物质结构常考要点
- 格式:ppt
- 大小:1.04 MB
- 文档页数:22
物质结构与性质高考热点归纳分子空间构型、分子极性和键角的确定键角大小比较一、中心原子杂化类型对键角大小有决定性的影响中心原子杂化类式是决定键角大小的最根本的原因。
上表由前(左)到后(右)的顺序就基本是一个键角逐渐减小的顺序。
例1,对CH4、BF3、CO2这一分子序列,中心原子分别为sp3、sp2和sp杂化,它们对应的键角为109°28′、120°、180°,键角会依次增大。
二、中心原子孤电子对数目对键角的影响由于中心原子的孤对电子的电子云肥大,对成键电子对有较大的排斥力,所以孤对电子能使成键电子对彼此离得更近,键角被压缩而变小。
且中心原子的孤电子对数越多,键角会变得越小。
例2,对H2O、NH3、CH4分子系列。
这3个分子的中心原子采取的都是sp3杂化,但孤电子对数不同。
其孤电子对数分别为2、1、0.。
在H2O分子中,键角要受2个孤电子对的压缩,键角应该会最小。
这就导致出推断:该序列是一个键角逐渐增大的序列。
可查得它们的键角分别是104.5°、107.1°、109.5°。
三、配原子电负性对键角的影响当同一种原子中心原子种类相同、杂化类型也相同,而配原子种类不同时,由于配原子的电负性不同,会使键角有区别。
因为当相邻的两个成键电子对更靠近中心原子时、相互间的斥力会增大。
反之,当相邻的两个成键电子对远离近中心原子时、相互间的斥力会变小。
例3,将NF3与NH3比较,中心原子都是n(原子)、且都为sp3杂化,但因为F原子的电负性大于H原子,使成键电子离n(原子更远),两个N-F键间的斥力减小、可以靠的更近,所以其键角更小。
实际上:NH3的键角是107°,NF3的键角是102.5°.对常遇到的H2O与OF2分子的键角和极性比较,也可照上例来判断。
四、中心原子电负性对键角的影响当同主族中心原子种类不同,但杂化类型相同、且配原子种类相同时,中心原子的电负性大,成键电子对更靠近中心原子,成键电子对间的斥力要变大,键角要变大。
物质结构与性质--高考化学知识点归纳 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN物质结构与性质18种元素72种元素15、16、17纵列依次称为A、ⅣA、ⅤA、ⅥA、ⅦA族、7、11、12纵列依次称为B、ⅥB、ⅦB、ⅠB、ⅡB族常考Fe,Cu及其离子的电子排布式)第18纵列称为零族(稀有气体元素)、2两个纵列划为s区(价电子电子在s轨道)13~18六个纵列划为p区(价电子在p轨道)3~10八个纵列划为d区(价电子在d轨道)ds区第11、12两个纵列划为ds区(价电子在d、s轨道)f区镧系和锕系元素属于f区(价电子在f轨道)Ps:价电子指原子核外电子中能与其他原子相互作用形成化学键的电子。
第一部分:元素周期表知识点1 单核微粒半径大小判断规律(1)先看电子层数,若不同,则层数多者微粒半径大(如:Br>Cl>F)(2)若电子层数相同,再看原子序数,序数小者半径大(如:Na+>Mg+>Al3+)(3)若是同种元素化合价不同的离子或原子,核外电子多者半径大(如:Fe>Fe2+>Fe3+)知识点2 有关周期和族的几个关系(1)周期序数=电子层数(2)主族(ⅠA~ⅦA)和副族ⅠB、ⅡB族的族序数=原子最外层的电子数(ns+np或ns)。
(3)副族ⅢB~ⅦB族的族序数=最外层s电子数+次外层d电子数。
(4)零族:最外层电子数等于8或2。
第二部分:元素周期律知识点1 周期律基本内容知识点2 同周期、同主族元素性质递变规律1、元素原子失电子(还原性)能力强弱比较依据(1)依据金属活动性顺序表,越靠前元素原子失电子能力越强。
(2)比较元素单质与水(或酸)的反应置换出氢的难易程度。
越易发生,失电子能力越强。
(3)比较元素最高价氧化物对应水化物碱性强弱。
碱性越强,失电子能力越强。
