高三一轮复习——空间向量与立体几何(含解析)
- 格式:doc
- 大小:423.50 KB
- 文档页数:6
新数学《空间向量与立体几何》复习知识点一、选择题1.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .3πB .πC .3πD .12π【答案】C【解析】【分析】该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,把这个三棱锥放到正方体中,即可求出其外接球的表面积.【详解】由三视图可知,该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,如图所示该几何体是棱长为1的正方体中的三棱锥1A BCD AB BC BD -===,.所以该三棱锥的外接球即为此正方体的外接球,球的直径2r 为正方体体对角线的长. 即22221113r =++=.所以外接球的表面积为243r ππ=.故选:C .【点睛】本题考查几何体的三视图,考查学生的空间想象能力,属于基础题.2.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )A .2⎡⎣B .3⎡⎣C .32⎣D .62⎣ 【答案】D【解析】【分析】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t =⎧⎨=-⎩,然后用空间两点间的距离公式求解即可. 【详解】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y . ()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r 由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r 且01BD AP ⋅=u u u u r u u u r所以10x t -+=且110x y --+=得+1x t =,1y t =-. 所以()2221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r 当12t =时,min 6AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 62AP ≤≤u u u r 故选:D【点睛】本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.3.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D【解析】【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解【详解】如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M =,16C M =,1'41C N =21122''N M M C N C =+,即1'90N MC ∠=︒ 故选D【点睛】本题考查异面直线的求法,属于基础题4.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D .534【答案】B【解析】【分析】 先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ PC ,同理1//AP QC ,所以四边形1APC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B PC =,即1PC PB ==所以115,23AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯所以126sin 5APC ∠= 所以S 四边形1APQC 1112sin 262AP PC APC =⨯⨯⨯∠= 故选:B【点睛】 本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.5.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β【答案】D【解析】【分析】A 由线面平行的性质定理判断.B 根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C 根据线面垂直的定义判断.D 根据线面垂直的判定定理判断.【详解】A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;故选:D.【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.6.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .920π+B .926π+C .520π+D .526π+【答案】C【解析】【分析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积2112141222S ππ=⨯+⨯⨯⨯+⨯⨯14224520π+⨯⨯+⨯=+,故选C. 【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.7.已知圆锥的母线与底面所成的角等于60°,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( )A .4:3B .3:4C .16:9D .9:16 【答案】C【解析】【分析】由圆锥的母线与底面所成的角等于60°,可知过高的截面为等边三角形,设底面直径,可以求出其表面积,根据圆锥内接于球O ,在高的截面中可以求出其半径,可求其表面积,可求比值.【详解】设圆锥底面直径为2r ,圆锥的母线与底面所成的角等于60°,则母线长为2r ,则圆锥的底面积为:2r π,侧面积为1222r r π⋅, 则圆锥的表面积为2212232r r r r πππ+⋅=, 该圆锥内接于球O ,则球在圆锥过高的截面中的截面为圆,即为边长为2r 的等边三角形的内切圆,则半径为R =,表面积为221643r R ππ=, 则球O 与圆锥的表面积之比等于2216:316:93r r ππ=, 故选:C .【点睛】本题考查圆锥的性质,以及其外接球,表面积,属于中档题.8.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .3B .13C .58D .387 【答案】C【解析】【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF V ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值.【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E B C ==且CD AB ⊥. 由勾股定理得224442AB =+=,所以2242AC BC CD AB ⋅===. 由勾股定理得2222115229CF CC C F =+=+=,2222115229DF BE BB B E ==+=+=.在CDF V 中,由余弦定理得())()22229222958cos 22922CDF +-∠==⨯⨯. 故选:C.【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题.9.棱长为2的正方体被一个平面所截,得到几何体的三视图如图所示,则该截面的面积为( )A .92B .22C .32D .3【答案】A【解析】【分析】由已知的三视图可得:该几何体是一个正方体切去一个三棱台,其截面是一个梯形,分别求出上下底边的长和高,代入梯形面积公式可得答案.【详解】由已知的三视图可得:该几何体是一个正方体切去一个三棱台ABC DEF -,所得的组合体,其截面是一个梯形BCFE , 上底长为22112+=,下底边长为222222+=, 高为:222322()2+=, 故截面的面积1329(222)222S =+⨯=, 故选:A .【点睛】 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.10.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .305C .275 D .475【答案】B【解析】【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值.【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.11.已知三棱锥P ABC -中,PA PB PC ==,APB BPC CPA ∠>>∠,PO ⊥平面ABC 于O ,设二面角P AB O --,P BC O --,P CA O --分别为,,αβγ,则( ) A .αβγ>> B .γβα>> C .βαγ>> D .不确定【答案】A【解析】【分析】D 为AB 中点,连接,DP DO ,故PD AB ⊥,计算sin cos 2POAPB a α=∠,sin cos 2PO CPB a β=∠,sin cos 2PO CPA a γ=∠,得到大小关系. 【详解】如图所示:设PA PB PC a ===,D 为AB 中点,连接,DP DO ,故PD AB ⊥, PO ⊥平面ABC ,故PDO ∠为二面角P AB O --的平面角.cos 2APB PD a ∠=,sin cos 2PO PO APB PD a α==∠, 同理可得: sin cos 2PO CPB a β=∠,sin cos 2PO CPA a γ=∠, APB BPC CPA ∠>∠>∠,故sin sin sin αβγ>>,故αβγ>>. 故选:A .【点睛】本题考查了二面角,意在考查学生的计算能力和空间想象能力.12.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( )A .36πB .64πC .100πD .144π【答案】C【解析】【分析】由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解.【详解】解:如图,ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC ==, 由1132322732DE ⨯⨯⨯⨯=,解得9DE =, 则21AE EF DE==. ∴球O 的直径为10DE EF +=,则球O 的半径为11052⨯=. ∴该球的表面积为245100S ππ=⨯=.故选C .【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.13.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( )A .若,与所成的角相等,则B .若,,则 C .若,,则 D .若,,则 【答案】C【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,,则或,B 错. 若,,则正确. D .若,,则 ,相交或,异面,D 错考点:直线与平面,平面与平面的位置关系14.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4πC .512πD .2π 【答案】C【解析】【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()2cos 0442QPM x x x ∠=≤≤+-,,即可求出33cos 123QPM ⎡⎤∠∈⎢⎥⎣⎦,,进而求出结果. 【详解】取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-,在正四面体A BCD -中,易知PQ MQ =,所以在等腰三角形PMQ 中,()2cos 0442QPM x x x ∠=≤≤+-所以33cos QPM ∠∈⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C.【点睛】本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.15.某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )A .22B .23C .4D .26【答案】B 【解析】 解:如图所示,该几何体是棱长为2的正方体中的三棱锥P ABC - ,其中面积最大的面为:1232232PAC S V =⨯⨯= . 本题选择B 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.16.已知ABC V 的三个顶点在以O 为球心的球面上,且2cos 3A =,1BC =,3AC =,三棱锥O ABC -的体积为146,则球O 的表面积为( ) A .36π B .16π C .12π D .163π 【答案】B【解析】【分析】 根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积. 【详解】由余弦定理得22229122cos 26AB AC BC AB A AB AC AB +-+-===g ,解得22AB =, 222AB BC AC ∴+=,即AB BC ⊥.AC ∴为平面ABC 所在球截面的直径.作OD ⊥平面ABC ,则D 为AC 的中点,11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=.2416O S OA ππ∴=⋅=球.故选:B .【点睛】本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.17.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .122πB .12πC .82πD .10π【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为22的正方形, 结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为22(2)222212S πππ=+⋅⋅=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.18.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为1和3,此三棱柱的高为23,则该三棱柱的外接球的体积为A .323πB .163πC .83πD .643π 【答案】A【解析】【分析】求得该直三棱柱的底面外接圆直径为2221(3)2r =+=,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解.【详解】由题意可得该直三棱柱的底面外接圆直径为2221(3)21r r =+=⇒=,根据球的性质,可得外接球的直径为22222(2)2(23)4R r h =+=+=,解得2R =,所以该三棱柱的外接球的体积为343233V R ππ==,故选A. 【点睛】本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.19.某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )A .6B .5C .2D .1【答案】A【解析】 由三视图可知该多面体的直观图为如图所示的四棱锥P ABCD -:其中,四边形ABCD 为边长为1的正方形,PE ⊥面ABCD ,且1AE =,1PE =. ∴222AP AE PE =+=2BE AB AE =+=,222DE AD AE =+= ∴225CE BE BC =+=225PB BE PE =+223PD PE DE =+=∴226PC CE PE =+=∴最长棱为PC故选A.点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:①首先看俯视图,根据俯视图画出几何体地面的直观图;②观察正视图和侧视图找到几何体前、后、左、右的高度;③画出整体,然后再根据三视图进行调整.20.已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是边OA ,CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量OA u u u v ,OB uuu v ,OC u u u v 表示向量OG u u u v是( ) A .2233OG OA OB OC =++u u u v u u u v u u u v u u u v B .122233OG OA OB OC u u u v u u u v u u u v u u u v =++ C .111633OG OA OB OC =++u u u v u u u v u u u v u u u v D .112633OG OA OB OC =++u u u v u u u v u u u v u u u v 【答案】C【解析】【分析】根据所给的图形和一组基底,从起点O 出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论.【详解】2OG OM MG OM MN 3=+=+u u u r u u u u r u u Q u u r u u u u r u u u u r , ()()2121111OM MO OC CN OM OC OB OC OA OB OC 3333633u u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r =+++=++-=++ 111OG OA OB OC 633u u u r u u u r u u u r u u u r ∴=++ , 故选:C .【点睛】 本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程.。
专题7.6 利用空间向量证明平行与垂直【考试要求】1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理;4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;5.能用向量方法解决点到平面、相互平行的平面的距离问题;6.并能描述解决夹角和距离的程序,体会向量方法在研究几何问题中的作用.【知识梳理】1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示3.异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则4.求直线与平面所成的角设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sin θ=|cos〈a,n 〉|=|a ·n ||a ||n |. 5.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 6.点到平面的距离用向量方法求点B 到平面距离基本思路:确定平面法向量, 在平面内取一点A ,求向量AB →到法向量的投影向量,投影向量的长度即为所要求的距离.如图平面α的法向量为n ,点B 到平面α的距离d =|AB →·n ||n |.【微点提醒】1.平面的法向量是非零向量且不唯一.2.建立空间直角坐标系要建立右手直角坐标系.3.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.4.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)直线的方向向量是唯一确定的.( )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( ) (3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的X 围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的X 围是⎣⎢⎡⎦⎥⎤0,π2,二面角的X 围是[0,π].( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)直线的方向向量不是唯一的,有无数多个;(2)a⊥α;(3)两个平面的法向量所成的角是这两个平面所成的角或其补角.【教材衍化】2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对 【答案】 C【解析】 ∵n 1≠λn 2,且n 1·n 2=-23≠0,∴α,β相交但不垂直.3.(选修2-1P112A4改编)已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( ) A.30° B.60° C.120° D.150° 【答案】A【解析】 由于cos 〈m ,n 〉=-12,所以〈m ,n 〉=120°,所以直线l 与α所成的角为30°.【真题体验】4.(2019·某某和平区月考)正方体ABCD -A 1B 1C 1D 1的棱长为a ,则平面AB 1D 1与平面BDC 1的距离为( ) A.2a B.3a C.23a D.33a 【答案】 D【解析】 显然A 1C ⊥平面AB 1D 1,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面AB 1D 1的一个法向量为n =(a ,-a ,a ),A (a ,0,0),B (a ,a ,0),BA →=(0,-a ,0),则两平面间的距离d =|BA →·n ||n |=33a .5.(2018·某某区检测)已知平面α的一个法向量为(1,2,-2),平面β的一个法向量为(-2,-4,k ),若α∥β,则k 等于( )A.2B.-4C.4D.-2 【答案】 C【解析】 因为α∥β,所以1-2=2-4=-2k,所以k =4.6.(2019·某某月考)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为______. 【答案】 l ⊥α【解析】 因为a =-12n ,所以l ⊥α.【考点聚焦】考点一 利用空间向量证明平行问题【例1】 如图,在四面体ABCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD . 【答案】见解析【解析】证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF →=14CD →,设点F 坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0又由法一知PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0,∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD . 【规律方法】(1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .【答案】见解析【解析】证明 ∵平面PAD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, ∵PB →=(2,0,-2),∴PB →·n =0,∴n ⊥PB →, ∵PB ⊄平面EFG ,∴PB ∥平面EFG .法二 PB →=(2,0,-2),FE →=(0,-1,0), FG →=(1,1,-1).设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2. ∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)PA ⊥BD ;(2)平面PAD ⊥平面PAB . 【答案】见解析【解析】证明 (1)取BC 的中点O ,连接PO , ∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3).∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .(2)取PA 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·PA →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥PA →,即DM ⊥PA .又∵PA ∩PB =P ,∴DM ⊥平面PAB . ∵DM ⊂平面PAD ,∴平面PAD ⊥平面PAB . 【规律方法】(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. ③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.【训练2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .【答案】见解析【解析】证明 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎪⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 法二 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴、y 轴、z 轴建立空间直角坐标系, 则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n ,故AB 1⊥平面A 1BD .考点三 用空间向量解决有关位置关系的探索性问题 角度1 与平行有关的探索性问题【例3-1】 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由. 【答案】见解析【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD . 以OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0,∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ).设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 设n 3=(x 3,y 3,z 3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .角度2 与垂直有关的探索性问题【例3-2】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面PAC ⊥平面BCEF ?若存在,求出BP PE的值;若不存在,请说明理由.【答案】见解析【解析】(1)证明 ∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF , ∴AF ⊥平面ABCD .∵AC ⊂平面ABCD ,∴AF ⊥AC .过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3,∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB ,∵AB ∩AF =A ,∴AC ⊥平面FAB ,∵BF ⊂平面FAB ,∴AC ⊥BF .(2)解 存在.由(1)知,AF ,AB ,AC 两两垂直.以A 为坐标原点,AB →,AC →,AF →的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合,设BP PE=λ,则λ>0,P ⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面PAC 的法向量为m =(x ,y ,z ).由AP →=⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎨⎧m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎪⎨⎪⎧y =0,z =λ-22λx ,令x =1,则z =λ-22λ, 所以m =⎝ ⎛⎭⎪⎫1,0,λ-22λ为平面PAC 的一个法向量. 同理,可求得n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量. 当m ·n =0,即λ=23时,平面PAC ⊥平面BCEF , 故存在满足题意的点P ,此时BP PE =23. 