最新平面机构的类型
- 格式:ppt
- 大小:2.00 MB
- 文档页数:42
平面机构的结构分析
平面机构是一种由多个连接体组成的机械结构,可以用来传递力和运动。
平面机构通常由连杆、转动副和滑动副组成,可以用来实现直线运动、旋转运动等。
在平面机构中,连杆是连接各个连接体的基本元素,它们可以是刚性的,也可以是柔性的。
转动副和滑动副则是连接连杆的关节,用来传递运动或者力的。
转动副能够使连杆产生相对转动运动,滑动副则能使连杆产生相对滑动运动。
根据不同的传动方式,平面机构可以分为平行四杆机构、串联四杆机构、曲柄摇杆机构等。
平行四杆机构由四个长度相等、平行的连杆组成,可以实现直线运动。
串联四杆机构则由多个连杆相互连接组成,可以使得最后一个连杆产生复杂的轨迹运动。
曲柄摇杆机构由一个转动副和一个滑动副组成,可以实现旋转运动。
在设计和分析平面机构时,需要考虑到各个连接体之间的角度关系、长度关系以及运动规律。
通过运用静力学、运动学和动力学等原理,可以对平面机构进行有效地分析和设计,来确定各个连接体之间的关系和运动规律,以实现所需的运动或者力传递。
总之,平面机构是一种重要的机械结构,通过对其结构和运动规律的分析,可以有效地实现力和运动的传递,被广泛应用于各种机械设备和工程中。
简述平面四杆机构的类型特点和应用一、平面四杆机构的类型:1. 平衡四杆机构:该机构有能力保持平衡,即使受到外部干扰也能够回到原来的位置。
这种机构被广泛用于稳定系统和开放环境。
2. 驱动四杆机构:该机构可以转化旋转运动为线性运动或反之。
这种机构广泛应用于机械工程、模具制造和自动化工程中。
3. 可逆四杆机构:该机构可以逆向工作,在不同的任务中灵活应用。
这种机构被广泛用于机器人工程和自动化工程中。
4. 变位四杆机构:该机构可以在不同位置自动调整,以适应不同的应用需求。
这种机构被广泛用于自动化机械和精密制造领域。
二、平面四杆机构的特点:1. 平面四杆机构可以转换不同类型的运动,包括旋转、线性、摆动等。
2. 平面四杆机构结构简单,易于制造和维护,具有良好的可靠性和稳定性。
3. 平面四杆机构可以通过组装多个单元来实现更高级别的机械结构,例如机器人、自动化系统等。
4. 平面四杆机构广泛应用于机械、汽车、制造、物流、自动化等领域,并逐渐成为机器人、智能装备的重要组成部分。
三、平面四杆机构的应用:1. 发动机连杆机构:由于发动机需要将旋转运动转化为线性运动来驱动汽车轮胎,平面四杆机构被广泛应用于汽车发动机的连杆机构中。
2. 物流设备:平面四杆机构可以逆向工作,可以将线性运动转化为旋转运动,这使得物流设备可以保持高速和精度,如自动包装线、调料机等。
3. 机械手:平面四杆机构的结构简单,稳定性好,这使得它成为机器人手臂的优选部件之一,广泛应用于各个制造领域。
4. 印刷机械:平衡四杆机构可以使印刷平台始终稳定,特别是在高速印刷时,它可以保持印刷品的精度和质量。
5. 飞控系统:平衡四杆机构被广泛应用于飞控系统的调节器中,以帮助控制飞行器的稳定性。
总的来说,平面四杆机构具有结构简单、稳定性好、运动特性多样等特点,可以在各个行业发挥重要的作用。
平面运动链中几级机构
平面运动链是由多个刚体通过运动副连接而成的运动系统,其中每个刚体都可以相对于相邻刚体产生一定的相对运动。
根据构成运动链的刚体数量,平面运动链可分为几级机构:
1. 一级机构
一级机构是最简单的平面运动链,由两个刚体和一个运动副组成。
典型的一级机构有:滑块、转盘、曲柄滑块机构等。
2. 二级机构
二级机构由三个刚体和两个运动副组成。
常见的二级机构有:四杆机构、凸轮跟随器机构等。
3. 三级机构
三级机构由四个刚体和三个运动副组成。
三级机构相对复杂,应用较少,但也有一些典型的机构,如:五杆机构、六杆机构等。
4. 四级及以上机构
当刚体数量超过4个,运动副数量超过3个时,就形成了四级及以上的高级机构。
