有多少?()写出必要的计算过程(2)34.如图,某校初一班组织学生从A地到B地步行野营,匀速前进,该班师生共56人,每8人排成一排,相邻两排之间间隔1米,途中经过一座桥CD,队伍从开始上桥到刚好完全离开桥共用了150秒,当队尾刚好走到桥的一端D处时,排在队1.5尾的班长发现小萍还在桥的另一端C处拍照,于是以队伍倍的速度返回去找小萍,同时队伍仍按原速度继续前行,30秒后,小萍发现游班长返回来找他,便立2.1/刻以米秒的速度向游班长方向行进,小萍行进40秒后与游班长相遇,相遇后两人以队伍2倍的速度前行追赶队伍.(1)(2)初一班的队伍长度为______米;求班级队伍行进的速度列一元一次方程解决问题;(2)()请问:班长从D 处返回找小萍开始到他们两人追上队首的刘老师一共用了多少(3)时间?35.如图,平面上顺时针排列射线OA 、OB 、OC 、OD ,,在∠BOC =90°∠AOD ∠BOC外部且为钝角,::8,射线OM 、ON 分别平分、题∠AOB ∠COD =7∠AOC ∠AOD.(目中所出现的角均小于且大于180°0°)若,则______,______;(1)∠AOD =120°∠AOM =∠CON =当的大小发生改变时,和之间是否存在着固定的数量关系?(2)∠AOD ∠AOM 7∠CON 如果存在、求出它们之间的数量关系;如果不存在,请说明理由;在的条件下,将绕点O 以每秒的速度顺时针旋转得到、(3)(1)∠AOB 6°∠A 1O B 1(OA OB 的对应边分别是、,同时将绕点O 以每秒的速度顺时针旋转O A 1O B 1)∠COD 2°得到、OD 的对应边分别是、,当第2次与重合时结束,∠C 1O D 1(OC O C 1O D 1)O A 1O C 1若旋转时间为t 秒,求出t 为何值时,?∠A 1O C 1=12∠B 1O D 1答案和解析1.【答案】C1>0>−2>−6【解析】解:,∴最大的数为1,故选:C.根据有理数的大小比较法则即可求出答案.本题考查有理数的大小比较,解题的关键是熟练运用有理数大小比较的法则,本题属于基础题型.2.【答案】A【解析】解:从正面看到的图形是故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识.注意主视图是指从物体的正面看物体.3.【答案】Dx2x3【解析】解:A、、不是同类项,不能合并,此选项错误;B.,此选项错误;x2⋅x3=x5C.,此选项错误;(3x3)2=9x6D.,此选项正确;x6÷x3=x3故选:D.分别依据同类项概念、同底数幂的乘法、幂的乘方与积的乘方和同底数幂的除法法则逐一计算可得.本题主要考查幂的运算,解题的关键是掌握同类项概念、同底数幂的乘法、幂的乘方与积的乘方和同底数幂的除法法则.4.【答案】CA.【解析】解:总体是1200名学生的视力情况,正确;B.样本容量是300,正确;C.样本是抽取的300名学生的视力情况,此选项错误;D.个体是每名学生的视力情况,正确;故选:C.根据题意可得1200名学生的视力情况,从中抽取了300名学生进行视力调查,这个问题中的总体是1200名学生的视力情况,样本是抽取的300名学生进行视力情况,个体是每一个学生的视力情况,样本容量是300,注意样本容量不能加任何单位.此题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.【答案】C65°【解析】解:如图,点A位于点O的南偏东的方向上.故选:C.根据方位角的概念,结合上北下南左西右东的规定进行判断.本题考查了方向角的定义,正确确定基准点是关键.6.【答案】AA.【解析】解:对某班全体同学出生日期的调查适合普查;B.对重庆市七年级学生使用手机情况的调查适合抽样调查;C.对嘉陵江重庆段水质情况的调查适合抽样调查;D.对一批牛奶中某种添加剂的含量检测适合抽样调查;故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似求解.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【答案】B【解析】解:A、射线AB和射线BA不同的射线,故选项C错误;B、六边形的对角线一共有9条,故选项B正确;C、两点之间线段最短,故选项C错误;D、连接两点的线段的长度叫两点间的距离,故选项D错误;故选:B.根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.8.【答案】Db=a+1c=a+8d=a+9【解析】解:依题意,可知:,,,∴a+b+c+d=4a+18.∵a为正整数,∴a+b+c+d=4a+18=30.故选:D.用含a 的代数式表示出b ,c ,d 的值,将四个数相加可得出,a +b +c +d =4a +18由a 为正整数结合四个选项即可得出结论.本题考查了列代数式以及代数式求值,用含a 的代数式表示出是解题的a +b +c +d 关键.9.【答案】C【解析】解:设应从甲队调x 人到乙队,依题意,得:.100−x =12(170+x)故选:C .设应从甲队调x 人到乙队,根据抽调后甲队人数是乙队人数的,即可得出关于x 的一12元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.【答案】B【解析】解:设第n 个图形中有个方块为正整数,a n (n )观察图形,可知:,,,,a 1=4=1+3a 2=7=1+2×3a 3=10=1+3×3…为正整数,∴a n =3n +1(n ).∴a 8=3×8+1=25故选:B .设第n 个图形中有个方块为正整数,观察图形,根据各图形中方块个数的变化可a n (n )得出变化规律“为正整数”,再代入即可求出结论.a n =3n +1(n )n =8本题考查了规律型:图形的变化类,根据各图形中方块个数的变化找出变化规律“a n 为正整数”是解题的关键.=3n +1(n )11.【答案】C【解析】解:,时,输出结果为,不符合题意;A.x =2y =22×22+2=10B .,时,输出结果为,不符合题意;x =−3y =22×(−3)2−2=16C .,时,输出结果为,符合题意;x =−3y =−22×(−3)2−(−2)=20D .,时,输出结果为,不符合题意;x =3y =−22×32+(−2)=16故选:C .根据运算程序,结合输出结果确定的值即可.此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【答案】B【解析】解:任意三个相邻数之和都是20,∵,,,故,,,∴a 1=a 4a 2=a 5a 3=a 6a 1=a 3n+1a 2=a 3n +2a 3=a 3n ,,∴a 18=a 3=13a 65=a 2=6−x =2x ,∴a 2=4,∴a 1=3.∴a 2020=a 1=3故选:B .首先根据任意三个相邻数之和都是20,推出,,,总结规律为a 1=a 4a 2=a 5a 3=a 6a 1=,,,即可推出,,求出a 3n +1a 2=a 3n +2a 3=a 3n a 18=a 3=13a 65=a 2=6−x =2x a 2,即可推出,推出.=4a 1=3a 2020=a 1=3此题考查数字的变化规律,掌握数字之间的运算规律,利用规律解决问题是解答此题的关键.13.【答案】1.56×10−6【解析】解:.0.000 00156=1.56×10−6故答案为:.1.56×10−6绝对值的正数也可以利用科学记数法表示,一般形式为,与较大数的科学<1a ×10−n 记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n 为a ×10−n 1≤|a|<10由原数左边起第一个不为零的数字前面的0的个数所决定.14.【答案】−23【解析】解:单项式的数字因数是∵−2x 2y 3−23此单项式的系数是.∴−23故答案为:.−23根据单项式系数的定义进行解答即可.本题考查的是单项式的系数,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.15.【答案】题【解析】解:由图形可知,与“细”字相对的字是“题”.故答案为:题.由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.16.【答案】1【解析】解:根据题意得:,,a +b =0cd =1则原式,=2021(a +b)+cd =0+1=1故答案为:1利用相反数,倒数的定义求出,cd 的值,代入原式计算即可求出值.a +b此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.【答案】43【解析】解:根据题意得:,a−3=1解得:,a =4把代入原方程得:a =4,−3x +4=0解得:,x =43故答案为:.43根据一元一次方程的定义,得到关于a 的一元一次方程,解之,代入原方程,解之即可.本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.18.【答案】9【解析】解:,,∵2021m =62021n =4,∴20212m−n =(2021m )2÷2021n =36÷4=9故答案为:9.根据同底数幂的除法的逆运算解答即可.此题考查同底数幂的除法,关键是根据同底数幂的除法的逆运算计算.19.【答案】45【解析】解:4:30时,时针与分针的夹角的度数是,30°×(1+60−3060)=45°故答案为:45.根据钟面平均分成12份,可得每份是,4点30分时,时针分针相差格,30°(1+60−3060)根据时针与分针相距的份数乘以每份的度数,可得答案.本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数进行计算.20.【答案】53【解析】解:设共有x 人,可列方程为:.8x−3=7x +4解得,x =7元,∴8x−3=53()即:这个物品的价格是53元.故答案是:53.根据这个物品的价格不变,列出一元一次方程进行求解即可.本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.21.【答案】56°【解析】解:由折叠可得出,2∠1+∠2=180°,∵∠1=62°,∴∠2=180°−2×62°=56°故答案为.56°根据折叠的性质可得出,代入即可得出的度数.2∠1+∠2=180°∠2本题考查了角的计算,掌握折叠的性质是解题的关键.22.【答案】−3【解析】解:方程两边同时乘以6得:,9x +2(ax +2)=6b 去括号得:,9x +2ax +4=6b 移项得:,9x +2ax =6b−4合并同类项得:,(9+2a)x =6b−4原方程有无数个解,∵,∴9+2a =0解得:,a =−92,∴6b−4=0解得:,b =23即,ab =(−92)×23=−3故答案为:.−3依次去分母,去括号,移项,合并同类项,得:,根据“原方程有无(9+2a)x =6b−4数个解”,分别得到关于a 和关于b 的一元一次方程,解之,即可求ab 的值.本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.23.【答案】a【解析】解:由数轴可得,,,a <c <0<b |a|>|b|则|c|−|a +b|−|c−b|=−c−[−(a +b)]−(b−c)=−c +a +b−b +c ,=a 故答案为:a .根据数轴可以出a 、b 、c 的正负情况,从而可以将题目中所求式子进行化简,本题得以解决.本题考查数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】0【解析】解:∵x 2+2x−5=0,∴x 2+2x =5x 2=5−2x等式两边等式乘以x 得:x 2=5−2x ,将其代入则x 3=5x−2x 2x 3+3x 2−3x−5.∴x 3+3x 2−3x−5=5x−2x 2+3x 2−3x−5=x 2+2x−5=5−5=0 故答案为:0利用等式的性质将变形为:,等式两边同时乘以x 可得:x 2+2x−5=0x 2=5−2x x 3,将其代入问题即可解决问题.=5x−2x 2本题考查了因式分解的应用,利用等式的性质将条件进行变形,再代换问题中的式子是解题的关键.25.【答案】100或150【解析】解:当PB 的2倍最长时,得,①PB =30,∴AP =23PB =20,∴AB =AP +PB =50这条绳子的原长为,∴2AB =100cm 当AP 的2倍最长时,得,②AP =30,∵AP =23PB ,∴PB =32AP =45,∴AB =AP +PB =75这条绳子的原长为.∴2AB =150cm 故答案为:100cm 或150cm .