2008年高考数学试题分类汇编——函数与导数
- 格式:doc
- 大小:2.95 MB
- 文档页数:27
导数1.设函数1()(01)ln f x x x x x=>≠且 (Ⅰ)求函数()f x 的单调区间; (Ⅱ)已知12a xx >对任意(0,1)x ∈成立,求实数a 的取值范围。
2.设函数sin ()2cos x f x x=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.3.设函数2()(0),f x ax bx c a =++≠曲线y=f(x)通过点(0,2a+3),且在点(-1,f (-1))处的切线垂直于y轴.(Ⅰ)用a 分别表示b 和c ;(Ⅱ)当bc 取得最小值时,求函数g(x)=-f(x)e-x 的单调区间.4.已知函数22()(1)x b f x x -=-,求导函数()f x ',并确定()f x 的单调区间.5.已知函数321()23f x x x =+-,设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上。
求证:点(n , S n )也在y =f ′(x )的图象上。
6.设k ∈R,函数111()1x x f x x ⎧<⎪-=⎨⎪⎩,≥,()()F x f x kx =-,x ∈R ,试讨论函数()F x 的单调性.7.水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为V (t )=⎪⎩⎪⎨⎧≤<+--≤<+-+-1210,50)413)(10(4,100,50)4014(412t t t t e t t t(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i -1<t <i 表示第i 月份(i=1,2,…,12),问一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).8.已知函数f (x )=ln 2(1+x)-21x x +. (Ⅰ)求函数f (x )的单调区间; (Ⅱ)若不等式1(1)n a e n ++≤对任意的N*n ∈都成立(其中e 是自然对数的底数),求α的最大值.9.设函数ln ()ln ln(1)1x f x x x x=-+++. (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.10.设函数1()(,)f x ax a b Z x b=+∈+,曲线()y f x =在点(2,(2))f 处的切线方程为3y =。
2008年高考数学试题分类汇编函数与导数一. 选择题:1.(全国一1)函数y =的定义域为( C ) A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x U ≥D .{}|01x x ≤≤2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A )3.(全国一6)若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e -B .2x eC .21x e +D .22x e +4.(全国一7)设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2B .12C .12-D .2-5.(全国一9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D )A .(10)(1)-+∞U ,, B .(1)(01)-∞-U ,, C .(1)(1)-∞-+∞U ,, D .(10)(01)-U ,, 6.(全国二3)函数1()f x x x=-的图像关于( C ) A .y 轴对称B . 直线x y -=对称A .B .C .D .C . 坐标原点对称D . 直线x y =对称8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a9.(北京卷2)若0.52a =,πlog 3b =,22πlog sin 5c =,则( A )A .a b c >>B .b a c >>C .c a b >>D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.(四川卷10)设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C )(A)13 (B)2 (C)132 (D)21313.(天津卷3)函数1y =+04x ≤≤)的反函数是A(A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤)(C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤)14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B(A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。
2008年高考数学试题分类汇编立体几何过点A作AH⊥PB于H,由(Ⅰ)知平面PBE⊥平面P AB,所以AH⊥平面PBE.在Rt△ABF中,因为∠BAF=60°,所以,AF=2AB=2=AP.在等腰Rt△P AF中,取PF的中点G,连接AG.则AG⊥PF.连结HG,由三垂线定理的逆定理得,PF⊥HG.所以∠AGH是平面P AD和平面PBE所成二面角的平面角(锐角).在等腰Rt△P AF中,2AG PA==在Rt△P AB中,AP ABAHPB====所以,在Rt△AHG中,sinAHAGHAG∠===故平面P AD和平面PBE所成二面角(锐角)的大小是解法二: 如图所示,以A为原点,建立空间直角坐标系.则相关各点的坐标分别是A(0,0,0),B(1,0,0),3 ( 2C1(2D P(0,0,2),E(Ⅰ)因为(0,,0)2BE=,平面P AB的一个法向量是(0,1,0)n=,所以BE n和共线.从而BE⊥平面P AB.又因为BE⊂平面PBE,故平面PBE⊥平面P AB.(Ⅱ)易知(1,0,2),(0,0PB BE=-=),1(0,0,2),(,2PA AD=-=设1111(,,)n x y z=是平面PBE的一个法向量,则由110,n PBn BE⎧=⎪⎨=⎪⎩得111122020,000.x y z x y z +⨯-=⎧⎪⎨⨯+⨯=⎪⎩所以11110,2.(2,0,1).y x z n ===故可取 设2222(,,)n x y z =是平面PAD 的一个法向量,则由220,0n PA n AD ⎧=⎪⎨=⎪⎩得2222220020,100.2x y z x y z ⨯+⨯-=⎧⎪⎨+⨯=⎪⎩所以2220,.z x ==故可取2(3,1,0).n =-于是,12121223cos ,5n n n n n n <>===⨯故平面PAD 和平面PBE 所成二面角(锐角)的大小是陕西卷19.(本小题满分12分)三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠=,1A A ⊥平面ABC ,1A A =,AB =,2AC =,111AC =,12BD DC =. (Ⅰ)证明:平面1A AD ⊥平面11BCC B ; (Ⅱ)求二面角1A CC B --的大小. 解法一:(Ⅰ)1A A ⊥平面ABC BC ⊂,平面ABC ,∴1A A BC ⊥.在Rt ABC △中,2AB AC BC ==∴,, :1:2BD DC =,BD ∴=,又BD ABAB BC==, DBA ABC ∴△∽△,90ADB BAC ∴∠=∠=,即AD BC ⊥.又1A AAD A =,BC ∴⊥平面1A AD ,BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)如图,作1AE C C ⊥交1C C 于E 点,连接BE , 由已知得AB ⊥平面11ACC A .AE ∴是BE 在面11ACC A 内的射影.A 1 A C 1B 1BDC由三垂线定理知1BE CC ⊥,AEB ∴∠为二面角1A CC B --的平面角.过1C 作1C F AC ⊥交AC 于F 点, 则1CF AC AF =-=,11C F A A =160C CF ∴∠=.