轴对称和等腰三角形
- 格式:doc
- 大小:161.50 KB
- 文档页数:6
轴对称图形有哪些
轴对称图形有:正方形、长方形、等腰三角形、等边三角形、等腰梯形.
1、正方形:是特殊的平行四边形,两组对边分别平行且相等;四条边都相等;对角线互相垂直平分;具有不稳定性(易变形);
2、长方形:有一个角是直角的平行四边形叫做长方形;两条对角线相等;对边平行且相等;具有稳定性;
3、等腰三角形:有两条边相等的三角形叫做等腰三角形;顶角是直角;底边上的高等于腰上的高;等腰三角形的性质:两条边相等的三角形是等边三角形;等腰三角形的判定:在同一个三角形中,如果有两个角相等,那么这两个角所对的边也相等;
4、等边三角形:三条边都相等的三角形叫做等边三角形;
5、等腰梯形:有一个角是直角的梯形叫做等腰梯形;等腰梯形的判定:在同一个梯形中,如果有两个角相等,那么这两个角所对的边也相等;
6、菱形:具有一个角为直角的平行四边形叫做菱形;
7、圆:圆是一种特殊的平行四边形,它的定义域是所有的实数;
8、扇形:由圆心角的角度和弧度决定的图形叫做扇形;
9、圆锥:由圆锥面、底面圆和母线组成的几何体叫做圆锥;10、球:在地球表面,由坚硬的岩石组成的天然形体叫做球;11、椭圆:定义:过焦点的圆叫做椭圆;12、双曲线:定义:过焦点的双曲线;13、抛物线:定义:与x 轴有两个交点的曲线叫做抛物线;14、直线:无限长的,平行于x 轴y 轴的线段叫做。
1. 轴对称及等腰三角形性质的综合应用2. 全等三角形与轴对称、旋转、平移变换的综合应用中考要求重难点轴对称与等腰三角形版块一 轴对称☞垂直平分线类垂直平分线:“垂直平分线上点到线段两个端点的距离相等”,主要是转化线段之间的关系,尤其是在轴对称有关作图中,应用更为广泛【例1】 如图ABC ∆中,AD 平分BAC ∠,DG BC ⊥且平分BC ,DE AB ⊥于E ,DF AC ⊥于F .⑴说明BE CF =的理由;⑵如果AB a =,AC b =,求AE ,BE 的长.GFE DC BA【例2】 如图,AB AC =,AD AE =,BE 和CD 相交于点O ,AO 的延长线交BC 于点F 。
求证:BF FC =。
FOEDCBA☞双对称轴路程和最短问题【例3】 如图,30AOB ∠=︒,角内有点P ,且5OP =,在角的两边有两点Q 、R(均不同于O 点),则PQR △的周长的最小值为 .例题精讲OB【巩固】如图,在POQ ∠内部有M 点和N 点,同时能使MOP NOQ ∠=∠,这时在直线OP 上再取A 点,使从A 点到M 点及N 点的距离和为最小;在直线OQ 上也取B 点,使从B 点到M 点和N 点的距离和也最小.证明:AM AN BM BN +=+.QONMB A☞多对称轴路程和最短问题【例4】 如图,当点A 与123l l l 、、连续相撞时,假设入射角等于反射角,求作出点A 向点B 运动时的最短路程32l【例5】 如图,矩形台球桌ABCD 上有两个球P Q 、,求作一击球路线,使P 球顺次撞击球桌四边后再撞击Q 球(球撞击桌边的入射角等于反射角)☞平移路程和最短问题【例6】 如图,在a 上找到M 、N 两点,且10MN =,M 在N 的左边,使四边形ABMN 的周长最短。
BAa【巩固】如图,A B ,两村相隔一条河,为使两村之间行程最短,应在河的什么位置架一座桥?(河岸可看成平行线,桥是垂直于河岸的)l 2l 1B☞轴对称与路程差最大问题【例1】 已知:A 、B 两点在直线l 的同侧,在l 上求作一点M ,使得||BM AM -最大。
19 轴对称与等腰三角形考点总结【思维导图】【知识要点】知识点1 图形的轴对称轴对称概念:有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.轴对称的性质:1、关于某条直线对称的两个图形是全等形。
2、如果两个图形关于某直线对称,那么对称轴是任何一对对应点所在连线段的垂直平分线。
轴对称图形概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)轴对称图形的性质(重点):如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
轴对称与轴对称图形的联系与区别画一图形关于某条直线的轴对称图形步骤:1.找到关键点,画出关键点的对应点,2.按照原图顺序依次连接各点。
