湖北省黄冈中学2018届高三5月二模考试数学(理)试卷含答案
- 格式:doc
- 大小:1.91 MB
- 文档页数:21
黄冈中学2018年高三5月第二次模拟考试数学(理科)试卷试卷满分:150分一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{{},1,0,1,2,3A x y B ===-,则()R C A B = ( )A .{}0,1B .{}0,1,2C .{}1,0,1-D .{}1,3-2. 若复数232018|34|134i z i i i ii-=++++++-…,则z 的共轭复数的虚部为( )A .15-B .95-C .95D .95i -3. 设537535714(),(),log 755a b c -===,则c b a ,,的大小关系是( )A .c a b <<B .b a c <<C .a c b <<D .a b c <<4.一个几何体的三视图如图所示,那么这个几何体的表面积是( )A .16+B .16+C .20+D .20+5. 下列命题正确的个数是( )1:p 若,m n 是两条不同的直线,,αβ是两个不同的平面,若,,,m n m n ααββ⊂⊂∥∥,则αβ∥2:p 命题“32000,10x x x ∃∈-+≤R ”的否定是“32,10x R x x ∀∈-+≥”3:p 函数sin()6y x πω=+在2x =处取得最大值,则正数ω的最小值为6π4:p 若随机变量()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.已知随机变量()~6,4X N ,则()280.8185P X <≤=A .1个B .2个C .3个D .4个6. 过双曲线22:1x y Γ-=上任意点P 作双曲线Γ的切线,交双曲线Γ两条渐近线分别交于,A B 两点,若O 为坐标原点,则AOB ∆的面积为( )A .4B .3C .2D .1 7. 函数2sin ()xxf x e=在[,]ππ-的图像大致为( )8. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的 推论,如图一,主要用于解释中国传统文化中的太极衍生原理. 数列中的每一项,都代表太极衍生过程中曾经经历过的两仪 数量总和.它是中华传统文化中隐藏着的世界数学史上第一道数 列题,0,2,4,8,12,18,…,如图二,是求大衍数列 前n 项和的程序框图,执行该程序框图,输入10m =,则输 出的S 为( )A. 100B. 250C. 140D. 1909.已知ABC ∆所在平面内有两点,P Q ,满足0,PA PC QA QB QC BC +=++=,若4,2AB AC == ,23APQ S ∆=,则2AB AC BC ⋅+的值为( )A. ±B. 8±C. 12±D. 20±10.已知三棱锥S A B C -的底面是以AB 为斜边的等腰直角三角形,且2AB SA SB SC ====,则该三棱锥的外接球的体积为( )A.27 B.9 C.27 D.2711.实数x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,它表示的平面区域为C ,目标函数2z x y =-的最小值为1p .由曲线()230y x y =≥,直线3x =及x 轴围成的平面区域为D ,向区域D 内任投入一个质点,该质点落入C 的概率为2p ,则1224p p -的值为( ) A .12B .23C .35D .4312. 若函数2()ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( )A. 1(1,)1e e e -- B. 1[1,]1e e e -- C. 1(,1)1e e e --- D. 1[,1]1ee e ---二.填空题:本大题共4小题,每小题5分,共20分.13.若()6111ax x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是11-,则实数a 的值为_________. 14.已知椭圆22221(0)x y a b a b+=>>的左焦点1F ,过点1F 作倾斜角为30︒的直线与圆222x y b +=,则椭圆的离心率为_________.15.已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则910112a a a a+++的最小值为_________.16.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知6a c +=,(3cos )tan sin 2BA A -=,则ABC ∆的面积的最大值为 .三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. (一)必考题17.(本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,且22()(2a b c bc --=.(1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,且1sin 1=A a ,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .18.(本小题满分12分)如图,在四棱锥S ABCD -中,SCD ∆为钝角三角形,侧面SCD 垂直于底面ABCD ,CD SD =,点M 是SA 的中点,AD BC ∥,90ABC ∠=︒,12AB AD BC ==.(1)求证:平面MBD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60 ,求二面角B MD C --余弦值.19.(本小题满分12分)IC 芯片堪称“国之重器”,其制作流程异常繁琐,制作IC 芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemens process )这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片达标,没有使用该工艺的20片单晶的晶圆中有12片达标.(1)用列联表判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemens process )这一工艺标准有关?(2)在得到单晶的晶圆后,接下来的生产制作还需对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,每个环节出错需要修复的费用均为20元,第四环节生产正常的概率为34,此环节出错需要修复的费用为10元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)参考公式:22()=,()()()()n ad bc K n a b c d a b c d a c b d -=+++++++ 参考数据:20.(本小题满分12分)已知抛物线C 顶点在原点,焦点在y 轴上,抛物线C 上一点(),2Q a 到焦点的距离为3,线段AB 的两端点()11,A x y , ()22,B x y 在抛物线C 上. (1)求抛物线C 的方程;(2)在抛物线C 上存在点()33,D x y ,满足312x x x <<,若ABD ∆是以角A 为直角的等腰直角三角形,求ABD ∆面积的最小值.21.(本小题满分12分)已知函数2()ln ,()().2a f x x x g x x x a a R ==+-∈ (1)若直线(0)()(),x t t y f x y g x A B =>==与曲线和分别交于两点,且曲线()y f x =在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ>>已知若不等式112e x x λλ+<⋅恒成立,求λ的取值范围.(二)选考题 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C的参数方程为1()2x y ααα⎧=⎪⎨=+⎪⎩为参数,直线1:0l x =,直线 2:0l x y -=,以原点O 为极点,x 轴的正半轴为极轴(取相同的长度单位)建立极坐标系.(1)求曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长.23.