(4)根据金属与盐溶液间的置换反应,失电子能力强的置换成失电子能力弱的。
(5)一般金属阳离子的氧化能力越强,则对应的金属单质的还原性越弱(Fe对应的是Fe2+)(6)电化学原理:不同金属形成原电池时,通常作负极的金属性强;在电解池中的惰性电极上,先析出的金属性弱。
化学知识点总结物质结构一、物质结构的概念物质结构是指构成物质的基本单位以及它们之间的排列方式。
物质结构的研究是化学领域的重要内容,它对于解决物质的性质和变化规律有着重要的意义。
根据物质的构成和排列方式的不同,可以将物质结构划分为原子结构、分子结构和晶体结构等几个方面。
二、原子结构1. 原子的组成原子是物质的基本单位,由质子、中子和电子组成。
质子和中子构成了原子的核,而电子则绕核轨道运动。
2. 原子的排列方式原子的排列方式决定了物质的性质,不同元素的原子排列方式也是不同的。
例如,金属元素的原子一般是紧密排列的,而非金属元素的原子一般是松散排列的。
3. 原子结构的研究方法X射线衍射、高分辨透射电子显微镜等是研究原子结构的常用方法,通过这些方法可以观察到原子的排列方式和结构特征。
三、分子结构1. 分子的组成分子是由两个或者多个原子通过共价键连接而成的物质单位。
分子的组成决定了物质的种类和性质。
2. 分子的排列方式分子的排列方式会影响物质的性质,例如固体、液体和气体等状态的物质,分子的排列方式不同,性质也会有所区别。
3. 分子结构的研究方法红外光谱、核磁共振等是研究分子结构的常用方法,通过这些方法可以了解到分子的组成和排列方式。
四、晶体结构1. 晶体的组成晶体是由高度有序排列的原子、分子或者离子构成的固体物质。
晶体的组成决定了晶体的性质和外观。
2. 晶体的排列方式晶体的排列方式有规则的、有序的排列,而无晶体则是无规则的排列。
晶体的排列方式对其性质有着重要的影响。
3. 晶体结构的研究方法X射线衍射、电子显微镜等是研究晶体结构的常用方法,通过这些方法可以观察到晶体的结构和特征。
五、物质结构的应用1. 新材料的研发对物质结构的深入研究可以为新材料的研发提供重要的参考。
例如,了解材料的原子、分子或者晶体结构可以为新材料的设计和合成提供理论依据。
2. 化学反应的控制了解物质的结构可以为化学反应的控制提供帮助,可以通过调节物质的结构来控制化学反应的进行方向和速率。
物质结构知识一、化学键与物质类别关系规律(1)只含非极性共价键的物质:同种非金属元素构成的单质,如I2、N2、P4、金刚石、晶体等。
(2)只含有极性共价键的物质:一般是不同非金属元素构成的共价化合物,如:HCl、NH3、SiO2、CS2等(3)既有极性键又有非极性键的物质:如:H2O2、C2H2、CH3CH3、C6H6(苯)等。
(4)只含有离子键的物质:活泼非金属元素与活泼金属元素形成的化合物,如:Na2S、CsCl、K2O、NaH等。
(5)既有离子键又有非极性键的物质,如:Na2O2、Na2S x、CaC2等。
(6)由离子键、共价键、配位键构成的物质,如:NH4Cl等。
(7)由强极性键构成但又不是强电解质的物质,如HF。
(8)只含有共价键而无范德瓦尔斯力的化合物,如:原子晶体SiO2、SiC等。
(9)无化学键的物质:稀有气体,如氩等。
二、共价键的极性与分子极性关系规律共价键包括非极性键和极性键。
化学键有无极性,是相对共价键而言的,即共用电子对是否发生偏移。
而共用电子对的偏移,又取决于成键原子吸引电子能力的大小。
按上述推理归纳为:A—A型,即相同元素原子间成键形成的是非极性键;A—B型,即不同元素原子间成键形成的是极性键。
分子是否存在极性,不能简单地只看分子中的共价键是否有极性,而要看整个分子中的电荷分布是否均匀、对称。
根据组成分子的原子种类和数目的多少,可将分子分为单原子分子、双原子分子和多原子分子,其各类分子极性的判断依据是:(1)单原子分子:分子中不存在化学键,故没有极性分子或非极性分子之说,如He、Ne等。