这种机构结构复杂,应用较为有限。
通常情况下,工程应用中使用较多的是一级和二级机构,因为它们结构相对简单、可靠性高、成本低。
而三级及以上机构由于结构复杂,制造和维护成本较高,应用较少。
选择合适的机构级别,需要根据具体的工程需求和设计要求来权衡。
平面四杆机构的基本形式及其演变提问:请试举几个生活与工程中的四杆机构的实例基本类型:铰链四杆机构(均为转动副)一、铰链四杆机构的基本形式及应用1、组成:机架:固定不动的构件曲柄:相对机架可作整周旋转连架杆:与机架相连的构件摇杆:只能在某一角度内摆动连杆:不与机架相连的构件2、分类:曲柄摇杆机构特征:曲柄加摇杆功用:(1)将曲柄的转动转换为摇杆的摆动(曲柄为主动件)(2)将摇杆的摆动转换为曲柄的转动(摇杆为主动件)例:雷达天线、搅拌机、剪切机(1);缝纫机踏板机构(2)双曲柄机构特征:两个曲柄功用:将等速转动变为不等速同向、等速同向或不等速反向等转动。
特例:A、平行四边形机构特征:两相对构件等长且平行,呈平行四边形;两曲柄同速同向运动,连杆做平动。
实例:摄影平台、火车轮、天平等注意:平行四边形机构在共线位置出现运动不确定,两曲柄有可能反向旋转,所以采用两组机构错开排列,如火车轮。
B、反平行四边形机构特征:两相对构件等长,但机架与连杆不平行;两曲柄做反向不等速转动。
实例:车门开闭机构例:惯性筛(变速);旋转式叶片泵、平台升降机构(同向同速);车门开关机构(等速反向)双摇杆机构特征:两个摇杆功用:将一种摆动转换为另一种摆动实例:造型翻箱、起重机变幅机构、飞机起落架、汽车转向机构*注意分析各类四杆机构的运动传递关系和各构件的动作二、铰链四杆机构的演化型式(1) 改变构件的形状和运动尺寸(2)改变运动副的尺寸偏心轮机构(3)选不同的构件为机架曲柄滑块机构导杆机构(摆动、转动)应用实例:压力机、内燃机应用实例:牛头刨床31 2B31 2B对心曲柄滑块机构双滑块机构正弦机构偏心曲柄滑块机构曲柄摇杆机构曲柄滑块机构曲柄摇块机构直动滑杆机构应用实例:货车自卸机构应用实例:手摇唧筒。
机械原理之平面机构的结构分析1. 引言平面机构是机械系统中广泛应用的一种结构类型,用于实现转动或传递运动的目的。
它由多个构件组成,通过铰链连接,并具有特定的运动机构。
本文将对平面机构的结构进行分析,包括构件、铰链以及运动机构的特点等。
2. 平面机构的构件平面机构的构件指的是组成机构的各个零件,包括连杆、链条、轴等。
这些构件不仅决定了机构的结构形式,还直接影响着机构的运动性能。
以下是平面机构常见的构件类型:连杆是平面机构中最常见的构件之一,通常由刚性材料制成。
根据连接方式的不同,连杆可以分为刚性连杆和柔性连杆。
刚性连杆由铰链连接,具有一定的长度和刚性,可以实现平面内的转动。
柔性连杆则由柔性材料制成,如弹簧钢,可以在一定程度上变形,用于实现特定的运动要求。
2.2 链条链条是平面机构中连接连杆的重要构件,其作用是通过链节的连接形成平面机构的运动链。
链条通常由多个链节组成,每个链节可以进行相对运动,从而实现机构的运动。
常见的链条类型有平面链条、滚子链条等。
轴是平面机构中支撑和固定构件的一种。
轴的材质可以是金属、合金等刚性材料,具有一定的强度和刚度,用于支撑和固定机构中的其他构件。
轴可以是定轴和动轴,定轴通常起到固定作用,动轴则能够实现旋转运动。
3. 平面机构的铰链连接平面机构中的铰链连接是实现构件之间相对运动的关键。
铰链连接是指通过固定在构件上的铰链来连接构件,使其可以相对旋转。
常见的铰链连接有以下几种形式:3.1 旋转铰链旋转铰链是最基本的铰链连接方式,它通过轴上的固定连接来实现构件的相对旋转。
旋转铰链具有结构简单、工作可靠的特点,广泛应用于机械系统中。
3.2 滑动铰链滑动铰链是一种通过滑动副实现构件间相对运动的铰链连接。
它通常由导向副和滑块副组成,通过滑块在导向副上的滑动来实现构件的相对运动。