(本小题满分10分)选修4-5:不等式选讲 已知0a >,0b >,且222a b +=. (1)若2214|21||1|x x a b+≥---恒成立,求x 的取值范围; (2)证明:5511()()4a b ab++≥.黄冈中学2018年高三5月第二次模拟考试数学(理科)答案试卷满分:150分一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{{},1,0,1,2,3A x y B ===-,则()R C A B = ( )A .{}0,1B .{}0,1,2C .{}1,0,1-D .{}1,3- 【答案】B2.若复数232018|34|134i z i i i ii-=++++++-…,则z 的共轭复数的虚部为( )A .15-B .95-C .95D .95i -【答案】B3.设537535714(),(),log 755a b c -===,则c b a ,,的大小关系是( )A .c a b <<B .b a c <<C .a c b <<D .a b c <<【答案】D4. 一个几何体的三视图如图所示,那么这个几何体的表面积是( )A .16+B .16+C .20+D .20+【答案】B5.下列命题正确的个数是( )1:p 若,m n 是两条不同的直线,,αβ是两个不同的平面,若,,,m n m n ααββ⊂⊂∥∥,则αβ∥【错误】2:p 命题“32000,10x x x ∃∈-+≤R ”的否定是“32,10x R x x ∀∈-+≥”【错误】3:p 函数sin()6y x πω=+在2x =处取得最大值,则正数ω的最小值为6π【正确】4:p 若随机变量()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.已知随机变量()~6,4X N ,则()280.8185P X <≤=【正确】 A .1个 B .2个 C .3个D .4个【答案】B6. 过双曲线22:1x y Γ-=上任意点P 作双曲线Γ的切线,交双曲线Γ两条渐近线分别交于,A B 两点,若O 为坐标原点,则AOB ∆的面积为( )A .4B .3C .2D .1 【答案】D 7. 函数2sin ()xxf x e=在[,]ππ-的图像大致为( )8. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的 推论,如图一,主要用于解释中国传统文化中的太极衍生原理. 数列中的每一项,都代表太极衍生过程中曾经经历过的两仪 数量总和.它是中华传统文化中隐藏着的世界数学史上第一道数 列题,0,2,4,8,12,18,…,如图二,是求大衍数列 前n 项和的程序框图,执行该程序框图,输入10m =,则输 出的S 为( )A. 100B. 250C. 140D. 190【答案】D9.已知ABC ∆所在平面内有两点,P Q ,满足0,PA PC QA QB QC BC +=++=,若 4,2AB AC == ,23APQ S ∆=,则2AB AC BC ⋅+的值为( )A. ±B. 8±C. 12±D. 20±【答案】D【解析】因为0PA PC +=,所以P 为AC 中点,又因为QA QB QC BC ++= 即QA QB BC QC BQ +=-= ,所以2QA BQ =,所以Q 为线段AB 的靠近B 的三等分点.所以13APQABC S S ∆∆=,所以1sin 22ABC S AB AC A ∆== ,所以1sin 2A =,cos Acos AB AC AB AC A ⋅=⋅=±10.已知三棱锥S A B C -的底面是以AB 为斜边的等腰直角三角形,且2AB SA SB SC ====,则该三棱锥的外接球的体积为( )ABCD【答案】D11.实数x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,它表示的平面区域为C ,目标函数2z x y =-的最小值为1p .由曲线()230y x y =≥,直线3x =及x 轴围成的平面区域为D ,向区域D 内任投入一个质点,该质点落入C 的概率为2p ,则1224p p -的值为( ) A .12B .35C .23D .43【答案】C【解析】画出可行域如下图所示,由图可知,目标函数在点31,22A ⎛⎫ ⎪⎝⎭处取得最小值,且最小值为12z =,即112p =.区域C的面积为1112222⨯⨯=,平面区域D2112612p ==,所以121224133p p -=-=.12. 若函数2()ln ln x f x ax x x x =+--有三个不同的零点,则实数a 的取值范围是( )A. 1(1,)1e e e -- B.1[1,]1e e e -- C. 1(,1)1e e e --- D. 1[,1]1e e e --- 【解析】由题意可得ln ,(0,)ln x xa x x x x=-∈+∞-有3个不同解,令ln (),ln x xg x x x x=--22221ln 1ln ln (1ln )(2ln )(0,),'(),(ln )(ln )x x x x x x x g x x x x x x x ----∈+∞=-=--则当(0,)x ∈+∞时,令2ln y x x =-,则1211'2,(0,),'0,2x y x y y x x -=-=∈<当递减;当1(,),'0,2x y y ∈+∞>递增,则min11ln 1ln 20,(0,)2y x =-=+>∈+∞则当时,恒有2ln 0.'()0,x x g x ->=令得1x =或,(0,1),'()0,()x e x g x g x =∈<且时递减;(1,),'()x e g x g x ∈>时递增;(,)x e ∈+∞时,'()0,()g x g x <递减,则()g x 的极小值为(1)1,()g g x =的极大值为1(),1e g e e e=--结合函数图象可得实数a 的取值范围是1(1,)1e e e--.[答案]A 二.填空题:本大题共4小题,每小题5分,共20分.13. 若()6111ax x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是11-,则实数a 的值为_________. 【答案】214.已知椭圆22221(0)x y a b a b+=>>的左焦点1F ,过点1F 作倾斜角为30︒的直线与圆222x y b +=,则椭圆的离心率为_________.15.已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则910112a a a a+++的最小值为_________.【解析】由题意可得:9101112128a a a a S S +++=-,由8426S S -=可得8446S S S -=+,由等比数列的性质可得:484128,,S S S S S --成等比数列,则()()2412884S S S S S -=-,综上可得:249101112128444(6)361224S a a a a S S S S S ++++=-==++≥ 当且仅当46S =时等号成立.综上可得,则9101112a a a a +++的最小值为24.16.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知6a c +=,(3cos )tan sin 2BA A -=,则ABC ∆的面积的最大值为 .【答案】 (3cos )tansin 2B A A -=,∴sin (3cos )sin 1cos B A A B-=+,整理得 3sin sin sin B A C =+,则3b a c=+ 又6a c +=,∴2b =.又2222cos b a c ac B =+-,则24()22cos 362(1cos )a c ac ac B ac B =+--=-+,∴16cos 1B ac=-∴11cos 22ABC S ac B ∆===, 6a c +=,∴9ac ≤∴ABC S ∆≤=3a c ==时取等号.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. (一)必考题17. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,且22()(2a b c bc --=. (1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,且1sin 1=A a ,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .【解析】(1)由22()(2a b c bc --=,222a b c --=,所以222c o s 2b c a A bc +-==6A π∴= (2)设{}n a 的公差为d ,由得21=a ,且2428a a a =,∴2111(3)()(7)a d a d a d +=++.又0d ≠,∴2d =,∴2n a n =.∴14111(1)1n n a a n n n n +==-++, ∴11111111(1)()()()122334111n n S n n n n =-+-+-++-=-=+++… 18. 如图,在四棱锥S ABCD -中,SCD ∆为钝角三角形,侧面SCD 垂直于底面ABCD ,CD SD =,点M 是SA 的中点,AD BC ∥,90ABC ∠=︒,12AB AD BC ==. (1)求证:平面MBD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60 ,求二面角B MD C --余弦值.【解析】(1)证明:取BC 中点E ,连接DE ,设AB AD a ==,2BC a =, 依题意得,四边形ABED 为正方形,且有BE DE CE a ===,BD CD ==, 所以222BD CD BC +=,所以BD CD ⊥,又平面SCD ⊥底面ABCD ,平面SCD I 底面ABCD CD =,BD ⊂底面ABCD , 所以BD ⊥平面SCD . 又BD ⊂平面MBD ,所以平面MBD ⊥平面SCD (2)过点S 作CD 的垂线,交CD 延长线于点H ,连接AH ,因为平面SCD ⊥底面ABCD ,平面SCD I 底面ABCD CD =,SH CD ⊥SH ⊂平面SCD ,所以SH ⊥底面ABCD ,故DH 为斜线SD 在底面ABCD 内的射影, SDH ∠为斜线SD 与底面ABCD 所成的角,即60SDH ∠=︒由(1)得,SD =,所以在Rt SHD ∆中,SD =,2DH =,2SH a =,在ADH ∆中,45ADH ∠=︒,AD a =,2DH a =,由余弦定理得2AH a =, 所以222AH DH AD +=,从而90AHD ∠=︒,过点D 作DF SH ∥,所以DF ⊥底面ABCD ,所以,,DB DC DF 两两垂直,如图,以点D 为坐标原点,DB uu u r 为x 轴正方向,DC u u u r为y 轴正方向,DF uuu r为z轴正方向建立空间直角坐标系,则),0,0B,(),0C,0,S ⎛⎫⎪ ⎪⎝⎭,,,022A a a ⎛⎫- ⎪ ⎪⎝⎭,,,424M a a a ⎛⎫- ⎪ ⎪⎝⎭, 设平面MBD 的法向量(),,n x y z =r0n DB n DM ⎧⋅=⎪⎨⋅=⎪⎩r uu u r r uuu u r得00424x y z =-+=⎩ 取1z =得n ⎛⎫= ⎪ ⎪⎝⎭r ,设平面MCD 的法向量(),,m x y z '''=u r00m DC m DM ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuu u r得0042x y z '='''-+=⎩,取1z '=得,()m =u r ,所以cos ,7n mn m n m⋅===⋅r u rr u r r u r 故所求的二面角B MD C --19. IC 芯片堪称“国之重器”,其制作流程异常繁琐,制作IC 芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemens process )这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片达标,没有使用该工艺的20片单晶的晶圆中有12片达标.(1)用列联表判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemens process)这一工艺标准有关?(2)在得到单晶的晶圆后,接下来的生产制作还需对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,每个环节出错需要修复的费用均为20元,第四环节生产正常的概率为34,此环节出错需要修复的费用为10元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)参考公式:22()=,()()()()n ad bcK n a b c da b c d a c b d-=+++ ++++参考数据:【解析】(1)由题意列列表为:故250(288212)257.879 302040103K⨯-⨯==>⨯⨯⨯故有99.5%的把握认为晶圆的制作效果与使用西门子制程这一工艺技术有关(2)设i A 表示检测到第i 个环节有问题,(1,2,3,4)i =,X 表示成为一个合格的多晶圆需消耗的费用,则X 的可能取值为:0,10,20,30,40,50,60,700X =,表明四个环节均正常312342324(0)()()34108P X P A A A A ==== 10X =表明第四环节有问题31234218(10)()()34108P X P A A A A ====20X =表明前三环节有一环节有问题12312336(20)()()334108P X C ===30X =表明前三环节有一环节及第四环节有问题12312112(30)()()334108P X C === 40X =,表明前三环节有两环节有问题22312318(40)()()334108P X C ===50X =表明前三环节有两环节及第四环节有问题2231216(50)()()334108P X C ===60X =表明前三环节有问题31234133(60)()()34108P X P A A A A ====70X =四环节均有问题31234111(70)()()34108P X P A A A A ====费用X 分布列为:故:024108203630124018506603701121545108542EX ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯===(元)故大约需要耗费452元20. 已知抛物线C 顶点在原点,焦点在y 轴上,抛物线C 上一点(),2Q a 到焦点的距离为3,线段AB 的两端点()11,A x y , ()22,B x y 在抛物线C 上. (1)求抛物线C 的方程;(2)在抛物线C 上存在点()33,D x y ,满足312x x x <<,若ABD ∆是以角A 为直角的等腰直角三角形,求ABD ∆面积的最小值. 【答案】(1)24x y =;(2)最小值为16.【解析】(1)设抛物线的方程为22x py =,抛物线的焦点为F ,则322pQF ==+,所以1p =,则抛物线C 的方程为24x y =.(2)如图所示,设211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,233(,)4x D x ,根据抛物线关于y 轴对称,取10x ≥,记1AB k k =, 2AD k k =,则有2114x x k +=, 3124x x k +=,所以2114x k x =-, 3214x k x =-, 121k k ⋅=-, 又因为ABD ∆是以A 为顶点的等腰直角三角形,所以AB AD =,2131x x x x -=-,将23,x x 代入得:112122k x k x -=- 化简求出1x ,得: 3112114422k x k k -=+, 则()2222112114411||122ABDk S AB k k k ∆⎛⎫+=⋅=⨯+⨯ ⎪+⎝⎭,可以先求AB 的最小值即可,2121144k AB k k +=+,令()32222211t t y t t t t++==++, 则()()()()()1322222223122112t t t t t t y t t+⋅⋅+-+++'=()()()()()()11233223222222213322111t tt t t t tt t t t tt t ++----+-+-==++()()()()122222111tt t t t +-+=+所以可以得出当1t =即11k =时, AB最小值为10x =,即当()0,0A ,()4,4B , ()4,4D -时, ABD ∆为等腰直角三角形,且此时面积最小,最小值为16.21. 已知函数2()ln ,()().2a f x x x g x x x a a R ==+-∈(1)若直线(0)()(),x t t y f x y g x A B =>==与曲线和分别交于两点,且曲线()y f x = 在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ>>已知 若不等式112ex x λλ+<⋅恒成立,求λ的取值范围.