(2)双原子分子:若含极性键,就是极性分子,如HCl、HBr等;若含非极性键,就是非极性分子,如O2、I2等(3)以极性键结合的多原子分子,主要由分子中各键在空间的排列位置决定分子的极性。
若分子中的电荷分布均匀,即排列位置对称,则为非极性分子,如BF3、CH4等。
若分子中的电荷分布不均匀,即排列位置不对称,则为极性分子,如NH3、SO2等。
分子结构与性质共价键:原子间通过共用电子对形成的化学键。
极性键和非极性键判别规律:极性键:正电中心和负电中心不重合;非极性键:正电中心和负电中心重合;分子极性与非极性判别:极性:中心原子最外层电子未全部成键;非极性:中心原子最外层电子全部成键;氢键:氢键是由已经与电负性很强的原子(如N、F、O)形成共价键的氢原子与另一个分子中或同一分子中电负性很强的原子之间的作用力。
氢键对物质性质的影响(1)当形成氢键时,物质的熔、沸点将升高。
(2)氢键不属于化学键;σ键、π键判别规律:1.共价单键全部都是σ键;2.共价双键中一个是σ键,一个是π键;3.共价三键中一个是σ键,两个是π键;价层电子对互斥理论:价层电子对数目=(中心原子的价电子数+配位原子提供的电子数)/2a、如果是离子团,离子的价电子对数应考虑离子所带的电荷:(1)负离子的价电子数=中心原子的价电子数+所带的负电子数;(2)正离子的价电子数=中心原子的价电子数-所带的正电荷数;b、如果成键原子是配位原子,与中心原子之间的化学键是单键时,配位原子提供的价电子数是1,如H、卤素原子;双键时,配位原子提供的价电子数为0,如氧原子,三键时,配位原子提供的原子为-1,如乙炔。
双键、三键都当做一个配位原子。
c、σ键电子对数:由分子式确定。
如H2O、NH3、CH4分子中的中心原子O、N、C 分别含有2、3、4对σ键电子对。
d、中心原子上的孤对电子数:为,式中a为中心原子的价电子数(主族元素的价电子数就是最外层电子数);x为与中心原子结合的原子数;b为与中心原子结合的原子最多能接受的电子数(氢为1,其他原子等于“8-该原子的价电子数”)分子构型价层电子对数σ键电子对数孤电子对数VSEPR模型名称立体构型名称实例220直线型直线型330三角形平面三角形21∨形440四面体型正四面体型31三角锥型22∨形杂化类型判断:无机化合物价层电子对数为2时,sp杂化;价层电子对数为3时,sp2杂化;价层电子对数为4时,sp3杂化;有机化合物:碳原子与几个原子相连,两个为sp杂化,三个为sp2杂化,四个为sp3杂化。
一、原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
1。
物质结构与性质常考点归纳物质的结构与性质是化学的重要内容之一,涉及到物质的组成、分子构型、化学键等方面,对于我们理解物质的物理和化学性质具有重要的意义。
下面是对物质结构与性质的常考点的归纳:1.原子结构与元素周期表原子是物质的基本组成单位,由电子、质子和中子组成。
电子在不同的能级上分布,通过填充不同的电子壳层,形成不同元素的原子结构。
元素周期表是根据元素的原子结构和元素性质所进行的分类,鼓励掌握元素周期表的排列规律,了解元素的周期性变化和元素性质之间的关系。
2.化学键与分子构型化学键是原子间相互作用的结果,包括离子键、共价键和金属键等。
离子键是电子从一个原子转移到另一个原子形成的,如盐的结构。
共价键是原子通过共享电子形成的,如氢气的结构。
金属键是金属中自由电子负责连接金属原子形成的良好的自由度。
掌握化学键的形成和性质可帮助我们理解物质的分子构型和分子间的相互作用。
3.有机化合物的结构与性质有机化合物是由碳元素组成的化合物,包括碳氢化合物、含氧、氮、硫等元素的化合物。
了解有机化合物的结构与性质对于学习有机化学具有重要意义。
常见的有机化合物常考点包括碳链结构、立体化学、官能团、同分异构体等。