用坐标表示轴对称:1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【答案】DA、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.2.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【答案】C【解析】观察可知沿l1折叠时,直线两旁的部分不能够完全重合,故l1不是对称轴;沿l2折叠时,直线两旁的部分不能够完全重合,故l2不是对称轴;沿l3折叠时,直线两旁的部分能够完全重合,故l3是对称轴,所以该图形的对称轴是直线l3,故选C.3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【答案】D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.4.下列图形中一定是轴对称图形的是()A.B.C.D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C平行四边形是中心对称图形不是轴对称图形,故不符合题意;D矩形是轴对称图形,有两条对称轴,故符合题意,故选D.5.下列图形:其中是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④【答案】A【解析】1有两条对称轴;2有两条对称轴;3有四条对称轴;4不是对称图形故选A.题型一画对称轴的方法例1.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【答案】(1)答案见解析;(2)A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).【解析】(1)、如图所示:△A1B1C1,即为所求;(2)、如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5)跟踪训练一1.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A,B的坐标分别为(-4,5),(-2,1).(1)写出点C 及点C 关于y 轴对称的点C ′的坐标;(2)请作出△ABC 关于y 轴对称的△A ′B ′C ′;(3)求△ABC 的面积.【答案】 (1)点C (-1,3), 点Cˊ(1,3);(2)详见解析;(3)面积为4【解析】(1)点C (-1,3),点C ˊ(1,3);(2)如图所示;(3)S △ABC =3×412-⨯2×312-⨯1×212-⨯2×4=12﹣3﹣1﹣4=4.2.在33⨯的正方形格点图中,有格点ABC ∆和DEF ∆,且ABC ∆和DEF ∆关于某直线成轴对称,请在备用图中画出4个这样的DEF ∆.【答案】见解析.【解析】如图,①,两个三角形关于大正方形的水平对称轴对称;②,两个三角形关于过C 点的水平线对称,此时C 和F 重合;③,两个三角形关于大正方形的竖直对称轴对称;④,两个三角形关于大正方形的过B 点的对角线对称轴对称,此时B 和E 重合,4个DEF ∆即为所画.题型二 根据轴对称求坐标或字母的取值范围例2.已知点P (3,2),则点P 关于y 轴的对称点P 1的坐标是 ,点P 关于原点O 的对称点P 2的坐标是 .【答案】(-3,2);(-3,-2)【解析】试题分析:关于y 轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,从而点P (3,2)关于y 轴对称的点P 1的坐标是(-3,2)。
要点全析:等腰三角形1.等腰三角形(isosceles triangle)有两条边相等的三角形叫做等腰三角形.如图14-3-1,△ABC中,AB=AC,则△ABC是等腰三角形.相等的两条边叫腰,另一条边BC叫底边,两腰所夹的角叫顶角,如∠BAC,底边和腰的夹角∠ABC和∠ACB叫底角.如图14-3-2中,∠C=90°,AC=BC,那么,AC、BC为腰,AB边为底,∠A、∠B为底角,∠C为顶角.【说明】要理解等腰三角形的定义,需注意以下几点:(1)等腰三角形的底不一定在下方,而顶角不一定在上方,如图14-3-2中,AB为底,∠C为顶角.它是根据两腰的位置来确定的.(2)等腰三角形的三边仍要满足条件:任意两边之和大于第三边(或任意两边之差小于第三边).若图14-3-1中,AB=AC=m,BC=a,则2m>a,即m>a/2时,才能构成三角形,否则不成立.如边长分别为2,2.5的三条线段不能构成三角形,因为2+2<5.例如:(1)下列各组数据为边长时,能否组成三角形?①a=2,b=3,c=5;②a=4,b=3,c=2;③a=1,b=2,c=2;④a=2 005,b=2 004,c=2 008.(2)已知等腰三角形的两边为6 cm,7 cm,求其周长.(3)已知等腰三角形的两边长为2 cm,7 cm,求其周长.解:(1)①由于2+3=5,即a+b=c,而不满足a+b>c,∴不能组成三角形.②由于2+3=5>4,即b+c>a,所以a、b、c可以组成三角形.③由于1+2>2,即a+b>c,所以a、b、c可以组成三角形.④由于a+b>c,因此a、b、c可以组成三角形.