【解析】(1)依题意,函数()f x 的定义域为(0,+∞),'()ln 1,'() 1.f x x g x ax =+=+因为曲线()y f x =在A 处的切线与()y g x =在B 处的切线相互平行,所以'()'()(0,)f t g t =+∞在有解,即方程ln 0(0,)t at -=+∞在有解.……………………2分方程ln 0(0,)t at -=+∞在有解转化为函数ln y x y ax ==与函数的图像在(0,)+∞上有交点,如图,令过原点且与函数ln y x =的图像相切的直线的斜率为k ,只须.a k≤令切点为000000ln 1(,ln ),'|,x x x A x x k y k x x ====则又,所以000ln 1,x x x =解得 01,x e k e ==于是,所以1.a e≤………………………………………5分 (2)2()()()ln (0),'()ln .2a h x f x g x x x x x a x h x x ax =-=--+>=-所以因为12,()x x h x 为在其定义域内有两个不同的极值点,所以12,ln 0x x x ax -=是方程的两个根,即12112212ln ln ln ,ln ,.x x x ax x ax a x x -===-作差得……………………………6分因为120,0,,x x λ>>>所以112121ln ln 1e x x x x λλλλλ+<⋅⇔+<+⇔+<1212121()ax ax a x x a x x λλλλ++=+⇔>+⇔121121212212ln ln (1)()1ln x x x x x x x x x x x x λλλλ-+-+>⇔>-++⇔112122(1)(1)ln .x xx x x x λλ+->+……8分令12x t x =,则(1,)t ∈+∞,由题意知,不等式(1)(1)ln (1,)t t t t λλ+->∈+∞+在上恒成立. 令2222(1)(1)1(1)(1)()()ln ,'().()()t t t t t t t t t t t λλλϕϕλλλ+-+--=-=-=+++则 (ⅰ)若21,(1,),'()0,t t λϕ≥∈+∞>对一切所以()(1,)t ϕ+∞在上单调递增,又(1)0,ϕ=所以()0t ϕ>(1,)+∞在上恒成立,符合题意.……………………………10分(ⅱ)若221,(1,)t λλ>∈当时,2'()0;(,),t t ϕλ<∈+∞当时2'()0,()(1,)t t ϕϕλ>所以在上单调递减,在2(,)λ+∞上单调递增,又(1)0,())t ϕϕ=∞所以在(1,+上不能恒小于0,不符合题意,舍去.综合(ⅰ)(ⅱ)得,若不等式112e x x λλ+<⋅恒成立,只须2 1.0,1λλλ≤>≤又所以0<.………12分(二)选考题 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22. 选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C的参数方程为1()2x y ααα⎧=⎪⎨=+⎪⎩为参数,直线1:0l x =,直线 2:0l x y -=,以原点O 为极点,x 轴的正半轴为极轴(取相同的长度单位)建立极坐标系.(1)求曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长.23. 选修4-5:不等式选讲已知0a >,0b >,且222a b +=.(1)若2214|21||1|x x a b +≥---恒成立,求x 的取值范围; (2)证明:5511()()4a b a b++≥.【解析】(1)设,1,1|21||1|32,1,21,.2x x y x x x x x x ⎧⎪≥⎪⎪=---=-≤<⎨⎪⎪-<⎪⎩由222a b +=,得221()12a b +=,故22222222221411414()()(14)22b a a b a b a b a b +=++=+++19(1422≥++=, 所以9|21||1|2x x ≥---. 当1x ≤时,92x ≤,得912x ≤≤;当112x ≤<时,9322x -≤,解得136x ≤,故112x ≤<; 当12x <时,92x -≤,解得92x ≥-,故9122x -≤<.综上,9922x -≤≤.(2)55554411()()b a a b a b a b a b ++=+++5522222222()2()=4b a a b a b a b a b=+++-≥+。
黄冈市2018-2018学年高三数学月考试卷一.填空题(每小题4分,共48分):1.复数2(2)(1)12i i i+--的值是_____。
2.函数23log )(x x f =在其定义域上单调递减,且值域为]4,2[,则它的反函数的值域是_________。
3.已知53)4cos(=+x π, 则x 2sin 的值为 。
4.已知10张奖券中只有3张有奖,5个人购买(每人买一张),至少有1人中奖的概率是______。
5.点)3,0(F 是双曲线8822=-ky kx 的一个焦点,则=k _______。
6.设P 为双曲线1422=-y x 上一动点,O 为坐标原点,M 为线段OP 的中点.则点M 的轨迹方程是______________。
7.若方程14222=-++my m x 表示椭圆,则m 的取值范围是_______。
8.已知x f x x b x a x ⋅==-=∈)(),2cos ,sin 2(),1,cos (],2,0[则π的最大值是_______。
9.经过点(―7, ―62), (27, ―3)的双曲线的标准方程________。
10.已知等差数列{a n }的通项公式a n = 2n +1,其前n 项和为S n ,则数列{nS n}的前10项和为_______。
11.设a ,b 都是实数,给出下列条件:①1>+b a ;②2=+b a ;③2>+b a ;④222>+b a ;⑤1>ab .其中能推出“a ,b 中至少有一个数大于1”的条件是 .(请你把正确的序号都填上)12.定义一种运算“﹡”对于正整数满足以下运算性质:(1)2﹡2018 = 1;(2)(2n + 2)﹡2018 = 3×[ (2n )﹡2018],则3log (2018﹡2018)=______。
二.选择题(每小题4分,共16分):13.设函数4)2(,),1,0()(=≠>=-f a a a x f x,则( ) A .)1()2(->-f f B .)2()1(->-f f C .)2()1(f f > D .)2()2(f f >- 14.在等差数列{}n a 中,满足7473a a =, 且01>a ,若n S 取得最大值,则=n ( ) A .6 B .7 C .8 D .915.与两圆422=+y x 及1)5(22=+-y x 都相外切的动圆圆心的轨迹是 ( ) A .圆 B .椭圆 C .双曲线一支 D .抛物线16.设θ是第二象限的角,则必有 ( )2cos2sin.D 2cos2sin.C 2cot2tanB 2cot2tan.θθθθθθθθ<><⋅>A三.解答题:17.(本题满分12分)已知51cos sin ,02=+<<-x x x π.(1)求x x cos sin -的值; (2)求223sin 2sin cos cos 2222cot tan x x x x x x-++的值.18.(本题满分12分)已知椭圆C :116422=+y x (理)已知点)sin 4,cos 2(ααA 在椭圆C 上运动,B 点在x 轴上滑动,且|AB |=4。