4.物质的晶体结构与性质晶体是具有有序、周期排列的结晶体系,它们是由离子、分子或原子按照一定的规则进行排列和成键形成的。
晶体的结构与性质密切相关,例如晶体的硬度、熔点和导电性等。
了解晶体的结构可以帮助我们理解物质的各种性质,并对材料的应用有所启示。
5.溶液的结构与性质溶液是由溶质和溶剂组成的,涉及到物质在不同状态下的相互转化和相互作用。
了解溶液的结构与性质,例如溶解度、溶解热等对于理解溶液的稳定性及其应用有重要意义。
6.气体的结构与性质气体是一种无定形的物质状态,气体分子之间的距离和相互间的相互作用力较小。
气体的结构与性质涉及到气体分子的运动方式、压力、体积和温度之间的关系,了解气体的结构与性质对于理解气体的物理性质和工业应用有重要意义。
第一节 原子结构与元素周期表第一课时 原子结构 知识点一原子的构成 质量数 1、原子的构成微粒2.有关粒子间的关系 (1)质量关系①质量数(A )=质子数(Z )+中子数(N )。
②原子的相对原子质量近似等于质量数。
(2)电性关系①电中性微粒(原子或分子):核电荷数=核内质子数=核外电子数。
②带电离子:质子数≠电子数,具体如下表:(3)数量关系:原子序数=质子数。
3.符号A Z X ±c m ±n中各个字母的含义:规律总结组成原子、离子的各种微粒及相互关系知识点二原子核外电子的排布规律 1.原子核外电子的排布规律2.核外电子排布的表示方法→结构示意图 (1)原子结构示意图①用小圆圈和圆圈内的符号及数字表示原子核和核电荷数。
②用弧线表示电子层。
③弧线上的数字表示该电子层上的电子数。
④原子结构示意图中,核内质子数=核外电子数。
如钠的原子结构示意图:(2)离子结构示意图①当主族中的金属元素原子失去最外层所有电子变为离子时,电子层数减少一层,形成与上一周期稀有气体元素原子相同的电子层结构(电子层数相同,每层上所排布的电子数也相同)。
如 Mg :――→-2e-Mg 2+:。
②非金属元素的原子得电子形成简单离子时,形成和同周期稀有气体元素原子相同的电子层结构。
如F :③离子结构示意图中,阳离子核内质子数大于核外电子数,阴离子核内质子数小于核外电子数,且差值为离子所带电荷数。
④单个原子形成简单离子时,其最外层可形成8电子稳定结构(K 层为最外层时可形成2电子稳定结构)。
【特别注意】☆规律总结短周期元素原子结构的几个特殊关系知识点三常见的等电子微粒1.常见的“10电子”粒子2.常见的“18电子”粒子(1)分子:Ar、HCl、H2S、PH3、SiH4、F2、H2O2、N2H4等。
(2)阳离子:K+、Ca2+。
(3)阴离子:P3-、S2-、HS-、Cl-。
3 常见等电子体:原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。
高中化学物质结构知识点,一定要考的内容!高中化学地物质结构知识点是教学内容的重点,这部分的知识点都要掌握就不用担心考试了,今天都给大家整理好了,希望对大家有帮助!壹元素周期表的结构Ps:价电子指原子核外电子中能与其他原子相互作用形成化学键的电子。
贰元素周期表知识点1 单核微粒半径大小判断规律(1)先看电子层数,若不同,则层数多者微粒半径大(如:Br>Cl>F)(2)若电子层数相同,再看原子序数,序数小者半径大(如:Na+>Mg+>Al3+)(3)若是同种元素化合价不同的离子或原子,核外电子多者半径大(如:Fe>Fe2+>Fe3+)叁元素周期律知识点1 周期律基本内容知识点2 同周期、同主族元素性质递变规律1、元素原子失电子(还原性)能力强弱比较依据(1)依据金属活动性顺序表,越靠前元素原子失电子能力越强。
(2)比较元素单质与水(或酸)的反应置换出氢的难易程度。
越易发生,失电子能力越强。
(3)比较元素最高价氧化物对应水化物碱性强弱。
碱性越强,失电子能力越强。
(4)根据金属与盐溶液间的置换反应,失电子能力强的置换成失电子能力弱的。