(2)因等腰三角形的两边长分别为6 cm、7 cm当腰长为6 cm时,周长为6+6+7=19(cm)当腰长为7 cm时,周长为6+7+7=20(cm).∴等腰三角形的周长为19 cm或20 cm.(3)因等腰三角形的两边长分别为2 cm,7 cm,所以腰长为7 cm,而不能是2 cm.若为2 cm,则2+2=4<7,不能组成三角形.因此周长为7+7+2=16(cm),∴等腰三角形的周长为16 cm.2.等腰三角形的性质1等腰三角形的两个底角相等(简写成“等边对等角”)如图14-3-3,△ABC中,AB=AC,则∠B=∠C证法一:(利用轴对称)过点A作△ABC的对称轴AD.∵AB=AC,∴点A在BC的垂直平分线上.又∵AD为△ABC的对称轴,∴△ABD≌△ACD(轴对称性质).∴∠B=∠C证法二:(作顶角平分线)过点A作AD平分∠BAC交BC于D,如图14-3-3,在△ABD和△ACD中⎪⎩⎪⎨⎧∠∠ADADCADBADACAB===∴△ABD≌△ACD(SAS).∴∠B=∠C【说明】还可以作底边BC的中线和高来证明.3.等腰三角形的性质2(简称“三线合一”)等腰三角形的顶角平分线、底边上的中线、底边上的高线相互重合.如图14-3-6,在△ABC中,AB=AC,AD为顶角的平分线,那么AD既是中线,又是高线,这三条线重合.在使用时,在这三条线段中,只要作出其中一条,另外两条也就可以认为作出来了.即△ABC中,AB=AC,若AD平分∠BAC,则AD⊥BC,BD=CD;若BD=CD,则AD⊥BC,∠BAD=∠CAD;若AD⊥BC,则BD=DC,∠BAD=∠CAD.因此,等腰三角形中的这条线非常重要,一旦作出,边、角的等量关系就都有了.【说明】(1)“三线合一”仅限于等腰三角形中才有,其他三角形中没有.(2)在一般三角形中,这三条线是不会重合的.如图14-3-7,在△ABC中,AD为高,AE为中线,AF平分∠BAC,因此,这三条线不重合.只有等腰时,三条线才会重合;反过来,若某一三角形中三线重合,则该三角形为等腰三角形.(3)在今后的证明题中,经常会使用“三线合一”进行证明.例如:△ABC中,AB=AC,BD⊥AC交AC于D,如图14-3-8.求证:∠BAC=2∠DBC证法一:在△BCD中,∵BD⊥AC,∴∠BDC=90°.∴∠DBC=90°-∠C.在△ABC中,∵AB=AC,∴∠ABC=∠ACB.∴∠BAC=180°-(∠ABC+∠ACB)=180°-2∠ACB=2(90°-∠C).∴∠BAC=2∠DBC证法二:借助于三线合一的性质,过A作AM⊥BC于M,则AM平分∠BAC,∴∠BAC=2∠BAM=2∠CAM.又∵BD⊥AC交AC于D,AM⊥BC交BC于M,∴∠DBC=90°-∠C又∵AM⊥BC,∴∠CAM=90°-∠C,∴∠DBC=∠CAM4.等腰三角形的性质3(轴对称性)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴.如图14-3-9,△ABC中,AB=AC,AD平分∠BAC,则△ABC的对称轴为AD所在的直线,△ABD≌△ACD.过D作DE⊥AB,交AB于E,作DF⊥AC,交AC于F.由△ABD≌△ACD可知DE=DF.同理,过D分别作AB、AC边上的中线和角平分线,它们都相等.因此,得到等腰三角形的一个重要结论.重要结论:过等腰三角形底边的中点向两腰所作的高线、中线以及角平分线,其与两腰所截得的线段都分别对应相等.5.等腰三角形的性质4(两腰上的对应线段相等)等腰三角形两腰上的中线、高线和两底角平分线对应相等.例如:如图14-3-10,△ABC中,AB=AC,若BD、CE分别为AC、AB边上的高线,则BD =CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).又∵BD⊥AC,CE⊥AB,∴∠BDC=∠CEB=90°.在△BCD和△CBE中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=CBBCCEBBDCCBEBCD∴△BCD≌△CBE(AAS).∴BD=CE.或S△ABC=0.5×AB·CE=0.5×AC·BD.∵ AB=AC,∴BD=CE.此法较为简便.同样道理,可分别作出两腰上的中线,两底角的平分线,也分别对应相等.6.等腰三角形的判定定理(等角对等边)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).例如:如图14-3-11,△ABC中,若∠B=∠C,则AB=AC证明:过点A作AD平分∠BAC,交BC于点D,则∠BAD=∠CAD.在△ABD和△ACD中,∴△ABD≌△ACD(AAS).∴AB=AC因此,这一结论可直接利用.【说明】(1)在使用“等边对等角”或“等角对等边”时,一定要注意是在同一个三角形中才有这一对应关系,不在同一三角形中的边、角没有这一对应关系.