湖北省黄冈中学2018届高三五月模拟考试数学(理工类)本试题卷共6页,共22题,其中第15、16题为选考题.满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B铅笔涂黑.考生应根据自己选做的题目准确填涂题号,不得多选.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U ={1,2,3,4,5,6},M ={1,4},N ={2,3},则集合{5,6}等于( )A .M ∪NB .M ∩NC .(∁U M )∪(∁U N )D .(∁U M )∩(∁U N ) 2.已知ss p :,x R $?使1sin 2x x <成立. 则p Ø为( )A .,x R $?使1sin 2x x =成立B .,x R "?1sin 2x x <均成立C .,x R $?使1sin 2x x ³成立D .,x R "?1sin 2x x ³均成立3.由曲线23,y x y x ==围成的封闭图形的面积为( )A .112B .14C .13D .7124.向圆内随机投掷一点,此点落在该圆的内接正n 边形*(3,)n n N ≥∈内的概率为n P下列论断正确的是( )A .随着n 的增大,n P 增大B .随着n 的增大,n P 减小C .随着n 的增大,n P 先增大后减小D .随着n 的增大,nP 先减小后增大5.为得到函数sin()3y x π=+的图象,可将函数sin y x =的图象向左平移m个单位长度,或向右平移n 个单位长度(m ,n 均为正数),则||m n -的最小值是( )A .43πB .23π C .3π D .2π 6.已知等差数列{}n a 的前n 项和为n S ,且*,(,n m n mS S m n N m n==∈且)m n ≠,则下列各值中可以为n m S +的值的是( )A .2B .3C .4D .57.已知变量,x y 满足不等式组21022020x y x y x y +-≥⎧⎪+-≤⎨⎪-+≥⎩,则22x y z =+的最小值为( )A . 52B .2 C. D.8.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22 0C ”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):① 甲地:5个数据的中位数为24,众数为22; ② 乙地:5个数据的中位数为27,总体均值为24;③ 丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.则肯定进入夏季的地区有 ( )A . 0个B . 1个C . 2个D . 3个9.在等腰梯形ABCD 中,,E F 分别是底边,AB CD 的中点,把四边形AEFD 沿直线EF 折起后所在的平面记为α,P α∈,设,PB PC 与α所成的角分别为1212,(,θθθθ均不为0).若12θθ=,则点P 的轨迹为( ) A .直线 B .圆 C .椭圆 D .抛物线10.已知关于x 的方程cos xk x=在(0,)+∞有且仅有两根,记为,()αβαβ<,则下列的四个ss 正确的是( )A .2sin 22cos ααα=B .2cos 22sin ααα=C .2sin 22sin βββ=-D .2cos 22sin βββ=-二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为12.设(1,1,2),(,,)a b x y z =-=,若22216x y z ++=, 则a b ⋅的最大值为 .13.过抛物线2:2C x y =的焦点F 的直线l 交抛物线C 于,A B 两点,若抛物线C 在点B 处的切线斜率为1,则线段AF = . 14.已知数列A :123,,,,n a a a a *(3)n n N ≥∈,中,令{}*|,1,,A i j T x x a a i j n i j N ==+≤<≤∈,()A card T 表示集合A T 中元素的个数.(1)若:1,3,5,7,9A ,则()A card T = ;(2)若1i i a a c +-=(c 为常数,且0c ≠,11i n ≤≤-)则()A card T = .(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,PC 切圆O 于点C ,割线PAB 经过圆心O , 弦CD AB ⊥于点E ,已知圆O 的半径为3,2PA =,则CE =______.16.(选修4-4:坐标系与参数方程)已知在平面直角坐标系xoy 中,圆C 的参数方程为3cos ,(13sin x y θθθ⎧=+⎪⎨=+⎪⎩为参数),以ox 为极轴建立极 坐标系,直线l 的极坐标方程为cos()0.6πρθ+=则圆C 截直线l 所得的弦长为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知ABC ∆中,21,,3AC ABC BAC x π=∠=∠=,记()f x AB BC =⋅. (1)求()f x 解析式并标出其定义域;(2)设()6()1g x mf x =+,若()g x 的值域为3(1,]2,求实数m 的值.18.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,把它们编号,利用随机数表法抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图,如图所示. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(3)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和期望.19.(本小题满分12分)已知某几何体的直观图和三视图如下图所示(转下页),其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形, (1)求证:BN 11C B N ⊥平面;(2)设θ为直线1C N 与平面1CNB 所成的角,求sin θ的值; (3)设M 为AB 中点,在BC 边上求一点P ,使MP //平面CNB 1 ,求BPPC的值.8正视图侧视图俯视图(第19题图) (第20题图)20.(本小题满分12分)已知数列{}n a 的各项均为正数,观察程序框图,当2k =时, 23S =; 当3k =时,34S =. (1)试求数列{}n a 的通项;(2)设若[]x 表示不大于x 的最大整数(如[2.10]2,[0.9]0==), 求22222[log 1][log 2][log 3][log (21)][log (2)]nna a T =+++-+关于n 的表达AN11式.21. (本小题满分13分)已知,A B 是椭圆2222:1(0)x y C a b a b+=>>的左,右顶点,B (2,0),过椭圆C 的右焦点F 的直线交椭圆于点M ,N , 交直线4x =于点P ,且直线PA ,PF ,PB 的斜率成等差数列. (1)求椭圆C 的方程;求12S S(2)若记,AMB ANB ∆∆的面积分别为12,S S 的取值范围.22.(本小题满分14分)设()x g x e =,()[(1)]()f x g x a g x =λ+-λ-λ,其中,a λ是常数,且01λ<<. (1)求函数()f x 的最值;(2)证明:对任意正数a ,存在正数x ,使不等式()11g x a x--<成立; (3)设120,0λλ>>,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ.届湖北省黄冈中学五月模拟试题1.【答案】D 2. 【答案】D【解析】原ss 为特称ss ,故其否定为全称ss ,即:p ⌝,sin 2xx x ∀∈≥R . 3.【答案】A【解析】12334100111()()()|3412S x x d x x x =-=-=⎰ 4.【答案】A【解析】22122sin sin22n nr n n n P r ππππ==,设()2sin f x x x π=,可知 ()222'sin cosf x x x x πππ=-,可[3,4]x ∈时()222'sin cos 0f x x x xπππ=->,当 (4,)x ∈+∞时, ()222'costan 0f x xx x πππ⎛⎫=->⎪⎝⎭,故n P 在*3()n n N ≥∈时单调递增.5.【答案】B【解析】由条件可得121252,2(,)33m k n k k k N ππππ=+=+∈,则124|||2()|3m n k k ππ-=--,易知121k k -=时min 2||3m n π-=6.【答案】D【解析】由已知,设2n S An Bn =+,则22()1()1n m n S An Bn An B m m mAm B n S Am Bm n ⎧=+=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=+=⎪⎩两式相减得,()0B m n -=,故10,B A mn==。