(5)一般金属阳离子的氧化能力越强,则对应的金属单质的还原性越弱(Fe对应的是Fe2+)(6)电化学原理:不同金属形成原电池时,通常作负极的金属性强;在电解池中的惰性电极上,先析出的金属性弱。
2、元素得电子(氧化性)能力强弱比较依据(1)比较元素单质与氢气化合的难易程度。
一般越易反应,得电子能力越强。
(2)比较其气态氢化物的稳定性。
越稳定得电子能力越强。
(3)比较元素最高价氧化物对应水化物的酸性。
酸性越强,得电子能力越强。
(4)依据非金属单质间的置换反应。
氧化剂比氧化产物的得电子能力强。
3、同周期、同主族元素性质递变规律(1)同一周期,随着原子序数递增,失电子能力(一般指金属)减弱,还原性减弱,金属的金属性减弱;得电子能力(一般指非金属)增强,氧化性增强,非金属的非金属性增强。
《物质结构与性质》考点透析第一章原子结构与性质考点一:1—36号元素电子排布式:1.1-36号元素元素符号和名称2.原子/离子结构示意图;3. 基态原子电子排布式/图4. 简化电子排布式;5. 价电子排布式/图6. 某能层(如M层)电子排布式/图7. 离子电子排布式/图考点二:原子光谱,基态与激发态。
1.基态与激发态能量比较2.吸收光谱和发射光谱的鉴别、应用3.解释“焰色反应”:原子核外电子跃迁释放能量,原子从激发态跃迁到基态的过程中释放出的能量以光能的形式表现。
考点三:成对电子与未成对电子数的判断考点四:几种概念考查1、某粒子核外有多少种运动状态不同的电子;2、有多少种不同空间运动状态的电子;3、有多少种不同的伸展方向;4、有多少种能量不同的电子考点五:元素周期表分区及价层排布特点S区 p区 d区 ds 区 f 区分别包含哪些族,各族价电子排布特点,会画分布图考点六:粒子半径的比较方法考点七:电离能1、定义2、第一电离能大小判断方法(金属与非金属都有时;同周期;同主族;不同周期不同主族(二、三周期);特殊)3、ⅡA族与ⅢA族,ⅤA族与ⅥA族第一电离能出现反常的原因4、利用逐级电离能突跃判断元素最外层电子数及主要化合价考点八:电负性1、元素周期表同周期、同主族电负性变化规律及大小比较;不同周期不同主族(二、三周期)大小比较,电负性较小的非金属元素电负性大小顺序。
2、利用1.8判断元素为非金属(>1.8)、金属(<1.8)、类金属(1.8左右)3、利用电负性差值1.7判断化学键类型,其中>1.7---离子键 <1.7---共价键4、利用电负性判断元素金属性、非金属性强弱5、利用电负性判断化合价的正负6、利用中心元素或其他元素的电负性判断键角7、利用电负性判断配位原子及形成配合物的难易问题8、利用电负性判断羧酸的酸性强弱考点九:对角线规则(性质相似)典例:Be/Al;li/Mg;B/SiBeO+2NaOH=Na2BeO2+H2OBe(OH)2+2NaOH=Na2BeO2+2H2O第二章分子结构与性质考点十:σ键与π键1.σ键与π键的判断方法(包括键线式,配合物中)2.碳碳之间能形成双键而硅硅之间形不成双键的原因3.大派键的判断方法(1)无机物: SO2、O3、 CO2、 CO32-、NO3-(2)有机物:苯,噻吩,吡咯,吡啶,呋喃(3)关注钴酞菁考点十一:电子式1、电子式的书写方法2、把握中学常见共价型分子的电子式和结构式(O2、N2、CO2、NH3、CCl4、NCl3、HClO、H2O2、N2H4)3、离子化合物的电子式(NH4Cl、K2S、NaOH、Na2O2、NaH)4、用电子式表示物质的形成过程考点十二:键的极性的判断方法、分子的极性的判断方法(4种)、键的极性与分子极性的关系(特殊:O3)考点十三:利用键能(或键长)判断分子稳定性。
高中化学物质结构知识点总结化学是一门以实验为基础的自然科学。
门捷列夫提出的化学元素周期表大大促进了化学的发展。
如今很多人称化学为“中心科学”。
下面是整理的高中化学物质结构知识点,仅供参考希望能够帮助到大家。