根据绳子对折后用线段AB 表示,可得绳子的长度是AB 的2倍,分论讨论,PB 的2倍最长,可得PB ,AP 的2倍最长,可得AP 的长,再根据线段间的比例关系,可得答案.此题考查了分类讨论的思想,根据线段之间的比例关系列式为解题关键.26.【答案】22【解析】解:设购进暖瓶x 对,则有2x 只暖瓶,衬衫2x 件,留下的17件物品中有a 只暖瓶,件衬衫,(17−a)每件衬衣的进价是40元,每对暖瓶的进价是60元,商店将这批物品以高出进价∵10%的价格售出,暖瓶每只售价为元,∴30×(1+10%)=33()衬衫每件售价为元,40×(1+10%)=44()总售价为元,∴=33×(2x−a)+44(2x−17+a)=154x +11a−748()根据题意得:,154x +11a−748=90%(40×2x +60x)整理得:,28x +11a =748为偶数,且,∵a 17−a ≥0为2,4,6,8,10,12,14,16,∴a 当,x 的值为分数,不合题意;a =2当,x 的值为分数,不合题意;a =4当,x 的值为分数,不合题意;a =6当,x 的值为分数,不合题意;a =8当,x 的值为分数,不合题意;a =10当,,a =12x =22当,x 的值为分数,不合题意;a =14当,x 的值为分数,不合题意;a =16即只有当,时符合题意.∴a =12x =22答:最初购进这批暖瓶22对,故答案为:22.卖出物品的总售价等于所有货物总进价的,可列出方程,根据x 、a 的取值范围分90%别讨论求适合题意的解即可.本题考查了二元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再根据实际情况求解.27.【答案】解:(1)−12019+(23)−2+(π−3)0+|14−1|=−1+214+1−14+1;=3(2)−112÷3+36×(59+16−712)=−12+36×59+36×16+36×(−712)=−12+20+6−21.=412【解析】本题涉及乘方、零指数幂、负整数指数幂、绝对值4个考点.在计算时,(1)需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.先算乘除法、整数加减法,注意乘法分配律的灵活应用.(2)本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、负整数指数幂、绝对值等考点的运算.同时考查了有理数的混合运算.28.【答案】解:原式(1)=8a 6b 3−8a 6b 3−a 2;=−a 2原式(2)=x(y−1)+(x−y)=xy−x +x−y ;=xy−y 【解析】根据整式的运算法则即可求出答案.(1)将看成一个整体,然后根据整式的运算法则即可求出答案.(2)(x−y)本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.29.【答案】解:设A 种消毒液应购进x 瓶,则B 种消毒液购进瓶,由题意可(1200−x)知总利润为: (30−20)x +(55−40)(1200−x)=10x +15(1200−x)=18000−5x 总进价为:20 x +40(1200−x)=48000−20x 得方程18000−5x =(48000−20x)×45%解得x =900答:A 种消毒液应购进900瓶.【解析】根据题意可设A 种消毒液应购进x 瓶,则B 种消毒液购进瓶,总进(1200−x)价为元,根据利润与总进价之间的关系即可列出方程.20x +40(1200−x)本题考查的是一元一次方程的应用,准确表达出利润与总进价是重点,根据数量关系列方程求解是关键.30.【答案】解:去括号得:,(1)x−6=8−4x−4移项得:,x +4x =8−4+6合并同类项得:,5x =10系数化为1得:,x =2原方程可整理得:(2),20x−35−10x +43=1方程两边同时乘以15得:,3(20x−3)−5(10x +4)=15去括号得:,60x−9−50x−20=15移项得:,60x−50x =15+20+9合并同类项得:,10x =44系数化为1得:.x =4.4【解析】依次去括号,移项,合并同类项,系数化为1,即可得到答案,(1)原方程可整理得:,依次去分母,去括号,移项,合并同类项,系(2)20x−35−10x +43=1数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.31.【答案】解:2x 2−[−3(−23x 2+xy)−2xy ⋅y 2]−y(3x +xy )2=2x 2−[2x 2−3xy−2xy 3]−y(9x 2+6x 2y +x 2y 2)=2x 2−2x 2+3xy +2xy 3−9x 2y−6x 2y 2−x 2y 3,=3xy +2xy 3−9x 2y−6x 2y 2−x 2y 3当,时,原式x =12y =−1=3×12×(−1)+2×12×(−1)3−9×(12)2×(−1)−6×(12)2.×(−1)2−(12)2×(−1)3=−112【解析】先去括号算乘法,再合并同类项,最后代入求出即可.本题考查了整数的混合运算和求值,能正确运用整式的运用法则进行化简是解此题的关键.32.【答案】解:点B 、D 分别是AC 、CE 的中点,∵,,∴BC =AB =12AC CD =DE =12CE ,∴BD =BC +CD =12(AC +CE),∵AB =4,∴AC =8,∵CE =34AC ,∴CE =6.∴BD =BC +CD =12(AC +CE)=12(8+6)=7【解析】根据线段中点的性质得到,,计算即可.BC =12AC CD =12CE 本题考查的是两点间的距离的计算,掌握线段中点的性质是解题的关键.33.【答案】400 144【解析】解:本次参与调查问卷的学生有人,(1)80÷20%=400()扇形统计图中“基本了解”部分所对应的扇形圆心角是,360°×160400=144°故答案为:400,144.等级人数为人,(2)B 400×35%=140()补全条形图如下:人,(3)2000×20400=100()答:估计该校2000名学生中对“改革开放四十周年成果”不了解的人数约有100人.用A 等级人数除以其对应百分比可得总人数,用乘以C 等级人数占总人数的比(1)360°例即可得;用总人数乘以B 等级人数所占百分比求出其人数即可补全图形;(2)用总人数乘以样本中D 等级人数所占比例即可得.(3)本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.34.【答案】6【解析】解:师生共56人,每8人排成一排,(1)∵共排成排,∴56÷8=7()相邻两排之间间隔1米,∵初一班的队伍长度为米,∴(2)(7−1)×1=6()故答案为:6;设班级队伍行进的速度为x 米秒,(2)/根据题意得:,150x =1.5x(30+40)+2.1×40+6解得:,x =2答:班级队伍行进的速度为2米秒;/设小萍与游班长相遇后两人追上队首的刘老师用了y 小时,(3)小萍与游班长的速度为4米秒,他们与队首的刘老师的距离为/米,1.5×2×70+2×70+6=356()根据题意得:,4y−2y =356解得:,y =178秒;70+178=248()答:班长从D 处返回找小萍开始到他们两人追上队首的刘老师一共用了248秒.根据题意得出共排成排,初一班的队伍长度为米;(1)56÷8=7()(2)(7−1)×1=6()设班级队伍行进的速度为x 米秒,根据队伍走的路程桥长队伍长,得出方程,(2)/=+解方程即可;设小萍与游班长相遇后两人追上队首的刘老师用了y 小时,根据两人追队伍走的路(3)程队伍走的路程他们与队伍的距离,得出方程,解方程即可得出结果.−=本题考查了一元一次方程的应用以及一元一次方程的解法;根据题意列出方程是解决问题的关键.35.【答案】 80°140°【解析】解:设,则,依题意得:(1)∠AOB =7α∠COD =8α,7α+90°+8α+120°=360°解得:,α=10°,,∴∠AOB =7α=7×10°=70°∠COD =8α=8×10°=80°又,∵∠AOC =∠AOB +∠BOC ,∠BOC =90°,∴∠AOC =70°+90°=160° 又是的角平分线,∵OM ∠AOC .∠AOM =12∠AOC =12×160°=80°同理可得:.∠CON =140°故答案为:;;80°140°存在.(2)设,则,∠AOB =7x ∠COD =8x ,∵∠AOB +∠BOC +∠COD +∠AOD =360°,∴7x +90°+8x +∠AOD =360°,∴∠AOD =270°−15x 又是的角平分线,∵ON ∠AOD ,∴∠DON =12∠AOD =12(270°−15x)=135°−152x 又,∵∠CON =∠COD +∠DON ,∴∠CON =8x +135°−152x =135°+12x ∴7∠CON =7(135°+12x)…①同理可得:∠AOM =45°+72x∴x =2∠AOM−45°7②由代入得:;②①∠AOM =12(7∠CON−1845°)由可知,,根据题意得:(3)(1)∴∠AOB =70°∠COD =80°或70+90−6t =12(90+80+2t)6t−90−70=12(360−90−80−2t)解得或.t =757t =35故旋转时间为秒或35秒时,.757∠A 1O C 1=12∠B 1O D 1第、第题巧设未知数,由四个角之和等于一个周角建立等量关系求解;根据(1)(2)(3)(1)中、的度数,列方程解答即可.∠AOB ∠COD 本题考查一元一次方程在几何方面的运用,是学习方程之后接触平面几何中一道典型的数型结合题,有利于对数学学科本质的认识.在第题计算时易出错不会用一个式子(2)代入表示另一个式子,隐含了数学消元思想.。
重庆市南开中学七年级上学期期末数学试题题及答案一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2064.﹣3的相反数是( ) A .13-B .13C .3-D .35.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 327.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣78.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④9.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣210.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .711.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =12.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限13.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .14.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米D .向南走3米 15.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==二、填空题16.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 17.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.18.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 19.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.20.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.21.若3750'A ∠=︒,则A ∠的补角的度数为__________.22.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.23.因式分解:32x xy -= ▲ .24.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 25.化简:2x+1﹣(x+1)=_____.26.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.27.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.28.