黄冈中学高考数学模拟测试题(理科)3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,用时120分钟.第Ⅰ卷(选择题,满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的代号填在指定位置上)1.已知平面上的直线L 的方向向量=(-45,35),点A(-1,1)和B(0,-1)在L 上的射影分别是A 1和B 1,若=λ,则λ的值为( )A .115B .-115C .2D .-22.下列命题中,正确的个数是( ) ①若||+||=0,则==;②在△ABC 中,若++=,则O 为△ABC 的重心; ③若,是共线向量,则·=||·||,反之也成立;④若,是非零向量,则+=的充要条件是存在非零向量,使·+·=0. A .1 B .2 C .3 D .4 3.若命题P :x ∈A ∩B ,则﹁P ( ) A .x ∈A 且x ∈B B .x ∈A 或x ∈B C .x ∈A 且x ∈B D .x ∈A ∪B4.已知函数f(x)=log 2|ax -1| (a ≠0)满足关系式f(-2+x)=f(―2―x),则a 的值为( )A .1B .-12C .14D .-15.已知A 、B 、C 、D 是同一球面上的四点,且每两点间距都等于2,则球心到平面BCD 的距离是( )A .63B .66C .612D .6186.若数列{a n }是等差数列,首项a 1>0,a 2018+a 2018>0,a 2018+a 2018<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4018B .4018C .4018D .40187.已知f(x)=2x +3,(x ∈R),若|f(x)-1|<a 的必要条件是|x +1|<b ,(a 、b >0).则a 、b 之间的关系是( )A .a ≤b2B .b <a2C .b ≥a2D .a >b28.已知f(x)为R 上的增函数,点A(-1,1),B(1,3)在它的图象上,f -1(x)是它的反函数,则不等式|f -1(log 2xkl)|<1的解集为( )A .{x|-1<x <1}B .{x|2<x <8}C .{x|1<x <3}D .无法确定9.函数y =-3sinx +cosx 在x ∈[-π6,π6]时的值域是( ) A .[0, 62]B .[-3,0]C .[0, 3]D .[0,1]10.在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择了3个点,刚好构成直角三角形的概率是( )A .15B .14C .13D .12第Ⅱ卷(非选择题,共计100分)二、填空题(本大题共5小题,每小题5分,共25分,把正确的答案填在指定位置上) 11.若数列x,a 1,a 2,y 成等差数列,x,b 1,b 2,y 成等比数列,则(a 1+a 2)2b 1·b 2的取值范围是________.12.将函数y =x 2的图象F 按向量=(3,-2)平移到F ′,则F ′的函数解析式为_______.13.设命题P :|4x -3|≤1,命题q :x 2-(2a +1)x +a(a +1)≤0,若﹁P 是﹁q 的必要不充分条件,则实数a 的取值范围是_______.14.在实数的原有运算法则中,我们补充定义新运算“○+”如下:当a ≥b 时,a ○+b =a ;当a <b 时,a ○+b =b 2;则函数f(x)=(1○+x)·x ―(2○+x),x ∈[―2,2]的最大值等于________(“·”与“-”分别为乘法与减法). 15.设随机变量ξ服从正态分布N(1,22),若P(ξ≤c)=43P(ξ>c),则常数c= (参考数据:φ(2)=0.9773) ( )A .2B .3C .4D .5三.解答题(本大题共6个小题,共75分).16.已知△ABC 的顶点A(3,-1),AB 边上的中线所在直线方程为:3x +7y -19=0,AC 边上的高所在直线方程为6x ―5y ―15=0,求BC 边所在直线方程.17.已知向量=(cos 4x,-1),=(1,cin 4x +3sin2x),x ∈R ,f(x)=·. (1)求函数f(x)的最小正周期;(2)若x ∈[0, π2],求f(x)的最值及相应的x 值.18.平面内有向量=(1,7),=(5,1),=(2,1),点Q 为直线OP 上的一个动点. (1)当·取最小值时,求的坐标;(2)当点Q 满足(1)的条件和结论时,求cos ∠AQB 的值.19.在三棱锥A-BCD中,∠BAC=∠CBD=90°,∠BCD=30°,AB=AC,BC=6.(1)求二面角A―CD―B的平面角的正切值;(2)设过棱AD且与BC平行的平面为α,求点B到平面α的距离.20.已知某企业的原有产品,每年投入x万元,可获得的年利润可表示为函数:p(x)=―1100(x―30)2+8(万元).现开发一个回报率高,科技含量高的新产品,据预测,新产品每年投入x万元,可获得利润Q(x)=―99100(100―x)2+2575(100-x)(万元),新产品开发从“十五”计划的第一年开始,用两年时间完成,这两年,每年从100万元的生产准备金中,拿出80万元来投入新产品开发,从第三年开始这100万元就可以全部用于新旧两种产品的生产投入.(1)为解决资金缺口,第一年向银行贷款1000万元,利率5.5%(不计复利),第五年底一次性向银行偿还本息共计多少万元?(2)从新产品投产的第三年开始,从100万元的生产准备资金中,新旧两种产品各应投入多少万元,才能使年利润最大?(3)从新旧产品的五年最高利润中拿出70%来,能否还清银行的贷款?-a 2a 2ADCBRHO x21.设数列{a n }是以a 为首项,t 为公比的等比数列,令b n =1+a 1+a 2+…+a n ;C n =2+b 1+b 2+…+b n ,n ∈N +.(1)试用a,t 表示b n 和C n ;(2)若a >0,t >0且t ≠1,试比较C n 与C n +1的大小;(3)是否存在实数对(a,t),其中 t ≠1,使{C n }成等比数列,若存在,求实数对(a,t)和{C n };若不存在,说明理由.黄冈中学高考数学模拟测试题3参考答案1.D 2.B 解:③、④不成立,④中若⊥,⊥不一定有+=3.B 4.B 5.B 解:A -BCD 为正四面体,球为其外接球,设OH =x .则⎩⎨⎧AH =R +x =263R 2-x 2=43⇒x =66. 6.B7.C 解:由|x +1|<a2⇒|x +1|<b8.B 9.C10.C 解:5条直径. P =C 15·C 18 C 310=13.11.(-∞,0)∪[4,+∞] 解:(a 1+a 2)2b 1b 2=(x +y)2xy =2+(x y +yx )≥4或≤0.1212.y =x 2-6x +7 解:平移公式:⎩⎨⎧x =x ′-3y =y ′+213.[0, 12] 解:q :a ≤x ≤a +1则﹁q :x <a 或x >a +1.p :12≤x ≤1,则﹁p :x <12或x >1.∴⎩⎪⎨⎪⎧a ≤12a +1≥1⇒0≤a ≤12.14.6 解:x ∈[-2,1]时,f(x)=1·x ―2∈[―4,―1],x ∈(1,2)时,f(x)=x 2·x ―2 ∈(―1,6).x =2时,f(x)=22·2-2=6.15. 5; 解:P(ξ≤c)=43 [1-P(ξ≤c)] ∴P(ξ≤c)=4344=0.9773, ∴φ(c -12)=0.9773, ∴c -12=2 c =5.16.解:易得AC 方程为5x +6y -9=0,由⎩⎨⎧5x +6y -9=03x +7y -19=0 ⇒c(-3,4).设B(x 1,y 1),则⎩⎨⎧6x 1―5y 1―15=03x 1+7y 1-36=0⇒B(5,3).∴BC 直线方程为:x +8y -29=0.17.解:f(x)=·=cos 4x ―sin 4x ―3sin2x =cos2x -3sin2x =2cos(2x +π3). (1)函数f(x)的最小正周期T =π. (2).∵x ∈[0, π2]∴2x +π3∈[π3,4π3]. ∴当2x +π3=π3即x =0时,f(x)mox =1. 当2x +π3=π即x =π3时,f(x)min =-2. 18.解:设=(x.y),∵与共线⇒x =2y . ∴=(2y,y),又=-=(1―2y,7―y), =-=(5―2y,1―y).∴·=(1―2y)(5―2y)+(7―y)(1―y) =5y 2-20y +12=5(y ―2)2―8≥―8.此时y =2,=(4,2). (2)当=(4,2)时,=(-3,5),=(1,-1),·=-8.由﹁q ⇒﹁p ,则﹁q ⊂-﹁p .∴cos ∠AQB ==-8 34·2=-41717.19.解:(法一)(1)设BC 的中点为E ,连结AE ,过E 作EF ⊥CD 于F ,连结AF ,由三垂线定理知∠EFA 为二面角的平面角.