高中化学物质结构知识点质子(Z个)原子核注意:中子(N个) 质量数(A)=质子数(Z)+中子数(N)1. 原子序数=核电荷数=质子数=原子的核外电子(Z个)★熟背前20号元素,熟悉1~20号元素原子核外电子的排布:H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca2.原子核外电子的排布规律:①电子总是尽先排布在能量最低的电子层里;②各电子层2最多容纳的电子数是2n;③最外层电子数不超过8个(K层为最外层不超过2个),次外层不超过18个,倒数第三层电子数不超过32个。
电子层:一(能量最低) 二三四五六七对应表示符号:K L M N O P Q3.元素、核素、同位素元素:具有相同核电荷数的同一类原子的总称。
核素:具有一定数目的质子和一定数目的中子的一种原子。
同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素。
(对于原子来说)如何学好化学1在化学课堂上提高学习效率上课前一天,一定要抽出时间自觉地预习老师第二天要讲的化学内容。
以便于能强化听课的针对性,有利于发现问题,抓住重点和难点,提高化学听课效率;同时还可以提高记听课笔记的水平,知道该记什么。
听课是学习化学过程的核心环节,是学会和掌握知识的主要途径。
特别是化学,很多知识都是下节课的基础,如果这一节没有掌握到下节就可以成为学习的障碍,所以说课堂上能不能掌握好所学的知识,是决定学习效果的关键。
2吃透化学课本联系实际以化学课本为主线,认真吃透课本,这是学好化学的根本。
为此同学们必须善于阅读课本,做到课前预读、课后细读、经常选读等。
既重视主要内容也不忽视小字部分、一些图表、资料及选学内容。
化学内容与生活、生产联系紧密。
第十一章物质结构与性质(选修)第一讲原子结构与性质考点1原子核外电子排布原理1.能层、能级与原子轨道之间的关系2.原子轨道的能量关系(1)轨道形状①s电子的原子轨道呈球形。
②p电子的原子轨道呈哑铃形。
(2)能量关系①相同能层上原子轨道能量的高低:n s<n p<n d<n f。
②形状相同的原子轨道能量的高低:1s<2s<3s<4s……③同一能层内形状相同而伸展方向不同的原子轨道的能量相等,如n p x、n p y、n p z轨道的能量相等。
3.基态原子核外电子排布的三个原理(1)能量最低原理:电子优先占有能量低的轨道,然后依次进入能量较高的轨道,使整个原子的能量处于最低状态。
即原子的核外电子排布遵循构造原理能使整个原子的能量处于最低状态。
如图为构造原理示意图:(2)泡利原理:在一个原子轨道中,最多只能容纳2个电子,并且它们的自旋状态相反。
(3)洪特规则:当电子排布在同一能级的不同轨道时,基态原子中的电子总是优先单独占据一个轨道,而且自旋状态相同。
洪特规则特例:当能量相同的原子轨道在全满(p6、d10、f14)、半满(p3、d5、f7)和全空(p0、d0、f0)状态时,体系的能量最低,如:24Cr的电子排布式为1s22s22p63s23p63d54s1。
4.原子(离子)核外电子排布式(图)的书写(1)核外电子排布式:按电子排入各能层中各能级的先后顺序,用数字在能级符号右上角标明该能级上排布的电子数的式子。
如Cu:1s22s22p63s23p63d104s1,其简化电子排布式为[Ar]3d104s1。
(2)价电子排布式:如Fe原子的电子排布式为1s22s22p63s23p63d64s2,价电子排布式为3d64s2。
价电子排布式能反映基态原子的能层数和参与成键的电子数以及最外层电子数。
(3)电子排布图:方框表示原子轨道,用“↑”或“↓”表示自旋方向不同的电子,按排入各能层中的各能级的先后顺序和在轨道中的排布情况书写。
《物质结构元素周期律》常考知识点一、元素金属性、非金属性强弱的判断方法有哪些?1.元素金属性强弱的判断方法本质:原子越易失电子,则金属性就越强。