【规律方法】 解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y ,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.【训练3】 如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP 的值;若不存在,说明理由.【答案】见解析【解析】(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD ,所以AB ⊥平面PAD ,所以AB ⊥PD .又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB .(2)解 取AD 的中点O ,连接PO ,CO .因为PA =PD ,所以PO ⊥AD .因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD .如图,建立空间直角坐标系O -xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1).设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱PA 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14. 【反思与感悟】1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直.【易错防X 】1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.若直线l 的一个方向向量为a =(2,5,7),平面α的一个法向量为u =(1,1,-1),则( )A.l ∥α或l ⊂αB.l⊥αC.l ⊂αD.l 与α斜交【答案】 A【解析】 由条件知a·u=2×1+5×1+7×(-1)=0,所以a⊥u,故l∥α或l ⊂α.故选A.2.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( )A.a ∥c ,b ∥cB.a ∥b ,a ⊥cC.a ∥c ,a ⊥bD.以上都不对【答案】 C【解析】 ∵c =(-4,-6,2)=2(-2,-3,1)=2a ,∴a ∥c ,又a ·b =-2×2+(-3)×0+1×4=0,∴a ⊥b .3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A.相交B.平行C.在平面内D.平行或在平面内【答案】 D【解析】 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内.4.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)【答案】 A【解析】 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( )A.斜交B.平行C.垂直D.MN 在平面BB 1C 1C 内【答案】 B 【解析】 建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3,则M ⎝ ⎛⎭⎪⎫a ,2a 3,a 3,N ⎝ ⎛⎭⎪⎫2a 3,2a 3,a ,MN →=⎝ ⎛⎭⎪⎫-a 3,0,2a 3. 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a ,0)为平面BB 1C 1C 的一个法向量.因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C ,所以MN ∥平面BB 1C 1C .二、填空题6.(2019·某某调研)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.【答案】 257【解析】 由条件得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4, ∴x +y =407-157=257. 7.(2018·某某月考)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.【答案】 垂直【解析】 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A (0,0,0),M ⎝ ⎛⎭⎪⎫0,1,12,O ⎝ ⎛⎭⎪⎫12,12,0,N ⎝ ⎛⎭⎪⎫12,0,1.AM →·ON →=⎝⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,-12,1=0,∴ON 与AM 垂直.8.设直线l 的方向向量为a ,平面α的法向量为n =(2,2,4),若a =(1,1,2),则直线l 与平面α的位置关系为________;若a =(-1,-1,1),则直线l 与平面α的位置关系为________.【答案】 l ⊥α l ∥α或l ⊂α【解析】 当a =(1,1,2)时,a =12n ,则l⊥α; 当a =(-1,-1,1)时,a·n=(-1,-1,1)·(2,2,4)=0,则l∥α或l ⊂α.三、解答题9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .【答案】见解析【解析】证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA ,DP ,DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .10.如图正方形ABCD 的边长为22,四边形BDEF 是平行四边形,BD 与AC 交于点G ,O 为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ;(2)求证:CF ⊥平面AEF .【答案】见解析【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形,∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0). BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3).(1)设平面BCF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0, 取z =1,得n =(-3,3,1).又四边形BDEF 为平行四边形,∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3),∴AE →·n =33-43+3=0,∴AE →⊥n ,又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0,∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE ,又AE ∩AF =A ,AE ,AF ⊂平面AEF ,∴CF ⊥平面AEF .【能力提升题组】(建议用时:20分钟)11.如图所示,在平行六面体ABCDA 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.以上说法正确的个数为( )A.1B.2C.3D.4【答案】 C【解析】 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.12.(2019·某某调研)如图,在长方体ABCDA 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( )A.平行B.异面C.垂直D.以上都不对【答案】 C【解析】 以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系Dxyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0), A (22,0,0),M (2,2,0).∴PM →=(2,2,0)-(0,1,3)=(2,1,-3), AM →=(2,2,0)-(22,0,0)=(-2,2,0), ∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .13.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.【答案】1【解析】 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系, 设CE =x ,DF =y ,则易知E (x ,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1), ∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ ⊥平面PQMN ?若存在,求出实数λ的值;若不存在,说明理由.【答案】见解析【解析】(1)证明 以D 为坐标原点,建立如图所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使平面EFPQ⊥平面PQMN.。
第2节空间几何体的表面积和体积考试要求了解球、棱柱、棱锥、台的表面积和体积的计算公式。
知识梳理1。
多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和。
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)l3.空间几何体的表面积与体积公式名称几何体表面积体积柱体S表面积=S侧+V=S底h(棱柱和圆柱)2S底锥体(棱锥和圆锥)S表面积=S侧+S底V=错误!S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=错误!(S上+S下+错误!)h球S=4πR2V=错误!πR3[常用结论与微点提醒]1。
正方体与球的切、接常用结论正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=错误!a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=错误!a。
2。
长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=错误!。
3。
正四面体的外接球与内切球的半径之比为3∶1。
诊断自测1。
判断下列结论正误(在括号内打“√”或“×")(1)锥体的体积等于底面面积与高之积。
()(2)两个球的体积之比等于它们的半径比的平方。
()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=错误!a。
()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2。
(新教材必修第二册P120T5改编)一个正方体的顶点都在球面上,若球的表面积为4π,则正方体的棱长为()A。
33 B.错误! C.错误!D。
错误!解析由S=4πR2=4π,得R=1,故2×1=3a,得a=错误!。
空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于b 记作a ∥b。
推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。
在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。
(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。
注意:向量a∥α与直线a ∥α的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。
①式叫做平面MAB 的向量表示式。
又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。
高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。
§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。
求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。
例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。
zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。
三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。
空间向量的概念与运算考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量表示若干空间向量的有向线段所在的直线互相平行或重合的向量(或平行向量)共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a =λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b a1b1+a2b2+a3b3共线a =λb(b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角余弦值 cos 〈a ,b 〉=a ·b|a ||b |(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 234.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 为平面α的法向量. (3)空间位置关系的向量表示位置关系向量表示直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2 n 1∥n 2⇔n 1=λn 2(λ∈R ) l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m ,l ⊄αl ∥α n ⊥m ⇔n ·m =0 l ⊥α n ∥m ⇔n =λm (λ∈R ) 平面α,β的法向量分别为n ,mα∥β n ∥m ⇔n =λm (λ∈R )α⊥βn ⊥m ⇔n ·m =0常用结论1.在平面中,A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.在空间中,P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( × )(3)在空间直角坐标系中,在Oyz 平面上的点的坐标一定是(0,b ,c ).( √ ) (4)若a ·b <0,则〈a ,b 〉是钝角.( × ) 教材改编题1.若{a ,b ,c }为空间向量的一个基底,则下列各项中,能构成空间向量的一个基底的是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 答案 C解析 ∵λa +μb (λ,μ∈R )与a ,b 共面. ∴A,B ,D 不正确.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1—→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 由题意,根据向量运算的几何运算法则, BM →=BB 1—→+B 1M —→=AA 1—→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m =________. 答案 10解析 ∵l 1⊥l 2,∴a ⊥b , ∴a ·b =-6-4+m =0,∴m =10.题型一 空间向量的线性运算例1 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →+NC 1—→. 解 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1—→+A 1P —→=AA 1—→+A 1D 1—→+D 1P —→ =AA 1—→+AD →+12DC →=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点, ∴A 1N —→=A 1A —→+AB →+BN → =-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1—→=NC →+CC 1—→=12BC →+AA 1—→=12AD →+AA 1—→=12c +a .∴MP →+NC 1—→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫12c +a =32a +12b +32c . 教师备选如图,在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示OG →,则下列表示正确的是( )A.14OA →+12OB →+13OC →B.12OA →+12OB →+12OC → C .-16OA →+13OB →+13OC →D.13OA →+13OB →+13OC → 答案 D解析 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →)=12OA →+23⎣⎢⎡⎦⎥⎤12OB →+OC →-OA → =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →.思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)(2022·宁波模拟)如图,在三棱锥O -ABC 中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且PD →=2DQ →,若记OA →=a ,OB →=b ,OC →=c ,则OD →等于( )A.16a +13b +13cB.13a +13b +13cC.13a +16b +13cD.13a +13b +16c 答案 A解析 OD →=OP →+PD →=12OA →+23PQ →=12OA →+23(OQ →-OP →) =12OA →+23OQ →-23OP → =12OA →+23×12(OB →+OC →)-23×12OA → =16OA →+13OB →+13OC → =16a +13b +13c . (2)在正方体ABCD -A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若AF →=xAD →+yAB →+z AA 1—→,则x -y +z 等于( )A.12B .1C.32D .2 答案 B解析 AF →=AD →+DF →=AD →+12(DD 1—→+D 1C 1—→)=AD →+12(AA 1—→+A 1B 1—→)=AD →+12(AA 1—→+AB →)=AD →+12AB →+12AA 1—→,则x =1,y =12,z =12,则x -y +z =1.题型二 空间向量基本定理及其应用例2 已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题知OA →+OB →+OC →=3OM →, 所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)方法一 由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内. 方法二 因为OM →=13(OA →+OB →+OC →)=13OA →+13OB →+13OC →, 又因为13+13+13=1,所以M ,A ,B ,C 四点共面,从而M 在平面ABC 内. 教师备选如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=k AC 1—→,BN →=kBC →(0≤k ≤1).判断向量MN →是否与向量AB →,AA 1—→共面.解 因为AM →=k AC 1—→,BN →=kBC →, 所以MN →=MA →+AB →+BN → =k C 1A —→+AB →+kBC →=k (C 1A —→+BC →)+AB →=k (C 1A —→+B 1C 1—→)+AB → =k B 1A —→+AB →=AB →-k AB 1—→=AB →-k (AA 1—→+AB →) =(1-k )AB →-k AA 1—→,所以由共面向量定理知向量MN →与向量AB →,AA 1—→共面. 思维升华 证明空间四点P ,M ,A ,B 共面的方法 (1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →;(3)对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); (4)PM →∥AB →(或PA →∥MB →或PB →∥AM →).跟踪训练2 (1)(多选)(2022·武汉质检)下列说法中正确的是( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若AB →,CD →共线,则AB ∥CDC .A ,B ,C 三点不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点共面D .若P ,A ,B ,C 为空间四点,且有PA →=λPB →+μPC →(PB →,PC →不共线),则λ+μ=1是A ,B ,C 三点共线的充要条件答案 CD解析 由|a |-|b |=|a +b |,可得向量a ,b 的方向相反,此时向量a ,b 共线,反之,当向量a ,b 同向时,不能得到|a |-|b |=|a +b |,所以A 不正确; 若AB →,CD →共线,则AB ∥CD 或A ,B ,C ,D 四点共线,所以B 不正确; 由A ,B ,C 三点不共线,对空间任意一点O , 若OP →=34OA →+18OB →+18OC →,因为34+18+18=1,可得P ,A ,B ,C 四点共面,故C 正确; 若P ,A ,B ,C 为空间四点,且有PA →=λPB →+μPC →(PB →,PC →不共线), 当λ+μ=1时,即μ=1-λ,可得PA →-PC →=λ(PB →+CP →), 即CA →=λCB →,所以A ,B ,C 三点共线,反之也成立,即λ+μ=1是A ,B ,C 三点共线的充要条件,所以D 正确.(2)已知A ,B ,C 三点不共线,点O 为平面ABC 外任意一点,若点M 满足OM →=15OA →+45OB →+25BC →,则点M ________(填“属于”或“不属于”)平面ABC . 答案 属于解析 ∵OM →=15OA →+45OB →+25BC →=15OA →+45OB →+25(OC →-OB →)=15OA →+25OB →+25OC →,∵15+25+25=1, ∴M ,A ,B ,C 四点共面. 即点M ∈平面ABC .题型三 空间向量数量积及其应用例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →.(2)求异面直线AG 和CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c . 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a ·c =14. (2)AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=⎝ ⎛⎭⎪⎫12b +12c ·⎝⎛⎭⎪⎫-b +12a ⎝ ⎛⎭⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.教师备选已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM →·PN →的取值范围为( )A.[]0,4B.[]0,2C.[]1,4D.[]1,2 答案 B解析 设正方体内切球的球心为O , 则OM =ON =1,PM →·PN →=()PO →+OM →·()PO →+ON →=PO →2+PO →·()OM →+ON →+OM →·ON →, ∵MN 为球O 的直径, ∴OM →+ON →=0,OM →·ON →=-1, ∴PM →·PN →=PO →2-1, 又P 在正方体表面上移动,∴当P 为正方体顶点时,||PO →最大,最大值为3;当P 为内切球与正方体的切点时,||PO →最小,最小值为1, ∴PO →2-1∈[]0,2,即PM →·PN →的取值范围为[]0,2.思维升华 由向量数量积的定义知,要求a 与b 的数量积,需已知|a |,|b |和〈a ,b 〉,a 与b 的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b 计算准确.跟踪训练3如图所示,在四棱柱ABCDA 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. (1)解 记AB →=a ,AD →=b ,AA 1—→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1—→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6, ∴|AC 1—→|=6,即AC 1的长为 6. (2)证明 ∵AC 1—→=a +b +c ,BD →=b -a , ∴AC 1—→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =0. ∴AC 1—→⊥BD →,∴AC 1⊥BD .(3)解 BD 1—→=b +c -a ,AC →=a +b , ∴|BD 1—→|=2,|AC →|=3, BD 1—→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos〈BD 1—→,AC →〉=BD 1—→·AC →|BD 1—→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.题型四 向量法证明平行、垂直例4 如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面PAD ; (3)平面PCD ⊥平面PAD .证明 依题意,以点A 为坐标原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)BE →=(0,1,1), DC →=(2,0,0),故BE →·DC →=0, 所以BE ⊥DC .(2)因为AB ⊥AD ,又PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以AB ⊥PA ,PA ∩AD =A ,PA ,AD ⊂平面PAD , 所以AB ⊥平面PAD ,所以AB →=(1,0,0)为平面PAD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0, 所以BE ⊥AB , 又BE ⊄平面PAD , 所以BE ∥平面PAD .(3)由(2)知平面PAD 的法向量AB →=(1,0,0), PD →=(0,2,-2), DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0,令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0, 所以n ⊥AB →.所以平面PAD ⊥平面PCD . 教师备选如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1.证明 因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为AA 1⊥平面ABC ,AA 1∥BB 1,所以以过E 作平行于BB 1的垂线为z 轴,EC ,EA 所在直线分别为x 轴、y 轴, 建立如图所示的空间直角坐标系.因为AB =3,BE =5, 所以AE =2,所以E (0,0,0),C (5,0,0),A (0,2,0),B (-5,0,0),B 1(-5,0,27). A 1(0,2,7),则F ⎝⎛⎭⎪⎫52,1,72.(1)EF →=⎝ ⎛⎭⎪⎫52,1,72,AB →=(-5,-2,0),AA 1→=(0,0,7).设平面AA 1B 1B 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AA 1—→=0,所以⎩⎨⎧-5x -2y =0,7z =0,取⎩⎨⎧x =-2,y =5,z =0,所以n =(-2,5,0).