(2)有了这一结论,为今后证明线段相等又添了一种重要的解题途径.例如:如图14-3-12,△ABC中,AB=AC,BD、CE相交于O点.且BE=CD求证:OB=OC.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).在△BCE和△CBD中⎪⎩⎪⎨⎧∠∠,=,=,=CBBCDCBEBCCDBE∴△BCE≌△CBD(SAS).∴∠BCE=∠CBD,即∠OBC=∠BCO∴OB=OC(等角对等边).【说明】证两条线段相等,若这两条线段在同一个三角形中,可利用等腰三角形的判定定理来证明.7.已知底边和底边上的高,求作等腰三角形已知线段a、b,求作等腰三角形ABC,使底边BC=a,高为b.作法:(1)作线段BC=a;(2)作线段BC的垂直平分线MN与BC交于点D;(3)在MN上截取AD=b;(4)连接AB、AC,△ABC就是所求的等腰三角形.【说明】(1)由作法知MN为BC的垂直平分线,∴AB=AC∴△ABC为等腰三角形,如图14-3-13.(2)以前所作的三角形分别为:已知三边,两边夹角,两角夹边和已知斜边、直角边求作三角形,今天又学习了已知底边和底边上的高求作等腰三角形,共有五种情况,今后还将学习一些更为复杂的作法,都是以这五种为基础进行作图的.8.等边三角形(equilateral triangle)(1)定义:三条边都相等的三角形,叫等边三角形.如图14-3-14,△ABC中,AB=BC =CA,则△ABC为等边三角形.(2)性质:①等边三角形的三个内角都相等,并且每一个角都等于60°.如图14-3-14中,若△ABC 为等边三角形,则∠A=∠B=∠C=60°.②除此之外,还具有等腰三角形的一切性质,如三线合一,轴对称等.(3)判定:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.下面证明以上两条判定.判定①:如图14-3-15,已知△ABC中,∠A=∠B=∠C求证:△ABC是等边三角形.证明:∵∠B=∠C,∴AB=AC又∵∠A=∠B∴AC=BC∴AB=AC=BC,∴△ABC是等边三角形.判定②:如图14-3-15,已知△ABC中,AB=AC,∠B=60°.求证:△ABC是等边三角形.证明:∵AB=AC,∴∠B=∠C.又∵∠B=60°,∴∠B=∠C=60°.又∵∠A+∠B+∠C=180°,∴∠A=180°-(∠B+∠C)=60°.∴∠A=∠B=∠C,∴AB=BC=AC.∴△ABC为等边三角形.(4)应用:例如:如图14-3-16,△ABC为等边三角形,D、E为直线BC上的两点,且BD=BC=CE,求∠DAE的度数.分析:要求∠DAE的度数,需分开求,先求∠BAC,再求∠DAB和∠CAE,由△ABC为等边三角形知∠BAC=60°,又∵BD=BC,而BC=BA,则BD=BA,∴△ABD为等腰三角形,∴∠D=∠DAB=0.5×∠ABC=30°.同理可知,∠CAE=30°.解:∵△ABC为等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°.又∵BD=BC,∴BD=BC=AB.∴∠DAB=∠D,又∵∠ABC=∠D+∠DAB,∴∠ABC=2∠DAB=60°,∴∠DAB=30°.同理,∠CAE=30°.∴∠DAE=∠DAB+∠BAC+∠CAE=30°+60°+30°=120°.【说明】本题中用到了等边三角形的性质.再如:如图14-3-17,已知△ABC为等边三角形,D、E、F分别为△ABC三边上的点,且BD=CE=AF,直线AD、BE、CF两两相交于点R、Q、P.求证:△PQR是等边三角形.分析:本题既用到了等边三角形的性质,又用到了其判定.要证△PQR为等边三角形,证三边相等难度较大,可考虑证其三角相等.也可先证∠PQR=60°,而∠PQR=∠ACQ+∠QAC,又因为∠ACQ+∠BCF =60°,只需证∠BCF=∠DAC,由此可联想证△BCF与△CAD全等.证明:∵△ABC为等边三角形,∴∠BAC=∠ABC=∠BCA=60°,AB=BC=CA.又∵BD=CE=AF,∴BF=DC=AE在△ABE和△BCF和△CAD中,⎪⎩⎪⎨⎧∠∠∠,==,==,==CDBFAEDCAFBCBAECABCAB∴△ABE≌△BCF≌△CAD(SAS).∴∠ABE=∠BCF=∠CAD.∵∠ACQ+∠BCF=60°,∴∠ACQ+∠CAQ=60°.∴∠AQF=∠ACQ+∠CAQ=60°,即∠PQR=60°.同理,∠RPQ=∠PRQ=60°.∴△PQR为等边三角形.【说明】(1)此题证明思路比较清晰,只是步骤书写较繁,书写应认真;(2)在证明过程中用到了三个三角形全等的连等形式,可仿照两个三角形全等的方式使用.9.