∵△EFC ~△DBC ,∴EF BD =CE CD ,∴EF =32.又∵AE =3,∴tan ∠EFA =AEEF =2,∴二面角A ―CD ―B 的平面角的正切值为2. (2)过点D 作DG ∥BC ,且CB =DG ,连结AG , ∴平面ADG 为平面a , ∵BC ∥平面ADG ,∴点B 到平面ADG 的距离等于点C 到平面ADG 的距离,设为h . ∵V C -AGD =V A -CBD ,13S △AGD h =13S △BCD AE , ∴h =677.(法二)以BC 中点OA(0,0,3),B(0,3,0),C(0,-3,0),D(23,3,0),G(23,-3,0). (1)易知面BCD 的一个法向量=(0,0,1), 设面ACD 的一个法向量为=(1,x,y),则⇒⎩⎨⎧(1,x,y)(0,―3,―3)=0,(1,x,y)(23,6,0)=0,解之得⎩⎨⎧x =-33,y =33,∴=(1,-33,33).Cos <,>==331+13+13=55, ∴二面角A ―CD ―B 的平面角的正切值为2. (2)设面AGD 的一个法向量=(1,x,y),则⇒⎩⎨⎧(1,x,y)(23,3,-3)=0,(1,x,y)(0,6,0)=0,解得⎩⎪⎨⎪⎧x =0,y =233, ∴=(1,0, 233).d ==(23,0,0)·(1,0, 233)12+43=677.20.解:(1)五年利息是1000×0.185×5=275(万元),本利和1275万元; (2)设从第三年年初每年旧产品投入x 万元,则新产品投入100-x(万元), 于是每年的利润是:W =P(x)+Q(100-x)=[―1100(x ―30)2+8]+{―99100[100―(100―x)]2+2575[100―(100―x)]} =(-1100x 2+35x -1)+(-99100x 2+2575x)=-x 2+52x -1=―(x ―26)2+675.∴投入旧产品26万元,新产品74万元时每年获得最大利润,最大利润是675万元. (3)因为P(x)在(0,30]上是增函数,所以在100万元的生产准备资金中除去新产品开发外,剩余的20万元全部投入可获得最大利润,于是头两年的利润W 1=2×P(20)=14(万元),后三年的利润是W 2=3×[P(26)+Q(74)]=3×675=2185(万元),故五年的总利润是W =W 1+W 2=2189(万元),又2189×70%=1427.3>1275,所以从新旧产品的五年总利润中拿出70%来,能够还清对银行的欠款.21.解:(1)当t =1,a n =a,b n =1+na,C n =2+(1+a)+(1+2a)+…+(1+na)=2+n(2+a +na)2; 当t ≠1时,a n =atn -1,b n =1+a(1-t n )1-t =1+a 1-t -at n1-tC n =2+n(1+a 1-t )-a1-t ·t(1-t n )1-t(2)C n +1-C n =b n +1=1+a 1-t -at n +11-t =1+a 1-t(1-t n +1)∵a >0 当t >1,1-t <0,1-t n+1<0,C n+1>C n ;0<t <1,1-t >0,当1-t n+1>0,C n+1>C n.. ∴综上所述C n+1>C n .(3)由(1)C n =2+n(1+a 1-t )-a1-t ·t(1-t n )1-t即C n =2-at (1-t)2+(1+a1-t )n +at n +1(1-t)2若{C n }成等比数列,应有⎩⎨⎧2-at(1-t)2=0 ①(1+a1-t)n =0 ②由①②解得 t =2,a =1此时C n =4·2n -1故存在实数对(2,1)使{C n }成等比数列.。
2018年湖北省黄冈高三数学模拟试题(二)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)参考公式: 三角函数的积化和差公式sin αcos β=12[sin (α+β)+sin (α-β)]cos αsin β=12[sin (α+β)-sin (α-β)]cos αcos β=12[cos (α+β)+cos (α-β)]sin αsin β=-12[cos (α+β)-cos (α-β)]正棱台、圆台的侧面积公式:S 台侧= 12(c ′+c )l (其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长)台体的体积公式:V 台体=13(S ′+SS ′+S )h (其中S ′、S 分别表示上、下底面积,h 表示高)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值A .是55B .是95C .是100D .不能确定2.设集合P ={x |(x - 1)(x - 4)≥0,x ∈R },Q ={x |(n - 1)(n - 4)≤0,n ∈N },集合S 满足S ∩Q =S ,S ∩P ={1,4},则集合S 中元素的个数是A .2B .2或4C .2或3或4D .无穷多个 3.|x |≤2的必要但不充分条件是A . |x +1|≤3B . |x +1|≤2C . |x +1|≤1D . |x - 1|≤1 4.教室内有一直尺,无论怎样放置,在地面上总有直线与直尺所在的直线A .垂直B .平行C .相交D .异面5.现从某校5名学生干部中选出4人分别参加 “资源”、“生态”和“环保”三个夏令营,要求每个夏令营活动至少有选出的一人参加,则不同的参加方案的种数是A .90B .120C .180D .3606.为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值是A .98πB .1972πC . 1992π D . 100π7.(理科)函数y =2arccos (x 2-x -14)的值域是A . [0,4π3] B .[2π3,2π] C .[ - 2π3,2π3] D . [0,2π3] (文科)函数y =2cos (sinx )的值域是 A .[2cos 1,2]B .[-2,2]C .[0,2cos 1]D .[-2cos 1,2cos 1]8.将曲线C 向右平移3个单位,再向下平移1个单位得到曲C ′,若曲线C ′的方程为x 24-y25=1,则曲线C 的焦点坐标为A .(6,-1),(0,-1)B .(-6,1),(0,1)C .(-3,2),(-3,-4)D .(3,2),(3,-4)9.向高为H 的圆锥形漏斗匀速地注入化学溶液(漏斗下方口暂时关闭),注入溶液量V 与溶液深度h 的函数图象是A B C D 10.不等式-x 2-4x ≤43x +1-a 的解集是[-4,0],则a 的取值范围是A .a ≤-5B .a ≥53C .a ∈RD .a ≤-5或a ≥5311.设x 1,x 2,x 3分别是方程2x +x =0,log 2x =2,log 21x =x 的实数根,则x 1,x 2,x 3大小关系是A . x 1>x 2>x 3B .x 2>x 1>x 3C .x 2>x 3>x 1D .x 3>x 1>x 212.三棱锥S -ABC 中,E 、F 、G 分别是SA 、SB 、SC 上的点,且SE EA =BF SF =SCSG =2,则截面EFG把三棱锥分成的两部分的体积之比为A .1∶9B .1∶7C .1∶8D .2∶25第II 卷(非选择题 90分) 姓名__________学号______一大题答题卡:二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上.)13.满足f (xy )=f (x )+f (y )的一个函数是f (x )=______(注:只填上你认为正确的一种可能即可)。
2018黄冈中学高三数学五月模拟试卷及答案(理科
5 c 湖北省黄冈中学1,0)得,∴A点坐标为;……2分
∵ ∴ 是的中点∴
∴ 椭圆方程为……5分
(II)当直线N与PQ之一与轴垂直时,四边形PQN面积;
…………6分
当直线PQ,N均与轴不垂直时,不妨设PQ ,
联立代入消去得
设则………8分
∴ ,同理
∴四边形PQN面积………10分
令,则,易知S是以为变量的增函数
所以当时,,∴
综上可知,,∴四边形PQN面积的取值范围为………13分
22 (本小题满分14分)已知函数
(Ⅰ)求此函数的单调区间及最值;
(Ⅱ)求证对于任意正整数n,均有(为自然对数的底数);
(Ⅲ)当a=1时,是否存在过点(1,-1)的直线与函数=f (x)的图象相切? 若存在,有多少条?若不存在,说明理由.