因为EF →·n =52×(-2)+1×5+72×0=0,所以EF →⊥n . 又EF ⊄平面A 1B 1BA , 所以EF ∥平面A 1B 1BA . (2)因为EC ⊥平面AEA 1,所以EC →=(5,0,0)为平面AEA 1的一个法向量. 又EA ⊥平面BCB 1,所以EA →=(0,2,0)为平面BCB 1的一个法向量. 因为EC →·EA →=0,所以EC →⊥EA →, 故平面AEA 1⊥平面BCB 1.思维升华 (1)利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).(2)向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理.跟踪训练4 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,设E ,F 分别为PC ,BD 的中点.求证:(1)EF ∥平面PAD ; (2)平面PAB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为PA =PD ,所以PO ⊥AD .又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又四边形ABCD 是正方形, 所以OF ⊥AD . 因为PA =PD =22AD , 所以PA ⊥PD ,OP =OA =a2.如图,以O 为坐标原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫a 2,0,0,F ⎝ ⎛⎭⎪⎫0,a2,0,D ⎝ ⎛⎭⎪⎫-a 2,0,0,P ⎝ ⎛⎭⎪⎫0,0,a 2,B ⎝ ⎛⎭⎪⎫a 2,a ,0,C ⎝ ⎛⎭⎪⎫-a 2,a ,0.因为E 为PC 的中点,所以E ⎝ ⎛⎭⎪⎫-a 4,a 2,a4. 易知平面PAD 的一个法向量为 OF →=⎝⎛⎭⎪⎫0,a 2,0,因为EF →=⎝ ⎛⎭⎪⎫a4,0,-a 4,OF →·EF →=⎝ ⎛⎭⎪⎫0,a 2,0·⎝ ⎛⎭⎪⎫a 4,0,-a 4=0.且EF ⊄平面PAD ,所以EF ∥平面PAD .(2)因为PA →=⎝ ⎛⎭⎪⎫a2,0,-a 2,CD →=(0,-a ,0),所以PA →·CD →=⎝ ⎛⎭⎪⎫a2,0,-a 2·(0,-a ,0)=0,所以PA →⊥CD →, 所以PA ⊥CD .又PA ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC ,所以PA ⊥平面PDC .又PA ⊂平面PAB ,所以平面PAB ⊥平面PDC .课时精练1.已知a =(2,1,-3),b =(0,-3,2),c =(-2,1,2),则a ·(b +c )等于( ) A .18B .-18C .32D .-3 2 答案 B解析 因为b +c =(-2,-2,4), 所以a ·(b +c )=-4-2-12=-18.2.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由x +y +z =1,得P ,A ,B ,C 四点共面,当P ,A ,B ,C 四点共面时,x +y +z =1,显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.3.已知空间向量a =(1,0,1),b =(1,1,n ),且a·b =3,则向量a 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6答案 A解析 由题意,a ·b =1+0+n =3, 解得n =2,又|a |=1+0+1=2,|b |=1+1+4=6,所以cos 〈a ,b 〉=a·b |a ||b |=32×6=32,又〈a ,b 〉∈[0,π], 所以a 与b 的夹角为π6.4.直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2),则( ) A .l ∥α B .l ⊥α C .l ∥α或l ⊂αD .l 与α的位置关系不能判断 答案 B解析 直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2), 显然它们共线,所以l ⊥α.5.(多选)已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3),若AP →∥BC →,且|AP →|=14,则点P 的坐标为( ) A .(4,-2,2) B .(-2,2,4) C .(-4,2,-2) D .(2,-2,4)答案 AB解析 因为B (-1,1,4),C (2,-1,3), 所以BC →=(3,-2,-1), 因为AP →∥BC →,所以可设AP →=λBC →=(3λ,-2λ,-λ), 因为|AP →|=3λ2+-2λ2+-λ2=14,解得λ=±1,所以AP →=(3,-2,-1)或AP →=(-3,2,1), 设点P (x ,y ,z ),则AP →=(x -1,y ,z -3),所以⎩⎪⎨⎪⎧ x -1=3,y =-2,z -3=-1或⎩⎪⎨⎪⎧ x -1=-3,y =2,z -3=1,解得⎩⎪⎨⎪⎧x =4,y =-2,z =2或⎩⎪⎨⎪⎧x =-2,y =2,z =4.所以点P 的坐标为(4,-2,2)或(-2,2,4).6.(多选)已知空间中三点A (0,1,0),B (2,2,0),C (-1,3,1),则下列结论正确的有( ) A.AB →与AC →是共线向量B .与AB →共线的单位向量是(1,1,0) C.AB →与BC →夹角的余弦值是-5511D .平面ABC 的一个法向量是(1,-2,5) 答案 CD解析 对于A ,AB →=(2,1,0),AC →=(-1,2,1),不存在实数λ,使得AB →=λAC →, 所以AB →与AC →不是共线向量,所以A 错误;对于B ,因为AB →=(2,1,0),所以与AB →共线的单位向量为⎝ ⎛⎭⎪⎫255,55,0或⎝ ⎛⎭⎪⎫-255,-55,0,所以B 错误;对于C ,向量AB →=(2,1,0),BC →=(-3,1,1), 所以cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=-5511,所以C 正确;对于D ,设平面ABC 的法向量是n =(x ,y ,z ), 因为AB →=(2,1,0),AC →=(-1,2,1), 所以⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧2x +y =0,-x +2y +z =0.令x =1,则n =(1,-2,5),所以D 正确.7.已知a =(x ,1,1),b =(-2,2,y ),a ·b =0,则2x -y =________. 答案 2解析 因为a =(x ,1,1),b =(-2,2,y ),a ·b =0,所以-2x +2+y =0,2x -y =2.8.已知点A (-1,1,0),B (1,2,0),C (-2,-1,0),D (3,4,0),则AB →在CD →上的投影向量为________.答案 ⎝ ⎛⎭⎪⎫32,32,0 解析 由已知得AB →=(2,1,0),CD →=(5,5,0), ∴AB →·CD →=2×5+1×5+0=15, 又|CD →|=52,∴AB →在CD →上的投影向量为AB →·CD →|CD →|·CD →|CD →|=1552×CD →52=310CD →=⎝ ⎛⎭⎪⎫32,32,0. 9.如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的长;(2)求cos 〈BA 1—→,CB 1—→〉的值; (3)求证:A 1B ⊥C 1M .(1)解 以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图.B (0,1,0),N (1,0,1),∴BN →=(1,-1,1), ∴|BN →|=12+-12+12= 3.(2)解 ∵A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),∴BA 1—→=(1,-1,2),CB 1—→=(0,1,2),∴BA 1—→·CB 1—→=3,|BA 1—→|=6,|CB 1—→|= 5. ∴cos〈BA 1—→,CB 1—→〉=BA 1—→·CB 1—→|BA 1—→||CB 1—→|=3010.(3)证明 ∵C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2, ∴A 1B —→=(-1,1,-2),C 1M —→=⎝ ⎛⎭⎪⎫12,12,0,∴A 1B —→·C 1M —→=-12+12+0=0.∴A 1B —→⊥C 1M —→, ∴A 1B ⊥C 1M .10.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB .(1)证明 如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝⎛⎭⎪⎫a ,a 2,0,P (0,0,a ), F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).因为EF →·DC →=0,所以EF →⊥DC →,即EF ⊥CD .(2)解 设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2,CB →=(a ,0,0),CP →=(0,-a ,a ),若使GF ⊥平面PCB ,则需FG →·CB →=0,且FG →·CP →=0,由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a2=0,得x =a2,由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a2=0,得z =0.所以G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 为AD 的中点时,GF ⊥平面PCB .11.(多选)(2022·山东百师联盟大联考)下面四个结论正确的是( )A .向量a ,b (a ≠0,b ≠0),若a⊥b ,则a·b =0B .若空间四个点P ,A ,B ,C ,PC →=14PA →+34PB →,则A ,B ,C 三点共线C .已知向量a =(1,1,x ),b =(-3,x ,9),若x <310,则〈a ,b 〉为钝角D .任意向量a ,b ,c 满足(a·b )·c =a·(b·c )答案 AB解析 由向量垂直的充要条件可得A 正确;∵PC →=14PA →+34PB →,∴14PC →-14PA →=34PB →-34PC →,即AC →=3CB →,∴A ,B ,C 三点共线,故B 正确;当x =-3时,两个向量共线,夹角为π,故C 错误;由于向量的数量积运算不满足结合律,故D 错误.12.(多选)(2022·重庆市第七中学月考)给出下列命题,其中为假命题的是( )A .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若n ⊥m ,则l ∥αB .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若〈n ,m 〉=2π3,则l 与α所成角为π6C .若两个不同的平面α,β的法向量分别为u ,v ,且u =(1,2,-2),v =(-2,-4,4),则α∥βD .已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c答案 AD解析 对于A ,由题意可得l ∥α或l ⊂α,故A 错误;对于B ,由图象可得,∠CAD =2π3,则∠DAB =π3,所以∠ADB =π6, 根据线面角的定义可得,l 与α所成角为π6,故B 正确; 对于C ,因为u =-12v =-12(-2,-4,4) =(1,2,-2),所以u ∥v ,故α∥β,故C 正确;对于D ,当空间的三个向量a ,b ,c 不共面时,对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c ,故D 错误.13.(2022·杭州模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为A 1D 1,BB 1的中点,则cos∠EAF =________;EF =________.答案 25 62 解析 如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方体棱长为1,则E ⎝ ⎛⎭⎪⎫0,12,1,F ⎝⎛⎭⎪⎫1,0,12, ∴AE →=⎝ ⎛⎭⎪⎫0,12,1,AF →=⎝⎛⎭⎪⎫1,0,12, EF →=⎝ ⎛⎭⎪⎫1,-12,-12, cos 〈AE →,AF →〉=AE →·AF →|AE →||AF →|=1252×52=25, ∴cos∠EAF =25, EF =|EF →|=12+⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-122=62. 14.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面A 1B 1C 1D 1为平行四边形,E 为棱AB 的中点,AF →=13AD →,AG →=2GA 1—→,AC 1与平面EFG 交于点M ,则AM AC 1=________.答案 213解析 由题图知,设AM →=λAC 1—→(0<λ<1),由已知AC 1—→=AB →+AD →+AA 1—→=2AE →+3AF →+32AG →,所以AM →=2λAE →+3λAF →+3λ2AG →,因为M ,E ,F ,G 四点共面,所以2λ+3λ+3λ2=1, 解得λ=213.15.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是______.答案 ⎝ ⎛⎭⎪⎫43,43,83 解析 因为点Q 在直线OP 上,所以设点Q (λ,λ,2λ),则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23, 此时OQ →=⎝ ⎛⎭⎪⎫43,43,83. 16.(2022·株州模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos60°=3,所以AO 2+A 1O 2=AA 21,所以A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1—→=(0,1,3),AA 1—→·BD →=0×(-23)+1×0+3×0=0,所以BD →⊥AA 1—→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1—→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1—→=0,n 1·DA 1—→=0, 又A 1C 1—→=(0,2,0),DA 1—→=(3,0,3),则⎩⎨⎧ 2y 1=0,3x 1+3z 1=0,取n 1=(1,0,-1),因为BP ∥平面DA 1C 1,所以n 1⊥BP →,即n 1·BP →=-3-3λ=0,解得λ=-1,即点P 在C 1C 的延长线上,且|CP →|=|CC 1—→|.。
向量法求空间角考试要求 能用向量法解决异面直线、直线与平面、平面与平面的夹角问题,并能描述解决这一类问题的程序,体会向量法在研究空间角问题中的作用.知识梳理1.异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v ||u||v |.2.直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|=⎪⎪⎪⎪⎪⎪u ·n |u ||n |=|u·n||u||n|.3.平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.常用结论1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角的范围是[0,π],两个平面夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两条异面直线所成的角与两直线的方向向量所成的角相等.( × )(2)直线l 的方向向量与平面α的法向量的夹角的余角就是直线l 与平面α所成的角.( × )(3)二面角的平面角为θ,则两个面的法向量的夹角也是θ.( × )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2.( √ )教材改编题1.已知直线l 1的方向向量s 1=(1,0,1)与直线l 2的方向向量s 2=(-1,2,-2),则l 1和l 2夹角的余弦值为( ) A.24B.12C.22D.32答案 C解析 因为s 1=(1,0,1),s 2=(-1,2,-2),所以cos 〈s 1,s 2〉=s 1·s 2|s 1||s 2|=-1-22×3=-22.所以l 1和l 2夹角的余弦值为22. 2.已知向量m ,n 分别是直线l 的方向向量、平面α的法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.答案 30°解析 设直线l 与α所成角为θ, sin θ=||cos 〈m ,n 〉=12,又∵θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=30°.3.已知两平面的法向量分别为(0,-1,3),(2,2,4),则这两个平面夹角的余弦值为______. 答案156解析|0,-1,3·2,2,4|1+9×4+4+16=156.题型一 异面直线所成的角例1 (1)(2022·大庆模拟)如图,已知棱长为2的正方体ABCD -A 1B 1C 1D 1,E ,F ,G 分别为AB ,CD 1,AD 的中点,则异面直线A 1G 与EF 所成角的余弦值为( )A .0 B.1010C.22D .1答案 A解析 如图,分别以DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(2,0,2),G (1,0,0),E (2,1,0),F (0,1,1),所以A 1G —→=(-1,0,-2),EF →=(-2,0,1), 设异面直线A 1G 与EF 所成的角为θ, 则cos θ=|A 1G —→·EF →||A 1G —→||EF →|=|-1×-2-2×1|5×5=0.(2)(2022·杭州模拟)如图,已知圆锥CO 的截面△ABC 是正三角形,AB 是底面圆O 的直径,点D 在AB ︵上,且∠AOD =2∠BOD ,则异面直线AD 与BC 所成角的余弦值为( )A.34B.12C.14D.34答案 A解析 因为∠AOD =2∠BOD ,且∠AOD +∠BOD =π, 所以∠BOD =π3,连接CO ,则CO ⊥平面ABD ,以点O 为坐标原点,OB ,OC 所在直线分别为y 轴、z 轴建立如图所示的空间直角坐标系,设圆O 的半径为2,则A (0,-2,0),B (0,2,0),C (0,0,23),D (3,1,0), AD →=(3,3,0),BC →=(0,-2,23),设异面直线AD 与BC 所成的角为θ,则cos θ=|cos 〈AD →,BC →〉|=|AD →·BC →||AD →||BC →|=|-6|23×4=34,因此,异面直线AD 与BC 所成角的余弦值为34. 教师备选如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,BC =2,点D 为BC 的中点,则异面直线AD 与A 1C 所成的角为( )A.π2B.π3C.π4D.π6 答案 B解析 以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (2,0,0),C (0,2,0),∴D ⎝⎛⎭⎪⎫22,22,0, ∴AD →=⎝ ⎛⎭⎪⎫22,22,0,A 1C —→=(0,2,-2),∴cos〈AD →,A 1C —→〉=AD →·A 1C —→|AD →||A 1C —→|=12,∴即异面直线AD ,A 1C 所成角为π3.思维升华用向量法求异面直线所成的角的一般步骤 (1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.跟踪训练1 (1)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是棱CC 1的中点,AF →=λAD →,若异面直线D 1E 和A 1F 所成角的余弦值为3210,则λ的值为______.答案 13解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系(图略),正方体的棱长为2,则A 1(2,0,2),D 1(0,0,2),E (0,2,1),A (2,0,0), ∴D 1E —→=(0,2,-1), A 1F —→=A 1A —→+AF →=A 1A —→+λAD → =(-2λ,0,-2).∴cos〈A 1F —→,D 1E —→〉=A 1F —→·D 1E —→|A 1F —→||D 1E —→|=22λ2+1×5=3210, 解得λ=13⎝⎛⎭⎪⎫λ=-13舍.(2)(2022·武汉模拟)若在三棱柱ABC -A 1B 1C 1中,∠A 1AC =∠BAC =60°,平面A 1ACC 1⊥平面ABC ,AA 1=AC =AB ,则异面直线AC 1与A 1B 所成角的余弦值为________.答案24解析 令M 为AC 的中点,连接MB ,MA 1, 由题意知△ABC 是等边三角形, 所以BM ⊥AC ,同理,A 1M ⊥AC , 因为平面A 1ACC 1⊥平面ABC , 平面A 1ACC 1∩平面ABC =AC ,BM ⊂平面ABC ,所以BM ⊥平面A 1ACC 1, 因为A 1M ⊂平面A 1ACC 1, 所以BM ⊥A 1M ,所以AC ,BM ,A 1M 两两垂直,以M 为坐标原点,MA →,MB →,MA 1—→的方向分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系.设AA 1=AC =AB =2,则A (1,0,0),B (0,3,0),A 1(0,0,3),C 1(-2,0,3),所以AC 1—→=(-3,0,3),A 1B —→=(0,3,-3), 所以cos 〈AC 1—→,A 1B —→〉=-323×6=-24,故异面直线AC 1与A 1B 所成角的余弦值为24. 题型二 直线与平面所成的角例2 (2022·广州模拟)在边长为2的菱形ABCD 中,∠BAD =60°,点E 是边AB 的中点(如图1),将△ADE 沿DE 折起到△A 1DE 的位置,连接A 1B ,A 1C ,得到四棱锥A 1-BCDE (如图2).(1)证明:平面A 1BE ⊥平面BCDE ;(2)若A 1E ⊥BE ,连接CE ,求直线CE 与平面A 1CD 所成角的正弦值. (1)证明 连接图1中的BD ,如图所示.因为四边形ABCD 为菱形,且∠BAD =60°, 所以△ABD 为等边三角形,所以DE ⊥AB , 所以在图2中有DE ⊥BE ,DE ⊥A 1E , 因为BE ∩A 1E =E ,BE ,A 1E ⊂平面A 1BE , 所以DE ⊥平面A 1BE , 因为DE ⊂平面BCDE , 所以平面A 1BE ⊥平面BCDE .(2)解 因为平面A 1BE ⊥平面BCDE ,平面A 1BE ∩平面BCDE =BE ,A 1E ⊥BE ,A 1E ⊂平面A 1BE ,所以A 1E ⊥平面BCDE ,以E 为坐标原点建立如图所示的空间直角坐标系,所以A 1(0,0,1),C (2,3,0),D (0,3,0),E (0,0,0),所以A 1D —→=(0,3,-1),A 1C —→=(2,3,-1),EC →=(2,3,0), 设平面A 1CD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1D —→=3y -z =0,n ·A 1C —→=2x +3y -z =0,令y =1,则n =(0,1,3),所以cos 〈n ,EC →〉=n ·EC →|n ||EC →|=327=2114,所以直线CE 与平面A 1CD 所成角的正弦值为2114. 教师备选(2020·新高考全国Ⅰ)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面PAD ,平面PAD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC , 因为PD ⊥平面ABCD ,所以AD ⊥PD , 所以l ⊥PD ,因为DC ∩PD =D ,PD ,DC ⊂平面PDC , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向, 建立如图所示的空间直角坐标系,因为PD =AD =1,则有D (0,0,0),C (0,1,0),P (0,0,1),B (1,1,0), 因为平面PAD ∩平面PBC =l , 所以l 过点P ,设Q (m ,0,1),则有DC →=(0,1,0),DQ →=(m ,0,1),PB →=(1,1,-1), 设平面QCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 记PB 与平面QCD 所成的角为θ,根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值, 则sin θ=|cos 〈n ,PB →〉|=|1+m |3·m 2+1, 当m =0时,sin θ=33, 当m ≠0时,sin θ=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2mm 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 思维升华 利用空间向量求线面角的解题步骤跟踪训练2 (2022·全国百校联考)如图所示,在三棱锥S -BCD 中,平面SBD ⊥平面BCD ,A 是线段SD 上的点,△SBD 为等边三角形,∠BCD =30°,CD =2DB =4.(1)若SA =AD ,求证:SD ⊥CA ;(2)若直线BA 与平面SCD 所成角的正弦值为419565,求AD 的长.(1)证明 依题意,BD =2, 在△BCD 中,CD =4,∠BCD =30°, 由余弦定理求得BC =23, ∴CD 2=BD 2+BC 2,即BC ⊥BD .又平面SBD ⊥平面BCD ,平面SBD ∩平面BCD =BD ,BC ⊂平面BCD , ∴BC ⊥平面SBD .从而BC ⊥SD , 在等边△SBD 中,SA =AD ,则BA ⊥SD . 又BC ∩BA =B ,BC ,BA ⊂平面BCA , ∴SD ⊥平面BCA ,又CA ⊂平面BCA , ∴SD ⊥CA .(2)解 以B 为坐标原点,BC ,BD 所在直线分别为x 轴、y 轴,过点B 作平面BCD 的垂线为z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),C (23,0,0),D (0,2,0),S (0,1,3),故CD →=(-23,2,0),SD →=(0,1,-3), 设平面SCD 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·CD →=0,m ·SD →=0,即⎩⎨⎧-23x +2y =0,y -3z =0,取x =1,则y =3,z =1, ∴m =(1,3,1), 设DA →=λDS →(0≤λ≤1), 则DA →=(0,-λ,3λ),故A (0,2-λ,3λ),则BA →=(0,2-λ,3λ), 设直线BA 与平面SCD 所成角为θ, 故sin θ=||cos 〈m ,BA →〉=|m ·BA →||m ||BA →|=|23-3λ+3λ|5·2-λ2+3λ2=419565, 解得λ=14或λ=34,则AD =12或AD =32.题型三 平面与平面的夹角例3 (12分)(2021·新高考全国Ⅰ)如图,在三棱锥A -BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点.(1)证明:OA ⊥CD; [切入点:线线垂直转化到线面垂直](2)若△OCD 是边长为1的等边三角形,点E 在棱AD 上,DE =2EA ,且二面角E -BC -D 的大小为45°,求三棱锥A -BCD 的体积.