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .29.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.30.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.33.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.34.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.35.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q恰好是线段AP的“2倍点”.(请直接写出各案)36.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.37.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.38.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用max}2,x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.3.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.4.D解析:D 【解析】 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 【详解】根据相反数的定义可得:-3的相反数是3.故选D. 【点睛】本题考查相反数,题目简单,熟记定义是关键.5.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.6.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.7.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.8.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.9.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.10.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D . 【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.11.A解析:A 【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1. 故选A .考点:解一元一次方程.12.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.13.C解析:C 【解析】 【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可. 【详解】 移项得,x >2, 在数轴上表示为:故选:C . 【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.14.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.15.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.二、填空题16.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.17.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.18.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x 的取值无关,即含字母x 的系数为0.19.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.20.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.21.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.22.5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB=5,BC =3,∴AC=5+3解析:5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3=8;∵点D 是AC 的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.23.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).24.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.25.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.26.18×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:118000=1.18×105,故答案为1.18×105.27.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.28.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.29.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.30.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题. 解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】把1x=代入方程,得141m⨯-=∴5m=故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.三、压轴题31.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°, ∴60°=12(α+20°)-20°, ∴α=140°.【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.32.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.33.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.34.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P运动到原点时,t=3644443++=1243s,此时QB=2×1243=2483>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:3644804022+==(s),故提前的时间为:1243-40=43(s).【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.35.(1)是;(2)5cm或7.5cm或10cm;(3)10或607.【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】 (1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.36.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.37.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM= 12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.38.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°. 【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P 在直线AB 的左侧,∠APB=∠MON+∠PAO+∠PBO ,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP 的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON ﹣∠PAO ﹣∠PBO ;②如图2,点P 在直线AB 的左侧,∠APB=∠MON+∠PAO+∠PBO ,证明:延长AP 交ON 于点D ,∵∠ADB 是△AOD 的外角,∴∠ADB=∠PAO+∠AOD ,∵∠AP B 是△PDB 的外角,∴∠APB=∠PDB+∠PBO ,∴∠APB=∠MON+∠PAO+∠PBO ;(2)设∠MON=2m°,∠APB=2n°,∵OC 平分∠MON ,∴∠AOC=∠MON=m°,。
重庆市南开中学七年级上学期期末数学试题题及答案一、选择题1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70C .182D .2062.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 5.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .36.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3807.将图中的叶子平移后,可以得到的图案是()A .B .C .D .8.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+9.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣310.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°11.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 12.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定二、填空题13.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………14.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 15.分解因式: 22xyxy +=_ ___________16.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.18.A 学校有m 个学生,其中女生占45%,则男生人数为________.19.﹣225ab π是_____次单项式,系数是_____.20.已知二元一次方程2x-3y=5的一组解为x ay b =⎧⎨=⎩,则2a-3b+3=______. 21.方程x +5=12(x +3)的解是________. 22.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.23.单项式()26a bc -的系数为______,次数为______.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题25.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.26.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.27.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.28.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.29.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)30.