在Rt AEC △中,sin 6022AE AC ==⨯= 在Rt BAE △中,tan AB AEB AE ===.arctanAEB ∴∠= 即二面角1A CC B --为解法二:(Ⅰ)如图,建立空间直角坐标系,则11(000)0)(020)(00A B C A C ,,,,,,,,,,:1:2BD DC =,13BD BC ∴=. D ∴点坐标为203⎫⎪⎪⎝⎭,,. ∴2203AD ⎛⎫= ⎪⎪⎝⎭,,,1(220)(00BC AA =-=,,,.10BC AA =,0BC AD =,1BC AA ∴⊥,BC AD ⊥,又1A A AD A =,BC ∴⊥平面1A AD ,又BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)BA ⊥平面11ACC A ,取(20)AB ==,,m 为平面11ACC A 的法向量,设平面11BCC B 的法向量为()l m n =,,n ,则100BC CC ==,n n .200m m ⎧+=⎪∴⎨-+=⎪⎩,,l n∴==,,如图,可取1m =,则=⎭n , A 1 AC 1B 1BD CFE(第19题,解法一)(第19题,解法二)22010cos5(2)1⨯+<>==+,m n,即二面角1A CC B--为15arccos5.重庆卷(19)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)如题(19)图,在ABC中,B=90,AC=152,D、E两点分别在AB、AC上.使2AD AEDB EC==,DE=3.现将ABC沿DE折成直二角角,求:(Ⅰ)异面直线AD与BC的距离;(Ⅱ)二面角A-EC-B的大小(用反三角函数表示).解法一:(Ⅰ)在答(19)图1中,因AD AEDB CE=,故BE∥BC.又因B=90°,从而AD⊥DE.在第(19)图2中,因A-DE-B是直二面角,AD⊥DE,故AD⊥底面DBCE,从而AD⊥DB.而DB⊥BC,故DB为异面直线AD与BC的公垂线.下求DB之长.在答(19)图1中,由2ADAECB BC==,得2.3DE ADBC AB==又已知DE=3,从而39.22BC DE==6.AB===因1, 2.3DBDBAB=故=(Ⅱ)在第(19)图2中,过D作DF⊥CE,交CE的延长线于F,连接AF.由(1)知,AD⊥底面DBCE,由三垂线定理知AF ⊥FC,故∠AFD为二面角A-BC-B的平面角.在底面DBCE中,∠DEF=∠BCE,11552,,322DB EC===因此4sin.5DBBCEEC==从而在Rt△DFE中,DE=3,412sin sin3.55DF DE DEF DE BCE====在5Rt ,4,tan .3AD AFD AD AFD DF ∆===中 因此所求二面角A -EC -B 的大小为arctan 5.3解法二:(Ⅰ)同解法一.(Ⅱ)如答(19)图3.由(Ⅰ)知,以D 点为坐标原点,DB DE DA 、、的方向为x 、y 、z 轴的正方向建立空间直角坐标系,则D (0,0,0),A (0,0,4),9202C ⎛⎫⎪⎝⎭,,,E (0,3,0).302AD AD ⎛⎫ ⎪⎝⎭=-2,-,,=(0,0,-4).过D 作DF ⊥CE ,交CE 的延长线于F ,连接AF .设00(,,0),F x y 从而00(,,0),DF x y = 00(,3,0).EF x y DF CE =-⊥由,有0030,20.2DF CE x y =+=即 ① 又由003,.22x y CE EF -=得 ②联立①、②,解得00364836483648,.,,0,,4.252525252525x y F AF ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭即,得 因为36483(2)025252A F C E ⎛⎫⎛⎫=--+-= ⎪ ⎪⎝⎭⎝⎭,故AF CE ⊥,又因D F C E ⊥,所以D F A ∠为所求的二面角A-EC-B 的平面角.因3648,,0,2525DF ⎛⎫=- ⎪⎝⎭有22364812,4,5DF AD ⎛⎫⎛⎫=-+== ⎪ ⎪所以5tan .3AD AFD DF ==因此所求二面角A-EC-B 的大小为5arctan .3福建卷(18)(本小题满分12分)如图,在四棱锥P-ABCD 中,则面PAD⊥底面ABCD ,侧棱P A =PD ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 求出AQQD的值;若不存在,请说明理由.本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分.解法一:(Ⅰ)证明:在△P AD 中P A =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面P AD ⊥底面ABCD ,平面PAD ⋂平面ABCD =AD , PO ⊂平面P AD ,所以PO ⊥平面ABCD .(Ⅱ)连结BO ,在直角梯形ABCD 中、BC ∥AD ,AD =2AB =2BC ,有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC .由(Ⅰ)知,PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB在Rt △POA 中,因为AP AO =1,所以OP =1,在Rt △PBO 中,tan ∠PBO =PG PBO BC ==∠=所以异面直线PB 与CD 所成的角是arctan2.(Ⅲ)假设存在点Q ,使得它到平面PCD设QD =x ,则12DQC S x ∆=,由(Ⅱ)得CD =OB在Rt △POC 中, PC ==所以PC =CD =DP , 2(2)42PCD S ∆== 由V p-DQC =V Q-PCD ,得2,所以存在点Q 满足题意,此时13AQ QD =. 解法二:(Ⅰ)同解法一.(Ⅱ)以O 为坐标原点,OC OD OP 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O-xyz ,依题意,易得A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1),所以110111CD PB ---=(,,),=(,,).所以异面直线PB 与CD 所成的角是(Ⅲ)假设存在点Q ,使得它到平面PCD由(Ⅱ)知(1,0,1),(1,1,0).CP CD =-=- 设平面PCD 的法向量为n =(x 0,y 0,z 0).则0,0,n CP n CD ⎧=⎪⎨=⎪⎩所以00000,0,x z x y -+=⎧⎨-+=⎩即000x y z ==,取x 0=1,得平面PCD 的一个法向量为n =(1,1,1). 设(0,,0)(11),(1,,0),Q y y CQ y -≤≤=-由3CQ n n=,得=解y =-12或y =52(舍去), 此时13,22AQ QD ==,所以存在点Q 满足题意,此时13AQ QD =. 广东卷20.(本小题满分14分)。
2008年全国各地高考数学试题及解答分类汇编大全(19选修4:几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)一、几何证明选讲:1. (2008广东文、理)已知PA 是圆O 的切线,切点为A ,PA=2. AC 是圆O 的直径, PC 与圆O 交于点B,PB=1, 则圆O 的半径R=___3____.1.解: 如图,因为PA 是圆O 的切线,PBC 是圆O 的割线,PA=2, PB=1.由切割线定理,知PC PB PA ⋅=2,所以PC=4. 在Rt △PAC 中,由购股定理AC 2=16-4=12,所以AC=23.所以, 圆O 的半径R=3.2、(2008海南、宁夏文、理)如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线AP垂直直线OM ,垂足为P 。
(1)证明:O M ·OP = OA 2;(2)N 为线段AP 上一点,直线NB 垂直直线ON ,且交圆O 于B 点。
过B 点的切线交直线ON 于K 。
证明:∠OKM = 90°。