[关键点:建系写坐标]教师备选(2020·全国Ⅰ改编)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=66 DO.(1)证明:PA⊥平面PBC;(2)求平面BPC与平面EPC的夹角的余弦值.(1)证明由题设,知△DAE为等边三角形,设AE=1,则DO=32,CO=BO=12AE=12,所以PO =66DO =24,PC =PO 2+OC 2=64, 同理PB =64,PA =64, 又△ABC 为等边三角形, 则BAsin60°=2OA ,所以BA =32,PA 2+PB 2=34=AB 2,则∠APB =90°,所以PA ⊥PB ,同理PA ⊥PC , 又PC ∩PB =P ,PC ,PB ⊂平面PBC , 所以PA ⊥平面PBC .(2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝ ⎛⎭⎪⎫-12,0,0,P ⎝ ⎛⎭⎪⎫0,0,24,B ⎝ ⎛⎭⎪⎫-14,34,0,C ⎝ ⎛⎭⎪⎫-14,-34,0, PC →=⎝ ⎛⎭⎪⎫-14,-34,-24, PB →=⎝ ⎛⎭⎪⎫-14,34,-24,PE →=⎝ ⎛⎭⎪⎫-12,0,-24, 设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2),由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝ ⎛⎭⎪⎫1,33,-2, 故cos 〈m ,n 〉=m ·n|m ||n |=223×103=255, 所以平面BPC 与平面EPC 的夹角的余弦值为255.思维升华 利用空间向量求平面与平面夹角的解题步骤跟踪训练3 (2021·全国乙卷改编)如图,四棱锥P -ABCD 的底面是矩形,PD ⊥底面ABCD ,PD =DC =1,M 为BC 的中点,且PB ⊥AM .(1)求BC ;(2)求平面APM 与平面BPM 夹角的正弦值.解 (1)因为PD ⊥平面ABCD ,所以PD ⊥AD ,PD ⊥DC .在矩形ABCD 中,AD ⊥DC ,故以点D 为坐标原点建立空间直角坐标系如图所示,设BC =t ,则A (t ,0,0),B (t ,1,0),M ⎝ ⎛⎭⎪⎫t 2,1,0,P (0,0,1), 所以PB →=(t ,1,-1),AM →=⎝ ⎛⎭⎪⎫-t 2,1,0.因为PB ⊥AM ,所以PB →·AM →=-t 22+1=0,得t =2,所以BC = 2.(2)易知C (0,1,0),由(1)可得AP →=(-2,0,1),AM →=⎝ ⎛⎭⎪⎫-22,1,0,CB →=(2,0,0),PB →=(2,1,-1).设平面APM 的法向量为n 1=(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧ n 1·AP →=0,n 1·AM →=0,即⎩⎪⎨⎪⎧-2x 1+z 1=0,-22x 1+y 1=0,令x 1=2,则z 1=2,y 1=1,所以平面APM 的一个法向量为n 1=(2,1,2). 设平面PMB 的法向量为n 2=(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n 2·CB →=0,n 2·PB →=0,即⎩⎨⎧2x 2=0,2x 2+y 2-z 2=0,得x 2=0,令y 2=1,则z 2=1,所以平面PMB 的一个法向量为n 2=(0,1,1). 设平面APM 与平面BPM 夹角为θ,cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=37×2=31414,sin θ=1-cos 2θ=7014. 所以平面APM 与平面BPM 夹角的正弦值为7014.课时精练1.如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求平面A 1BD 与平面A 1AD 所成角的正弦值. 解 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA 1—→}为一个正交基底,建立空间直角坐标系,因为AB =AD =2,AA 1=3,∠BAD =120°, 则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B —→=(3,-1,-3),AC 1—→=(3,1,3). 则cos 〈A 1B —→,AC 1—→〉=A 1B —→·AC 1—→|A 1B —→||AC 1—→|=3-1-37×7=-17.因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)可知平面A 1AD 的一个法向量为 AE →=(3,0,0),设m =(x ,y ,z )为平面A 1BD 的一个法向量, 又A 1B —→=(3,-1,-3),BD →=(-3,3,0),则⎩⎪⎨⎪⎧m ·A 1B —→=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0.不妨取x =3,则y =3,z =2.所以m =(3,3,2)为平面A 1BD 的一个法向量, 从而cos 〈AE →,m 〉=AE →·m |AE →||m|=333×4=34.设平面A 1BD 与平面A 1AD 所成的角为θ, 则cos θ=34.所以sin θ=1-cos 2θ=74. 因此平面A 1BD 与平面A 1AD 所成角的正弦值为74. 2.(2021·浙江)如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,∠ABC =120°,AB =1,BC =4,PA =15,M ,N 分别为BC ,PC 的中点,PD ⊥DC ,PM ⊥MD .(1)证明:AB ⊥PM ;(2)求直线AN 与平面PDM 所成角的正弦值. (1)证明 因为底面ABCD 是平行四边形, ∠ABC =120°,BC =4,AB =1, 且M 为BC 的中点,所以CM =2,CD =1,∠DCM =60°, 易得CD ⊥DM .又PD ⊥DC ,且PD ∩DM =D ,PD ,DM ⊂平面PDM , 所以CD ⊥平面PDM .因为AB ∥CD ,所以AB ⊥平面PDM . 又PM ⊂平面PDM ,所以AB ⊥PM .(2)解 方法一 由(1)知AB ⊥平面PDM , 所以∠NAB 为直线AN 与平面PDM 所成角的余角. 连接AM ,因为PM ⊥MD ,PM ⊥DC ,所以PM ⊥平面ABCD ,所以PM ⊥AM . 因为∠ABC =120°,AB =1,BM =2, 所以由余弦定理得AM =7, 又PA =15,所以PM =22, 所以PB =PC =23, 连接BN ,结合余弦定理得BN =11. 连接AC ,则由余弦定理得AC =21, 在△PAC 中,结合余弦定理得PA 2+AC 2=2AN 2+2PN 2,所以AN =15.所以在△ABN 中,cos∠BAN =AB 2+AN 2-BN 22AB ·AN =1+15-11215=156.设直线AN 与平面PDM 所成的角为θ, 则sin θ=cos∠BAN =156. 方法二 因为PM ⊥MD ,PM ⊥DC , 所以PM ⊥平面ABCD . 连接AM ,则PM ⊥AM .因为∠ABC =120°,AB =1,BM =2, 所以AM =7,又PA =15,所以PM =22, 由(1)知CD ⊥DM ,过点M 作ME ∥CD 交AD 于点E , 则ME ⊥MD .故可以以M 为坐标原点,MD ,ME ,MP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (-3,2,0),P (0,0,22),C (3,-1,0), 所以N ⎝⎛⎭⎪⎫32,-12,2.所以AN →=⎝ ⎛⎭⎪⎫332,-52,2.易知平面PDM 的一个法向量为n =(0,1,0). 设直线AN 与平面PDM 所成的角为θ, 则sin θ=|cos 〈AN →,n 〉|=|AN →·n ||AN →||n |=5215=156.3.(2022·汕头模拟)如图,在圆柱OO 1中,四边形ABCD 是其轴截面,EF 为⊙O 1的直径,且EF ⊥CD ,AB =2,BC =a (a >1).(1)求证:BE =BF ;(2)若直线AE 与平面BEF 所成角的正弦值为63,求平面ABE 与平面BEF 夹角的余弦值. (1)证明 如图,连接BO 1,在圆柱OO 1中,BC ⊥平面CEDF ,∵EF ⊂平面CEDF ,∴EF ⊥BC , ∵EF ⊥CD ,BC ∩CD =C ,BC ,CD ⊂平面ABCD ,∴EF ⊥平面ABCD ,又BO 1⊂平面ABCD ,∴EF ⊥BO 1,∵在△BEF 中,O 1为EF 的中点,∴BE =BF .(2)解 连接OO 1,则OO 1与该圆柱的底面垂直,以点O 为坐标原点,OB ,OO 1所在直线分别为y ,z 轴建立如图所示的空间直角坐标系,则A (0,-1,0),B (0,1,0),E (-1,0,a ),F (1,0,a ),AE →=(-1,1,a ),BE →=(-1,-1,a ),BF →=(1,-1,a ),设平面BEF 的法向量是n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1·BE →=0,n 1·BF →=0, 得⎩⎪⎨⎪⎧-x 1-y 1+az 1=0,x 1-y 1+az 1=0, 取z 1=1,得n 1=(0,a ,1),设直线AE 与平面BEF 所成的角为θ,则sin θ=|cos 〈AE →,n 1〉| =2aa 2+2·a 2+1=63,化简得(a 2-2)(a 2-1)=0,∵a >1,解得a =2,∴n 1=(0,2,1),设平面ABE 的法向量是n 2=(x 2,y 2,z 2),AB →=(0,2,0),由⎩⎪⎨⎪⎧n 2·AB →=0,n 2·AE →=0,得⎩⎨⎧ 2y 2=0,-x 2+y 2+2z 2=0,取z 2=1,得n 2=(2,0,1),设平面ABE 与平面BEF 的夹角为α,则cos α=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=13, ∴平面ABE 与平面BEF 夹角的余弦值为13.4.(2021·全国甲卷改编)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 夹角的正弦值最小?(1)证明 因为E ,F 分别是AC 和CC 1的中点,且AB =BC =2, 所以CF =1,BF = 5.如图,连接AF ,由BF ⊥A 1B 1,AB ∥A 1B 1,得BF ⊥AB ,于是AF =BF 2+AB 2=3,所以AC =AF 2-CF2=2 2.由AB 2+BC 2=AC 2,得BA ⊥BC ,故以B 为坐标原点,以BA ,BC ,BB 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则B (0,0,0),E (1,1,0),F (0,2,1),BF →=(0,2,1).设B 1D =m (0≤m ≤2),则D (m ,0,2),于是DE →=(1-m ,1,-2).所以BF →·DE →=0,所以BF ⊥DE .(2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0).设平面DFE 的一个法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧ DE →·n 2=0,EF →·n 2=0,又DE →=(1-m ,1,-2),EF →=(-1,1,1),所以⎩⎪⎨⎪⎧ 1-m x +y -2z =0,-x +y +z =0,令x =3,得y =m +1,z =2-m ,于是平面DFE 的一个法向量为n 2=(3,m +1,2-m ),所以cos 〈n 1,n 2〉=32⎝ ⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 的夹角为θ,则sin θ=1-cos 2〈n 1,n 2〉,故当m =12时,平面BB 1C 1C 与平面DFE 夹角的正弦值最小,为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 夹角的正弦值最小.。
专题3.6 空间向量与立体几何1.利用向量求异面直线所成的角的方法: 设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅.2.利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 3.求二面角的方法通常有两个思路:(1)利用空间向量,建立坐标系,求得对应平面的法向量之间夹角的余弦值,再判断锐二面角或钝二面角,确定结果,这种方法优点是思路清晰、方法明确,但是计算量较大;(2)传统方法,利用垂直关系和二面角的定义,找到二面角对应的平面角,再求出二面角平面角的大小,这种解法的关键是找到平面角. (3)要注意结合实际图形判断所求角是锐角还是钝角. 4.利用空间向量计算二面角的常用方法:(1)法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小;(2)方向向量法:分别在二面角的两个半平面内找到与棱垂直且垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【预测题1】如图,在多面体ABCDEF 中,四边形ABCD 是等腰梯形,1AB BC ==,2AD =,四边形ADEF 是直角梯形,且1AF =,2DE =,AF AD ⊥,//AF DE ,平面ABCD ⊥平面ADEF .(1)证明:平面BDE ⊥平面ABE .(2)线段EF 上是否存在一点P ,使平面PAB 与平面CDE 所成锐二面角的余弦值为4?若存在,请说明P 点的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,P 为EF 的中点.【解析】(1)证明:在等腰梯形ABCD 中,1AB BC ==,2AD =,可得60BAD ∠=︒.在ABD △中,由余弦定理可得BD =所以222AB BD AD +=,所以AB BD ⊥.因为平面ABCD ⊥平面ADEF 且交于AD ,DE AD ⊥,所以DE ⊥平面ABCD . 因为AB平面ABCD ,所以AB DE ⊥.因为BD DE D ⋂=,所以AB ⊥平面BDE . 因为AB平面ABE ,所以平面BDE ⊥平面ABE .(2)解:如图,过B 作AD 的垂线交AD 于O ,过O 在平面ADEF 内作AD 的垂线Ox ,建立空间直角坐标系O xyz -,则10,,02A ⎛⎫- ⎪⎝⎭,B ⎛ ⎝⎭,0,1,2C ⎛⎫ ⎪ ⎪⎝⎭,30,,02D ⎛⎫ ⎪⎝⎭,32,,02E ⎛⎫ ⎪⎝⎭,11,,02F ⎛⎫- ⎪⎝⎭, ()1,2,0FE =,设FP FE λ=,则11,2,02P λλ⎛⎫+- ⎪⎝⎭.()2,0,0DE =,10,2DC ⎛=- ⎝⎭,10,2AB ⎛= ⎝⎭,()1,2,0AP λλ=+.设平面CDE 的法向量为()111,,m x y z =,则11120102m DE x m DC y z ⎧⋅==⎪⎨⋅=-=⎪⎩,令11z =,得()0,3,1m =. 设平面PAB 的法向量为()222,,n x y z =,则22221022(1)20n AB y z n AP x y λλ⎧⋅=+=⎪⎨⎪⋅=++=⎩,令21z =,得23n λ⎛⎫= ⎪ ⎪⎝⎭.所以cos ,m n m n m n⋅===⎛,解得12λ=,即当P 为EF 的中点时满足题意. 【预测题2】如图,在水平桌面上放置一块边长为1的正方形薄木板ABCD .先以木板的AD边为轴,将木板向上缓慢转动,得到平面11AB C D ,此时1B AB ∠的大小为π(0)2θθ<<.再以木板的1AB 边为轴,将木板向上缓慢转动,得到平面121AB C D ,此时211C B C ∠的大小也为θ.(1)求整个转动过程木板扫过的体积;(2)求平面121AB C D 与平面ABCD 所成锐二面角的余弦值.【答案】(1)θ;(2)2cos θ.【解析】(1)整个转动过程木板扫过的几何体由两个底面为圆心角为θ,半径为1的扇形,高为1的直棱柱组成,故其体积22(π11)2πV θθ=⨯⨯⨯⨯=.(2)以A 为坐标原点,DA 方向为x 轴正方向,1AB 方向为y 轴正方向,建立如图所示的 空间直角坐标系A xyz -,则(000)A,,,(0cos sin )B θθ-,,,(100)D -,,,1(010)B,,,1(cos 0sin )D θθ-,,,(0cos sin )AB θθ=-,,,(100)AD =-,,,1(010)AB = ,,,1(cos 0sin )AD θθ=-,,,设()x y z =,,n 是平面ABCD 的一个法向量,则00n AB n AD ⎧⋅=⎨⋅=⎩,即cos sin 0y z x θθ-=⎧⎨-=⎩,不妨令sin y θ=,可取(0sin cos )θθ=,,n ,同理平面121AB C D 的一个法向量(sin 0cos )θθ=,,m ,设平面121AB C D 与平面ABCD 所成锐二面角为ϕ,则2cos cos cos ϕθ=<>==,n m ,所以平面121AB C D 与平面ABCD 所成锐二面角的余弦值为2cos θ.【预测题3】如图所示,在四棱锥P ABCD -中,//AB CD ,12AD AB CD ==,60DAB ∠=,点,E F 分别为CD AP ,的中点.(1)证明://PC 面BEF ;(2)若PA PD ⊥,且PA PD =,面PAD ⊥面ABCD ,求二面角C BE F --的余弦值.【答案】(1)证明见解析;(2). 【解析】(1)连接AC ,交BE 于点H ,连接FH ,因为,,AB CE HAB HCE BHA CHE ∠∠∠∠===, 所以,,//ABH CEH AH CH FH PC ≅∴=∴△, 因为FH⊂面FBE ,PC ⊄平面FBE ,所以//PC 面FBE .(2)取AD 中点O ,连接, PO OB ,由,PA PD PO AD =∴⊥, 因为面PAD ⊥面ABCD ,所以PO ⊥面ABCD , 由60,,DAB AD AB OB AD ∠==∴⊥,以,,OA OB OP 分别为,,x y z 轴,建立空间直角坐标系,设2AD =,则11(1,0,0),(1,0,0),(0,0,1),,0,22A B D P F ⎛⎫- ⎪⎝⎭,11(2,0,0),,22EB DA BF ⎛⎫=== ⎪⎝⎭,(0,0,1)n =为面BEC 的一个法向量,设面FBE 的法向量为(,,)m x y z =,则201122EBm x BF m x z +⎧⋅==⎪⎨⋅=-=⎪⎩,取y =(0,3,6)m =, cos ,||||39m n m n m n ⋅<>===⋅, 因为二面角C BE F --为钝角,所以二面角C BE F --的余弦值为13-.【预测题4】如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PD ⊥底面,ABCD M 为线段PC 的中点,2,PD AD N ==为线段BC 上的动点.(1)证明:MD PN ⊥;(2)当N 为线段BC 的中点时,求直线PA 与平面MND 所成角的正弦值.【答案】(1)证明见解析;(2)6.【解析】(1)证明:PD ⊥平面,ABCD BC 平面ABCD ,BC PD ∴⊥, 又,,BC DC PD DC D PD DC ⊥⋂=、 平面PDC ,BC ∴⊥平面PDC ,又MD 平面PDC ,MD BC ∴⊥,Rt PDC 中,,,PD DC PD DC M ⊥=为PC 的中点,MD PC ∴⊥,,PC BC C PC BC ⋂=、 PBC ,MD ∴⊥面PBC ,PN 平面,PBC MD PN ∴⊥,(2)以D 为原点,DA DC DP 、、分别为,,x y z 轴建立空间直角坐标系D xyz -, 则()()0,1,1,1,2,0DM DN ==,设(),,n x y z =为平面MND 的法向量,则()()()(),,0,1,10,0,0,,,1,2,00,20,0,x y z y z n DM x y z x y n DN ⎧⎧⋅=+=⎧⋅=⎪⎪⇒⇒⎨⎨⎨⋅=+=⋅=⎪⎩⎪⎩⎩令2x =,则1,1y z =-=,故()2,1,1n =-,()2,0,2AP =-,记直线PA 与平面MND 所成角为θ,则3sin cos ,6n AP n AP n APθ⋅===⋅. 【预测题5】如图,在四棱锥S ABCD -中,底面四边形ABCD 是正方形,SD DB ⊥,SB AC ⊥,点E 是棱SD 上的点.(1)证明:SD ⊥平面ABCD ; (2)已知2SD ==,点E 是SD 上的点,()01DE DS λλ=<<,设二面角C AED --的大小为θ,直线BE 与平面ABCD 所成的角为ϕ,若sin cos ϕθ=,求λ的值.【答案】(1)证明见解析;(2)λ=. 【解析】(1)因为底面四边形ABCD 是正方形,所以AC BD ⊥, 又SB AC ⊥,SB BD B ⋂=,所以AC ⊥平面SBD , 又AC ⊂平面ABCD ,所以平面SBD ⊥平面ABCD , 因为SD BD ⊥,SD ⊂平面SBD ,平面SBD 平面ABCD BD =,所以SD ⊥平面ABCD .(2)由已知及(1)可知SD AD ⊥,SD CD ⊥,AD CD ⊥,以D 为原点,DA ,DC ,DS 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为2SD ==,所以()0,0,0D,)A,)B,()C ,()0,0,2S,()0,0,2E λ,得()2,0,2EA λ=-,()2EC λ=-,()2,2EB λ=-,设平面ACE 的法向量为(),,n x y z =,则由n EA ⊥,n EC ⊥得00n EA n EC ⎧⋅=⎨⋅=⎩,即2020z z λλ-=-=,取z =,得(2,2n λλ=. 易知平面ABCD 和平面ADE 的一个法向量分别为()0,0,2DS =和()0,DC =.所以2sin BE DS BE DSϕ⋅==⋅=⨯,8cos n DC n DCθλ⋅⋅===,由sin cos ϕθ=1)λ=<<,解得λ=.【预测题6】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,2BC AD =,2AP AB AD CD ====.(1)求证:平面PAC ⊥平面PAB ;(2)若E 为棱PB 上一点(不与P,B 重合),二面角E CD P --,求PE PB的值.【答案】(1)证明见解析;(2)13. 【解析】(1)证明:取BC 的中点M ,连接AM .因为//AD BC ,2BC AD =,所以//AD MC ,AD MC =, 从而四边形AMCD 为平行四边形,所以2AM DC ==, 于是12AM BC =,所以AB AC ⊥. 因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,所以PA AC ⊥. 又AB ,PA ⊂平面PAB ,AB PA A ⋂=,所以AC ⊥平面PAB . 又AC ⊂平面PAC ,所以平面PAC ⊥平面PAB .(2)由(1)知AB ,AC ,AP 两两垂直,建立如图所示的空间直角坐标系A xyz -,所以 (2,0,0)B ,(0,C ,(D -,(0,0,2)P .设PE PB λ=,01λ<<,则(1,DC =,(0,2)PC =-,(2,0,2)PE PB λλλ==-,于是(2,22)EC PC PE λλ=-=--+.设平面PCD 的一个法向量为()1111,,n x y z =,则110,0,n DC n PC ⎧⋅=⎪⎨⋅=⎪⎩即11110,20.x z ⎧+=⎪⎨-=⎪⎩ 令11y =,得1(3,1n =-.设平面ECD 的一个法向量为()2222,,n x y z =则2200n DC n EC ⎧⋅=⎪⎨⋅=⎪⎩即222220,2(22)0.x x z λλ⎧+=⎪⎨-++-=⎪⎩ 令21y=,得211n λλ+⎛⎫=- ⎪-⎝⎭. 令11t λλ+=-,则1t >.因为二面角E CD P --,所以121212cos ,147n n n n n n ⋅===⋅, 化简得21332120t t -+=,即(2)(136)0t t --=, 解得 2t =或613t =(舍去),所以121t λλ+==-,解得13λ=,因此PEPB 值为13.【预测题7】如图所示,△ABC 是等边三角形,DE //AC ,DF //BC ,二面角D ﹣AC ﹣B 为直二面角,AC =CD =AD =DE =2DF =2.(1)求证:EF ⊥BC ;(2)求平面ACDE 与平面BEF 所成锐二面角的正切值.【答案】(1)证明见解析;(2)23.【解析】(1)因为DE//AC,DF//BC,△ABC是等边三角形,所以∠EDF=∠ACB=60°,又AC=DE=BC=2DF=2,在△EDF中,由余弦定理可得,EF所以EF2+DF2=DE2,故EF⊥DF,所以EF⊥BC;(2)设线段AC的中点为O,连结BO,DO,因为△ABC和△ACD都是等边三角形,所以BO⊥AC,DO⊥AC,故∠BOD即为二面角D﹣AC﹣B的平面角,由于二面角D﹣AC﹣B是直二面角,所以∠BOD=90°,建立空间直角坐标系如图所示,则1(0,1,0),(0,,,022A B E G⎛⎫-- ⎪⎪⎝⎭,所以33(3,2,3),,022BE EF AG⎛⎫=--== ⎪⎪⎝⎭,设平面BEF的法向量为(,,)nx y z=,则有n BEnEF⎧⋅=⎨⋅=⎩,即232yxy⎧-=+=,令x=1,y z=-=,所以33,1,3n⎛⎫=-⎪⎪⎭,又(3,0,0)OB=,且OB是平面ACDE的一个法向量,所以cos ,||||3n OB n OB n OB ⋅<>===则sin ,1n OB <>==sin ,2tan ,3cos ,n OB n OB n OB <><>==<>, 故平面ACDE 与平面BEF 所成锐二面角的正切值为23. 【预测题8】如图所示,已知在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,侧棱3PA PC ==,PB PD =,过点A 的平面与侧棱PB ,PD ,PC 相交于点E ,F ,M ,且满足PE PF =,1PM =.(1)求证:直线PC ⊥平面AEMF ;(2)求平面MDB 与平面AEMF 所成二面角的正弦值.【答案】(1)证明见解析;(2 【解析】(1)联结AM ,AC ,AC DB O ⋂=,因为PB PD =,所以PO BD ⊥,因为ABCD 是菱形,所以BD AC ⊥,所以BD⊥平面PAC ,所以BD PC ⊥,又PE PF =,所以//EF BD ,所以EF PC ⊥,由已知条件得,2BD =,AC =由余弦定理得(222222331cos 22333PA PC AC APC PA PC +-+-∠===⋅⨯⨯,22212cos 9123183PA PM PA PM AP AM C =+-⋅⋅∠=+-⨯⨯⨯=, 所以222PM P M A A =+,所以PC AM ⊥,因为直线AM ,EF 相交,且AM ,EF 都在平面AEMF 内,所以直线PC ⊥平面AEMF .(2)取N 为MC 的中点,联结ON ,BN ,DN ,则//ON AM ,又//EF BD ,所以平面//AEMF 平面BND ,因为直线BD ⊥平面PAC ,联结MO ,所以MO BD ⊥,NO BD ⊥,所以MON ∠为平面MDB 与平面AEMF 所成二面角的平面角,由已知可得,ON ==OM =所以sin 3MON ∠==,所以平面MDB 与AEMF【名师点睛】求二面角所成角三角函数值的方法:①找出与已知平面平行的平面(有时可以直接到第②步);②作出二面角的平面角;③解二面角的平面角所在三角形.【预测题9】如图,在三棱锥A BCD -中,ABC 是边长为3的等边三角形,CD CB =,CD ⊥平面ABC ,点M 、N 分别为AC 、CD 的中点,点P 为线段BD 上一点,且//BM 平面APN .(1)求证:BM AN ⊥;(2)求平面APN 与平面ABC 所成角的正弦值.【答案】(1)证明见解析;(2. 【解析】(1)因为CD ⊥面ABC ,BM ⊂面ABC ,所以CD BM ⊥.因为正ABC 中,AM MC BM AC =⇒⊥,所以BM CD BM AC BM CD AC C ⊥⎫⎪⊥⇒⊥⎬⎪⋂=⎭面ACD ,所以BM AN ⊥.(2)连接MD 交AN 于G 点,连接PG ,因为//BM 平面APN ,所以//BM PG ,由重心性质知P 为靠近B 点的三等分点.