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.31.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.32.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.2.C解析:C 【解析】 【分析】根据余角与补角的性质进行一一判断可得答案. . 【详解】解:A,根据角的和差关系可得∠α=∠β=45o ; B,根据同角的余角相等可得∠α=∠β; C,由图可得∠α不一定与∠β相等; D,根据等角的补角相等可得∠α=∠β. 故选C. 【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.3.C解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.D解析:D【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k 的值. 【详解】解:∵方程2k-3x=4与x-2=0的解相同, ∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5. 故选:D . 【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.5.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.6.B解析:B 【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点, 第二个图3条直线相交最多有3个交点, 第三个图4条直线相交,最多有6个, 而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190. 故选B .点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.7.A【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.8.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.9.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.10.A解析:A 【解析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】解:OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A . 【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.11.D解析:D 【解析】 【分析】 【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. 2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8. 故选D . 【点睛】本题考查数字类的规律探索.12.C解析:C 【解析】 【分析】由题意直接根据根据绝对值的性质,即可求出这个数. 【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6-或6. 故选:C . 【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.二、填空题13.【解析】 【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.14.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本 解析:xy(2y 1)+【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.16.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭ba b a a b a b a b a b=()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.17.6×【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.18.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m ,故答案是55%m .【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.19.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 20.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x a y b =⎧⎨=⎩代入方程2x-3y=5得 2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.21.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.22.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 23.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此解析:16-【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc-的系数为16-;次数为2+1+1=4;故答案为16 -;4.【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、压轴题25.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°,∴3 314202t t +=+,解得4t=.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.26.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP )=12AB=12×22=11 ②当点P 运动到点B 的左侧时:MN=MP ﹣NP=12AP ﹣12BP=12(AP ﹣BP )=12AB=11 ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.27.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-,解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1,解得:4t3 =,综合上述,当P出发23秒或43秒时,P和点Q相距1个单位长度;(3)①若点P和点Q在相遇前相距1个单位长度,此时点P表示的数为-3+2×23=-53,Q点表示的数为1-(1+23)=-23,设此时数轴上存在-个点C,点C表示的数为a,由题意得AC+PC+QC=|a+3|+|a+53|+|a+23|,要使|a+3|+|a+53|+|a+23|最小,当点C与P重合时,即a=-53时,点C到点A、点P和点Q这三点的距离和最小;②若点P和点Q在相遇后相距1个单位长度,此时点P表示的数为-3+2×43=-13,Q点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 -,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想. 28.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t =5t +45°,∴t =5.即t =5时,射线OC 第一次平分∠MON .【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.29.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】 【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可. 【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10;③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.30.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.31.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】 【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.32.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,。
重庆南开中学初七年级(上)期末考试数学试题卷(全卷共四个大题,满分100分,考试时间120分钟)注意事项:1.试题的答案书写在答题卷上,不得在试卷上直接作答.2.考试结束,试题卷由学生自己保管,监考人员只收答题卷.一、选择题:(本大题10个小题,每小题2分,共20分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.在﹣3,﹣1,0,2这四个数中,最小的数是A.﹣3 B.﹣1 C.0 D. 22.下列调查方式合适的是A.为了了解一批电视机的使用寿命,采用普查方式B.为了了解全国中学生的视力状况,采用普查方式C.对嫦娥三号卫星零部件的检查,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式3.右图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为4.某班有60名学生,班长把全班学生对周末出游地的意向绘制成了扇形统计图,其中“想去重庆金佛山滑雪的学生数”的扇形圆心角是600,则下列说法正确的是A.想去重庆金佛山滑雪的学生有12人B.想去重庆金佛山滑雪的学生肯定最多C .想去重庆金佛山滑雪的学生占全班学生的61 D .想去重庆金佛山滑雪的学生占全班学生的60% 5.下列计算正确的是A .x 2+ x 2= x 4B .x 3·x ·x 4 = x 7C .a 4·a 4= a 16D . A ·a 2= a 3 6.下列判断错误..的是 A .多项式5x 2 - 2x + 4是二次三项式 B .单项式432c b a -的系数是-1,次数是9 C .式子m +5,ab ,x=1,-2,sv都是代数式 D.当k=3时,关于x ,y 的代数式(-3kxy + 3y )+(9xy - 8x + 1)中不含二次项7.小明将前年春节所得的压岁钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年春节他将得到利息288元,则小明前年春节的压岁钱为 A .6400元 B .3200元 C .2560元 D .1600元 8.如图,已知A 、B 是线段EF 上两点,EA :AB :BF = 1:2:3,M 、N 分别为EA 、BF 的中点,且MN=8cm ,则EF 长A. 9cm B .10cm C .11cm D .12cm 9.若关于x 的方程13)21(2-=--x x k 无解,则 A .k = -1 B .k=l C . k ≠-1 D .k ≠110.生物课题研究小组对附着在物体表面的三个微生物(课题组成员 把他们分别标号为1,2,3)的生长情况进行观察记录,这三个微生 物第一天各自一分为二,产生新的微生物(依次被标号为4,5,6, 7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为 二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录), 那么标号为1000的微生物会出现在A .第7天B .第8天C .第9天D .第10天二、填空题:(本大题15个小题,每小题2分,共30分)请将每小题的答案填在答题卷...中对应横线上. 11.若83a aa m=⋅,则m= ▲ .12.若单项式32b a m-与nb a -2554是同类项,则m+n= ▲ . 