2.解:(Ⅰ)证明:因为MA 是圆O 的切线,所以OA AM ⊥.又因为AP OM ⊥.在Rt OAM △中,由射影定理知,2OA OM OP =g .(Ⅱ)证明:因为BK 是圆O 的切线,BN OK ⊥.同(Ⅰ),有2OB ON OK =g,又OB OA =, 所以OP OM ON OK =g g ,即ON OMOP OK=. 又NOP MOK =∠∠,所以ONP OMK △∽△,故90OKM OPN ==o∠∠.3.(2008江苏) 如图,设△ABC 的外接圆的切线AE 与BC 的延长线交于点E ,∠BAC 的平分线与BC 交于点D .求证:2ED EB EC =g . 证明:如图,因为AE 是圆的切线, 所以,ABC CAE ∠=∠,又因为AD 是BAC ∠的平分线, 所以 BAD CAD ∠=∠从而 ABC BAD CAE CAD ∠+∠=∠+∠ 因为 ADE ABC BAD ∠=∠+∠, DAE CAD CAE ∠=∠+∠ 所以 ADE DAE ∠=∠,故EA ED =.因为 EA 是圆的切线,所以由切割线定理知, 2EA EC EB =⋅,而EA ED =,所以2ED EC EB =gK BPA OMNB C ED A二、坐标系与参数方程:1.(2008重庆文)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 (C )(A)(x -1)2+(y +1)2=1 (B) (x +1)2+(y +1)2=1(C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=12.. (2008湖北文)圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为 (3,-2),和圆C 关于直线0x y -=对称的圆C ′的普通方程是 (x +2)2+(y -3)2=16 .3.(2008福建理)若直线3x+4y+m=0与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 (,0)(10,)-∞⋃+∞ .4.(2008广东文、理)已知曲线21,C C 的极坐标方程分别为θρθρcos 4,3cos ==(20,0πθρ<≤≥),则曲线1C 与2C 交点的极坐标为__⎪⎭⎫⎝⎛6,32π___. 4.解: 曲线21,C C 的直角坐标方程分别为4)2(,322=+-=y x x ,且0≥y ,两曲线交点的 直角坐标为(3,3). 所以,交点的极坐标为⎪⎭⎫⎝⎛6,32π.5.(2008江苏)在平面直角坐标系xOy 中,点()P x y ,是椭圆2213x y +=上的一个动点,求S x y =+的最大值.5.解: 因椭圆2213x y +=的参数方程为 (sin x y φφφ⎧=⎪⎨=⎪⎩为参数) 故可设动点P的坐标为,sin φφ),其中02φπ≤<.因此1sin sin )2sin()23S x y πφφφφφ=+=+=+=+ 所以。
2008高考试卷分类汇编02----函数与导数2三、解答题80.(安徽理20)(本小题满分12分) 设函数1()(01)ln f x x x x x=>≠且(Ⅰ)求函数()f x 的单调区间;(Ⅱ)已知12ax x >对任意(0,1)x ∈成立,求实数a 的取值范围。
解 (Ⅰ) '22ln 1(),ln x f x x x+=-若 '()0,f x = 则 1x e=列表如下(Ⅱ) 在 12ax x > 两边取对数, 得1ln 2ln a x x>,由于01,x <<所以1ln 2ln a x x>(*)由(1)的结果可知,当(0,1)x ∈时, 1()()f x f e e≤=-,为使(*)式对所有(0,1)x ∈成立,当且仅当ln 2a e >-,即ln 2a e >-设函数323()(1)1,32a f x x x a x a =-+++其中为实数。
(Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。
解: (1)'2()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以 '(1)0f = 即 310,1a a a -++==∴ (2) 方法一由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立设 22()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈ 所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥ 即 220x x --≥,20x -≤≤∴, 于是x 的取值范围是}{|20x x -≤≤ 方法二由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立 于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22202x x x +≤+20x -≤≤∴, 于是x 的取值范围是}{|20x x -≤≤已知函数22()(1)x b f x x -=-,求导函数()f x ',并确定()f x 的单调区间.解:242(1)(2)2(1)()(1)x x b x f x x ----'=- 3222(1)x b x -+-=-32[(1)](1)x b x --=--.令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增,在(1)+∞,上单调递减. 当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减. 当2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减.已知函数32()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数. (Ⅰ)求a ,c 的值;(Ⅱ)求函数()f x 的单调区间.解:(Ⅰ)因为函数()()2g x f x =-为奇函数,所以,对任意的x ∈R ,()()g x g x -=-,即()2()2f x f x --=-+.又32()3f x x ax bx c =+++所以32323232x ax bx c x ax bx c -+-+-=----+. 所以22a a c c =-⎧⎨-=-+⎩,.解得02a c ==,.(Ⅱ)由(Ⅰ)得3()32f x x bx =++.所以2()33(0)f x x b b '=+≠. 当0b <时,由()0f x '=得x =x 变化时,()f x '的变化情况如下表:所以,当0b <时,函数()f x 在(-∞-,上单调递增,在(上单调递减,在)+∞上单调递增.当0b >时,()0f x '>,所以函数()f x 在()-∞+∞,上单调递增.已知函数321()23f x x x =+-.(Ⅰ)设}{n a 是正数组成的数列,前n 项和为n S ,其中13a =.若点211(,2)n n n a a a ++-(n ∈N*)在函数'()y f x =的图象上,求证:点(,)n n S 也在'()y f x =的图象上; (Ⅱ)求函数()f x 在区间(1,)a a -内的极值.解:(Ⅰ)证明: 因为321()2,3f x x x =+-所以'2()2f x x x =+,由点211(,2)(N )n n n a a a n +++-∈在函数'()y f x =的图象上,221122n n n n a a a a ++-=+ 所以12n n a a +-=,}{n a 是13,2a d ==的等差数列 所以2(1)32=22n n n S n n n -=+⨯+,又因为'2()2f n n n =+,所以()n S f n '=,故点(,)n n S 也在函数'()y f x =的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+,令()0,f x '=得02x x ==-或. 当x 变化时,()f x '﹑()f x 的变化情况如下表:注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值;②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.已知函数()ln(1)f x x x =+- (Ⅰ)求()f x 的单调区间;(Ⅱ)记()f x 在区间[]0,n (n ∈N*)上的最小值为n b 令ln(1)n n a n b =+- ①如果对一切nc <c 的取值范围;②求证:1313211224242 1.n na a a a a a a a a a a a -+++<解:(I )因为()ln(1)f x x x =+-,所以函数定义域为(1,)-+∞,且'1()111x f x xx-=-=++。
第二章 函数四 函数的综合应用【考点阐述】 函数的综合应用 【考试要求】应用函数知识思想解决一些简单的实际问题。