⑴根据元素周期表进行判断:同一周期:从左到右,随着原子序数的递增,元素的金属性逐渐减弱。
同一主族:从上到下,随着原子序数的递增,元素的金属性逐渐增强。
⑵一般情况下,在金属活动性顺序中越靠前,金属性越强。
如Zn排在Cu的前面,则金属性:Zn>Cu。
⑶根据金属单质与水或者与酸(非氧化性酸如盐酸、稀硫酸等)反应置换出氢气的难易程度。
置换出氢气越容易,则金属性就越强。
如Zn与盐酸反应比Fe与盐酸反应更易置换出氢气,则金属性:Zn>Fe。
⑷根据金属元素最高价氧化物对应水化物碱性的强弱。
碱性越强,则原金属单质的金属性就越强。
如碱性NaOH>Mg(OH)2,则金属性:Na>Mg。
⑸一般情况下,金属单质的还原性越强,则元素的金属性就越强;对应金属阳离子的氧化性越强,则元素的金属性就越弱。
如还原性Na>Mg,则金属性:Na>Mg,氧化性:Na+<Mg2+。
(6)水溶液中的置换反应:如Zn+Cu2+=Zn2++Cu,则金属性:Zn>Cu。
特别提醒①一般来说,在氧化还原反应中,单质的氧化性越强(或离子的还原性越弱),则元素的非金属性就越强;单质的还原性越强(或离子的氧化性越弱),则元素的金属性就越强。
故一般来说,元素的金属性和非金属性的强弱判断方法与单质的氧化性和还原性的强弱判断方法是相一致的。
②金属性强弱的比较,是比较原子失去电子的难易,而不是失去电子的多少。
如Na易失去1个电子,而Mg易失去2个电子,但Na的金属性更强。
2.元素非金属性强弱的判断方法本质:原子越易得电子,则非金属性就越强。
⑴根据元素周期表进行判断:同一周期:从左到右,随着原子序数的递增,元素的非金属性逐渐增强。
同一主族:从上到下,随着原子序数的递增,元素的非金属性逐渐减弱。
高三物质结构基础知识点物质结构是物理学和化学的一个重要基础知识点。
了解物质结构可以帮助我们更好地理解物质的性质和行为。
在高中物理和化学课程中,我们会学习一些关于物质结构的基础知识。
本文将以“step by step thinking”(循序渐进的思考)的方式来介绍一些高三物质结构的基础知识点。
第一步:原子和元素物质的基本单位是原子。
原子由质子、中子和电子组成。
质子带正电荷,中子不带电,电子带负电荷。
原子的核心由质子和中子组成,电子绕核心运动。
元素是由相同类型的原子组成的物质,例如氧气是由两个氧原子组成的,记作O2。
元素可以通过化学方法氧化、还原、或者合成。
第二步:分子和化合物分子是由两个或多个原子组成的物质,例如水分子(H2O)由两个氢原子和一个氧原子组成。
化合物是由不同类型的原子组成的物质,例如水是由氢和氧组成的化合物。
化学式用来表示分子和化合物。
化学式中包含元素的符号和表示原子数量的下标,例如水的化学式是H2O,表示一个氧原子和两个氢原子。
第三步:晶体和非晶体晶体是由具有规则排列方式的原子、离子或分子组成的固体。
晶体具有规则的几何形状和平面,例如钻石和盐。
非晶体是由无规则排列的原子、离子或分子组成的固体。
非晶体没有明确的几何形状和平面,例如玻璃和橡胶。
第四步:金属结构金属是一种特殊的物质,具有一些独特的结构特点。
金属的原子排列成由正离子核心和自由移动的电子组成的晶格结构。
这种结构使金属具有良好的导电性和热传导性。
金属的结构还使其具有一些特殊的性质,例如延展性和韧性。
金属可以被拉伸成细丝,也可以被锤打成薄片,这些性质使金属成为制造工业产品的重要材料。
第五步:离子结构离子是带电的原子或分子。
正离子带正电荷,负离子带负电荷。
离子的结合形成离子结构。
离子结构的一个例子是盐,由钠离子(Na+)和氯离子(Cl-)组成。
钠和氯原子通过电子转移形成离子,然后由离子的吸引力形成稳定的结构。
第六步:共价结构共价结构是由共享电子形成的化学键形成的结构。