所以()0,0,0C,30,,22A ⎛ ⎝⎭,()0,3,0B ,()1,2,0P ,3,0,02N ⎛⎫ ⎪⎝⎭, 设面APN 的法向量为(),,n x y z =,0AP n ⋅=,0AN n ⋅=,所以10233022x y z x y z ⎧+=⎪⎪⎨⎪-=⎪⎩,令4x =,则1,y z ==,所以(4,1,3n =,平面ABC 的法向量为()1,0,0u =,cos ,5u v ==,所以平面APN 与平面ABC【预测题10】如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA CD ⊥,1PA =,PD =E 为PD 上一点,且2PE ED =.(1)求证:平面PAC ⊥平面ABCD ;(2)求二面角P CE B --的余弦值.【答案】(1)证明见解析;(2)10. 【解析】(1)在PAD ∆中,1PA AD ==,PD =222PD PA AD ∴=+,PA AD ∴⊥,又PA CD ⊥,CD AD D =,CD ,AD ⊂平面ABCD ,PA ∴⊥平面ABCD , 又PA ⊂平面PAC ,∴平面PAC ⊥平面ABCD ,(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,0,0B ,()1,1,0C ,210,,33E ⎛⎫ ⎪⎝⎭,()0,0,1P , (0,1,0)BC ∴=,111,,33CE ⎛⎫=-- ⎪⎝⎭,(1,1,1)PC =-, 设平面PCE 的一个法向量为()111,,m x y z =,则00m CE m PC ⎧⋅=⎨⋅=⎩,1111110330y z x x y z ⎧--+=⎪∴⎨⎪+-=⎩,令11y =,解得1101x z =⎧⎨=⎩,()0,1,1m ∴=,设平面BCE 的一个法向量为()222,,n x y z =,则00n CE n BC ⎧⋅=⎨⋅=⎩, 22220330y z x y ⎧--+=⎪∴⎨⎪=⎩,令21x =,解得2203y z =⎧⎨=⎩,()1,0,3n ∴=,cos ,||||2m n m n mn ⋅∴〈〉===⨯, ∴二面角P CE B --.【预测题11】如图,已知斜三棱柱111ABC A B C -底面是边长2的正三角形,D 为ABC 所在平面上一点且四边形ABCD 是菱形,ACBD O =,四边形11ACC A 为正方形,平面11A DC ⊥平面111A B C .(1)证明:1BO ⊥平面ABCD ;(2)求平面1CDC 与平面11A DC 所成二面角的正弦值.【答案】(1)证明见解析;(2)7.【解析】(1)取11A C 中点M ,连接MD 、1MB 、MO ,因为1111A B B C =,所以111B M A C ⊥,因为四边形11ACC A 为正方形,所以11OM AC ⊥,而1B M 与OM 相交于平面1B MDO , 所以11A C ⊥平面1B MDO ,因为MD ⊂平面1B MDO ,所以11A C DM ⊥,因为平面11A DC ⊥平面111A B C ,交线为11A C ,所以DM ⊥平面111A B C ,因为平面//ABCD 平面111A B C ,所以DM ⊥平面ABCD ,因为1//B M OD 且1B M OD =,所以四边形1B MDO 是平行四边形,故1//B O DM , 所以1B O ⊥平面ABCD ;(2)以D 为原点,BD 、DM 所在的直线方向为y 、z 轴,垂直BD 的直线方向为x 轴,建立如图空间直角坐标系,则()()()()0,0,0,1,,0,,0,D C B O -.在1Rt B BO中,11B O ===,则()10,B ,则()CD =-,()11BB CC ==,设平面1CDC 的法向量为(,,)m x y z =, 由13030CD m x CC m y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令1y =,(3,1,m =,易见,平面11A DC 的法向量为(0,1,0)n =,所以7cos ,m nm n m n ⋅===⋅⋅,故平面1CDC 与平面11A DC 2,17m n ==. 【预测题12】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,60ABC ∠=︒.点E ,F 分别在棱BC ,PD 上(不包含端点),且::PF DF BE CE =.(1)证明://EF 平面PAB ;(2)若PA =,求二面角B PC D --的余弦值.【答案】(1)证明见解析;(2)711-. 【解析】(1)过点F 作//HF AD ,HF PA H ⋂=,连接BH . 因为//HF AD ,所以HF PF AD PD=. 因为::PF DF BE CE =,所以PF BE PD BC =,所以HF BE AD BC =. 因为四边形ABCD 是菱形,所以//BC AD ,且BC AD =,所以//HF BE ,且HF BE =,所以四边形BEFH 是平行四边形,则//EF BH . 因为BH ⊂平面PAB ,EF ⊄平面PAB ,所以//EF 平面PAB .(2)解:以A 为原点,过A 作垂直AD 的直线为x 轴,AD ,AP 的方向分别为y ,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -.设2AB =,则1,0)B -,C ,(0,2,0)D ,(0,0,P ,从而(0,2,0)BC =,(3,1,PC =-,(CD =-.设平面PBC 的法向量为()111,,n x y z =,则11113020,n PC x y n BC y ⎧⋅=+-=⎪⎨⋅==⎪⎩,令1x =(22,0,n=. 设平面PCD 的法向量为()222,,m x y z =,则222223030,m PC x y m CD x y ⎧⋅=+-=⎪⎨⋅=-+=⎪⎩,令22x =,得(2,23,m =. 设二面角B PC D --为θ,由图可知θ为钝角,故cos |cos ,|||||n mn m n m θ⋅=-〈〉=-711==-.【名师点睛】此题考查线面平行的判定,考查二面角的求法,解题的关键是正确的建立空间直角坐标系,利用空间向量求解,考查计算能力,属于中档题【预测题13】如图,四棱锥E ABCD -,底面ABCD 为直角梯形,//AD BC ,AD ⊥面ABE ,2AE AD BE BC ===,23AEB π∠=,O 为AB 中点.(1)证明:面EOC ⊥面ABCD ;(2)点F 是点E 关于面ABCD 对称的点,求二面角O CD F--的余弦值.【答案】(1)证明见解析;(2. 【解析】(1)AE BE =,O 为AB 中点,所以EO AB ⊥.因为AD ⊥面ABE , EO ⊂面ABE ,所以AD EO ⊥,又AB AD A ⋂=,所以EO ⊥面ABCD ,又EO ⊂面EOC ,所以面EOC ⊥面ABCD .(2)连AF ,BF ,点F 与点E 关于面ABCD 对称,而EO ⊥面ABCD .故E ,O ,F 三点共线.在平面AEBF 内,过点A 作Ay AF ⊥.以A 为坐标原点,AF ,Ay ,AD 所在直线分别为x ,y ,z 轴,建立如图所示空间直角坐标系,设1BC =,则()0,0,0A ,()0,0,2D,()E ,()2,0,0F,()B,()C ,则32O ⎛⎫ ⎪ ⎪⎝⎭,所以1,2EO ⎛⎫= ⎪ ⎪⎝⎭,()2,0,2DF =-,()1,FC =, 因为EO ⊥面ABCD ,所以面OCD的一个法向量为1,22EO ⎛⎫=- ⎪ ⎪⎝⎭, 设面CDF 的一个法向量为(),,n x y z =,则22030n DF x z n FC x y z ⎧⋅=-=⎪⎨⋅=++=⎪⎩,取1x =,得21,n ⎛⎫=- ⎪ ⎪⎝⎭,330cos ,20n EO n EO n EO ⋅<>==⋅, 二面角O CD F --为锐角,故二面角O CD F --. 【预测题14】如图,在四棱锥E ABCD -中,四边形ABCD 为平行四边形,BCE 为等边三角形,点O 为BE 的中点,且22AC BC OA ===.(1)证明:平面ABE ⊥平面BCE ;(2)若AB AE =,求二面角B CE D --的正弦值.【答案】(1)证明见解析;(2. 【解析】(1)证明:连接OC ,因为BCE 为等边三角形,所以OC BE ⊥,因为2AC =,1OA =,22OC =⨯= 所以222AC AO OC =+,所以OC OA ⊥, 因为OABE O =,所以OC ⊥平面ABE ,因为OC ⊂平面BCE ,所以平面BCE ⊥平面ABE ,故平面ABE ⊥平面BCE . (2)因为AB AE =,所以OA BE ⊥,所以OE 、OC 、OA 两两垂直, 建立如图所示的空间直角坐标系,()1,0,0E ,()1,0,0B -,()0,0,1A ,()C ,()EC =-,()1,0,1CD BA ==,设平面ECD 的法向量为(),,m x y z =,30EC m xCD m x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令x =1y =,z =(3,1,m =,平面BEC 的法向量为()0,0,1n =,设二面角B CE D --的大小为θ, 则3cos 71m n m nθ⋅===⋅⋅,sin 7θ==,所以二面角B CE D --的正弦值为7. 【名师点睛】掌握直线与平面垂直的判定定理、平面与平面垂直的判定定理、利用空间向量求二面角是解题关键.【预测题15】如图,直三棱柱111ABC A B C -中,90ACB ∠=,1AC =,12BC CC ==,D ,E ,F ,G 分别是棱111,,,AB BC B C BB 的中点.(1)求证:平面 CDG⊥平面1A DE ;(2)求平面1A BF 与平面1A DE 所成的锐二面角的余弦值. 【答案】(1)证明见解析;(2)3【解析】(1)以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立如图所示的空间直角坐标系,则11(0,0,0),,1,0,(0,2,1),(1,0,2)2C D G A ⎛⎫⎪⎝⎭, (0,2,0),(0,1,0),(0,1,2)B E F ,1111,1,0,(0,2,1),,1,2,,0,0222CD CG DA DE →→→→⎛⎫⎛⎫⎛⎫===-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设平面CDG 的一个法向量为(,,)m x y z =,由10220m CD x y m CG y z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1y =,得(2,1,2)m =--; 设平面1A DE 的一个法向量为()1111,,n x y z →=,由11111111202102n DA x y z n DE x ⎧⋅=-+=⎪⎪⎨⎪⋅=-=⎪⎩,取11z =,得1(0,2,1)n →=.因为10m n →⋅=,所以1m n →⊥,所以平面CDG ⊥平面1A DE ;(2)由(1)可得,平面1A DE 的一个法向量为得1(0,2,1)n →=,1(1,2,2)A B →=--,1(1,1,0)A F →=-,设平面1A BF 的一个法向量为()2222,,n x y z →=,由2122221222200n A B x y z n A F x y ⎧⋅=-+-=⎪⎨⋅=-+=⎪⎩,取21y =,得211,1,2n →⎛⎫= ⎪⎝⎭.121212122cos ,32n n n n nn →→→→→→+⋅∴<>===, 所以平面1A BF 与平面1A DE【名师点睛】建立空间直角坐标系,把线面,面面关系转化为向量之间的关系,从而求得线面角,距离,二面角等.【预测题16】如图,四棱台ABCD ﹣A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,底面ABCD 是平行四边形,∠ABC =4π,BC AB ,A 1B 1=A 1A =1.(1)证明:DD 1//平面ACB 1; (2)求面角A ﹣B 1C ﹣D 1的余弦值.【答案】(1)证明见解析;(2)7. 【解析】(1)连接BD ,交AC 于O ,连接B 1O , 因为四边形ABCD 是平行四边形,所以OD =12BD ,由棱台的性质可得B 1D 1//OD ,由BC AB =2,又A 1B 1=1,可得111112A B B D AB BD ==,则B 1D 1=OD , 所以四边形B 1ODD 1是平行四边形,则B 1O //DD 1,因为B 1O ⊂平面B 1AC ,DD 1⊄ 平面B 1AC ,所以DD 1//平面ACB 1; (2)因为A 1A ⊥平面ABCD ,且AC ⊂平面ABCD ,AB ⊂平面ABCD ,所以A 1A ⊥AC ,A 1A ⊥AB ,又4ABC π∠=,BC =,AB =2,所以AC =2,则AB 2+AC 2=BC 2,故AB ⊥AC ,即AB ,AC ,AA 1两两互相垂直, 以A 为坐标原点,分别以AB ,AD ,AA 1所在直线为x ,y ,z 轴建立空间直角坐标系, 则A (0,0,0),C (0,2,0),B 1(1,0,1),D 1(﹣1,1,1), 所以1(1,2,1)CB =-,(0,2,0)AC =,1(1,1,1)CD =--. 设平面AB 1C 的一个法向量为(,,)x m y z =,由12020m AC y m CB x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,取z =1,得(1,0,1)m =-; 设平面B 1CD 1的一个法向量为()111,,n x y z =,由11111111020n CD x y z n CB x y z ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,取z 1=3,得(1,2,3)n =.设二面角A ﹣B 1C ﹣D 1为θ,由图可知,θ为锐角, 则cos θ=|cos<,m n>|=2||||||1m n m n⋅==+. 又由图示知二面角A ﹣B 1C ﹣D 1为锐角, 故二面角A ﹣B 1C ﹣D 1.【预测题17】已知矩形ABCD 中,AB =2,AD =5.E ,F 分别在AD ,BC 上.且AE =1,BF =3,沿EF 将四边形AEFB 折成四边形A ′EFB ′,使点B ′在平面CDEF 上的射影H 在直线DE 上.(1)求证:A ′D //平面B ′FC ; (2)求二面角A ′﹣DE ﹣F 的大小.【答案】(1)证明见解析;(2)135°.【解析】(1)证明:因为A ′E //B ′F ,A ′E ⊄平面B ′FC ,B ′F ⊂平面B ′F C . 所以A ′E //平面B ′FC ,由DE //FC ,同理可得DE //平面B ′FC , 因为A ′E ∩DE =E .所以平面A ′ED //平面B ′FC , 所以A ′D //平面B ′F C .(2)如图,过E 作ER //DC ,过E 作ES ⊥平面EFCD , 分别以ER ,ED ,ES 所在直线为x ,y ,z 轴建立空间直角坐标系. 因为B ′在平面CDEF 上的射影H 在直线DE 上,设B ′(0,y ,z )(y ,z ∈R +).()2,2,0,3F B E B F =''=,222254(2)9y z y z ⎧+=∴⎨+-+=⎩,解得12y z =⎧⎨=⎩, ()0,1,2B ∴',()2,1,2FB '∴=--,1212,,3333EA FB ⎛⎫''∴==-- ⎪⎝⎭,设平面A DE 的法向量为(),,n x y z =,又有()0,4,0.ED =00n EA n ED ⎧⋅=∴=⎩'⎨⋅得212033340x y z y ⎧--+=⎪⎨⎪=⎩,令1x =,则1,0z y ==,得到(1,0,1)n =. 又平面CDEF 的法向量为()0,0,1.m =设二面角A DE F '--的大小为θ,显然θ为钝角,cos cos ,2n m θ∴=-=-,所以135θ=︒.【预测题18】如图:PD ⊥平面ABCD ,四边形ABCD 为直角梯形,//,2AB CD ADC π∠=,222PD CD AD AB ====,(1)求证:平面BDP ⊥平面PBC ; (2)求二面角B PC D --的余弦值;(3)在棱PA 上是否存在点Q ,使得//DQ 平面PBC ?若存在,求PQPA的值,若不存在,请说明理由.【答案】(1)证明见解析(2(3)不存在,理由见解析【解析】(1)在BDC 中,BD ==2CD =,4BDC π∠=,所以BC === 所以222BD BC CD +=,所以BD BC ⊥, 因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD BC ⊥,因为PD BD D ⋂=,所以BC ⊥平面BDP ,因为BC ⊂平面PBC ,所以平面BDP ⊥平面PBC . (2)因为PD ⊥平面ABCD ,所以,PD AD PD DC ⊥⊥,又AD DC ⊥, 所以以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系: 则(0,0,0)D ,(1,0,0)A ,(1,1,0)B ,(0,2,0)C ,(0,0,2)P , 则(0,2,2)PC=-,(1,1,0)BC =-,(0,0,2)DP =,(1,0,2)PA =-,设平面PBC 的法向量为(,,)n x y z =,则2200n PC y z n BC x y ⎧⋅=-=⎨⋅=-+=⎩,取1x =,得1y =,1z =,得(1,1,1)n =, 取平面PDC 的法向量为(1,0,0)DA =,设二面角B PC D --的大小为θ,由图形知,θ为锐角,所以||cos||||n DA n DA θ⋅=3==,所以二面角B PC D -- (3)假设在棱PA 上是否存在点Q ,使得//DQ 平面PBC ,则DQ n ⊥,0DQ n ⋅=, 设PQ PA λ=(01)λ≤≤,则DQ DP PA λ-=,DQ DP PA λ=+(0,0,2)(1,0,2)λ=+-(,0,22)λλ=-, 所以()DQ n DP PA n λ⋅=+⋅=(,0,22)(1,1,1)λλ-⋅2220λλλ=+-=-=, 解得2λ=,不符合01λ≤≤,故在棱PA 上不存在点Q ,使得//DQ 平面PBC ,【名师点睛】(1)中,利用面面垂直的判定定理证明是解题关键;(2)和(3)中,利用空间向量求解是解题关键.【预测题19】如图所示,在多面体ABCDEF 中,四边形ADEF 为正方形,//AD BC ,AD AB ⊥,21AD BC ==.2AB BF ==.(1)证明:平面ADEF ⊥平面ABCD .(2)若三棱锥A BDF -的外接球的球心为O ,求二面角A CD O --的余弦值.【答案】(1)证明见解析;(2 【解析】(1)因为四边形ADEF 为正方形,所以,//,1,2AD AF AD BC AD AF AB BF ⊥====,所以222AF AB BF +=,所以,,AF AB ABBD A AF ⊥=⊥平面ABCD ,平面ADEF ⊥平面ABCD .(2)因为AB AD ⊥,由①知,AB 、AD 、AF 两两垂直,以A 为坐标原点建立空间直角坐标系A xyz -,如图所示,则1(0,1,0),,0,(0,0,1),(0,1,1)2D C F BE ⎫⎪⎭.因为三棱锥A BDF -的外接球的球心为O ,所以O 为线段BE 的中点,则O 的坐标为11311,,,0,,3,,0222222OC CD ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 设平面OCD 的法向量为(),,n x y z =,则0n OC n CD ⋅=⋅=,即10,210,2x z y -=⎨⎪+=⎪⎩令1x =,得(1,23,n =. 易知平面ACD 的一个法向量为()0,0,1m =,则3cos ,16m n ==⨯. 由图可知,二面角A CD O--为锐角,故二面角A CD O --余弦值为4. 【预测题20】如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由; (2)求二面角A MN B --的正弦值.【答案】条件选择见解析,(1)MN ⊥平面ABD ,理由见解析;(2)7. 【解析】(1)若选①:AD =在Rt BCD中,2BC =,1CD =,BD =,2AB =,可得222AB BD AD +=,所以AB BD ⊥, 又由AB BC ⊥,且BCBD B =,,BC BD ⊂平面CBD ,所以AB ⊥平面CBD ,因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD .若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,可得CD AD ⊥, 又由CD BD ⊥,且AD BD D =,,AD BD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选③:平面ABC ⊥平面BCD ,平面ABC平面BCD BC =, 因为AB BC ⊥,且AB 平面ABC ,所以AB ⊥平面CBD ,因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . (2)以D 为原点,射线OB 为y 轴建立如图直角坐标系,则()A,()B ,()1,0,0C -,1,22M ⎛⎫- ⎪ ⎪⎝⎭,0,2N ⎛⎫ ⎪ ⎪⎝⎭ 可得1,0,02MN ⎛⎫= ⎪⎝⎭,0,12AN ⎛⎫=-- ⎪ ⎪⎝⎭,0,2BN ⎛⎫=- ⎪ ⎪⎝⎭ 设平面AMN 的法向量为()111,,m x y z =,则11110230m MN x m AN yz ⎧⋅==⎪⎪⎨⎪⋅=--=⎪⎩, 取1y =1130,2x z ==-,所以30,2m ⎛⎫=- ⎪⎝⎭设平面BMN 的法向量为()222,,n x y z =,则22210230n MN x n BNy z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩, 取2y 30,3,2n ⎛⎫= ⎪⎝⎭,所以9314cos ,9734m n mn m n -⋅===⋅+, 故二面角A MN B --.。
空间点、直线、平面之间的位置关系考试要求 1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.2.了解四个基本事实和一个定理,并能应用定理解决问题.知识梳理 1.平面基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内. 基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行. 2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 3.空间中直线与直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧相交直线,平行直线,异面直线:不同在任何一个平面内,没有 公共点.4.空间中直线与平面的位置关系直线与平面的位置关系有:直线在平面内、直线与平面相交、直线与平面平行三种情况. 5.空间中平面与平面的位置关系平面与平面的位置关系有平行、相交两种情况. 6.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补. 7.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2)范围:⎝⎛⎦⎥⎤0,π2.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( × ) (2)两两相交的三条直线最多可以确定三个平面.( √ ) (3)如果两个平面有三个公共点,那么这两个平面重合.( × ) (4)没有公共点的两条直线是异面直线.( × ) 教材改编题1.(多选)如图是一个正方体的展开图,如果将它还原为正方体,则下列说法正确的是( )A .AB 与CD 是异面直线 B .GH 与CD 相交C .EF ∥CD D .EF 与AB 异面 答案 ABC解析 把展开图还原成正方体,如图所示.还原后点G 与C 重合,点B 与F 重合,由图可知ABC 正确,EF 与AB 相交,故D 错. 2.如果直线a ⊂平面α,直线b ⊂平面β.且α∥β,则a 与b ( ) A .共面 B .平行 C .是异面直线D .可能平行,也可能是异面直线 答案 D解析 α∥β,说明a 与b 无公共点, ∴a 与b 可能平行也可能是异面直线.3.如图,在三棱锥A -BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形; (2)当AC ,BD 满足条件________时,四边形EFGH 为正方形. 答案 (1)AC =BD (2)AC =BD 且AC ⊥BD 解析 (1)∵四边形EFGH 为菱形, ∴EF =EH ,∵EF 綉12AC ,EH 綉12BD ,∴AC =BD .(2)∵四边形EFGH 为正方形, ∴EF =EH 且EF ⊥EH , ∵EF 綉12AC ,EH 綉12BD ,∴AC =BD 且AC ⊥BD .题型一 基本事实应用例1 如图所示,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是AB ,AA 1的中点,连接D 1F ,CE .求证:(1)E ,C ,D 1,F 四点共面; (2)CE ,D 1F ,DA 三线共点.证明 (1)如图所示,连接CD 1,EF ,A 1B , ∵E ,F 分别是AB ,AA 1的中点, ∴EF ∥A 1B ,且EF =12A 1B .又∵A 1D 1∥BC ,A 1D 1=BC , ∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥CD 1,∴EF ∥CD 1,∴EF 与CD 1能够确定一个平面ECD 1F , 即E ,C ,D 1,F 四点共面.(2)由(1)知EF ∥CD 1,且EF =12CD 1,∴四边形CD 1FE 是梯形, ∴CE 与D 1F 必相交,设交点为P , 则P ∈CE ,且P ∈D 1F ,∵CE ⊂平面ABCD ,D 1F ⊂平面A 1ADD 1, ∴P ∈平面ABCD ,且P ∈平面A 1ADD 1. 又∵平面ABCD ∩平面A 1ADD 1=AD , ∴P ∈AD ,∴CE ,D 1F ,DA 三线共点. 教师备选如图所示,已知在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A 1C 1∩EF =Q .求证:(1)D ,B ,F ,E 四点共面;(2)若A 1C 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 证明 (1)∵EF 是△D 1B 1C 1的中位线, ∴EF ∥B 1D 1.在正方体ABCD -A 1B 1C 1D 1中,B 1D 1∥BD , ∴EF ∥BD .∴EF ,BD 确定一个平面,即D ,B ,F ,E 四点共面. (2)在正方体ABCD -A 1B 1C 1D 1中, 设平面A 1ACC 1为α, 平面BDEF 为β. ∵Q ∈A 1C 1,∴Q ∈α.又Q∈EF,∴Q∈β,则Q是α与β的公共点,同理,P是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.思维升华共面、共线、共点问题的证明(1)证明共面的方法:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)证明共线的方法:先由两点确定一条直线,再证其他各点都在这条直线上.(3)证明共点的方法:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1 (1)(多选)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点共面的图是( )答案ABC解析对于A,PS∥QR,故P,Q,R,S四点共面;同理,B,C图中四点也共面;D中四点不共面.(2)在三棱锥A-BCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF∩HG=P,则点P( )A.一定在直线BD上B.一定在直线AC上C.在直线AC或BD上D.不在直线AC上,也不在直线BD上答案 B解析如图所示,因为EF⊂平面ABC,HG⊂平面ACD,EF∩HG=P,所以P∈平面ABC,P∈平面ACD.又因为平面ABC∩平面ACD=AC,所以P∈AC.题型二空间线面位置关系命题点1 空间位置关系的判断例2 (1)下列推断中,错误的是( )A.若M∈α,M∈β,α∩β=l,则M∈lB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合答案 C解析对于A,因为M∈α,M∈β,α∩β=l,由基本事实3可知M∈l,A对;对于B,A∈α,A∈β,B∈α,B∈β,故直线AB⊂α,AB⊂β,即α∩β=AB,B对;对于C,若l∩α=A,则有l⊄α,A∈l,但A∈α,C错;对于D,有三个不共线的点在平面α,β中,故α,β重合,D对.