13.如果02329=+-my是关于y 的一元一次方程,则m= ▲ .14.当嫦娥三号刚进入轨道时,速度为大约每秒7100米,将数7100用科学记数法表示为 ▲ . 15.25.14°= ▲ ° ▲ ′ ▲ ″.16.下午1点20分,时针与分针的夹角为 ▲ 度. 17.若x =1是方程a (x -2)=a+2x 的解,则a= ▲ .18.已知a 、b 满足0)42(|13|2=-+++a b a ,则(ab 3)2= ▲ .19.已知923,622=+=+xy y xy x ,则22984y xy x ++的值为 ▲ .20.有理数a 、b 在数轴上的位置如图所示,则|a-b |-2|a-c |-|b+c |= ▲ .21.如图,∠AOD =90°,∠AOB :∠BOC =1:3,OD 平分∠BOC ,则∠AOC = ▲ 度.22.一圆柱形容器的内半径为3厘米,内壁高30厘米,容器内盛有18厘米高的水,现将一个底面半径为2厘米,高15厘米的金属圆柱竖直放入容器内,问容器内的水将升高 ▲ 厘米. 23.已知A ,B ,M ,N 在同一直线上,点M 是AB 的中点,并且NA =8,NB =6,则线段MN= ▲ . 24.以下说法:①两点确定一条直线;②两点之间直线最短;③若x=y ,则bya x =;④若|a |= - a , 则a<0;⑤若a ,b 互为相反数,那么a ,b 的商必定等于-1.其中正确的是 ▲ .(请填序号) 25.已知AB 是一段只有3米宽的窄道路,一辆小汽车与一辆大卡车在AB 段相遇,必须倒车才能通行,如果小汽车在AB 段正常行驶需10分钟,大卡车在AB 段正常行驶需20分钟,小汽车在AB 段倒车的速度是它正常行驶速度的51,大卡车在AB 段倒车的速度是它正常杼驶速度的81,小汽车需倒车的路程是大卡车需倒车的路程的4倍.则两车都通过AB 这段狭窄路面所用的最短时间是 ▲ 分钟.三、计算题:(本大题5个小题,每小题4分,共20分) 26.计算:(1)542013)2()21(21|6|1-⨯+⨯-+- (2) 36)61121197(212⨯+--27.解方程:(1) 73)12(2-=-x x (2) 6.025.013.027.1xx +-=-28.先化简,再求值:)](23141[2)2(322x xy xy xy x +-+---,其中21,4=-=y x .四、解答题:(本大题5个小题,每小题6分,共30分)29.某校七年级学生举行元旦游园活动,设有语文天地,趣味数学,English World三大项目,趣味数学含七巧板拼图,速算,魔方还原,脑筋急转弯以及其他小项目,每位同学只能参加一个项目,小王对同学们参加趣味数学的项目进行了调查统计,制成如下扇形统计图,并根据参加“魔方还原”的同学的成绩制成了如下条形统计图,己知参加七巧板拼图的同学有24人,参加“脑筋急转弯”的人数是参加“魔方还原”的2倍.(1)参加趣味数学的总人数为______人;(2)参加“魔方还原”的人数占参加趣味数学总人数的百分比为______%;(3)补全条形统计图.30.列方程解应用题:销售服装的“欣欣”淘宝店今冬重点推出某新款大衣,标价为1000元,平常一律打九折出售.商家抓住商机,提前在淘宝网首页上打出广告“双11当天该款大衣打六五折后再让利30元”.因此双11当天该款大衣销售了30件,最后“双1 1”当天的利润相当于平时卖10件大衣的利润,求衣服的进价.31.如图,∠AOB是平角,射线OD平分∠AOC,射线OE平分∠BOD,且∠BOC= 4∠AOD,求∠COE的度数.32.列方程解应用题:由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地.A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?33.列方程解应用题:近年来,我市全面实行新型农村合作医疗,得到了广大农民的积极响应,很多农民看病贵、看病难的问题在合作医疗中得到了缓解.参加医保的农民可在规定的医院就医并按规定标准报销部分医疗费用,下表①是医疗费用分段报销的标准;下表②是甲、乙、丙三位农民今年的实际医疗费及个人承担总费用.表①表②注明:①个人承担医疗费=实际医疗费﹣按标准报销的金额;②年个人承担总费用包括门诊费和住院费中个人承担的部分.请根据上述信息,解答下列问题:(1)填空:a=_______,b=_______,c=_______;共计52000元,他本人共承担了18300元,已知今年的住院费超(2)李大爷去年和今年的实际住院费...用是多少元?过去年,则李大爷今年实际住院费...第一学期期末考试七年级数学试题(时间:90分钟;满分:120分)一、选择题(本大题有10小题,每小题3分,共30分。
重庆南开中学初2014级七年级上期末数学试题试题卷(本卷总分100分,时间120分钟)注意:请将答案填入答题卷中。
一、选择题(每小题2分,共20分) 1、2-的相反数是 A 、2-B 、12C 、12-D 、22、如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高 A 、3-℃ B 、7℃ C 、3℃ D 、7-℃3、下面几何体的主视图是4、单项式275x y -的系数和次数是 A 、7,35- B 、7,25-C 、7,35D 、7,255、掷一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子。
观察向上的一面的点数,下列属必然事件的是 A 、出现的点数是7 B 、出现的点数为奇数 C 、出现的点数是2 D 、出现的点数不会是06、下面是一个被墨水污染过的方程:,答案显示此方程的解是3x =,被墨水遮盖的是一个常数,则这个常数是A 、4B 、4-C 、14-D 、147、如图,在44⨯的正方形网格中,1,2,3∠∠∠的大小关系是A 、123∠>∠>∠B 、123∠=∠>∠C 、123∠<∠=∠D 、123∠=∠=∠8、三角形的一条边长是3a +,第二条边比第一条边长4a -,第三条边是第二条边与第一条边的差的2倍,那么这个三角形的周长为 A 、59a + B 、29a + C 、56a - D 、10a +9、已知线段10AB cm =,点C 是直线..AB ..上一点,4BC cm =,若M A C 是的中点,N BC 是的中点,则线段MN 的长度是 A 、7cm B 、3cmC 、7cm 或3cmD 、5cm10、小明和哥哥在环形跑道上练习长跑,速度保持不变,他们从同一起点沿相反方向同时出发,每隔25秒钟相遇一次。
现在,他们从同一起跑点沿相同方向同时出发,经过25分钟哥哥和小明刚好相遇了20次(出发时不算),则哥哥速度是小明速度的( )倍。
A 、1.5 B 、2 C 、3 D 、4二、填空题(每小题2分,共30分)11、2010年,财政部财政拨款开支的“三公经费”实际发生额为4172.01万元,其中公务接待费支出约为3680000元,用科学记数法表示3680000元为 元。
七年级上册重庆市南开中学数学期末试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
七年级期末考试数学测试题考试时间:120分钟 满分:120分亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获,请认真审题,看清要求,仔细答题,要相信我能行!一、选择题(请将A 、B 、C 、D 中唯一正确的答案序号填入题后的括号内,不填、填错或多填均不得分,每小题3分,共24 分)1、下列各组数中,相等的是( )A .()25-与25- B. 25-与25- C. ()37- 与37- D. 37-与 37-.2、若|x |=-x ,则x 的取值范围是( )A 、x =-1B 、x <0C 、 x ≥0D 、 x ≤03、据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是( ) A 、 68109.⨯元 B 、 68108.⨯元C 、 68107.⨯元D 、 68106.⨯元4、若a b ,互为相反数,且都不为零,则()11a a b b ⎛⎫+-+ ⎪⎝⎭的值为( ) A.0B.1-C.1D.2-5、若∠A = 20°18′,∠B = 20°15′30″,∠C = 20.25°,则( )A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠BD .∠C >∠A >∠B 6、下列图形不能围成正方体的是( )7、如图所示,a、b是有理数,则式子ab b a b a -++++化简的结果为( )A.3a +bB.3a -bC.3b +aD.3b -a8、如图是“光明超市”中“丝美”洗发水的价格标签,服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮助算一算,该洗发水的原价是 ( ) (A )22元 (B )23元 (C )24元 (D )26元原价8折现价:19.2元ABCD二、填空题(每空3分,共36分)9、计算:(-5)+2 = ;2.5的相反数是 ,-113 的倒数是10、绝对值为5的数是_________,代数式-32πa 2的系数是_________ 11、近似数1.460×105精确到_________位,有效数字是______.12、在数轴上,若A 点表示数x ,点B 表示数-5,A 、B 两点之间的距离为7,则x =___________ 13、如果2|1|(2)0a b -++=,则2006()a b +的值是_________14、若72+-n m b a与443b a -的和仍是一个单项式,则m-n=15、如图,将一副三角板叠放在一起,使直角的顶点重合于点O ,则∠AOB +∠DOC =______度. D A CBO16、一组按规律排列的数:14,39,716,1325,2136…,请你推断第7个数是_______.三、解答题17、计算(每小题4分,共8分) (1)3a-6b-2(a-3b)(2)()()()244214822329⎛⎫-⨯---⨯-+⨯- ⎪⎝⎭18、解方程(每小题4分,共8分) (1)()()320 6411 x x x -=--(2)341125x x -+-=19、(7分)已知A =22321x xy x +--,21B x xy =-+-,且36A B +的值与x 无关,求y 值20、(8分)已知方程4x +2 m=3x +1的解与方程3x +1=6x +1的解相同。
重庆市南开中学七年级上学期期末数学试题题及答案 一、选择题 1.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .2.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)33.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠ B .132122∠-∠ C .12()12∠-∠ D .21∠-∠4.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1B .410 +415x +=1C .410x + +415=1D .410x + +15x =1 5.将图中的叶子平移后,可以得到的图案是()A .B .C .D .6.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°7.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个8.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上9.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