【考题分类】(一)选择题(共5题)1.(江西卷理12文12).已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是 A . (0,2) B .(0,8) C .(2,8) D . (,0)-∞ 解:当0m ≤时,显然不成立 当0m >时,因(0)10f =>当4022b ma --=≥即04m <≤时结论显然成立; 当4022b ma --=<时只要24(4)84(8)(2)0m m m m ∆=--=--<即可 即48m <<,则08m <<,选B2.(全国Ⅰ卷理2文2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )解:A . 根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3.(山东卷理3文3)函数y =lncos x (-2π<x <)2π的图象是sA .sssB .C .D .解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos 1lncos 0x x ≤⇒≤排除C,选A.4.(陕西卷理11)定义在R 上的函数()f x 满足()()()2f x y f x f y x y+=++(x y ∈R ,),(1)2f =,则(3)f -等于( ) A .2B .3C .6D .9解:令0(0)0x y f ==⇒=,令1(2)2(1)26x y f f ==⇒=+=;令2,1(3)(2)(1)412x y f f f ==⇒=++=,再令3,3x y ==-得0(33)(3)(3)18(3)18(3)6f f f f f =-=+--⇒-=-=5.(陕西卷文11)定义在R 上的函数()f x 满足()()()2f x y f x f y x y+=++(x y ∈R ,),(1)2f =,则(2)f -等于( ) A .2B .3C .6D .9解:令0(0)0x y f ==⇒=,令1(2)2(1)26x y f f ==⇒=+=;令2,2x y ==-得0(22)(2)(2)8(2)8(2)862f f f f f =-=+--⇒-=-=-= (二)填空题(共3题)1.(湖北卷文13)方程223x x -+=的实数解的个数为 . 解:画出2xy -=与23y x=-的图象有两个交点,故方程223x x -+=的实数解的个数为2个。
12008年高考数学试题分类汇编立体几何1.(08高考湖南理5)设有直线m、n和平面α、β.下列四个命题中,正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α【答案】D【解析】由立几知识,易知D正确.2.(08高考湖南理9)长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且则顶点A、B间的球面距离是()C.2D.4【答案】C【解析】112BD AC R===R∴设11,BD AC O=则OAOB R===,2AOBπ⇒∠=,2l Rπθ∴==故选C.3.(08高考湖南理17)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A=2.(Ⅰ)证明:平面PBE⊥平面P AB;(Ⅱ)求平面P AD和平面PBE所成二面角(锐角)的大小.解: 解法一(Ⅰ)如图所示,连结BD ,由ABCD 是菱形且∠BCD =60°知,△BCD 是等边三角形.因为E 是CD 的中点,所以BE ⊥CD ,又AB ∥CD , 所以BE ⊥AB .又因为P A ⊥平面ABCD ,BE ⊂平面ABCD ,所以 P A ⊥BE .而PA ⋂AB =A ,因此BE ⊥平面P AB . 又BE ⊂平面PBE ,所以平面PBE ⊥平面P AB .(Ⅱ)延长AD 、BE 相交于点F ,连结PF .过点A 作AH ⊥PB 于H ,由(Ⅰ)知平面PBE ⊥平面P AB ,所以AH ⊥平面PBE . 在Rt △ABF 中,因为∠BAF =60°, 所以,AF =2AB =2=AP .在等腰Rt △P AF 中,取PF 的中点G ,连接AG . 则AG ⊥PF .连结HG ,由三垂线定理的逆定理得,PF ⊥HG .所以∠AGH 是平面P AD 和平面PBE 所成二面角的平面角(锐角).在等腰Rt △P AF 中,AG == 在Rt △P AB 中,5AP ABAH PB====所以,在Rt △AHG 中,sin AH AGH AG ∠===故平面P AD 和平面PBE所成二面角(锐角)的大小是解法二: 如图所示,以A 为原点,建立空间直角坐标系.则相关各点的坐标分别是A (0,0,0),B (1,0,0),3(,22C 1(,22D P (0,0,2),(1,2E(Ⅰ)因为(0,,0)2BE =, 平面P AB 的一个法向量是0(0,1,0)n =, 所以0BE n 和共线.从而BE ⊥平面P AB . 又因为BE ⊂平面PBE , 故平面PBE ⊥平面P AB .1(Ⅱ)易知(1,0,2),(0,02PBBE =-= ), 1(0,0,2),(,22PA AD =-=设1111(,,)n x y z = 是平面PBE 的一个法向量,则由110,n PB n BE ⎧=⎪⎨=⎪⎩得 111122020,000.x y z x y z +⨯-=⎧⎪⎨⨯+⨯=⎪⎩所以11110,2.(2,0,1).y x z n === 故可取 设2222(,,)n x y z = 是平面P AD 的一个法向量,则由220,0n PA n AD ⎧=⎪⎨=⎪⎩得 2222220020,100.22x y z x y z⨯+⨯-=⎧⎪⎨++⨯=⎪⎩所以2220,.z x ==故可取21,0).n =-于是,121212cos ,n n n n n n <>===故平面P AD 和平面PBE所成二面角(锐角)的大小是arccos 5AB =2,AD AA 1=1,4.(08高考湖南文5)已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则( ).A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n【答案】D【解析】易知D 正确.5.(08高考湖南文9)长方体1111ABCD A BC D -的8个顶点在同一个球面上,且AB=2,AD=3,11=AA ,则顶点A 、B 间的球面距离是( )A .42π B .22πC .π2D .2π2 【答案】B【解析】112BD AC R === R ∴设11,BD AC O =则OA OB R ===,2AOB π⇒∠=,2l R πθ∴==故选B.6.(08高考湖南文18)如图所示,四棱锥P ABCD -的底面ABCD 是边长为1的菱形,060=∠BCD ,E 是CD 的中点,PA ⊥底面ABCD ,3=PA 。
02 函数一、选择题1.(安徽6).函数2()(1)1(0)f x x x =-+≤的反函数为 ( C )A .1()11)fx x -=≥ B . 1()11)fx x -=≥C .1()12)f x x -=≥ D . 1()12)f x x -=≥2.(安徽9).设函数1()21(0),f x x x x=+-< 则()f x ( A ) A .有最大值B .有最小值C .是增函数D .是减函数3.(北京2)若372log πlog 6log 0.8a b c ===,,,则( A ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>4.(北京5)函数2()(1)1(1)f x x x =-+<的反函数为( B )A .1()11)fx x -=>B .1()11)fx x -=>C .1()11)f x x -=≥D .1()11)f x x -=≥5.(福建4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2, 则f (-a )的值为( B ) A.3 B.0 C.-1 D.-2 6.(湖南4)函数)0()(2≤=x x x f 的反函数是 ( B ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x fB)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD7.(湖南6)下面不等式成立的是 ( A )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 8.(江西3)若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是( B ) A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1)9.(江西4)若01x y <<<,则( C )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y <10.(江西12)已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( C )A . [4,4]-B .(4,4)-C . (,4)-∞D .(,4)-∞-11.(辽宁2)若函数(1)()y x x a =+-为偶函数,则a =( C ) A .2-B .1-C .1D .212.(辽宁4)已知01a <<,log log a a x =1log 52a y =,log log a a z =,则( C ) A .x y z >> B .z y x >> C .y x z >>D .z x y >>13.(全国Ⅰ1)函数y = D )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤14.(全国Ⅰ2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A )15.