(2)已知在长方体ABCD-A1B1C1D1中,M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,则下列说法正确的是( )A.直线MN与直线A1B是异面直线B.直线MN与直线DD1相交C.直线MN与直线AC1是异面直线D.直线MN与直线A1C平行答案 C解析如图,因为M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,所以M,N分别是A1C1,BC1的中点,所以直线MN与直线A1B平行,所以A错误;因为直线MN经过平面BB1D1D内一点M,且点M不在直线DD1上,所以直线MN与直线DD1是异面直线,所以B错误;因为直线MN经过平面ABC1内一点N,且点N不在直线AC1上,所以直线MN与直线AC1是异面直线,所以C正确;因为直线MN经过平面A1CC1内一点M,且点M不在直线A1C上,所以直线MN与直线A1C是异面直线,所以D错误.命题点2 异面直线所成角例3 (1)(2021·全国乙卷)在正方体ABCD -A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2B .π3C .π4D .π6答案 D解析 方法一 如图,连接C 1P ,因为ABCD -A 1B 1C 1D 1是正方体,且P 为B 1D 1的中点,所以C 1P ⊥B 1D 1,又C 1P ⊥BB 1,所以C 1P ⊥平面B 1BP .又BP ⊂平面B 1BP ,所以C 1P ⊥BP .连接BC 1,则AD 1∥BC 1,所以∠PBC 1为直线PB 与AD 1所成的角.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则在Rt△C 1PB 中,C 1P =12B 1D 1=2,BC 1=22,sin∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6.方法二 如图所示,连接BC 1,A 1B ,A 1P ,PC 1,则易知AD 1∥BC 1,所以直线PB 与AD 1所成的角等于直线PB 与BC 1所成的角.根据P 为正方形A 1B 1C 1D 1的对角线B 1D 1的中点,易知A 1,P ,C 1三点共线,且P 为A 1C 1的中点.易知A 1B =BC 1=A 1C 1,所以△A 1BC 1为等边三角形,所以∠A 1BC 1=π3,又P 为A 1C 1的中点,所以可得∠PBC 1=12∠A 1BC 1=π6.(2)(2022·衡水检测)如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =3,SE =14SB ,则异面直线SC 与OE 所成角的正切值为( )A .222B .53C .1316D .113答案 D解析 如图,过点S 作SF ∥OE ,交AB 于点F ,连接CF ,则∠CSF (或其补角)为异面直线SC 与OE 所成的角.∵SE =14SB ,∴SE =13BE .又OB =3,∴OF =13OB =1.∵SO ⊥OC ,SO =OC =3, ∴SC =32.∵SO ⊥OF ,∴SF =SO 2+OF 2=10. ∵OC ⊥OF ,∴CF =10. ∴在等腰△SCF 中,tan∠CSF =102-⎝ ⎛⎭⎪⎫3222322=113. 教师备选1.(多选)设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则下列结论不正确的是( )A .若a ⊂α,b ⊂β,则a 与b 是异面直线B .若a 与b 异面,b 与c 异面,则a 与c 异面C .若a ,b 不同在平面α内,则a 与b 异面D .若a ,b 不同在任何一个平面内,则a 与b 异面 答案 ABC2.在长方体ABCDA 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A .15B .56C .55D .22 答案 C解析 如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM .易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角或其补角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2, DM =AD 2+⎝ ⎛⎭⎪⎫12AB 2=52, DB 1=AB 2+AD 2+BB 21=5. 所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos∠MOD =12+⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55. 思维升华 (1)点、直线、平面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型. (2)求异面直线所成的角的三个步骤一作:根据定义作平行线,作出异面直线所成的角. 二证:证明作出的角是异面直线所成的角. 三求:解三角形,求出所作的角.跟踪训练2 (1)如图所示,G ,N ,M ,H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 与MN 是异面直线的图形有________.(填序号)答案 ②④(2)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列结论正确的是( ) A .l 与l 1,l 2都不相交 B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交 答案 D解析 如图1,l 1与l 2是异面直线,l 1与l 平行,l 2与l 相交,故A ,B 不正确;如图2,l 1与l 2是异面直线,l 1,l 2都与l 相交,故C 不正确.图1 图2题型三 空间几何体的切割(截面)问题例4 (1)在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱DD 1和BB 1上的点,MD =13DD 1,NB =13BB 1,那么正方体中过M ,N ,C 1的截面图形是( ) A .三角形 B .四边形 C .五边形 D .六边形答案 C解析 先确定截面上的已知边与几何体上和其共面的边的交点,再确定截面与几何体的棱的交点.如图,设直线C 1M ,CD 相交于点P ,直线C 1N ,CB 相交于点Q ,连接PQ 交直线AD 于点E ,交直线AB 于点F ,则五边形C 1MEFN 为所求截面图形.(2)已知正方体ABCD -A 1B 1C 1D 1的棱长为2.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为______. 答案π2解析 以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线是以C 1为圆心,1为半径的圆与正方形BCC 1B 1相交的一段弧(圆周的四分之一),其长度为14×2π×1=π2.延伸探究 将本例(2)中正方体改为直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3=2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ ︵的长为π2×2=2π2,即交线长为2π2.教师备选如图,在正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,平面α经过直线BD 且与直线C 1E 平行,若正方体的棱长为2,则平面α截正方体所得的多边形的面积为________.答案 92解析 如图,过点B 作BM ∥C 1E 交B 1C 1于点M ,过点M 作BD 的平行线,交C 1D 1于点N ,连接DN ,则平面BDNM 即为符合条件的平面α,由图可知M ,N 分别为B 1C 1,C 1D 1的中点, 故BD =22,MN =2, 且BM =DN =5, ∴等腰梯形MNDB 的高为h =52-⎝⎛⎭⎪⎫222=322, ∴梯形MNDB 的面积为 12×(2+22)×322=92. 思维升华 (1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线. (2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线. 跟踪训练3 (1)(多选)正方体ABCD -A 1B 1C 1D 1的棱长为2,已知平面α⊥AC 1,则关于α截此正方体所得截面的判断正确的是( ) A .截面形状可能为正三角形 B .截面形状可能为正方形 C .截面形状可能为正六边形 D .截面面积最大值为3 3 答案 ACD解析 易知A ,C 正确,B 不正确,下面说明D 正确,如图,截面为正六边形,当六边形的顶点均为棱的中点时,其面积最大,MN =22,GH =2,OE =OO ′2+O ′E 2=1+⎝⎛⎭⎪⎫222=62, 所以S =2×12×(2+22)×62=33,故D 正确.(2)(2022·兰州模拟)如图,正方体A 1C 的棱长为1,点M 在棱A 1D 1上,A 1M =2MD 1,过M 的平面α与平面A 1BC 1平行,且与正方体各面相交得到截面多边形,则该截面多边形的周长为________.答案 3 2解析 在平面A 1D 1DA 中寻找与平面A 1BC 1平行的直线时,只需要ME ∥BC 1,如图所示,因为A 1M =2MD 1,故该截面与正方体的交点位于靠近D 1,A ,C 的三等分点处,故可得截面为MIHGFE ,设正方体的棱长为3a , 则ME =22a ,MI =2a ,IH =22a ,HG =2a ,FG =22a ,EF =2a ,所以截面MIHGFE 的周长为ME +EF +FG +GH +HI +IM =92a , 又因为正方体A 1C 的棱长为1,即3a =1, 故截面多边形的周长为32.课时精练1.下列叙述错误的是( )A .若P ∈α∩β,且α∩β=l ,则P ∈lB.若直线a∩b=A,则直线a与b能确定一个平面C.三点A,B,C确定一个平面D.若A∈l,B∈l且A∈α,B∈α,则l⊂α答案 C解析选项A,点P是两平面的公共点,当然在交线上,故正确;选项B,由基本事实的推论可知,两相交直线确定一个平面,故正确;选项C,只有不共线的三点才能确定一个平面,故错误;选项D,由基本事实2,直线上有两点在一个平面内,则这条直线在平面内.2.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列判断正确的是( ) A.若m⊥α,n⊥β,α⊥β,则直线m与n可能相交或异面B.若α⊥β,m⊂α,n⊂β,则直线m与n一定平行C.若m⊥α,n∥β,α⊥β,则直线m与n一定垂直D.若m∥α,n∥β,α∥β,则直线m与n一定平行答案 A解析m,n是两条不同的直线,α,β是两个不同的平面,对于A,若m⊥α,n⊥β,α⊥β,则直线m与n相交垂直或异面垂直,故A正确;对于B,若α⊥β,m⊂α,n⊂β,则直线m与n相交、平行或异面,故B错误;对于C,若m⊥α,n∥β,α⊥β,则直线m与n相交、平行或异面,故C错误;对于D,若m∥α,n∥β,α∥β,则直线m与n平行或异面,故D错误.3.(2022·营口模拟)已知空间中不过同一点的三条直线a,b,l,则“a,b,l两两相交”是“a,b,l共面”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析空间中不过同一点的三条直线a,b,l,若a,b,l在同一平面,则a,b,l相交或a,b,l有两个平行,另一直线与之相交,或三条直线两两平行.所以a,b,l在同一平面,则a,b,l两两相交不一定成立;而若a,b,l两两相交,则a,b,l在同一平面成立.故“a,b,l两两相交”是“a,b,l共面”的充分不必要条件.4.如图所示,在正方体ABCD-A1B1C1D1中,E是平面ADD1A1的中心,M,N,F分别是B1C1,CC1,AB的中点,则下列说法正确的是( )A .MN =12EF ,且MN 与EF 平行B .MN ≠12EF ,且MN 与EF 平行C .MN =12EF ,且MN 与EF 异面D .MN ≠12EF ,且MN 与EF 异面答案 D解析 设正方体ABCD -A 1B 1C 1D 1的棱长为2a , 则MN =MC 21+C 1N 2=⎝ ⎛⎭⎪⎫2a 22+⎝ ⎛⎭⎪⎫2a 22 =2a ,作点E 在平面ABCD 内的射影点G ,连接EG ,GF ,所以EF =EG 2+GF 2=⎝ ⎛⎭⎪⎫2a 22+2a2=3a ,所以MN ≠12EF ,故选项A ,C 错误;连接DE ,因为E 为平面ADD 1A 1的中心, 所以DE =12A 1D ,又因为M ,N 分别为B 1C 1,CC 1的中点,所以MN ∥B 1C , 又因为B 1C ∥A 1D ,所以MN ∥ED , 且DE ∩EF =E ,所以MN 与EF 异面,故选项B 错误.5.(多选)(2022·临沂模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,O 是DB 的中点,直线A 1C 交平面C 1BD 于点M ,则下列结论正确的是( )A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,B1,B四点共面D.D1,D,O,M四点共面答案AB解析∵O∈AC,AC⊂平面ACC1A1,∴O∈平面ACC1A1.∵O∈BD,BD⊂平面C1BD,∴O∈平面C1BD,∴O是平面ACC1A1和平面C1BD的公共点,同理可得,点M和C1都是平面ACC1A1和平面C1BD的公共点,∴三点C1,M,O在平面C1BD与平面ACC1A1的交线上,即C1,M,O三点共线,故A,B正确;根据异面直线的判定定理可得BB1与C1O为异面直线,故C1,O,B1,B四点不共面,故C不正确;根据异面直线的判定定理可得DD1与MO为异面直线,故D1,D,O,M四点不共面,故D不正确.6.(多选)(2022·厦门模拟)下列说法不正确的是( )A.两组对边分别相等的四边形确定一个平面B.和同一条直线异面的两直线一定共面C.与两异面直线分别相交的两直线一定不平行D.一条直线和两平行线中的一条相交,也必定和另一条相交答案ABD解析两组对边分别相等的四边形可能是空间四边形,故A错误;如图1,直线DD1与B1C1都是直线AB的异面直线,同样DD1与B1C1也是异面直线,故B错误;如图2,设直线AB与CD是异面直线,则直线AC与BD一定不平行,否则AC∥BD,有AC与BD确定一个平面α,则AC⊂α,BD⊂α,所以A∈α,B∈α,C∈α,D∈α,所以AB⊂α,CD⊂α,这与假设矛盾,故C正确;如图1,AB∥CD,而直线AA1与AB相交,但与直线CD不相交,故D错误.图1 图27.(2022·哈尔滨模拟)已知在直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为________. 答案105解析 如图所示,补成直四棱柱ABCD -A 1B 1C 1D 1,则所求角为∠BC 1D 或其补角,∵BC 1=2,BD =22+1-2×2×1×cos60°=3,C 1D =AB 1=5, 易得C 1D 2=BD 2+BC 21,即BC 1⊥BD , 因此cos∠BC 1D =BC 1C 1D =25=105. 8.(2022·本溪模拟)在空间中,给出下面四个命题,其中假命题为________.(填序号) ①过平面α外的两点,有且只有一个平面与平面α垂直; ②若平面β内有不共线三点到平面α的距离都相等,则α∥β; ③若直线l 与平面α内的任意一条直线垂直,则l ⊥α; ④两条异面直线在同一平面内的射影一定是两条相交直线. 答案 ①②④解析 对于①,当平面α外两点的连线与平面α垂直时,此时过两点有无数个平面与平面α垂直,所以①不正确;对于②,若平面β内有不共线三点到平面α的距离都相等,平面α与β可能平行,也可能相交,所以②不正确;对于③,直线l 与平面内的任意直线垂直时,得到l ⊥α,所以③正确;对于④,两条异面直线在同一平面内的射影可能是两条相交直线或两条平行直线或直线和直线外的一点,所以④不正确.9.(2022·上海市静安区模拟)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,CC 1的中点.(1)求异面直线A 1E 与D 1F 所成的角的余弦值; (2)求三棱锥A 1-D 1EF 的体积.解 (1)如图,设BB 1的中点为H ,连接HF ,EH ,A 1H ,因为F 是CC 1的中点,所以A 1D 1∥CB ∥HF ,A 1D 1=CB =HF , 因此四边形A 1D 1FH 是平行四边形, 所以D 1F ∥A 1H ,D 1F =A 1H ,因此∠EA 1H 是异面直线A 1E 与D 1F 所成的角或其补角, 正方体ABCD -A 1B 1C 1D 1的棱长为2,E 是AB 的中点, 所以A 1E =A 1H =22+12=5,EH =12+12=2,由余弦定理可知,cos∠EA 1H =A 1E 2+A 1H 2-EH 22A 1E ·A 1H =5+5-22×5×5=45,所以异面直线A 1E 与D 1F 所成的角的余弦值为45.(2)因为A 1D 1∥HF ,HF ⊄平面A 1D 1E ,A 1D 1⊂平面A 1D 1E , 所以HF ∥平面A 1D 1E ,因此点H ,F 到平面A 1D 1E 的距离相等, 即111111F A D E H A D E D A EH V V V ---==,11D A EH V -=13D 1A 1·1A EH S △=13×2×⎝ ⎛⎭⎪⎫22-12×2×1×2-12×1×1=1,所以三棱锥A 1-D 1EF 的体积为1.10.如图,四棱柱ABCD -A 1B 1C 1D 1的侧棱AA 1⊥底面ABCD ,四边形ABCD 为菱形,E ,F 分别为AA 1,CC 1的中点,M 为AB 上一点.(1)若D 1E 与CM 相交于点K ,求证D 1E ,CM ,DA 三条直线相交于同一点; (2)若AB =2,AA 1=4,∠BAD =π3,求点D 1到平面FBD 的距离.(1)证明 ∵D 1E 与CM 相交于点K , ∴K ∈D 1E ,K ∈CM ,而D 1E ⊂平面ADD 1A 1,CM ⊂平面ABCD , 且平面ADD 1A 1∩平面ABCD =AD , ∴K ∈AD ,∴D 1E ,CM ,DA 三条直线相交于同一点K . (2)解 ∵四边形ABCD 为菱形,AB =2, ∴BC =CD =2,而四棱柱的侧棱AA 1⊥底面ABCD , ∴CC 1⊥底面ABCD ,又∵F 是CC 1的中点,CC 1=4,∴CF =2, ∴BF =DF =22,又∵四边形ABCD 为菱形,∠BAD =π3,∴BD =AB =2, ∴S △FBD =12×2×222-1=7.设点D 1到平面FBD 的距离为h ,点B 到平面DD 1F 的距离为d , 则d =2sin π3=3,又∵11D FBD B DD F V V --=, ∴13×S △FBD ×h =13×1DD F S △×d , ∴13×7×h =13×12×4×2×3, 解得h =4217.即点D1到平面FBD的距离为421 7.11.(多选)(2022·太原模拟)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,下列结论正确的是( )A.GH与EF平行B.BD与MN为异面直线C.GH与MN成60°角D.DE与MN垂直答案BCD解析如图,还原成正四面体A-DEF,其中H与N重合,A,B,C三点重合,连接GM,易知GH与EF异面,BD与MN异面.又△GMH为等边三角形,∴GH与MN成60°角,易证DE⊥AF,MN∥AF,∴MN⊥DE.∴B,C,D正确.12.(多选)(2022·广州六校联考)如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,下列结论正确的是( )A.AP与CM是异面直线B.AP,CM,DD1相交于一点C.MN∥BD1D.MN∥平面BB1D1D答案 BD解析 如图,连接MP ,AC ,因为MP ∥AC ,MP ≠AC ,所以AP 与CM 是相交直线,又平面A 1ADD 1∩平面C 1CDD 1=DD 1,所以AP ,CM ,DD 1相交于一点,则A 不正确,B 正确;令AC ∩BD =O ,连接OD 1,ON .因为M ,N 分别是C 1D 1,BC 的中点,所以ON ∥D 1M ∥CD ,ON =D 1M =12CD , 则四边形MNOD 1为平行四边形,所以MN ∥OD 1,因为MN ⊄平面BB 1D 1D ,OD 1⊂平面BB 1D 1D ,所以MN ∥平面BB 1D 1D ,C 不正确,D 正确.13.(2022·玉林模拟)在正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q 分别为A 1B ,B 1D 1,A 1D ,CD 1的中点,则直线EF 与PQ 所成角的大小是________.答案 π3解析 如图,连接A 1C 1,BC 1,则F 是A 1C 1的中点,又E 为A 1B 的中点,所以EF ∥BC 1,连接DC 1,则Q 是DC 1的中点,又P 为A 1D 的中点,所以PQ ∥A 1C 1,于是∠A 1C 1B 是直线EF 与PQ 所成的角或其补角.易知△A 1C 1B 是正三角形,所以∠A 1C 1B =π3. 14.(2022·盐城模拟)在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别为棱A 1D 1,CC 1的中点,过P ,Q ,A 作正方体的截面,则截面多边形的周长是________.答案 25+95+2133 解析 如图所示,过Q 作QM ∥AP 交BC 于M ,由A 1P =CQ =2,tan∠APA 1=2,则tan∠CMQ =2,CM =CQtan∠CMQ=1, 延长MQ 交B 1C 1的延长线于E 点,连接PE ,交D 1C 1于N 点,则多边形AMQNP 即为截面,根据平行线性质有C 1E =CM =1, C 1N ND 1=C 1E PD 1=12, 则C 1N =43,D 1N =83, 因此NQ =22+⎝ ⎛⎭⎪⎫432=2133, NP =22+⎝ ⎛⎭⎪⎫832=103, 又AP =42+22=25,AM =42+32=5,MQ =12+22=5,所以多边形AMQNP 的周长为AM +MQ +QN +NP +PA=5+5+2133+103+2 5 =25+95+2133.15.(2022·大连模拟)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的正方形,AA 1=3,E ,F 分别是AB ,BC 的中点,过点D 1,E ,F 的平面记为α,则下列说法中错误的是( )A .点B 到平面α的距离与点A 1到平面α的距离之比为1∶2B .平面α截直四棱柱ABCD -A 1B 1C 1D 1所得截面的面积为732C .平面α将直四棱柱分割成的上、下两部分的体积之比为47∶25D .平面α截直四棱柱ABCD -A 1B 1C 1D 1所得截面的形状为四边形 答案 D解析 对于A ,因为平面α过线段AB 的中点E ,所以点A 到平面α的距离与点B 到平面α的距离相等.由平面α过A 1A 的三等分点M 可知,点A 1到平面α的距离是点A 到平面α的距离的2倍,因此,点A 1到平面α的距离是点B 到平面α的距离的2倍.故选项A 正确;延长DA ,DC 交直线EF 的延长线于点P ,Q ,连接D 1P ,D 1Q ,交棱A 1A ,C 1C 于点M ,N .连接ME ,NF ,可得五边形D 1MEFN ,故选项D 错误;由平行线分线段成比例可得AP =BF =1,故DP =DD 1=3,则△DD 1P 为等腰三角形.由相似三角形可知,AM =AP =1,A 1M =2,则D 1M =D 1N =22,ME =EF =FN =2.连接MN ,则MN =22,因此五边形D 1MEFN 可分为等边三角形D 1MN 和等腰梯形MEFN .等腰梯形MEFN 的高h =22-⎝ ⎛⎭⎪⎫22-222=62, 则等腰梯形MEFN 的面积为22+22×62=332.又1D MN S △=12×22×6=23,所以五边形D 1MEFN 的面积为332+23=732,故选项B 正确;记平面将直四棱柱分割成上、下两部分的体积分别为V 1,V 2,则V 2=1D DPQ V --V M -PAE -V N -CFQ=13×12×3×3×3-13×12×1×1×1-13×12×1×1×1=256, 所以V 1=1111ABCD A B C D V --V 2=12-256=476, V 1∶V 2=47∶25,故选项C 正确.16.如图1,在边长为4的正三角形ABC 中,D ,F 分别为AB ,AC 的中点,E 为AD 的中点.将△BCD 与△AEF 分别沿CD ,EF 同侧折起,使得二面角A -EF -D 与二面角B -CD -E 的大小都等于90°,得到如图2所示的多面体.图1 图2(1)在多面体中,求证:A ,B ,D ,E 四点共面;(2)求多面体的体积.(1)证明 因为二面角A -EF -D 的大小等于90°,所以平面AEF ⊥平面DEFC ,又AE ⊥EF ,AE ⊂平面AEF ,平面AEF ∩平面DEFC =EF ,所以AE ⊥平面DEFC ,同理,可得BD ⊥平面DEFC ,所以AE ∥BD ,故A ,B ,D ,E 四点共面.(2)解 因为AE ⊥平面DEFC ,BD ⊥平面DEFC ,EF ∥CD ,AE ∥BD ,DE ⊥CD ,所以AE 是四棱锥A -CDEF 的高,点A 到平面BCD 的距离等于点E 到平面BCD 的距离, 又AE =DE =1,CD =23,EF =3,BD =2,所以V =V A -CDEF +V A -BCD =13S 梯形CDEF ·AE +13S △BCD ·DE =736.。