3.3 规则铰链规则铰链是一种特殊的铰链连接方式,它通过杆与杆的端部连接来实现构件的相对运动。
规则铰链具有结构简单、工作平稳的特点,在机械系统中广泛应用。
平面机构知识点总结一、定义平面机构是由连接在一起的刚性杆件和连接件组成的机械系统,它们在一个平面内进行相对运动。
平面机构可以通过不同的构造形式实现不同的运动功能,例如传递运动、转换运动、控制运动等。
平面机构的构造形式和动力学特性在机械设计中起着非常重要的作用,因此对其进行深入了解和研究对于工程师和设计师来说是非常重要的。
二、分类根据平面机构的结构特点和运动形式,可以将其分为不同的类型,主要包括以下几种:1.四连杆机构:由四根连杆和四个铰链连接而成的机构,可以实现平行四边形连杆的运动形式,常见的四连杆机构包括平行四边形机构和梯形机构等。
2.曲柄滑块机构:由曲柄、连杆、滑块等部件构成的机构,可以实现曲柄的旋转运动和滑块的直线往复运动,广泛应用在发动机、压力机、注塑机等领域。
3.齿轮机构:由齿轮、齿条、链条等传动件构成的机构,可以实现不同速度比和转矩比的传动,常见的齿轮机构包括行星齿轮机构、直动齿轮机构等。
4.摇杆机构:由摇杆、铰链和固定点连接而成的机构,可以实现摇杆的往复摆动运动,广泛应用在摇摇椅、铣床、钻床等机械装备中。
三、结构特点平面机构具有以下几个结构特点:1.刚性连接:平面机构的连接件和杆件都是由高强度的材料制成,能够保证机构在运动过程中的稳定性和可靠性。
2.铰链连接:平面机构中的连接件通常使用铰链连接,可以实现相对旋转和相对平移运动,能够满足不同的运动需求。
3.多样性:平面机构在结构形式上非常多样化,可以通过不同的连杆和连接方式实现多种不同的运动形式,适用于不同的工程需求。
四、运动分析平面机构的运动分析是研究机构在运动过程中的速度、加速度、位移等动力学特性的过程。
平面机构的运动分析通常包括以下几个方面:1.位移分析:通过分析机构中各个零件的相对位移关系,可以获得机构在运动过程中的位移规律和轨迹形式。
2.速度分析:通过对机构中各个零件的相对速度进行分析,可以获得机构在不同运动状态下的速度大小和方向。
建筑物平面结构基本类型
建筑物平面结构基本类型主要包括:直线形、L形、T形、十字形、H形、U形、环形、多边形等。
不同类型的平面结构设计和应用都有其独特的特点和优势。
直线形平面结构简洁明了,适用于长条形建筑;L形和T形平面结构可实现空间分隔、流线布局;十字形平面结构适用于大型建筑,可实现空间利用最大化;H形平面结构适用于高层建筑,可强化建筑的承重能力;U形平面结构适用于大型开放式建筑;环形平面结构可实现流线布局和环形空间利用;多边形平面结构适用于非常规的建筑形态。
建筑物平面结构类型的选择应根据建筑的功能需求、空间布局和视觉效果等因素综合考虑。
- 1 -。
平面四杆机构的类型,特点及应用概念平面四杆机构是一种重要的机械构件,具有固定点簇、连杆及活动点簇等关键组成部分。
根据不同的连接方式和功能需求,平面四杆机构可以分为平行四杆机构、菱形四杆机构、双曲线四杆机构、半圆四杆机构等多种类型。
下面本文将对这些机构类型的特点及应用进行相关介绍。
一、平行四杆机构平面四杆机构中的平行四杆机构,最为常见。
平行四杆机构由两对等长连杆组成,各自平行滑动,所以叫做平行四杆机构。
平行四杆机构的特点是连接点严格固定,适合转动相同方向的连续运动,如车床上的顶轴和平面磨床的进给机构就采用了平行四杆机构。
二、菱形四杆机构菱形四杆机构是由一对等长的对边固定的菱形和一对等长杆件组成的机构。
其中,两个杆件与菱形的对角线相连,另外两个杆件则与菱形两条平行线相连。
通过这样的联结方式,菱形四杆机构可以实现不同方向的运动,如旋钮开关,废乳机械的减速机构等都采用了菱形四杆机构。
三、双曲线四杆机构双曲线四杆机构是由双曲面、两个相交的固定点、两个关节和两个等长杆组成的平面四杆机构,主要是用来实现一定的负载传递和动力,例如工件阻力和重力等。