(全国Ⅰ8)若函数()y f x =的图象与函数ln 1y =的图象关于直线y x =对称,则()f x =( A )A .22ex -B .2e xC .21ex +D .2+2ex16.(全国Ⅱ4)函数1()f x x x=-的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称17.(全国Ⅱ5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a18.(山东3) 函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )19.(山东5) 设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( A )xxA . B. C .D.A .B .C .D .A .1516B .2716-C .89D .1820.(山东12) 已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( A ) A .101a b -<<<B .101b a -<<<C .101ba -<<<- D .1101ab --<<<21.(天津3 )函数14)y x =≤≤的反函数是( A )A .2(1)(13)y x x =-≤≤ B .2(1)(04)y x x =-≤≤ C .21(13)y x x =-≤≤D .21(04)y x x =-≤≤22.(天津10) 设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为( B )A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,23.(重庆6)函数y =10x 2-1 (0<x ≤1=的反函数是 ( D )(A)1)10y x =>(B)y =x >110)(C) y =110<x ≤)1(D) y =110<x ≤)1 24.(湖北6).已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 ( A ) A.-2 B.2 C.-98 D.98 25.(湖北8).函数1()1f x n x=( D ) A.(,4][2,)-∞-+∞ B. (4,0)(0,1)-⋃ C.[4,0)(0,1]- D.[4,0)(0,1]-⋃ 26.(陕西7) 已知函数3()2x f x +=,1()fx -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( D )A .10B .4C .1D .2-27.(陕西11) 定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(2)f -等于( A )A .2B .3C .6D .9二、填空题1.(安徽13)函数2()f x =的定义域为 .[3,)+∞2.(北京13)如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f =_________;2函数()f x 在1x =处的导数(1)f '=_________.2-3.(北京14).已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是_________.②4.(湖南15)设[]x 表示不超x 的最大整数,(如[]145,22=⎥⎦⎤⎢⎣⎡=)。
参考答案 1.解(1)'22ln 1(),x f x +=-若 '()0,f x =则1x =列表如下(2)在12ax x > 两边取对数, 得1ln 2ln a x x>,由于01,x <<所以1ln 2ln a x x>(1)由(1)的结果可知,当(0,1)x ∈时, 1()()f x f e e≤=-, 为使(1)式对所有(0,1)x ∈成立,当且仅当ln 2a e >-,即ln 2a e >-2.解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+2232cos (2cos )a xx =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥.又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤.当103a <<时,令()sin 3h x x ax =-,则()c o s 3h x x a'=-.故当[)0arccos 3x a ∈,时,()0h x '>.因此()h x 在[)0arccos 3a ,上单调增加.故当(0arccos 3)x a ∈,时,()(0)0h x h >=,即sin 3x ax >.于是,当(0arccos 3)x a ∈,时,sin sin ()2cos 3x x f x ax x=>>+.当0a ≤时,有π1π0222f a ⎛⎫=>∙ ⎪⎝⎭≥.因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,.3.解:(Ⅰ)因为2(),()2.f x a x b x cf x a x b '=++=+所以又因为曲线()y f x =通过点(0,2a +3),故(0)23,(0),2 3.f a f c c a =+==+而从而又曲线()y f x =在(-1,f (-1))处的切线垂直于y 轴,故(1)0,f '-=即-2a +b =0,因此b=2a .(Ⅱ)由(Ⅰ)得2392(23)4(),44bc a a a =+=+-故当34a =-时,bc 取得最小值-94.此时有33,.22b c =-=从而233333(),(),42222f x x x fx x '=--+=--2333()()()422x xg x f x c x x e--=-=+-所以23()(()()(4).4xxg x f x f x e x e--''=-=--令()0g x '=,解得122, 2.x x =-= 当(,2),()0,()(,2)x g x g x x '∈-∞-<∈-∞-时故在上为减函数; 当(2,2)()0,()(2,).x g x g x x '∈->∈+∞时,故在上为减函数 当(2,)()0()(2,)x g x g x x '∈+∞<∈+∞时,,故在上为减函数.由此可见,函数()g x 的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).4.解:242(1)(2)2(1)()(1)x x b x f x x ----'=- 3222(1)x b x -+-=-32[(1)](1)x b x --=--.令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增,在(1)+∞,上单调递减. 当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减. 当11b -=,即2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减.5.(Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x ,由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上,得221122n n n n a a a a ++-=+,即11()(2)0,n n n n a a a a -+---=又0(N ),n a n +>∈所以12n n a a +-=,又因为13a =,所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=,故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+,由()0,f x '=得02x x ==-或. 当x 变化时,()f x '﹑()f x 的变化情况如下表: 注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值;②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.6.解1,1,1()(),1,kx x xF x f x kx kx x ⎧-<⎪-=-=⎨⎪≥⎩,21,1,(1)'(),1,k x x F x k x ⎧-<⎪-⎪=⎨⎪≥⎪⎩对于1()(1)1F x kx x x=-<-,当0k ≤时,函数()F x 在(,1)-∞上是增函数;当0k >时,函数()F x在1(,1-∞-上是减函数,在(1-上是增函数;对于()(1)F x k x =-≥,当0k ≥时,函数()F x 在[)1,+∞上是减函数;当0k <时,函数()F x 在211,14k ⎡⎫+⎪⎢⎣⎭上是减函数,在211,4k ⎡⎫++∞⎪⎢⎣⎭上是增函数。