七年级上册重庆市南开中学数学期末试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.2.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【答案】(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°(2)解:∠DOC= ×∠BOC= ×70°=35°,∠AOE= ×∠AOC= ×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补【解析】【分析】(1)由∠BOC、∠AOC的度数,求出∠AOB=∠BOC+∠AOC的度数,再求出∠AOB补角的度数;(2)根据角平分线定义求出∠DOC、∠AOE的度数,再由(1)中的度数得到∠DOE与∠AOB互补.3.如图,已知∠AOB=120°,OC⊥OB,按下列要求利用量角器过点O作出射线OD、OE;(1)在图①中作出射线OD满足∠COD=50°,并直接写出∠AOD的度数是________;(2)在图②中作出射线OD、OE,使得OD平分∠AOC,OE平分∠BOD,并求∠COE的度数;(3)如图③,若射线OD从OA出发以每秒10°的速度绕点O顺时针方向旋转,同时射线OE从OC出发以每秒5°的速度绕点O顺时针方向旋转,设旋转的时间为t秒,在旋转过程中,当OB第一次恰好平分∠DOE时,求出t的值,并作出此时OD、OE的大概位置.【答案】(1)20°或80°(2)解:如图,∵CO⊥BO ∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵OD平分∠AOC ∴∠COD= ∠AOC=15°∴∠BOD=90°+15°=105°, ∵OE是∠BOD的平分线∴∠EOD= ∠BOD=52.5°∴∠COE=52.5°-15°=37.5°.(3)解:如图,根据题意有:30°+5t+(90°-5t)×2=10t 解得:t=14.【解析】【解答】解:(1)有两种情况分别是:①当OD在∠AOB内部时,如图,∵CO⊥BO∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵∠COD=50°,∴∠AOD=50°+30°=80°;.②当OD在∠AOB外部时,如图,∵CO⊥BO∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵∠COD=50°,∴∠AOD=50°-30°=20°【分析】(1)有两种情况分别是:①当OD在∠AOB内部时,如图,根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,最后根据∠AOD=∠AOC+∠COD即可算出答案;②当OD在∠AOB外部时,如图,根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,最后根据∠AOD=∠COD-∠COA即可算出答案;(2)根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,根据角平分线的定义得出∠COD= ∠AOC算出∠COD的度数,根据角的和差,由∠BOD=∠COD+∠BOC算出∠BOD的度数,再根据角平分线的定义得出∠EOD= ∠BOD得出∠EOD的度数,最后根据∠COE=∠EOD- ∠COD算出答案;(3)根据题意∠AOD=10t,∠COE=5t,根据角的和差得出∠BOD=∠AOD-∠AOB=10t-120°,∠BOE=∠COB-∠COE=90°-5t,然后根据角平分线的定义得出∠BOD=∠BOE,从而列出方程,求解即可。
重庆市沙坪坝区南开中学校2023-2024学年七年级上学期期末数学模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题A..C..3.下列各对数中,数值相等的是A.72-与()2-23-与()23-C.332-⨯与-.()23--与(-4.下列说法不正确的是A.0既不是正数,也不是负数.绝对值最小的数是C.绝对值等于自身的数只有.平方等于自身的数只有5.已知x y=,则下列变形正确的是(A.x ya a=a x-6.下列说法正确的是(A.两点确定一条直线点到这条直线的距离C.所有内错角都相等垂直7.如图,A则B地在灯塔A.与正方形A的边长有关B.与正方形C.与正方形C的边长有关D.与二、填空题11.第52次《中国互联网络发展状况统计报告》:截止1079000000人,其中1079000000可用科学记数法表示为12.单项式235x y-的系数是,次数是13.40°43′30″=度.三、计算题四、问答题五、计算题六、作图题请根据以上信息,解答下列问题:(1)此次抽样的样本容量为__________,=a __________;(2)扇形统计图中,第5段对应的圆心角度数为________︒;(3)已知该年级有1000名学生参加测试,请估计该年级数学成绩为优秀(80分及以上)的人数.七、应用题24.某商场分别购进了甲乙两种型号扫地机器人40台与20台,已知甲种型号扫地机器人每台的进价比乙种型号扫地机器人每台的进价便宜10%,甲种型号扫地机器人每台售价1100元,乙种型号扫地机器人每台售价1500元.(1)“双十一”期间商场促销,乙种型号扫地机器人按售价八折出售,甲种型号扫地机器人按原价销售.某公司一共花了10300元买了甲乙两种型号扫地机器人共9台.问某公司甲、乙两种型号扫地机器人各买了多少台?(2)在(1)的条件下甲乙两种型号扫地机器人销售一空,甲种型号扫地机器人利润是乙种型号扫地机器人利润的2倍.问甲乙两种型号扫地机器人每台进价各是多少元?八、问答题(1)若4BE =,34AD BD =,求线段CE 的长;(2)若点C 、D 、E 在线段AB 上运动,始终保持3CD AC =,DE。
重庆南开中学初2012级2010-2011学年度上期八年级数学期末考试试题(全卷共4个大题,共28个小题;时间:120分钟;满分:150分)一、选择题(本大题10个小题,每小题4分,共40分)每个小题都给出了A 、B 、C 、D 四个答案, 其中只有一个是正确的.请将答案填在答卷上. 1.已知点),1,2(-P 则点P 在坐标系中位于 ( )A.第一象限 B .第二象限 C .第三象限 D.第四象限 2.已知一组数据2、3、4、5、5、5、6、7、8,其中中位数、众数的大小关系是 ( ) A .中位数>众数 B .中位数<众数 C .中位数≠众数 D .中位数=众数 3.下列几种图形中既是轴对称又是中心对称的图形是 ( )A .等边三角形B .平行四边形C .正方形D .等腰梯形 4.不等式416>-x 的解集是 ( )A.4x <-B.4x >- 1C.4x <-1D.4x >- 5.下列四个结论:(1)一组对边平行,另一组对边相等的四边形是平行四边形;(2)对角线垂直相等的四边形是菱形;(3)对角线相等且互相平分的四边形是矩形;(4)四边都相等的四边形是正方形.其中正确的个数是 ( )A .1B .2C .3D .06.如图,过点)3,0(A 的一次函数的图象与正比例函数x y 2=的图象相交于点B ,能表示这个一 次函数图象的方程是 ( )A.230x y -+=B.30x y +-=C.230y x -+=D.30x y --=7.如图,在ABCD 中,E 是AD 的中点,且,CE CD F CE BD =是与的交点,则下列结论不正确的是 ( )A.ABC CED ∠=∠B.2BC DE =C .四边形ABCE 是等腰梯形 D.BCF DEF S S ∆∆=8.如图,坐标系中(2,2),(3,0),(1,0),(0,1),A B C D -则四边形ABCD 的面积是 ( )A.4B.4.5C.5D.5.59.如图,等边三角形AEF 的边长与菱形ABCD 的边长相等,点F E 、分别在CD BC 、上,则B ∠的度数是 ( )A.85B.85C.75D.7010.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3, 1),(3,0)…根 据这个规律探索可得,第100个点的坐标为 ( )A.(14,9)B.(14,8)C.(14,7)D.(14,6)二、填空题(本大题10个小题,每小题3分,共30分)请将答案填在答卷上.11.函数y =的自变量取值范围是 .12.某超市招聘收银员一名,对三名中请人进行了三项素质测试.下表是三名候选人的素质测试成绩,公司根据实际需要,对计算机、商品知识、语言三项测试成绩分别赋予权重5、3、2,这三人中 将被录用.13.如图将直线OA 向上平移2个单位,得到一个一次函数的图象,则这个一次函数的解析式是__ _.14.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式b x k x k +>12的解集为_________.15.如果矩形的两条对角线所夹的锐角为,60 一条对角线与短边的和为15,那么矩形的对角线长为_________.16.已知点p 关于x 轴的对称点为),2,(-a 关丁y 轴的对称点为),,1(b 则p 的坐标为______.17.一个多边形截去一个角(不过顶点)后,所形成的一个多边形的内角和是2160︒,那么原多边的边数为_________.18.为给班级元旦晚会准备饮料和水果,班长用60元班费去市场买东西,如果买8千克香蕉和8千克苹果,付钱后还有剩余;如果买10千克香蕉和8千克苹果,则所带钱不够用,已知|每千克香蕉价格是3元,每千克苹果的价格是整数,则每千克苹果的价格是 元.19.如图,将边长分别为2、3、5的二个正方形按如图方式排列,则图中阴影部分的面积为 . 20.已知直线1y x =+和x 轴与y 轴分别交于A 和B 两点:以线段AB 为直角边,在第一象限内作等腰直角三角形,90,ABC BAC ∠= 使如果在第二象限内有一点21,,2P a ⎛⎫ ⎪⎝⎭ABP ∆和ABC ∆的面积相等,则a =___________.三、解答题(本大题6个小题,每小题10分,共60分) 21.(I)计算:1)21()3(|2|8-----+π (2)解不等式:3121215-≥++x x22.(1)解方程组:⎩⎨⎧=-=-138332y x y x (2)解不等式组:⎪⎩⎪⎨⎧+≥--<+-122154)2(3x x x xx23.为响应建设节约型社会的号召,重庆中法供水公司拟投资1000万元,对城区4万户家庭的老式水龙头和卫浴设备进行免费改造.某社区为配合该公司完成这项工作,对社区1200户家庭中的120户进行了随机抽样调查,并汇总成下表:(1)被随机调查的这部分家庭中,被改造的水龙头个数的中位数是____个,众数是____个. (2)试估计该区需要对水龙头、卫浴设备进行改造的家庭共有____户.(3)改造后,一个水龙头一年人约可节省5吨水,一个卫浴设备一年大约可节省15吨水.试估计该社区一年共可节约多少吨白米水?24.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向么地而行,如图所示,图中的线段12y y 、,分别表示小东、小明离B 地的距离(千米)与所心时间x (小时)的关系. (1)试求出12y y 、,关于x 的解析式;(2)试用文字说明:交点p 所表示的实际意义; (3)试求出A 、B 两地之间的距离.25.列方程组解应用题甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?26.如图,住直角梯形ABCD 中,//,90,,o AD BC ABC BD BC E ∠==为CD 的中点,AE 交BC的延长线于;F (1)证明::EA EF =(2)过D 作BC DG ⊥下,G 连接,EG 试证明:.AF EG ⊥四、解答题(本大题2个小题,每小题10分,共20分)27.重庆长安汽下集团开发了一款新式电动汽下,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车:2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新人每月分别可以安装多少辆电动汽车?(2)若抽调m 名熟练工,再招聘n (O<n <10且n 为正整数)名新工人,使得招聘的新工人和熟练工刚好能完成一年的安装任务,那么工厂有哪几种人员分配(招聘的新工人与抽凋的熟练工人数搭配)方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数最多于熟练工,同时工厂每月支出的工资总额W (元)尽可能的少?28.如图①,在形ABCD 中,AB =l0cm ,BC =8cm ,点P 从A 发,沿D C B A →→→路线运动,到D 停止;点Q 从D 出发,沿A B C D →→→路线运动,到A 停止,若点、P 点Q 同时山发,点P 的速度为1cm/s,点Q 的速度为2cm/s,a 秒时点、P 点Q 同时改变速度,点P 的速度变为b cm/s ,点Q 的速度变为cm/s.d 图②是点P 出发x 秒后APD ∆的面积21(cm )S 与(s)x 的函数关系图象;图③点Q 出发x 秒后AQD ∆的面积22(cm )(s)S x 与的函数关系图象. (1)观察下图,求a b 、的值;(2)观察下图,求c 的值及点Q 的速度d 的值;(3)设点P 离开点A 的路程为1(cm),y 点Q 到A 还需走的路程为2(cm),y 请分别写出动点Q P 、改变速度后21y y 、与出发后的运动时间(s)x 的函数关系式,井求出Q P 、相遇时x的值;(4)当点Q 出发多少秒时,点、P 点Q 在运动路线上相距的路程为25cm.