含30°角的直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.如图14-3-18,在Rt△ABC中,∠C=90°,∠A=30°,则BC=0.5×AB,这一性质反过来也成立.即在Rt△ABC中,∠C=90°,若BC=0.5×AB,则∠A=30°.因此Rt△ABC 中,∠C=90°,∠A=30° BC=AB/2这一性质在解题中经常用到.例如:如图14-3-19,在Rt△ABC中,∠BAC为直角,高AD交BC于D,∠B=30°,BC =12米,求CD,BD的长.解:∵在Rt△ABC中,∠BAC=90°,∠B=30°,∴∠C=60°,BC=2AC∴AC=BC/2=6(米).在Rt△ACD中,∵AD⊥BC,∠C=60°,∴∠CAD=30°.∴DC=AC/2=0.5××6=3(米).∴BD=BC-DC=9-6=12-3=9(米).【说明】在本题中两次用到直角三角形的这一性质,并且用的方式都一样.。
第15章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点34.轴对称的性质①关于某直线对称的两个图形是全等形。
①如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
①轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
①如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为______.点(x, y)关于y轴对称的点的坐标为______.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质(1)等腰三角形的两个底角相等。
(等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一) (3)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°①等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
①等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ①等腰三角形的三角关系:设顶角为顶角为①A ,底角为①B 、①C ,则①A=180°—2①B ,①B=①C=2180A∠-︒ 2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
轴对称与等腰三角形知识点1、等腰三角形1、等腰三角形的定义:有两边相等的三角形叫做等腰三角形。
相等的两边叫做等腰三角形的腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
注意:①等腰三角形的顶角不一定是锐角,但是底角一定是锐角;②钝角三角形也可以是等腰三角形2、等腰三角形的性质①等边对等角:等腰三角形的两底角相等;②三线合一:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合;③等腰三角形两腰上的高、中线分别相等,两底角的平分线相等;④等腰三角形是轴对称图形,对称轴为顶角角平分线(三线合一)所在直线。
注意:①等腰三角形的性质是指在同一个等腰三角形而言的;②三线合一要注意位置,在等腰三角形中所有的中线、角平分线等并不是合一的。
3、等腰三角形的判定①有两个角相等的三角形是等腰三角形。
(等角对等边)②三线合一也能作为判定等腰三角形的依据③推论在直角三角形中,30°所对的直角边是斜边的一半1-9、如图,已知在等腰三角形ABC 中,AC AB =,BC AE //.求证:AE 平分∠DAC .例2、等腰三角形的判定2-1、如图,OC 平分∠AOB ,OB CD //,若cm OD 3=,则CD 等于.2-2、已知:如图,在△ABC 中,∠ACB =90°,CD 是AB 上的高,AE 分别交CB 、CD 于E 、F ,且CF CE =,求证:AE 平分∠BAC .2-3、如图,△ABC 中,∠ACB =90º,CD ⊥BA 于D ,AE 平分∠BAC 交CD 于F ,交BC 于E ,求证△CEF 是等腰三角形。
DC AB 02-5、如图,在△ABC中,AB知识点2、等边三角形1、等边三角形的定义三边相等的三角形叫做等边三角形,也叫正三角形2、等边三角形性质:①每个角都是60°;②轴对称图形;③有3条对称轴。
3、等边三角形的判定定理①三边相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形。
轴对称及等腰三角形知识点1:等腰三角形的定义知识点2:等腰三角形的性质和判定定理 等腰三角形的性质定理(1)等腰三角形的两个底角相等。