2019年高考数学一轮复习 7.7 空间向量在立体几何中的应用课时作业理(含解析)新人教A 版一、选择题1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°解析:以B 点为坐标原点,以BC 、BA 、BB 1分别为x 、y 、z 轴建立空间直角坐标系.设AB =BC =AA 1=2,则B (0,0,0),C 1(2,0,2),E (0,1,0),F (0,0,1), ∴EF →=(0,-1,1),BC 1→=(2,0,2) ∴cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=22·8=12.∴EF 与BC 1所成角为60°. 答案:B2.如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为( )A.66B.33C.63D.23解析:如图,以A 为原点建立空间直角坐标系,则A (0,0,0),B (0,2a,0),C (0,2a,2a ),G (a ,a,0),F (a,0,0),AG →=(a ,a,0),AC →=(0,2a,2a ),BG →=(a ,-a,0),BC →=(0,0,2a ),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎪⎨⎪⎧AG →·n 1=0,AC →·n 1=0⇒⎩⎪⎨⎪⎧ax 1+ay 1=0,2ay 1+2a =0 ⇒⎩⎪⎨⎪⎧x 1=1,y 1=-1⇒n 1=(1,-1,1).sin θ=BG →·n 1|BG →||n 1|=2a 2a ×3=63.答案:C3.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 为AB 的中点,则点C 到平面A 1DM 的距离为( )A.63aB.66a C.22a D.12a 解析:以A 1为原点建立如图所示的坐标系,则A 1(0,0,0),M (a2,0,a ),D (0,a ,a ),C (a ,a ,a )设面A 1DM 的法向量为n =(x ,y ,z )则⎩⎪⎨⎪⎧A 1M →·n =0A 1D →·n =0∴⎩⎪⎨⎪⎧a 2x +az =0,ay +az =0令y =1,∴z =-1,x =2,∴n=(2,1,-1),点C到面A1DM的距离d =⎪⎪⎪⎪⎪⎪⎪⎪n ·CD →|n |=2a 6=63a . 答案:A4.如图,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF=13AC ,则( )A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面解析:以D 点为坐标原点,以DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建系,设正方体棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E (13,0,13),F (23,13,0),B (1,1,0),D 1(0,0,1),A 1D →=(-1,0,-1),AC →=(-1,1,0), EF →=(13,13,-13),BD 1→=(-1,-1,1),EF →=-13BD 1→,A 1D →·EF →=AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC . 答案:B 二、填空题5.已知向量a =(-1,2,3),b =(1,1,1),则向量a 在向量b 方向上的投影为________. 解析:1|b |b ·a =13(1,1,1)·(-1,2,3)=433,则a 在向量b 上的投影为433.答案:4336.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.解析:cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°. 答案:45°或135°7.正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角是________.解析:如图所示,以O 为原点建立空间直角坐标系O -xyz . 设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝⎛⎭⎫0,-a 2,a2. 则CA →=(2a,0,0),AP →=(-a ,-a 2,a2),CB →=(a ,a,0).设平面P AC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB →,n 〉=CB →·n |CB →||n |=a 2a 2·2=12.∴〈CB →,n 〉=60°,∴直线BC 与平面P AC 所成的角为90°-60°=30°. 答案:30° 三、解答题8.(xx·安徽池州一中高三月考)如图,ABCD 是边长为3的正方形,DE ⊥面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求二面角F-BE-D的余弦值;(2)设点M是线段BD上一动点,试确定M的位置,使得AM∥面BEF,并证明你的结论.解:(1)∵DE⊥平面ABCD,∴∠EBD就是BE与平面ABCD所成的角,即∠EBD=60°.∴DEBD= 3.由AD=3,BD=32,得DE=36,AF= 6.如图,分别以DA,DC,DE为x轴,y轴,z轴建立空间直角坐标系D-xyz,则A (3,0,0),F (3,0,6),E (0,0,36),B (3,3,0),C (0,3,0), ∴BF →=(0,-3,6),EF →=(3,0,-26).设平面BEF 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BF →=0,n ·EF →=0.即⎩⎨⎧-3y +6z =0,3x -26z =0.令z =6,则n =(4,2,6). ∵AC ⊥平面BDE ,∴CA →=(3,-3,0)为平面BDE 的一个法向量, ∴cos 〈n ,CA →〉=n ·CA →|n ||CA →|=626×32=1313.故二面角F -BE -D 的余弦值为1313. (2)依题意,设M (t ,t,0)(t >0),则AM →=(t -3,t,0), ∵AM ∥平面BEF ,∴AM →·n =0, 即4(t -3)+2t =0,解得t =2.∴点M 的坐标为(2,2,0),此时DM →=23DB →,∴点M 是线段BD 靠近B 点的三等分点.9.(xx·新课标全国卷Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.解:(1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)由AC =CB =22AB 得,AC ⊥BC . 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0. 可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63. 10.(xx·陕西卷)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A1O⊥平面ABCD,AB=AA1= 2.(1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.解:(1)证明:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立空间直角坐标系,如图.∵AB =AA 1=2, ∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1). 由A 1B 1→=AB →,易得B 1(-1,1,1).∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1), ∴A 1C →·BD →=0,A 1C →·BB 1→=0, ∴A 1C ⊥BD ,A 1C ⊥BB 1, ∴A 1C ⊥平面BB 1D 1D .(2)设平面OCB 1的法向量n =(x ,y ,z ). ∵OC →=(-1,0,0),OB 1→=(-1,1,1),∴⎩⎪⎨⎪⎧n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎪⎨⎪⎧x =0,y =-z , 取n =(0,1,-1),由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量, ∴cos θ=|cos 〈n ,A 1C →〉|=12×2=12. 又0≤θ≤π2,∴θ=π3.11.(xx·河北沧州质量监测)如图,已知四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥底面ABCD ,且面ABCD 是边长为1的正方形,侧棱AA 1=2.(1)求证:C 1D ∥平面ABB 1A 1;(2)求直线BD 1与平面A 1C 1D 所成角的正弦值; (3)求二面角D -A 1C 1-A 的余弦值.解:(1)证明:四棱柱ABCD -A 1B 1C 1D 1中,BB 1∥CC 1, 又CC 1⊄面ABB 1A 1,所以CC 1∥平面ABB 1A 1, 又因为ABCD 是正方形,所以CD ∥AB ,又CD ⊄面ABB 1A 1,AB ⊂面ABB 1A 1,所以CD ∥平面ABB 1A 1. 又因为CC 1∩CD =C ,所以平面CDD 1C 1∥平面ABB 1A 1, 又因为C 1D ⊂平面CDD 1C 1,所以C 1D ∥平面ABB 1A 1.(2)ABCD 是正方形,AD ⊥CD ,因为A 1D ⊥平面ABCD ,所以A 1D ⊥AD ,A 1D ⊥CD ,如图,以D 为坐标原点建立空间直角坐标系D -xyz , 在Rt △ADA 1中,由已知可得A 1D = 3.所以D (0,0,0),A 1(0,0,3),A (1,0,0),B 1(0,1,3),C 1(-1,1,3),D 1(-1,0,3),B (1,1,0),BD 1→=(-2,-1,3),B 1D 1→=(-1,-1,0),因为A 1D ⊥平面ABCD ,所以A 1D ⊥平面A 1B 1C 1D 1,A 1D ⊥B 1D 1. 又B 1D 1⊥A 1C 1,所以B 1D 1⊥平面A 1C 1D , 所以平面A 1C 1D 的一个法向量为n =(1,1,0). 设BD 1→与n 所成的角为β, 则cos β=n ·BD 1→|n ||BD 1→|=-32 8=-34,所以直线BD 1与平面A 1C 1D 所成角的正弦值为34.(3)平面A 1C 1A 的法向量为m =(a ,b ,c )则m ·A 1C 1→=0,m ·A 1A →=0,所以-a +b =0,a -3c =0. 令c =3,可得m =(3,3,3). 则cos 〈m·n 〉=m·n |m ||n |=6221=427.所以二面角D -A 1C 1-A 的余弦值为427. 12.(xx·成都市第三次诊断)如图,四边形BCDE 是直角梯形,CD ∥BE ,CD ⊥BC ,CD =12BE =2,平面BCDE ⊥平面ABC ;又已知△ABC 为等腰直角三角形,AB =AC =4,M ,F 分别为BC ,AE 的中点.(1)求直线CD 与平面DFM 所成角的正弦值;(2)能否在线段EM 上找到一点G ,使得FG ⊥平面BCDE ?若能,请指出点G 的位置,并加以证明;若不能,请说明理由;(3)求三棱锥F -DME 的体积.解:由题意,CD ⊥BC .四边形BCDE 是直角梯形,EB ⊥BC . 又平面BCDE ⊥平面ABC ,∴EB ⊥平面ABC .于是以B 为坐标原点建立如图所示的空间直角坐标系B -xyz .则B (0,0,0),C (4,4,0),A (0,4,0),D (4,4,2),E (0,0,4),F (0,2,2),M (2,2,0). (1)CD →=(0,0,2).设m =(x ,y ,z )为平面DFM 的法向量. 由m ·DM →=0,m ·MF →=0,得⎩⎪⎨⎪⎧2x +2y +2z =0-2x +2z =0,即m =(x ,-2x ,x ). 令x =1,得m =(1,-2,1). 于是sin θ=|m ·CD →||m |·|CD →|=66.(2)证明:设存在点G 满足题设,且EG →=λEM →(0≤λ≤1). 则G (2λ,2λ,4-4λ),FG →=(2λ,2λ-2,2-4λ). 由FG →·EM →=16λ-8=0,得λ=12.经检验FG →·ED →=0.故当G 为EM 的中点时,FG ⊥平面BCDE .(3)∵BE ∥CD ,CD ⊥BC ,且四边形BCDE 是直角梯形, ∴S △BME =12BE ·BM =12×4×22=42,S △DCM =12S △BME =2 2.1又梯形BCDE的面积S梯形BCDE=2×(4+2)×42=122,∴S△DME=S梯形BCDE-S△DCM-S△BEM=6 2.由(2),知FG为三棱锥F-DME的高,且|FG|= 2.∴V F-DME=13×62×2=4.[热点预测]13.(xx·保定市高三第一次模拟)四棱锥S-ABCD中,四边形ABCD为矩形,M为AB 的中点,且△SAB为等腰直角三角形,SA=SB=2,SC⊥BD,DA⊥平面SAB.(1)求证:平面SBD⊥平面SMC;(2)设四棱锥S-ABCD外接球的球心为H,求棱锥H-MSC的高;(3)求平面SAD与平面SMC所成的二面角的正弦值.解:(1)∵SA=SB,M为AB中点,∴SM⊥AB.又∵DA⊥平面SAB,∴DA⊥SM,所以SM⊥平面ABCD.又∵DB⊂平面ABCD,∴SM⊥DB.又∵SC⊥BD,∴DB⊥平面SMC,∴平面SBD⊥平面SMC.(2)由(1)知DB ⊥平面SMC , ∴DB ⊥MC ,所以△ABD ∽△BCM ,故AB BC =DA MB ⇒22BC =BC2⇒BC =2设AC 与BD 交于N 点,因为AS ⊥BS ,DA ⊥BS ,所以SB ⊥平面SAD . 所以SB ⊥SD ,显然NA =NB =NC =ND =NS ,所以H 与N 重合,即为球心, 设MC 与DB 交于Q 点,由于DB ⊥平面SMC ,故HQ 即为所求.因为MC =6, ∴QB =BC ·MB MC =226=233.∵BD =23,∴HB =3,故HQ =3-233=33.即棱锥H -MSC 的高为33.可编辑修改精选文档(3)以点M 为原点,建立坐标系如图.则M (0,0,0),S (2,0,0),C (0,2,2),A (0,-2,0),D (0,-2,2)∴MS →=(2,0,0),MC →=(0,2,2),AD →=(0,0,2),AS →=(2,2,0)设平面SMC 的法向量为n =(x ,y ,z ),平面ASD 的法向量为m =(a ,b ,c )∴⎩⎪⎨⎪⎧ MS →·n =0MC →·n =0⇒⎩⎨⎧ x =02y +2z =0,∴不妨取n =(0,2,-1) ∴⎩⎪⎨⎪⎧ AD →·m =0AS →·m =0⇒⎩⎨⎧c =02a +2b =0,∴不妨取m =(1,-1,0) ∴cos 〈m ,n 〉=m ·n |m ||n |=-23·2=-33. 所以,平面SAD 与平面SMC 所成的二面角的正弦值为63. .。
第4节直线、平面平行的判定及其性质考试要求1。
以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题。
知识梳理1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行。
(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条a∥α,a⊂β,α∩β直线的任一平面与此平面的交线与该直线平行=b⇒a∥b2。
平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定两个平面平行,则其中一个平面内的直线平行于α∥β,a⊂α⇒a∥β理另一个平面如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b3。
与垂直相关的平行的判定(1)a⊥α,b⊥α⇒a∥b.(2)a⊥α,a⊥β⇒α∥β。
[常用结论与易错提醒]1.平行关系的转化2。
平面与平面平行的六个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面。
(2)夹在两个平行平面间的平行线段长度相等。
(3)经过平面外一点有且只有一个平面与已知平面平行。
(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.诊断自测1.判断下列说法的正误。
(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行。
()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条。
重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求. 内切圆问题:转化成正方体的内切圆去求. 求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟) 一、单选题1.(2020·全国高三专题练习(理))已知三棱锥O ABC ,点M ,N 分别为AB ,OC 的中点,且,,OA a OB b OC c ===,用,,a b c 表示MN ,则MN 等于( )A .()12b c a +- B .()12a b c ++ C .()12a b c -+ D .()12c a b -- 【答案】D【分析】MN MA AO ON =++1122BA OA OC =-+ ()1122OA OB OA OC =--+ 111222OA OB OC =--+()12c a b =--. 故选:D2.(2020·全国高三专题练习(理))如图所示,正方体1111ABCD A B C D -的棱长为1,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为1D .点C 和点G 到平面AEF 的距离相等 【答案】B【分析】以D 点为坐标原点,DA 、DC 、1DD 为x ,y ,z 轴建系,则(000)D ,,、(100)A ,,、()010C ,,、1(101)A ,,、1(001)D ,,、 1(10)2E ,,、1(01)2F ,,,1(11)2G ,,, 则()1001DD =,,、1112AF ⎛⎫=- ⎪⎝⎭,,,则112DD AF ⋅=, ∴直线1D D 与直线AF 不垂直,A 错误;则11012A G ⎛⎫=- ⎪⎝⎭,,,1102AE ⎛⎫=- ⎪⎝⎭,,,1112AF ⎛⎫=- ⎪⎝⎭,,,设平面AEF 的法向量为()n x y z =,,,则10021002x y AE n AF n x y z ⎧-+=⎪⎧⋅=⎪⎪⇒⎨⎨⋅=⎪⎪⎩-++=⎪⎩,令2x =,则1y =,2z =,则(212)n =,,,10AG n ⋅=,∴直线1A G 与平面AEF 平行,B 正确; 易知四边形1AEFD 为平面AEF 截正方体所得的截面,且1D F 、DC 、AE 共点于H,1D H AH ==1AD =∴11322AD H S ∆==,则113948AD HAEFD S S=⋅=四边形,C 错误; (110)AC =-,,,点C 到平面AEF 的距离113AC n d n⋅==, 1012AG ⎛⎫= ⎪⎝⎭,,,点G 到平面AEF 的距离223AG n d n ⋅==,则12d d ≠,D 错误;故选:B .3.(2020·黑龙江哈尔滨市·哈师大附中高三期中(理))如图,在底面为正方形的四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且P A =AB .若点M 为PD 中点,则直线CM 与PB 所成角的大小为( )A.60° B .45° C .30° D .90°【答案】C【分析】如图所示:以A 为坐标原点,以AB ,AD ,AP 为单位向量建立空间直角坐标系A xyz -,设1PA =,则()0,0,0A ,()1,1,0C ,110,,22M ⎛⎫⎪⎝⎭,()0,0,1P ,()1,0,0B , 故()1,0,1PB =-,111,,22MC ⎛⎫=-⎪⎝⎭,故11cos ,1PB MC PB MC PB MC+⋅===⋅ 由异面直线夹角的范围是(]0,90︒︒,故直线CM 与PB 所成角的大小为30. 故选:C.4.(2020·涡阳县育萃高级中学高三月考(理))边长为4的正方形ABCD 的四个顶点都在球O 上,OA 与平面ABCD 所成角为4π,则球O 的表面积为() A .64π B .32πC .16πD .128π【答案】A【分析】如图,设正方形ABCD 外接圆的圆心为1O ,由题意,14OAO π∠=,则1cossin444AO AO AD AO AD ππ=⋅=⋅⇒==,球的表面积24464S ππ=⋅=. 故选:A.5.(2020·广东湛江市·高三二模(理))已知正方体1111-ABCD A B C D 的棱长为2,E 为11A B 的中点,下列说法中正确的是( ) A .1ED 与1B C 所成的角大于60 B .点E 到平面11ABC D 的距离为1C .三棱锥1E ABC -D .直线CE 与平面1ADB 所成的角为4π 【答案】D【分析】:如图,对于A ,取DC 的中点F ,连接EF ,1D F ,则1D EF ∠为1ED 与1B C 所成的角,∵11D F D E =EF = 1tan D EF ∴∠=<A 错误; 对于B ,由于11A B 平面11ABC D ,故1B 到平面11ABC D 的距离即点E 到平面11ABC D 的距离, 连接1B C 交1BC 于G ,可得1B G ⊥平面11ABC D ,而1BG =,∴点E 到平面11ABC D ,故B 错误;对于C ,三棱锥1E ABC -的外接球即四棱锥11E ABC D -的外接球,∵11ABC D 为矩形,且2AB =,1BC = 11EA EB EC ED ====11E ABC D -,设四棱锥11E ABC D -的外接球的半径为R ,则222)R R =+,解得4=R .∴三棱锥的外接球的表面积2254(42S ππ=⨯=,故C 错误; 对于D ,连接1DC ,取1DC 的中点H ,连接1DB 交EC 于K ,连接CH ,HK ,∵1EB DC ,∴CKH ∠是直线CE 与平面1ADB 所成的角,在直角三角形CKH 中,223CK CE ==, CH =∴sin CH CKH CK ∠==,故D 正确. 故选:D6.(2020·四川凉山彝族自治州·高三一模(理))日常生活中,有各式各样精美的糖果包装礼盒某个铁皮包装礼盒的平面展开图是由两个全等的矩形,两个全等的三角形和一个正方形所拼成的多边形(如图),矩形的长为12cm ,矩形的宽和正方形的边长均为8cm .若该包装盒内有一颗球形硬糖的体积为V 3cm ,则V 的最大值为( )A .3B .3C .32πD .2563π 【答案】A【分析】根据题意作出礼盒的直观图如下图所示:由图可知该几何体为直三棱柱,设等腰三角形的内切圆半径为R =所以根据等面积法可知:12128822R ++⨯⋅=R =又因为正方形的边长为8,所以842R =<=,所以球形硬糖的半径最大值为V 的最大值为(34=33π, 故选:A.7.(2020·上海长宁区·高三一模)设m 、n 为两条直线,α、β为两个平面,则下列命题中假命题是( )A .若m n ⊥,m α⊥,n β⊥,则αβ⊥B .若//m n ,m α⊥,//n β,则αβ⊥C .若m n ⊥,//m α,//n β,则//αβD .若//m n ,m α⊥,n β⊥,则//αβ 【答案】C【分析】A .若m n ⊥,m α⊥,n β⊥,相当于两平面的法向量垂直,两个平面垂直,A 正确;B .若//m n ,m α⊥,则n α⊥,又//n β,则平面β内存在直线//c n ,所以c α⊥,所以αβ⊥,B 正确;C .若m n ⊥,//m α,//n β,则,αβ可能相交,可能平行,C 错;D .若//m n ,m α⊥,n β⊥,则,αβ的法向量平行,所以//αβ,D 正确. 故选:C .8.(2020·四川省泸县第一中学高三月考(理))棱长为2的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条异面直线AB ,11A D 的中点,P Q 作直线,则该直线被球面截在球内的线段的长为( )A .2B 1 CD .1【答案】C 【分析】如图,MN 为该直线被球面截在球内的线段 连结并延长PO ,交对棱C 1D 1于R ,则R 为对棱的中点,取MN 的中点H ,则OH ⊥MN ,∴OH ∥RQ ,且OH =12RQ ,∴MH 2,∴MN =2MH =故选:C .二、填空题9.(2020·四川凉山彝族自治州·高三一模(理))在空间中,过A 点作平面γ的垂线,垂足为B ,记作:()γB f A =.关于两个不同的平面α,β有如下四个命题: ∴若//αβ,则存在点P 满足()()αβf P f P =. ∴若αβ⊥,则存在点P 满足()()αβf P f P =.∴若//αβ,则不存在点P 满足()()()()αββαf f P f f P =. ∴若对空间任意一点P ,恒有()()()()αββαf f P f f P =,则αβ⊥.其中所有真命题的序号是______. 【答案】∴∴ ∴【分析】∴设()()12,αβP f P αP f P β=∈=∈∴因为//αβ,所以αβ=∅,则()()αβf P f P ≠,故错误;∴设()()12,αβP f P αP f P β=∈=∈,若αβ⊥,当点P l αβ∈=⋂时,满足()()αβf P f P =,故正确;∴设()()12,αβP f P αP f P β=∈=∈,则()()()(),αββαf f P αf f P β∈∈,. 因为//αβ,所以αβ=∅,则()()()()αββαf f P f f P ≠,故正确;∴设()()12,αβP f P αP f P β=∈=∈,则()()()()()()1221,αβαβαβQ f f P f P Q f f P f P ====,因为恒有()()()()αββαf f P f f P =,则12,Q Q 重合与一点Q ,则12PPP Q 为矩形,所以αβ⊥,故正确;故答案为:∴∴ ∴10.(2020·全国高三专题练习(理))如图,正三棱柱ABC A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________.【答案】35【分析】设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1(02),F (1,0,1),E 1(2,G (0,0,2),1B F =(1,-1),1(,,1)22EF =-,(1,0,1)GF =-. 设平面GEF 的法向量为(,,)n x y z =,则0,0,EF n GF n ⎧⋅=⎨⋅=⎩即10,20,x y z x z ⎧+=⎪⎨⎪-=⎩取x =1,则z =1,y,故(1,3,1)n =为平面GEF 的一个法向量,所以1|cos ,|n B F <>=|=35,所以B 1F 与平面GEF 所成角的正弦值为35. 故答案为:35. 11.(2020·安徽六安市·六安一中高三月考(理))一个几何体的三视图如图所示,该几何体体积为__________.【解析】该几何体可以看作是一个四棱锥,四棱锥底面是边长为221233V =⨯=.三、解答题12.(2020·四川凉山彝族自治州·高三一模(理))如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,2ABC π∠=,122AB BC AD ===,且PA a =,E ,F 分别为PC ,PB 的中点.(1)若2a =,求证:PB ⊥平面ADEF ;(2)若四棱锥P ABCD -的体积为2,求二面角A PD C --的余弦值.【答案】(1)详见解析;(2)6. 【分析】(1)当2a =时,AP AB =,点F 是BP 的中点,AF BP ∴⊥,又AP ⊥平面ABCD ,AD AP ∴⊥,且AD AB ⊥,APAB A =,AD ∴⊥平面PAB ,BP ⊂平面PAB ,AD BP ∴⊥,又AFA AD =,BP ∴⊥平面ADEF ;(2)()1112422332P ABCD ABCD V S AP AP -=⨯⨯=⨯⨯+⨯⨯=, 解得:1AP =,如图,以A 为原点,,,AB AD AP ,为,,x y z 轴的正方向,建立空间直角坐标系,()0,0,0A ,()0,0,1P ,()2,2,0C ,()0,4,0D ,()2,2,1PC =-,()0,4,1PD =-,设平面PCD 的法向量(),,m x y z =,则00m PC m PD ⎧⋅=⎨⋅=⎩,即22040x y z y z +-=⎧⎨-=⎩,令1y =,则1,4x z ==,()1,1,4m ∴=,显然AB ⊥平面PAD ,设平面PAD 的法向量()1,0,0n =,1cos ,11m n m n m n ⋅<>===+,二面角A PD C --是锐二面角,∴二面角A PD C --的余弦值是6. 13.(2020·全国高三专题练习(理))如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.【答案】(1)证明见解析;(2)点M 与点F . 【分析】(1)证明:设AD =CD =BC =1, ∵AB ∥CD ,∠BCD =120°,∴AB =2, ∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,∴AB 2=AC 2+BC 2,则BC ⊥AC . ∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF , ∴AC ⊥平面BCF .∵EF ∥AC ,∴EF ⊥平面BCF .(2)以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ),则C (0,0,0),A0,0),B (0,1,0),M (λ,0,1),∴AB =(1,0),BM =(λ,-1,1). 设n =(x ,y ,z )为平面MAB 的法向量,由00n AB n BM ⎧⋅=⎨⋅=⎩得00y x y z λ⎧+=⎪⎨-+=⎪⎩ 取x =1,则n =(1-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos ,13n mn m nm⋅<>===+∵0≤λλ=0时,cos ,n m <>,∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦. 14.(2020·河北邯郸市·高三期末)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 是等腰梯形//,2,4,,AB DC BC CD AD AB M N ====分别是,AB AD 的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C PN D --的大小为60°,求四棱锥P ABCD -的体积. 【答案】(1)证明见解析;(2)1.【分析】(1)连接DM ,显然//DC BM 且DC BM =, ∴四边形BCDM 为平行四边形,//DM BC ∴且DM BC =,AMD ∴△是正三角形,MN AD ∴⊥,又PD ⊥平面,ABCD MN ⊂平面,ABCD PD MN ∴⊥,,PD AD D MN ⋂=∴⊥平面PAD ,又MN ⊂平面PMN ,∴平面PMN ⊥平面PAD .(2)连接BD ,易知//,,BD MN BD AD BD PD ∴⊥⊥.建立如图所示的空间直角坐标系,则(0,0,0),(1,0,0),(D N C -,设(0,0,)(0)P m m >,(1,0,),(2,PN m CN ∴=-=.设平面PNC 的法向量为(,,)a x y z =,00a PN a CN ⎧⋅=∴⎨⋅=⎩,即0,20,x mz x -=⎧⎪⎨-=⎪⎩令(3,2z a m m =,而平面PND 的一个法向量为(0,1,0)b =,1|cos ,|cos 602a b ︒〈〉===解得m =,所以11(24)132V =⨯⨯+=.15.(2020·广东高三一模)如图,在四棱柱1111ABCD A B C D -中,1AA ⊥底面ABCD ,AD AB ⊥,//AD BC ,且112AB AD BC ===,1AA DC ==.(1)求证:平面11BDD B ⊥平面11CDD C ; (2)求二面角11C BD C --所成角的余弦值.【答案】(1)证明见解析;(2)3. 【分析】(1)证明:因为AD AB ⊥,112AB AD BC ===,所以2BC =,BD =,因为DC =222BD DC BC +=,所以90BDC ∠=︒,即BD CD ⊥. 因为1AA ⊥底面ABCD ,所以1DD ⊥底面ABCD ,所以1BD DD ⊥.因为1DD CD D =,所以BD ⊥平面11CDD C ,又BD ⊂平面11BDD B ,所以平面11BDD B ⊥平面11CDD C . (2)解:如图,分别以DB ,DC ,1DD 为x ,y ,z 轴,建立空间直角坐标系D xyz -,则()0,0,0D,)B,()C,(1D,(1C .所以(1BD =-,()110,D C =,(1D C =, 设平面1CBD 的法向量为(),,m x y z =,则1120,20,BD m x D C m y ⎧⋅=-+=⎪⎨⋅==⎪⎩令1x =,得()1,1,1m =. 设平面11C BD 的法向量为(),,n a b c =, 则11120,20,BD n a D C n b ⎧⋅=-+=⎪⎨⋅==⎪⎩令1a =,得()1,0,1n =, 所以2cos ,3||||3m n m n m n ⋅===⋅⨯, 由图知二面角11C BD C --为锐角,所以二面角11C BD C --。