重庆南开中学初2012级2010-2011学年度上期八年级数学期末考试试题(全卷共4个大题,共28个小题;时间:120分钟;满分:150分)一、选择题(本大题10个小题,每小题4分,共40分)每个小题都给出了A 、B 、C 、D 四个答案, 一、选择题(本大题10个小题,每小题4分,共40分)二、填空题(本大题10个小题,每小题3分,共30分)11.1;x -≥ 12.小钱; 13.22;y x =+ 14.1;x <- 15.10;16.(1,2);P - 17.13; 18.4; 27319(6);44⋅204;- 三、解答题(本大题6个小题,每小题10分,共60分)21.解:(1)原式212=--………………..4分=1…………………………5分(2)去分母,得)12(26)15(3-≥++x x 去括号,得153642x x ++≥-……..2分 移项,得154362x x -≥---合并同类项,得1111x -…………………..4分 系数化1,得1x ≥-……………………..5分22.解:(1)由①得:32,x y =+③把③代入②得:,138)23(3=-+y y 化简得:24,2y y -=∴-……………….2分 把y =-2代入③,得x =-1…………………4分∴原方程组的解为12x y =-⎧⎨=-⎩……………..5分 (2)由①得,1x >-…………………….2分由②得,35x ≤-…………………….4分∴原不等式组的解集315x -<≤-…………5分23.(1)被随机调查的这部分家庭中,被改造的水龙头个位数的中位数是 2 个,众数是 1 个. (2)试估计该社区需要对水龙头、卫浴设备进行改造的家庭共有 1000 户……..每空2分(3)改造后,一个水龙头一年大约可节省5吨水,一个卫浴设备一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水? 解:抽样的120户家庭一年共可节约用水:(131228321412)5(16922)15⨯+⨯+⨯+⨯⨯+⨯+⨯⨯ 15735198⨯+⨯= 2085=1000208520850()100⨯=吨……………………8分 ∴该社区一年共可节约用水20850吨。
重庆南开中学2025级七年级(上)期末测试题一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,请将正确答案的代号填涂在答题卡上的相应位置.1.与−2 互为倒数的是()A .2B .2-C .12D .12-2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A .B .C .D .3.若一个角的补角比它的余角的2倍大30°,则这个角的度数是()A .30°B .60°C .90°D .75°4.下列计算正确的是()A .222222x y xy x y +=B .336ab ba ab--=-C .235a b ab +=D .325a a a -+=5.下列说法正确的是()A .过一点P 只能作一条直线B .直线AB 和直线BA 表示同一条直线C .射线AB 和射线BA 表示同一条射线D .射线a 比直线b 短6.已知x=2是一元一次方程﹣ax +2=0的根,则a 的值为()A .﹣1B .1C .2D .﹣27.将一副直角三角板按如图所示的方式叠放在一起,若AC DE ∥.则BAE ∠的度数为()A .85︒B .75︒C .65︒D .55︒8.已知线段6AB cm =,C 为AB 的中点,D 是AB 上一点,2CD cm =,则线段BD 的长为()A .1cm B .5cm C .1cm 或5cm D .4cm9.边长为1的正方形从如图所示的位置开始在数轴上顺时针滚动,当正方形某个顶点落在数字2023时停止运动,此时与2023重合的点是()A .点A B .点B C .点C D .点O10.(多选)如图,点E 在AD 的延长线上,下列条件中能判断AB ∥CD 的是()A .∠1=∠2B .∠3=∠4C .∠A =∠CDED .∠C +∠ABC =180°二、填空题(共6小题,每题4分,共24分)11.重庆八中为了增加学生的阅读量,拓展学生的视野,截止到2021年底图书馆藏书和电子图书共计达390000多册,其中数字390000用科学记数法表示为____________.12.已知关于x ,y 的单项式m x y -与222n x y +的和仍是单项式,则mn =__________.13.如图,直线AB 、EF 相交于点O ,CD AB ⊥于点O ,128EOD ∠=︒,则BOF∠的度数为_________.14.如图是一个数值转换机,若输入a 的值为1-,则输出的结果应为________.15.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了______折16.已知3080AOB BOC ∠∠=︒=,°,那么AOC ∠=___________.三.解答题(共5题)17.计算及化简(1-2题3分,3-4题4分)(1)35724()124612-⨯-+-(2)220221(3)(1)3-÷--(3)5(2)3(42)mn m m mn -+-(4)1(23)(612)3a b a b +--18.解方程:(每题4分)(1)257146x x x ---=-(2)0.30.20.10.0410.20.03x x ++-=19.(4分)完成下面的证明:已知,如图,////AB CD GH ,EG 平分BEF ∠,FG 平分EFD ∠求证:90EGF ∠=︒证明://HG AB (已知)13∴∠=∠(①)又//HG CD (已知)24∴∠=∠//AB CD (已知)BEF ∴∠+②180=︒(③)又EG 平分BEF ∠(已知)112BEF ∴∠=∠又FG 平分EFD ∠(已知)122EFD ∠=∠112()2BEF EFD ∴∠+∠=∠+∠1290∴∠+∠=︒3490∴∠+∠=︒(④)即90EGF ∠=︒.20.(4分)如图,在同一平面内有三个点A 、B 、C .(1)连接AC ,画出直线AB ,射线BC ;(2)尺规作图(保留作图痕迹):①在线段AC 上作一点D ,使得CD =AB ;②在射线BC 上作线段BM ,使得BM=2AB .21.(6分)已知,O 为直线AB 上一点,90DOE ∠=︒.如图1,若128AOC ∠=︒,OD 平分AOC ∠.①求BOD ∠度数②请通过计算说明OE 是否平分BOC∠四.填空题(共5题,每题4分,共20分)22.(多选)已知关于x 的方程332kx k -=+的解为非负整数且满足||3x <,则符合条件的所有k 值为()A .32k =-B .1k =-C .34k =-D .98k =-23.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=22a b -,这里等式右边是通常的实数运算.例如:1⊗3=221134=--,则方程x ⊗(1-)=6K1−1的解是________.24.如图,图中正方形ABCD 的边长为8,则图中阴影部分的面积为__________.25.在2024个“□”中依次填入一列数字1232024,,m m m m ,,,使得其中任意四个相邻的“□”中所填的数字之和都等于11.已知362,7m m ==-,则12024m m +的值为___________.26.某商家主营的A ,B ,C 三种商品在11月份的销售单价之比为4:3:5,其销售数量之比为3:2:2.随着市场形势的变化,12月份时,A 商品增加的销售额占12月份A ,B ,C 三种商品销售总额的211,同时B ,C 两种商品增加的销售额之比为3:1.如果B ,C 两种商品12月份销售额相等,那么该商家主营的这三种商品11月份与12月份的销售总额之比为.五.解答题(共3题,每题10分)27.对于一个各个数位上的数字均不为零的三位自然数m ,若m 的十位数字等于其个位数字的2倍,则称这个自然数m 为“向上数”.当三位自然数m 为“向上数”时,交换m 的百位数字和十位数字后会得到一个三位自然数n ,规定F (m )=90m n -,例如:当m =584时,因为8=4×2,所以584是“向上数”;此时n =854,则F (m )=58485439090m n --==-.(1)写出最大的“向上数”和最小的“向上数”,并求出它们的F (m )值;(2)已知一个三位自然数t 是“向上数”,t 的各个数位上的数字和记为k ,若F (t )+k 能被7整除,求所有满足条件的三位自然数t .2-7…28.随着2023年“元旦”的日益临近,某品牌店从厂家购进了A、B两种商品.已知每件B种商品的进价比每件A种商品的进价低20元,购进8件A种商品与购进10件B种商品的货款相同.(1)求A、B两种商品每件的进价分别是多少元?(2)若该店从厂家购进了A、B两种商品共100件,所用资金恰好为9200元.出售时,A种商品在进价的基础上加价40%进行标价;B商品按标价出售,则每件可获利30元.若按标价出售A、B两种商品,则全部售出后共可获利多少元?(3)在(2)的条件下,“元旦”期间,A商品按标价的九折出售,B商品按标价出售一部分商品后进行促销,按标价的八五折再让利3.5元出售,则A、B两种商品全部售出,总获利比全部按标价售出所获利润减少了40%,则B商品按标价售出多少件?29.已知,AE∥BD,∠A=∠D.(1)如图1,判断AB与CD的位置关系,并说明理由;(2)作∠BAE的平分线交CD于点F,点G为线段AB上一点,连接FG,∠CFG的平分线FM交线段AG于点H.如图2,若∠ECF=120°,∠AFH=20°,∠CFG=110°,求∠E的度数;(3)如图3,连接AC,在(2)的条件下,将射线FG绕点F以5°每秒的速度逆时针旋转旋转时间为t秒(0<t<50),已知∠CAB=65°,求∠CFG的平分线FM与三角形ACE的边平行时t的值.。
重庆市南开中学七年级上学期压轴题期末复习数学试题题及答案一、压轴题1.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.2.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.3.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 4.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.5.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.6.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.7.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.8.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
重庆南开中学2009~2010学年度第一学期期末
七年级数学试题卷
(全卷共四个大题,35个小题,满分100分,时间120分钟)
一、精心选一选(每小题2分,共20分)
1
.下列各组数中互为相反数的是( )
A
.2与12
B .2
3与32-
C .1-与2
(1)-
D .2与2-
2.如果12
3m a
b +与221
2
n ab --是同类项,则m n -为( )
A .3-
B .2-
C .1-
D .2
3.如图,桌面上有一个一次性纸杯,它的俯视图应是( )
4.下列运算中,正确的是( ) A .325a b ab += B .32
3323
÷
⨯= C .2
2
321x x -=
D .(3)(4)1---=
5.如图,AOC ∠和BOD ∠都是直角,如果155,AOB ∠=
那么
COD ∠=( )
A .25°
B .30°
C .35°
D .45°
6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( ) A .南偏西50°方向 B .南偏西40°方向 C .北偏东50°方向 D .北偏东40°方向
7.甲、乙两车分别从相距450千米的A B 、两地同时出发,相向而行,若甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米. 则t 的值是( ) A .2.5 B .2 C .2或2.5 D .2或10 O
B A
D
C
(第5题图) A.