(简述为:等边对等角。
)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
(三线合一性质) 等腰三角形判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边) 知识点3:等边三角形的性质和判定定理 等边三角形性质定理:(1)等边三角形的三个角都相等,并且每个角都等于600。
(2)等边三角形的三边都相等。
(3)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
(三线合一性质) 等边三角形的判定定理(1)有一个角是60度的等腰三角形是等边三角形,也称作正三角形; (2)有两个角是60度的三角形是等边三角形; (3)三条边都相等的三角形是等边三角形。
知识点4.等腰三角形是 轴 对称图形。
它的对称轴是 顶角平分线 或 底边上的中点 或 底边上的高 ;只有 一条 对称轴;等边三角形有 三条 对称轴。
知识点5.记住三类特殊的等腰三角形(1)底角是顶角的2倍的等腰三角形,顶角度数是 36,底角度数是 72 , 顶角的平分线或底边上的中线或底边上的高 所在的直线可以将原等腰三角形分成两个等腰三角形。
(2)顶角是108度的等腰三角形,可以过顶点做一条直线,使原等腰三角形分成两个等腰三角形。
(3)等腰直角三角形,底边上的 高 将原等腰三角形分成两个全等的等腰直角三角形。
例题讲解1、考查等腰三角形的定义; 例1、小明将两个全等且有一个角为60°的直角三角形拼成如图所示的图形,其中两条较长的直角边在同一直线上,则图中等腰三角形的个数是( ) A 、4个 B 、3个 C 、2个 D 、 1个2、考查等腰三角形性质的应用;例2、在⊿ABC 中,已知AB=AC,AD=DC ,∠A=500,则∠DCB 的度数是( )A 、150B 、300C 、500D 、6503、考查等腰三角形的判定;例3、在⊿ABC 中,D 、E 分别是AC 和AB 上的点,BD 与CE 交于O ,给出下列四个条件:①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD ;④OB=OC 。
A B C D E 轴对称(一) 知识要点1、 轴对称及轴对称图形轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们就说这个图形关于这条直线(或轴)对称。
轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
如上右图,△ABC 与△A ’B ’C ’关于直线l 对称,l 叫做对称轴,A 和A ’,B 和B ’,C 和C ’是对称点。
2、 线段的垂直平分线线段垂直平分线的定义:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(也称为线段的中垂线)。
如下左图,直线l 经过线段AB 的中点O ,并且垂直于线段AB ,则直线l 就是线段AB 的垂直平分线。
线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3、 轴对称和轴对称图形的性质两个图形成轴对称(或轴对称图形),则对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
4、 成轴对称的两个图形的对称轴的画法如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。
因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴。
(二) 典型例题例2:如图,有一块三角形的土地,AB=AC=10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17,请你替测量人员计算BC 的长。
A B O lA BPA B CE D(三) 中考链接 :(08·武汉)如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFC+∠BCF=1500,则∠AFE+∠BCD 的大小是( ) A 、1500 B 、3000 C 、2100 D 、33001、 如果O 是线段AB 的垂直平分线与AB 的交点,那么_________=_________;2、 设MN 是线段AB 的垂直平分线,当点P 在MN 上运动时,PA ,PB 的长度都随之变化,但总保持______________;3、 如图,AB=AC=12,BC=7,AB 的垂直平分线交AB 于D ,交AC 于E ,求△BCE 的周长。
一选择题:
1.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()
A. B. C. D.
2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()
A.21:10
B.10:21
C.10:51
D.12:
01
3.平面内点A(-1,2)和点B(-1,6)的对称轴是()
A.x轴 B.y轴 C.直线y=4 D.直线x=-1 4.如图,△ABC与△关于直线MN对称,P为MN上任一点,下列结论中错误的是( )
(A)△是等腰三角形. (B)MN垂直平分.
(C)△ABC与△面积相等.(D)直线AB、的交点不一定在MN上.
5.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是().
6.若等腰三角形一个外角等于100,则与它不相邻的两个内角的度数分别为…()
A.40,40
B.80°,20
C.50°,50°
D.80°,20°或 50°,50°
7.如图是轴对称图形,它的对称轴有()
A.2条 B.3条 C.4条 D.5条
8.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于E点,如果BC=10,△BDC的周长为22,那么△ABC的周长是()
A.24
B.30
C.32
D.34
9.如图,把一长方形纸片ABCD沿EG折叠后,点A、B分别落在A′、B′的位置上,EA′与BC相交于点F,已知∠1=130°,则∠2的度数是()
A.40°
B.50°
C.65°
D.80°
10.如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整
个阴影部分成为轴对称图形,涂法有几种()
A. 2种
B. 4种
C. 5种
D. 7种
11.如图,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于点E,BE=4,则AC 长为( )
A.2 B.3 C.4 D.以上都不对
12.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()
A.仅有一处 B.有四处 C.有七处 D.有
无数处
13.∠BAC=110°若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( )
A.20°
B. 40°
C.50
D. 60°
14.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()
A.4cm B.3cm C.2cm D.1cm
15.如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是( )
A.30° B.35° C.40° D.50°
16.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有( )
A.2个 B.3个 C.4个 D.5
个
17.平面上有A、B两点,以线段AB为一边作等腰直角三角形,能作()
A.3个B.4个C.6个 D.无数个
18.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()
A. B. C. D.不能确定
20.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()
A.()n•75°
B.)n﹣1•65°
C.()n﹣1•75°
D.()n•85°二填空题:
21.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.
22.已知等腰三角形一腰上的中线将它周长分成18cm和9cm 两部分,则这个等腰三角形的底边长是cm.
23.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是______.
25.如图,所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为.
28.如图所示,线段AB=8cm,射线AN⊥AB于点A,点C是射线上一动点,分别以AC、BC为直角边作等腰直角三角形,得△ACD与△BCE中,连接DE交射线AN于点M,则CM的长为.
19.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC.
(2)若点M在DE上,且DC=DM,求证:ME=BD.
(第19题图) 12.如图,CE,CB分别是△ABC,△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.
(第12题)。