2008-2020高考理数全国1卷分类汇编--函数一、选择填空题1(2008).函数(1)y x x x =-+的定义域为( )A .{}|0x x ≥B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2(2008).汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3(2008).若函数(1)y f x =-的图像与函数ln 1y x =+的图像关于直线y x =对称,则()f x =( )A .21x e -B .2xeC .21x e+D .22x e+4(2008).设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()f x f x x--<的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,5(2009)(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则 (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数 6(2010)(8)设123102,12,5a gb nc -===则(A )a b c << (B )b c a << (C )c a b << (D )c b a <<st OA . st Ost OstOB .C .D .7(2010)(10)已知函数()|1|f g χχ=,若0a b <<,且()()f a f b =,则2a b +的取值范围是(A ))+∞ (B ))+∞ (C )(3,)+∞ (D )[3,)+∞8(2010)(15)直线y =1与曲线2y x x a =-+有四个交点,则a 的取值范围是 。
2008年高考数学导数汇编答案2008年高考数学导数汇编答案1、解 (1)'22ln 1(),ln x f x x x +=-若 '()0,f x = 则 1x e= 列表如下x 1(0,)e1e 1(,1)e(1,)+∞'()f x+0 --()f x单调增极大值1()f e单调减单调减(2)在 12a xx > 两边取对数, 得 1ln 2ln a x x >,由于01,x <<所以1ln 2ln a x x>(1)由(1)的结果可知,当(0,1)x ∈时, 1()()f x f e e ≤=-, 为使(1)式对所有(0,1)x ∈成立,当且仅当ln 2ae >-,即ln 2a e >-2、解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数.(Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+2232cos (2cos )a x x =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥.又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤.当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-.故当[)0arccos3x a ∈,时,()0h x '>.因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=,即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x xf x ax x =>>+.当0a ≤时,有π1π0222f a ⎛⎫=>• ⎪⎝⎭≥.因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,.3、解:(Ⅰ)因为2(),()2.f x ax bx c f x ax b '=++=+所以又因为曲线()y f x =通过点(0,2a +3),故(0)23,(0),2 3.f a f c c a =+==+而从而又曲线()y f x =在(-1,f (-1))处的切线垂直于y 轴,故(1)0,f '-=即-2a +b =0,因此b=2a .(Ⅱ)由(Ⅰ)得2392(23)4(),44bc a a a =+=+-故当34a =-时,bc 取得最小值-94.此时有33,.22b c =-=从而233333(),(),42222f x x x f x x '=--+=--2333()()(),422x x g x f x c x x e --=-=+-所以23()(()()(4).4x x g x f x f x e x e --''=-=--令()0g x '=,解得122, 2.x x =-=当(,2),()0,()(,2)x g x g x x '∈-∞-<∈-∞-时故在上为减函数; 当(2,2)()0,()(2,).x g x g x x '∈->∈+∞时,故在上为减函数 当(2,)()0()(2,)x g x g x x '∈+∞<∈+∞时,,故在上为减函数.由此可见,函数()g x 的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).4、解:242(1)(2)2(1)()(1)x x b x f x x ----'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--.令()0f x '=,得1x b =-. 当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增,在(1)+∞,上单调递减.当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减. 当11b -=,即2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减.5、(Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x ,由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上,得221122n n n n a a a a ++-=+,即11()(2)0,n n n n a a a a -+---=又0(N ),n a n +>∈所以12n n a a +-=,又因为13a =,所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=,故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+,由()0,f x '=得02x x ==-或. 当x 变化时,()f x '﹑()f x 的变化情况如下表:注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值;②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值;③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.6、解1,1,1()(),1,kx x xF x f x kx kx x ⎧-<⎪-=-=⎨⎪≥⎩,21,1,(1)'(),1,k x x F x k x ⎧-<⎪-⎪=⎨⎪≥⎪⎩对于1()(1)1F x kx x x=-<-,当0k ≤时,函数()F x 在(,1)-∞上是增函数;当0k >时,函数()F x在(,1-∞上是减函数,在(1上是增函数;对于()(1)F x k x =-≥,当0k ≥时,函数()F x 在[)1,+∞上是减函数;当0k <时,函数()F x 在211,14k ⎡⎫+⎪⎢⎣⎭上是减函数,在211,4k ⎡⎫++∞⎪⎢⎣⎭上是增函数。
开始 1i =n 整除a ?是 输入m n ,结束 a m i =⨯输出a i ,1i i =+图3否2008年高考数学试题分类汇编算法与极限一.选择题:1.(08广东卷9.阅读图3的程序框图,若输入4m =,6n =,则输出a = 12 ,i = 3(注:框图中的赋值符号“=”也可以写成“←”或“:=”)【解析】要结束程序的运算,就必须通过n 整除a 的条件运算,而同时m 也整除a ,那么a 的最小值应为m 和n 的最小公倍数12,即此时有3i =。