空间直线、平面的平行考试要求 1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行错误!⇒a∥α性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行错误!⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行错误!⇒β∥α性质定理两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行错误!⇒a∥b常用结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( ×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)教材改编题1.下列说法中,与“直线a∥平面α”等价的是( )A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案 D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.2.已知不重合的直线a,b和平面α,则下列选项正确的是( )A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α答案 D解析若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,E ,F 分别是BC ,PD 的中点,求证:(1)PB ∥平面ACF ;(2)EF ∥平面PAB .证明 (1)如图,连接BD 交AC 于O ,连接OF ,∵四边形ABCD 是平行四边形, ∴O 是BD 的中点,又∵F 是PD 的中点,∴OF ∥PB , 又∵OF ⊂平面ACF ,PB ⊄平面ACF , ∴PB ∥平面ACF .(2)取PA 的中点G ,连接GF ,BG . ∵F 是PD 的中点, ∴GF 是△PAD 的中位线, ∴GF 綉12AD ,∵底面ABCD 是平行四边形,E 是BC 的中点, ∴BE 綉12AD ,∴GF 綉BE ,∴四边形BEFG 是平行四边形, ∴EF ∥BG ,又∵EF ⊄平面PAB ,BG ⊂平面PAB , ∴EF ∥平面PAB .命题点2 直线与平面平行的性质例2 如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM 上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.教师备选如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1 如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.题型二平面与平面平行的判定与性质例3 如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.延伸探究在本例中,若将条件“E,F,G分别是AB,AC,A1B1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.解如图,连接A1B交AB1于O,连接OD1.由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1. 又由题设A 1D 1D 1C 1=DC AD, 所以DC AD=1,即AD DC=1. 教师备选如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G 分别为B 1C 1,A 1B 1,AB 的中点.(1)求证:平面A 1C 1G ∥平面BEF ;(2)若平面A 1C 1G ∩BC =H ,求证:H 为BC 的中点. 证明 (1)∵E ,F 分别为B 1C 1,A 1B 1的中点, ∴EF ∥A 1C 1,∵A 1C 1⊂平面A 1C 1G ,EF ⊄平面A 1C 1G , ∴EF ∥平面A 1C 1G ,又F ,G 分别为A 1B 1,AB 的中点, ∴A 1F =BG , 又A 1F ∥BG ,∴四边形A 1GBF 为平行四边形, 则BF ∥A 1G ,∵A 1G ⊂平面A 1C 1G ,BF ⊄平面A 1C 1G , ∴BF ∥平面A 1C 1G ,又EF ∩BF =F ,EF ,BF ⊂平面BEF , ∴平面A 1C 1G ∥平面BEF .(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.思维升华证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).跟踪训练2 如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.证明(1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B 1D 1∥BD ,所以B 1D 1∥l .题型三 平行关系的综合应用例4 如图,在正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别为对角线BD ,CD 1上的点,且CQ QD 1=BP PD =23.(1)求证:PQ ∥平面A 1D 1DA ;(2)若R 是AB 上的点,AR AB的值为多少时,能使平面PQR ∥平面A 1D 1DA ?请给出证明. (1)证明 连接CP 并延长,与DA 的延长线交于M 点,如图,连接MD 1,因为四边形ABCD 为正方形, 所以BC ∥AD ,故△PBC ∽△PDM , 所以CP PM =BP PD =23,又因为CQ QD 1=BP PD =23, 所以CQ QD 1=CP PM =23, 所以PQ ∥MD 1.又MD 1⊂平面A 1D 1DA ,PQ ⊄平面A 1D 1DA , 故PQ ∥平面A 1D 1DA .(2)解 当AR AB 的值为35时,能使平面PQR ∥平面A 1D 1DA .如图,证明如下:因为AR AB =35,即BR RA =23, 故BR RA =BP PD. 所以PR ∥DA .又DA ⊂平面A 1D 1DA ,PR ⊄平面A 1D 1DA , 所以PR ∥平面A 1D 1DA ,又PQ ∥平面A 1D 1DA ,PQ ∩PR =P ,PQ ,PR ⊂平面PQR , 所以平面PQR ∥平面A 1D 1DA . 教师备选如图,四边形ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明 (1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO . 又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D ,所以平面BDE ∥平面MNG .思维升华 证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.跟踪训练3 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形. (1)求证:AB ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围.(1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD . 又∵EF ⊂平面ABC , 平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH . (2)解 设EF =x (0<x <4), 由(1)知EF ∥AB , ∴CF CB =EF AB =x4, 与(1)同理可得CD ∥FG , ∴FG CD =BF BC, 则FG 6=BF BC=BC -CF BC =1-x4, ∴FG =6-32x .∴四边形EFGH 的周长L =2⎝⎛⎭⎪⎫x +6-32x =12-x .又∵0<x <4,∴8<L <12,故四边形EFGH 周长的取值范围是(8,12).课时精练1.(2022·宁波模拟)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.(2022·呼和浩特模拟)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案 D解析对于A,一条直线与两个平面都平行,两个平面不一定平行,故A不正确;对于B,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B不正确;对于C,两个平面中的两条直线平行,不能保证两个平面平行,故C不正确;对于D,如图,在直线b上取点B,过点B和直线a确定一个平面γ,交平面β于a′,因为a∥β,所以a∥a′,又a′⊄α,a⊂α,所以a′∥α,又因为b∥α,b∩a′=B,b⊂β,a′⊂β,所以β∥α.3.(2022·广州模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则( )A.MF∥EBB.A1B1∥NEC.四边形MNEF为平行四边形D.四边形MNEF为梯形答案 D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB1,∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于( )A.2∶3B.2∶5C.4∶9D.4∶25答案 D解析∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.5.(多选)(2022·济宁模拟)如图,在下列四个正方体中,A,B为正方体的两个顶点,D,E,F为所在棱的中点,则在这四个正方体中,直线AB与平面DEF平行的是( )答案AC解析对于A,AB∥DE,AB⊄平面DEF,DE⊂平面DEF,∴直线AB与平面DEF平行,故A正确;对于B,如图,取正方体所在棱的中点G,连接FG并延长,交AB延长线于H,则AB与平面DEF相交于点H,故B错误;对于C,AB∥DF,AB⊄平面DEF,DF⊂平面DEF,∴直线AB与平面DEF平行,故C正确;对于D,AB与DF所在平面的正方形对角线有交点B,DF与该对角线平行,∴直线AB与平面DEF相交,故D错误.6.(多选)如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜程度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE ·AH 为定值 答案 AD解析 根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行),结合题中图形易知A 正确;由题图可知水面EFGH 的边EF 的长保持不变,但邻边的长却随倾斜程度而改变,可知B 错误;因为A 1C 1∥AC ,AC ⊂平面ABCD ,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故C 错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH -BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故D 正确.7.考查①②两个命题,①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α,它们都缺少同一个条件,补上这个条件就可以使其构成真命题(其中l ,m 为直线,α为平面),则此条件为__________. 答案 l ⊄α解析 ①由线面平行的判定定理知l ⊄α;②由线面平行的判定定理知l ⊄α.8.如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案 点M 在线段FH 上(或点M 与点H 重合) 解析 连接HN ,FH ,FN (图略), 则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH , 则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明 如图.(1)取B 1B 的中点M ,连接HM ,MC 1,易证四边形HMC 1D 1是平行四边形, ∴HD 1∥MC 1. 又MC 1∥BF , ∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,OD 1, 则OE 綉12DC .又D 1G 綉12DC ,∴OE 綉D 1G .∴四边形OEGD 1是平行四边形, ∴EG ∥D 1O .又D 1O ⊂平面BB 1D 1D ,EG ⊄平面BB 1D 1D , ∴EG ∥平面BB 1D 1D .(3)由(1)知BF ∥HD 1,由题意易证B 1D 1∥BD .又B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B , ∴平面BDF ∥平面B 1D 1H .10.如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)如图,连接EC , 因为AD ∥BC ,BC =12AD ,所以BC ∥AE ,BC =AE ,所以四边形ABCE 是平行四边形, 所以O 为AC 的中点. 又因为F 是PC 的中点, 所以FO ∥AP , 因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .11.(多选)已知α,β是两个平面,m,n是两条直线.下列命题正确的是( )A.如果m∥n,n⊂α,那么m∥αB.如果m∥α,m⊂β,α∩β=n,那么m∥nC.如果α∥β,m⊂α,那么m∥βD.如果α⊥β,α∩β=n,m⊥n,那么m⊥β答案BC解析如果m∥n,n⊂α,那么m∥α或m⊂α,故A不正确;如果m∥α,m⊂β,α∩β=n,那么m∥n,这就是线面平行推得线线平行的性质定理,故B正确;如果α∥β,m⊂α,那么m∥β,这就是利用面面平行推线面平行的性质定理,故C正确;缺少m⊂α这个条件,故D不正确.12.(2022·福州检测)如图所示,正方体ABCD-A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点,则下列叙述中正确的是( )A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案 B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.13.(多选)(2022·临沂模拟)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将△ABE 沿AE 翻折,使得二面角B -AE -D 为直二面角,得到图2所示的四棱锥B -AECD ,点F 为线段BD 上的动点(不含端点),则在四棱锥B -AECD 中,下列说法正确的有( )图1 图2A .B ,E ,C ,F 四点不共面 B .存在点F ,使得CF ∥平面BAE C .三棱锥B -ADC 的体积为定值D .存在点E 使得直线BE 与直线CD 垂直 答案 AB解析 对于A ,假设直线BE 与直线CF 在同一平面上,所以E 在平面BCF 上, 又因为E 在折前线段BC 上,BC ∩平面BCF =C ,所以E 与C 重合,与E 异于C 矛盾, 所以直线BE 与直线CF 必不在同一平面上,即B ,E ,C ,F 四点不共面,故A 正确; 对于B ,如图,当点F 为线段BD 的中点,EC =12AD 时,直线CF ∥平面BAE ,证明如下:取AB 的中点G ,连接GE ,GF , 则EC ∥FG 且EC =FG ,所以四边形ECFG 为平行四边形, 所以FC ∥EG ,又因为EG ⊂平面BAE , 则直线CF 与平面BAE 平行,故B 正确;对于C ,在三棱锥B -ADC 中,因为点E 的移动会导致点B 到平面ACD 的距离发生变化,所以三棱锥B -ADC 的体积不是定值,故C 不正确;对于D ,过D 作DH ⊥AE 于H ,因为平面BAE ⊥平面AECD ,平面BAE ∩平面AECD =AE ,所以DH ⊥平面BAE ,所以DH ⊥BE ,若存在点E 使得直线BE 与直线CD 垂直,DH ⊂平面AECD ,且DC ⊂平面AECD ,DH ∩DC =D ,所以BE ⊥平面AECD ,所以BE ⊥AE ,与△ABE 是以B 为直角的三角形矛盾,所以不存在点E 使得直线BE 与直线CD 垂直,故D 不正确.14.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =DD 1=1,AB =3,E ,F ,G 分别是AB ,BC ,C 1D 1的中点,点P 在平面ABCD 内,若直线D 1P ∥平面EFG ,则线段D 1P 长度的最小值是________.答案72解析 如图,连接D 1A ,AC ,D 1C .因为E ,F ,G 分别为AB ,BC ,C 1D 1的中点, 所以AC ∥EF ,又EF ⊄平面ACD 1,AC ⊂平面ACD 1, 则EF ∥平面ACD 1.同理可得EG ∥平面ACD 1,又EF ∩EG =E ,EF ,EG ⊂平面EFG ,所以平面ACD 1∥平面EFG . 因为直线D 1P ∥平面EFG , 所以点P 在直线AC 上.在△ACD 1中,易得AD 1=2,AC =2,CD 1=2, 所以1AD C S △=12×2×22-⎝⎛⎭⎪⎫222=72, 故当D 1P ⊥AC 时,线段D 1P 的长度最小,最小值为7212×2=72.15.(2022·合肥市第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则PA 1的长度范围为( )A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤324,32 D.⎣⎢⎡⎦⎥⎤1,32答案 B解析 取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF , 取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且PA 1∥平面AMN ,∴点P 的轨迹是线段EF ,∵A 1E =A 1F =12+⎝ ⎛⎭⎪⎫122=52,EF =1212+12=22,∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值A 1O , A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,当P 与E (或F )重合时,PA 1的长度取最大值A 1E 或A 1F ,A 1E =A 1F =52.∴PA 1的长度范围为⎣⎢⎡⎦⎥⎤324,52.16.如图,正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为AB 1,A 1C 1上的点,A 1N =AM .(1)求证:MN ∥平面BB 1C 1C ;(2)求MN 的最小值.(1)证明 如图,作NE ∥A 1B 1交B 1C 1于点E ,作MF ∥AB 交BB 1于点F ,连接EF , 则NE ∥MF .∵NE ∥A 1B 1,∴NEA 1B 1=C 1NA 1C 1.又MF ∥AB ,∴MF AB =B 1MAB 1,∵A 1C 1=AB 1,A 1N =AM ,∴C 1N =B 1M .∴NE A 1B 1=MF AB,又AB =A 1B 1,∴NE =MF .∴四边形MNEF 是平行四边形,∴MN ∥EF , 又MN ⊄平面BB 1C 1C ,EF ⊂平面BB 1C 1C , ∴MN ∥平面BB 1C 1C .(2)解 设B 1E =x ,∵NE ∥A 1B 1, ∴B 1E B 1C 1=A 1NA 1C 1.又∵MF ∥AB ,∴B 1F BB 1=B 1M AB 1,∵A 1N =AM ,A 1C 1=AB 1=2a ,B 1C 1=BB 1=a ,B 1E =x ,∴B 1E B 1C 1+B 1F BB 1=A 1N A 1C 1+B 1MAB 1,∴x a +B 1F a =1,∴B 1F =a -x ,从而MN =EF =B 1E 2+B 1F 2 =x 2+a -x2 =2⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫a 22, ∴当x =a 2时,MN 的最小值为22a .。
空间向量
1. 如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点
E 在1CC 上且EC E C 31=.
(Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.
以D 为坐标原点,射线DA 为x 轴的正半轴,
建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.
(021)(220)DE DB ==
,,,,,,
1
1(224)(204)AC DA =--= ,,,,,. (Ⅰ)证明 因为10AC DB = ,10AC DE =
, 故1AC BD ⊥,1AC DE ⊥. 又DB DE D = , 所以1
AC ⊥平面DBE . (Ⅱ)解 设向量()x y z =,,n 是平面1DA E 的法向量,则
DE ⊥ n ,1DA ⊥ n .
故20y z +=,240x z +=.
令1y =,则2z =-,4x =,(412)=-,
,n . 1
AC
,n 等于二面角1A DE B --的平面角,
42
14
=
∙=
C A n . 所以二面角1A DE B --
的大小为
A
B C
D E A 1
B 1
C 1
D 1
2.如图,四棱锥P ABCD
-中,PA ABCD ⊥底面,2,4,3
BC CD AC ACB ACD π
===∠=∠=,F 为PC 的中
点,AF PB ⊥.
(1)求PA 的长; (2)求二面角B AF D --的正弦值.
【答案】
3.已知点H 在正方体ABCD A B C D ''''-的对角线'B D '上,∠HDA =0
60. (Ⅰ)求DH 与CC '所成角的大小;
(Ⅱ)求DH 与平面AA D D ''所成角的大小.
解:以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.
设(1)(0)H m m m >,,
则(100)DA = ,,,(001)CC '=
,,.连结BD ,B D ''. 设(1)(0)DH m m m =>
,,,由已知60DH DA <>= ,
, 由cos DA DH DA DH DA
DH =<>
,
可得2m
2
m =
,
所以1DH ⎫=⎪⎪⎝
⎭
.
(Ⅰ)因为0011cos 2DH CC ++⨯'<>== ,,
所以45DH CC '<>=
,.即DH 与CC '所成的角为45 .
(Ⅱ)平面AA D D ''的一个法向量是(010)DC =
,,.
因为01101cos 2DH DC +⨯<>== ,, 所以60DH DC <>= ,.
可得DH 与平面AA D D ''所成的角为30
.
4.如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是
AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.
(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为0
60,求BDC ∠的大
小.
【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以
3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以
//PQ 面BDC ;
A
B
D
P
Q
M
方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1
//
2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11
////42
QH AD MD ,所以
////P O Q H P Q O
H ∴,且OH BCD ⊂,所以//PQ 面BDC ; (Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以
CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;
由已知得到3BM ==,设BDC α∠=,所以
cos ,sin ,sin ,,CD CG CB
CD CG BC BD CD BD
αααααα===⇒===,
在RT BCG ∆中
,2sin BG
BCG BG BC
ααα∠=∴=
∴=,所以在RT BHG ∆中
213
3HG α
=∴=,所以在RT CHG ∆中
tan tan 603
CG CHG HG ∠===
=
tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;
5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长 为1的菱形,4
ABC π
∠=
, OA ABCD ⊥底面, 2OA =,M 为
OA 的中点,N 为BC 的中点
(Ⅰ)证明:直线MN OCD
平面‖;
(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
作AP CD ⊥于点P ,如图,分别以AB ,AP ,AO 所在直线为 ,,x y z 轴建立坐标系
(0,0,0),(1,0,0),((0,0,2),(0,0,1),(1A B
P D O M N ,
(1)证明
2
(1,,1),(0,,2),(,,2)
44222
M N O P O D =
--=-=-
-
设平面OCD 的法向量为(,,)n x y z =,则0,0n OP n OD ==
即 202022
y z x y z -=⎨⎪-+-=⎪⎩
取z =
解得n =
(1,1)044
MN n =--= ∵
MN OCD ∴平面‖
(2)解 设AB 与MD 所成的角为θ,(1,0,0),(1)22
AB MD ==-
- ∵ 1c o s ,2
3AB MD AB MD π
θθ===⋅ ∴∴
, AB 与MD 所成角的大小为3π. (3)解 设点B 到平面OCD 的距离为d ,
则d 为OB
在向量n =上的投影的绝对值,
由 (1,0,2)OB =-
, 得23
OB n d n ⋅==
.所以点B 到平面OCD 的距离为
2
3。