B. C. D.
8.南开中学初一年级“2010年元旦迎新汇演”计划于12月30日下午1:30举行. 中午吃完午餐休 息一会儿后小明问小星:“现在几点了?”小星说:“15分钟内汇演就要进行,现在钟表上时针与分针所成角的度数是80°.”小明思考了一下,一口说出了时间,则此时的时间是下午( ) A .1:16 B .1:18 C .1:20 D .1:25
9.某公司员工分别住在A B C 、、三个住宅区,A 区有30人,B 区有15人,C 区有10人. 三个区在一直线上,位置如下图所示. 公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在( )
A .A 区
B .B
区 C .C 区 D .A B 、两区之间 10.若有理数a b c 、、在数轴上对应点的位置如下图所示,则c b a b c --++等于( )
A .2a b -+
B .2a c --
C .a -
D .2a b -
二、用心填一填(每小题2分,共30分)
11.2009年入冬以来,某日傍晚,重庆市区的气温由中午的5℃下降了9℃,这天傍晚的气温是 ______℃.
12.“神舟七号”于北京时间2008年9月25日晚成功发射升空,标志着中国成为世界第三航天大国,进入“太空行走俱乐部”.“神舟七号”全长9.19米,重7890000克.若将7890000克用科学记数法表示,则可以表示为______________克.
13.若2
35x x +-的值为1,则2
392x x +-的值为______. 14.右图是护士统计一位病人的体温变化图,这位病人中午 12时的体温约为_________℃.(填出合理答案即可)
15.当k =_______时,代数式2
2
1(33)(8)3
x kxy y xy +---中不含xy 项. 16.若1
2
x =
是关于x 的方程2()43x a x a +=-的解,则a =________. 17.一个不透明的袋子中装有除颜色外其余完全相同的乒乓球共10个,其中白球6个,黄球4个,从中随机摸出一球,摸到_______球的可能性大.
18.已知三个不同的点,,,A B C 过其中每两点作直线,可作________条.
19.受国际金融危机的影响,为了促销,某商店将某种商品按成本价提高40%后标价,打八折销售,售价为224元.这件商品的成本价是________元.
20.2009 若把2009年某市初中毕业、升学考试各学科满分值比例绘成扇形统计图,则数学所在的扇形的圆心角是_______度. A 区 B 区 C 区
21.已知()2
320,x y -++=则x
y -=________.
22.在直线l 上顺次..取A B C 、、三点,使得5,3,AB cm BC cm ==如果O 是线段AC 的中点,那么线段OB 的长度是________.cm
23.某市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过12吨,按每吨a 元收费;若超过12吨,则超过部分按每吨2a 收费,如果某户居民五月份缴纳消费20a 元,则该居民这个月实际用水________吨.
24.观察下面表格,表格中是从1开始的连续的自然数按一定规律的排列,如表格中的数17在第4行第5列,则数17在表格中的位置记为(4,5),按此方式,数2010在表格中的位置应记为_______.
第1列 第2列 第3列 第4列 第5列 第6列 第1行 1 2 3 4 5 6 第2行 11 10 9 8 7 6 第3行 11 12 13 14 15 16 第4行 21 20 19 18 17 16 第5行 21 22 23 24 25 26 …… …… …… …… …… …… …… 25.下列事件:①互为相反数的商是-1;②一个袋子中装有红球和白球,从中任意摸出一球是黄球;③过一点有且只有一条直线与已知直线平行;④在同一平面内,过一点有且只有一条直线与已知直线垂直;⑤若1
,2
AM AB =则点M 是线段AB 的中点. 其中是确定..事件..
的有_________.(填序号即可)
三、细心算一算(26,27,28每小题4分,29,30每小题5分,共22分)
26.计算:()511231523;623⎛⎫⨯
--⨯+⨯- ⎪⎝⎭
27.计算:3
2201032
3()(1);43
-÷
⨯--- 28.解方程:52(62)3;x x --=- 29.解方程:
0.20.40.020.03
1;0.50.03
x x ++-=
30.化简求值:2
2
2
2
2
322(4)5,a b ab a b ab ab ⎡⎤---+-⎣⎦ 其中1
2,.2a b =-=
四、完整解答(除32、33小题每小题5分外,其余每小题各6分,共28分)
31.据调查,南开中学初一某班生源情况如图1,根据图中信息回答下列问题:
(1)来自市内城镇的人数占全班总人数的百分比为_________. (2)来自市外的人数为2人,则全班总人数为________人.
(3)若某校初一某班生源情况如图2,那么这两个班来自市内城镇的人数一定相等吗?试说明理由.
32.如图,直线AB CD 、相交于,O OE 平分,AOC ∠ :5:4,BOC BOD ∠∠=求BOE ∠的度数.(注意:不能用...
“对顶角相等”的知识解题哟!)
33.列方程解应用题:
某养鸡专业户养了黄鸡、黑鸡、白鸡,黄鸡比黑鸡多130只,比白鸡少180只,白鸡的只数是黑鸡的2倍,求这个养鸡专业户所养的黄鸡、黑鸡、白鸡的只数?
34.列方程解应用题:
为了认真贯彻落实“阳光体育运动”,以实施全面推进素质教育,某校七年级组织了“冬季爬山活动”.七年级(3)班的同学以4/km h 的速度从学校出发,走了15分钟后班长发现忘了带考勤簿,就以5/km h 的速度回学校去拿,然后以同样的速度去追赶队伍,结果在距目的地3km 处追上了队伍. 试求学校距目的地的距离.
35.列方程解应用题:
某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,会员每月交会员费12元,租碟费每张0.4元.小彬经常来该店租碟,若小彬每月租碟数量为x 张. (1)分别写出两种租碟方式下小彬应付的租碟金额;
(2)若小彬在一月内租24张碟,试问选用哪种租碟方式合算? (3)试讨论当小彬每月租碟x 张时选取哪种方式更合算.
友情提示:再仔细检查一下.......
,也许你会做得更好,祝考试顺利! A E C O。