2.(08海南卷5、右面的程序框图5,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( A ) A. c > xB. x > cC. c > bD. b > c3.(08辽宁卷2)135(21)lim(21)x n n n →∞++++-=+L ( B )A .14B .12C .1D .24.(陕西卷12)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C )是否 开始输入x=ab>x 输出x结束 x=b x=c否 是图5A .11010B .01100C .10111D .00011二.填空题:1.(08湖南卷11)211lim ______34x x x x →-=+-.15 2.(08江西卷11)211lim ______34x x x x →-=+-.153.(08山东卷13)执行右边的程序框图6,若p =0.8,则输出的n = 4 .4.(08陕西卷13)(1)1lim2n a n n a∞++=+→,则a = .15.(08重庆卷12)已知函数f(x)=(当x ≠0时) ,点在x =0处连续,则2221lim x an a n n →∞+=+ . 13图62008年高考数学试题分类汇编直线与圆一.选择题:1.(08上海卷15)如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D )A.弧AB B .弧BC C .弧CD D .弧DA2.(08全国一10)若直线1x ya b+=通过点(cos sin )M αα,,则( D ) A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b +≥3.(08全国二5)设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( D )A .2-B .4-C .6-D .8-4.(08全国二11)等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( A )A .3B .2C .13-D .12- 5.(08北京卷5)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( B )AB CD O xyΩA .0B .1C .3D .96.(08北京卷7)过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( C )A .30oB .45oC .60oD .90o7.(08四川卷4)直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A ) (A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+ 8.(08天津卷2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为D(A )2 (B )3 (C )4 (D )59.(08安徽卷8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( C )A .[3,3]-B .(3,3)-C .33[,]33-D .33(,)33-10.(08山东卷11)已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为B(A )106 (B )206 (C )306 (D )40611.(08山东卷12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是C(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]12.(08湖北卷9)过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有CA.16条B. 17条C. 32条D. 34条13.(08湖南卷3)已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( C )A.2B.5C.6D.814.(08陕西卷5)直线30x y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A .3或3-B .3-或33C .33-或3D .33-或3315.(08陕西卷10)已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于( B ) A .7B .5C .4D .316.(08重庆卷3)圆O 1:0222=-x y x +和圆O 2: 0422=-y y x +的位置关系是B(A)相离(B)相交(C)外切 (D)内切17.(08辽宁卷3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是( C ) A .(22)k ∈-, B .(2)(2)k ∈--+U ∞,,∞ C .(33)k ∈-,D .(3)(3)k ∈--+U ∞,,∞ 二.填空题:1.(08天津卷15)已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为__________________.22(1)18x y ++=2.(08全国一13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .93.(08四川卷14)已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最小值为_______。
2008-2020高考理学全国1卷分类汇编--导数一 选择填空题1(2008).设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-2(2009) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(A)1 (B)2 (C) -1 (D)-23(2011)(9)由曲线y =直线2y x =-及y 轴所围成的图形的面积为 ( ) (A )103 (B )4 (C )163 (D )64(2017)5.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =5(2018)16.已知函数()2sin sin 2=+f x x x ,则()f x 的最小值是 .6(2019)13.曲线23()e x y x x =+在点(0)0,处的切线方程为____________.二 解答题1(2008).(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围2(2008).(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数;(Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>3(2009)22.(本小题满分12分)设函数32()33f x x bx cx =++有两个极值点[][]12211,2.x x x ∈-∈,,0,且 (Ⅰ)求b 、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b ,c )和区域;(Ⅱ)证明:1102-2≤f(x )≤-4(2011)(21)(本小题满分12分)已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
2008年高考数学试题分类汇编函数与导数一. 选择题:1.(全国一1)函数y = C ) A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A )3.(全国一6)若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e -B .2x eC .21x e +D .22x e +4.(全国一7)设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2B .12C .12-D .2-5.(全国一9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( D )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,, D .(10)(01)- ,, 6.(全国二3)函数1()f x x x=-的图像关于( C ) A .y 轴对称B . 直线x y -=对称A .B .C .D .C . 坐标原点对称D . 直线x y =对称8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a9.(北京卷2)若0.52a =,πlog 3b =,22πlog sin 5c =,则( A )A .a b c >>B .b a c >>C .c a b >>D .b c a >>10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.(四川卷10)设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D )(A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C )(A)13 (B)2 (C)132 (D)21313.(天津卷3)函数1y =04x ≤≤)的反函数是A(A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤)(C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤)14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。