双曲线四杆机构的优点在于具有一定的自适应能力,可以自动调整杆长度,达到更稳定的运动效果。
应用领域包括夹持,钻床等。
四、半圆四杆机构半圆四杆机构是由两条半圆弧及两对连杆构成的平面四杆机构。
通过调整连接点的位置及杆长度,可以实现转轴轨迹的变化。
半圆四杆机构在工业生产中被广泛应用,如水平挖掘机,转子泵等。
在应用平面四杆机构的过程中,大多数机构的运动往往还需要与其它机构进行配合才能实现更复杂多变的功能。
此外在机器人领域中,四杆机构也得到了广泛应用,如各类机器人的手臂,就是利用四杆机构的特性来完成精细灵活的动作。
总的来说,平面四杆机构是机械领域中一类非常基础且重要的构件。
通过不同的连接方式和调整,可以实现多样化的运动功能,并被广泛应用在工业生产及机器人领域中。
平面机构的组成
平面机构是机械工程中常见的一种机构类型,它由多个构件组成。
平面机构通常由以下几个基本构件组成:
1. 连杆:连杆是平面机构中最基本的构件,它是由刚性材料
制成的直线构件。
连杆在机构中起到连接其他构件的作用,使得机构能够完成所要求的运动。
2. 节点:节点是连杆相互连接的位置,也是支点或铰链的位置。
通过改变节点的位置可以实现不同的运动。
3. 连杆连接点:连杆连接点是指连杆与其他构件连接的位置。
连接点可以是固定点,也可以是可移动连接点。
根据不同的要求,连接点可以是直接连接或者通过连接件连接。
4. 连接件:连接件是连接连杆和其他构件的构件,它通常由
螺栓、螺母、销等组成,用于固定和连接连杆和其他构件。
5. 驱动件:驱动件是平面机构中提供运动能源的构件,它可
以是电机、气缸、液压等驱动装置。
驱动件通过转动或者其他方式提供动力,使得整个机构能够进行运动。
以上是平面机构常见的构成部分,根据具体的机构类型和应用要求,还可以包括其他构件,如支撑件、导轨、轴承等。
平面机构的构成可以根据需要进行设计和优化,以满足具体的运动要求和工作条件。
教案纸新课讲述第一节平面连杆机构的基本类型及应用四、滑块机构除了上述三种铰链四杆机构外,在工程实际中还广泛应用着其他形式的四杆机构,其中的绝大多数都可以看作是由铰链四杆机构演化而来的。
1. 曲柄滑块机构图5-9a 所示为一曲柄摇杆机构。
摇杆上的C 点的轨迹是以D 为圆心,以CD 为半径的圆弧mn 。
若将摇杆CD 的长度增加至无穷大,转动副 D 将移至无穷远处,则转动副 C 的轨迹mn 将变成一直线。
构件3 与4 之间的转动副D 将转化成移动副,该机构演化为曲柄滑块机构(图5-9b)。
在该图中,滑块上的转动副中心 C 的移动轨迹mn 不通过曲柄的回转中心A ,该机构称为偏置曲柄滑块机构。
曲柄回转中心 A 到mn 的垂直距离称为偏距,以e 表示。
当e =O ,即直线mn 通过曲柄的回转中心 A 时,该机构称为对心曲柄滑块机构(图5-9c),简称曲柄滑块机构。
它广泛地应用于活塞式内燃机、空气压缩机以及冲床等机械设备中。
2. 转动导杆机构和摆动导杆机构若将图5-10a 中的构件1取为机架,如图5-10b 和5-10c 所示,当 a <b 时构件2 和 4 分别绕固定轴B 和A 作整周转动。
该机构称为转动导杆机构。
图5-11a 所示的插床主体机构中的机构ABC 就是转动导杆机构。
当a >b 时,导杆 4 只能绕转动副 A 相对于机架1作往复摆动,故该机构称为摆动导杆机构。
图5-11b 所示的牛头刨床主体机构中的机构ABC 即是摆动导杆机教案纸新课讲述构的应用实例。
3. 曲柄摇块机构和移动导杆机构若将图5-10a 中的构件2 取为机架,如图5-10d所示,则滑块3 只能是绕固定轴 C 作往复摆动的摇块,故该机构称为曲柄摇块机构。
图5-12 所示的汽车自动卸料机构就是曲柄摇块机构。
若将图5-10a 中的3 作为机架,如图5-10e 所示,则导杆只能在固定滑块 3 中往复移动,故该机构称为移动导杆机构。