物质结构知识总结第一章原子的结构与性质原子1.模型进化论,原子,原子核,原子表示法,质量数2.核外电子排布规则,电子排布式,,原子结构示意图,价电子(外围电子),表示方法:电子排布图,电子式及形成过程3.元素周期表,分区,4.元素周期律,排布,半径,电负性,电离能,亲合能,化合价,金属非金属性,对角线规则键5.化学键,物质组成,1.金属键、2.离子键、3.共价键:分类极性、.配位键/非极性共价键。
4.西格玛键、派键5.键参数:键能、例题稳定性、为什么CO2是分子晶体、SiO2是原子晶体键长、解释构型键角PH3\NH3 H2O\ NH3 配位键6.分子间作用力、氢键解决的问题:水构型,分子式测定,密度,沸点7.配位键分子立体构型8.价层电子对互斥理论/杂化/等电子体(等电子微粒)9.分子性质:极性分子/溶解性/手性/酸性氢键/范力对物质性质的影响10.晶体图形晶体非晶体晶胞分子晶体原子晶体离子晶体金属晶体混合晶体11晶胞的性质及判断:物理:熔沸点、硬度12晶胞计算:晶胞均摊、配位数、密度、边长结构必修2[考纲要求]1.了解元素、核素和同位素的含义。
2.了解原子的构成,了解原子序数、核电荷数、质子数、中子数、核外电子数以及它们之间的相互关系。
3.了解原子核外电子排布规律,掌握原子结构示意图的表示方法。
4.了解化学键的定义,了解离子键、共价键的形成。
5.了解相对原子质量、相对分子质量的定义,并能进行有关计算。
选修3[考纲要求]1.了解原子核外电子的运动状态、能级分布和排布原理,能正确书写1~36号元素原子核外电子、价电子的排布式和轨道表达式。
2.了解电离能的含义,并能用以说明元素的某些性质。
3.了解电子在原子轨道之间的跃迁及其简单应用。
4.了解电负性的概念,并能用以说明元素的某些性质。
[考纲要求]1.了解共价键的形成、极性、类型(σ键和π键),了解配位键的含义。
2.能用键能、键长、键角等说明简单分子的某些性质。
物质结构知识点物质结构是一门从分子层面来探究物质性质和物理化学变化的学科。
了解物质结构的基本知识点,对于研究物质科学领域非常重要。
本文将从化学键、格子结构、分子间相互作用等多方面,介绍物质结构的几个基本知识点。
一、化学键化学键是分子结构形成的基础。
物质中最常见的化学键有共价键,离子键和金属键。
共价键是指两个或多个原子通过共享电子而形成的化学键。
共价键的类型有单键、双键、三键等,取决于原子之间共享的电子数目。
例如,氢气中两个氢原子通过单共价键结合在一起。
离子键是由正负电荷互相吸引而形成的化学键。
在离子键中,金属元素通常会失去电子,形成阳离子,而非金属元素通常会得到电子,形成阴离子。
例如,氯气中两个氯原子可以通过离子键结合在一起,形成氯化钠。
在氯化钠中,钠离子和氯离子通过离子键结合在一起。
金属键是金属元素之间的化学键。
金属元素的原子通常会失去多个电子,形成金属离子,并形成正电荷。
这些金属离子之间通过电子云相互吸引而形成金属键。
例如,在金属铜中,铜原子失去两个电子,而金属离子之间通过共享电子云形成金属键。
二、分子构成分子结构通常由原子和离子的排列组合构成。
当两个或多个原子通过化学键结合在一起形成分子时,这些原子之间的排列会影响分子物理化学性质的特点。
分子的结构通常是三维的,包括分子的形状、键角和距离。
分子的形状通常是由化学键的种类和分子原子之间分布位置的影响组成的。
例如,水分子由氢原子和氧原子组成,通过共价键相互结合在一起。
Water的分子形状呈现为V字形,因为水分子的两个氢原子两个脚距离不相等,向一个方向偏移,导致整个分子呈倾斜状态。
键角指的是组成分子的原子之间的夹角。
例如,在水分子中,氢原子与氧原子之间的键角是104.5度。
键角的大小通常受原子数、原子尺寸、化学键数和离子大小等因素影响。
分子之间的距离通常由电子云的相互吸引力和排斥力影响。
例如,当两个水分子靠近时,它们的电子云开始重叠,导致电子云之间的排斥力作用力增大。