而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,则m 的值是( B )A .e -B .1e-C .eD .1e17.(安徽卷11)若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()x f x g x e -=,则有( D )A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<18.(山东卷3)函数y =lncos x (-2π<x <)2π的图象是A19.(山东卷4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为A(A) 3 (B)2 (C)1 (D)-120.(江西卷3)若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是BA .1[,3]2B .10[2,]3C .510[,]23D .10[3,]321.(江西卷6)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是 D22.(江西卷12)已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数ABCD-x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是B A . (0,2) B .(0,8) C .(2,8) D . (,0)-∞23.(湖北卷4)函数1()f x x=的定义域为D A. (,4][2,)-∞-+∞ B. (4,0)(0.1)- C. [-4,0)(0,1] D. [4,0)(0,1)-24.(湖北卷7)若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是CA. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞-25.(湖北卷13)已知函数2()2f x x x a =++,2()962f bx x x =-+,其中x R ∈,,a b 为常数,则方程()0f ax b +=的解集为 . ∅26.(湖南卷10)设[x ]表示不超过x 的最大整数(如[2]=2, [54]=1),对于给定的n ∈N *,定义[][](1)(1),(1)(1)x nn n n x C x x x x --+=--+ x ∈[)1,+∞,则当x ∈3,32⎡⎫⎪⎢⎣⎭时,函数x n C 的值域是( D )A.16,283⎡⎤⎢⎥⎣⎦B.16,563⎡⎫⎪⎢⎣⎭C.284,3⎛⎫⋃ ⎪⎝⎭[)28,56 D.16284,,2833⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦27.(陕西卷7)已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( A ) A .2-B .1C .4D .1028.(陕西卷11)定义在R 上的函数()f x 满足()()()2f x yf x f y x y+=++(x y ∈R ,),(1)2f =,则(3)f -等于( C ) A .2B .3C .6D .929.(重庆卷4)已知函数M ,最小值为m ,则mM的值为C(A)14(B)12(C)230.(重庆卷6)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,,则下列说法一定正确的是C (A)f (x )为奇函数(B )f (x )为偶函数 (C) f (x )+1为奇函数(D )f (x )+1为偶函数31.(福建卷4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为BA.3B.0C.-1D.-232.(福建卷12)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是D33.(广东卷7)设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( B ) A .3a >-B .3a <-C .13a >-D .13a <-34.(辽宁卷6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( A )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,35.(辽宁卷12)设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫= ⎪+⎝⎭的所有x 之和为( C )A .3-B .3C .8-D .8二. 填空题:1.(上海卷4)若函数f (x )的反函数为f -1(x )=x 2(x >0),则f (4)= 22.(上海卷8)设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 (-1,0)∪(1,+∞)3.(上海卷11)方程x 2+2x -1=0的解可视为函数y =x +2的图像与函数y =1x的图像交点的横坐标,若x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点(x i ,4x i)(i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是 (-∞,-6)∪(6,+∞);4.(全国二14)设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = .25.(北京卷12)如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f =2 ;0(1)(1)limx f x f x∆→+∆-=∆ -2 .(用数字作答)6.(北京卷13)已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是② .7.(北京卷14)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种植在点()k k k P x y ,处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡--⎤⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩,.()T a 表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点的坐标应为 (12), ;第2008棵树种植点的坐标应为 (3402),. 8.(安徽卷13)函数2()f x =的定义域为 .[3,)+∞9.(江苏卷8)直线12y x b =+是曲线()l n 0y x x =>的一条切线,则实数b = .ln2-1.10.(江苏卷14)()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则a = .411.(湖南卷13)设函数()y f x =存在反函数1()y f x -=,且函数()y x f x =-的图象过点(1,2),则函数1()y f x x -=-的图象一定过点 . (-1,2) 12.(湖南卷14)已知函数()1).1f x a a =≠- (1)若a >0,则()f x 的定义域是 ; 3,a ⎛⎤-∞ ⎥⎝⎦(2) 若()f x 在区间(]0,1上是减函数,则实数a 的取值范围是 .()(],01,3-∞⋃13.(重庆卷13)已知1249a =(a>0) ,则23log a = .3 14.(浙江卷15)已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t=___。