22、(Ⅰ)解由题意.………………1分
当时,函数的定义域为,
此时函数在上是减函数,在上是增函数,
,无最大值.………………3分
当时,函数的定义域为,
此时函数在上是减函数,在上是增函数,
,无最大值.………………5分
(Ⅱ)取,由⑴知,。
2018年湖北省黄冈中学高考数学二模试卷(理科)副标题一、选择题(本大题共12小题,共60.0分)1.已知集合,则A. B. 1, C. 0, D.【答案】B【解析】解:解得,,或;,或;;1,.故选:B.先解出集合A,然后进行补集、交集的运算即可.考查描述法、列举法表示集合的概念,以及交集、补集的运算.2.若复数,则z的共轭复数的虚部为A. B. C. D.【答案】B【解析】解:,,则z的共轭复数的虚部为.故选:B.写出等比数列的前n项和,结合虚数单位i的性质及复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查虚数单位i得运算性质,是基础题.3.设,,,则a,b,c的大小顺序是A. B. C. D.【答案】D【解析】解:,则.故选:D.利用指数函数与对数函数的单调性即可得出.本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.4.一个几何体的三视图如图所示,那么这个几何体的表面积是A. B. C. D.【答案】B【解析】解:由已知中的三视图可得:该几何体是一个以主视图为底面的四棱柱,其底面面积为:,底面周长为:,高为:2,故四棱柱的表面积,故选:B.由已知中的三视图可得:该几何体是一个以主视图为底面的四棱柱,结合柱体表面积公式,可得答案.本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.5.下列命题正确的个数是:若m,n是两条不同的直线,,是两个不同的平面,若,,,,则:命题“,”的否定是“,”:函数在处取得最大值,则正数的最小值为:若随机变量~则,已知随机变量~,则A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解::若m,n是两条不同的直线,,是两个不同的平面,若,,,,则或、相交,故错.:命题“,”的否定是“,”,故错.:函数在处取得最大值,则,可得正数的最小值为,故正确.:若随机变量~则,已知随机变量~,则故正确,故选:B.:若,,,,则或、相交.:命题“,”的否定是“,”.:可得,可得正数的最小值为.:.本题考查了命题真假的判定,属于中档题.6.过双曲线:上任意点P作双曲线的切线,交双曲线两条渐近线分别交于A,B两点,若O为坐标原点,则的面积为A. 4B. 3C. 2D. 1【答案】D【解析】解:双曲线:的渐近线方程为,为双曲线的任意一点,不妨设,双曲线的切线方程为,,,故选:D.由于P为双曲线的任意一点,不妨设,可得双曲线的切线方程为,即可得到,三角形的面积即可求出.本题考查了双曲线的性质,考查了运算能力和转化能力,属于中档题.7.函数在的图象大致为A. B.C. D.【答案】A【解析】解:,则函数是奇函数,则图象关于原点对称,故排除D.当时,,则当时,,函数为增函数,时,,函数为减函数,则当时,取得极大值同时也是最大值,故选:A.根据函数奇偶性,对称性,单调性和最值之间的关系进行判断即可.本题主要考查函数图象的识别和判断,利用函数与图象之间的关系,结合导数与单调性之间的关系以及函数奇偶性的性质是解决本题的关键.8.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论,如图一,主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题,0,2,4,8,12,18,,如图二,是求大衍数列前n项和的程序框图,执行该程序框图,输入,则输出的S为A. 100B. 250C. 140D. 190【答案】D【解析】解:模拟程序的运行,可得,,满足条件n是奇数,,不满足条件,,不满足条件n是奇数,,不满足条件,,满足条件n是奇数,,不满足条件,,不满足条件n是奇数,,不满足条件,,满足条件n是奇数,,不满足条件,,满足条件n是奇数,,不满足条件,,满足条件n是奇数,,不满足条件,,不满足条件n是奇数,,不满足条件,,满足条件n是奇数,,不满足条件,,不满足条件n是奇数,,满足条件,退出循环,输出S的值为190.故选:D.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.9.已知所在平面内有两点P,Q,满足,,若,,,则的值为A. B. C. D.【答案】D【解析】解:因为,所以P为AC中点,又因为,所以,所以,所以Q为线段AB的靠近B的三等分点.所以,因为,所以,所以,或.故.所以.故选:D.推导出P为AC中点,,Q为线段AB的靠近B的三等分点从而求出,或由此能求出.本题考查向量的数量积的求法,考查向量的数量积公式、三角形面积等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.10.已知三棱锥的底面是以AB为斜边的等腰直角三角形,且,则该三棱锥的外接球的体积为A. B. C. D.【答案】D【解析】解:如图所示:三棱锥的底面是以AB为斜边的等腰直角三角形,且,则:,设外接球的半径为R,则:在中,利用勾股定理:,解得:所以:.故选:D.首先确定外接球的球心,进一步确定球的半径,最后求出球的体积.本题考查的知识要点:三棱锥与外接球的关系,球的体积公式的应用.11.实数x,y满足约束条件,它表示的平面区域为C,目标函数的最小值为由曲线,直线及x轴围成的平面区域为D,向区域D内任投入一个质点,该质点落入C的概率为,则的值为A. B. C. D.【答案】B【解析】解:画出可行域如下图所示,由图可知,目标函数在点处取得最小值,且最小值为,即.区域C的面积为:,平面区域D的面积为:,故,所以.故选:B.作出不等式组对应的平面区域,通过目标函数的几何意义,利用数形结合,以及概率求解即可的得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.12.若函数有三个不同的零点,则实数a的取值范围是A. B. C. D.【答案】A【解析】解:令可得,令,则令可得或,令,则,在单调递增,又,当时,,即,.当时,,即,又,.当时,,当时,,当时,,在上单调递减,在上单调递增,在上单调递减,当时,取得极小值,当时,取得极大值.有3个零点,有3解,.故选:A.令,分类参数可得,判断的单调性,求出的极值即可得出a的范围.本题考查了函数零点个数与函数单调性的关系,考查函数单调性的判断与极值计算,属于中档题.二、填空题(本大题共4小题,共20.0分)13.若的展开式中的常数项是,则实数a的值为______.【答案】2【解析】解:的展开式中的常数项是,则实数a的展开式中的常数项是,则实数,故答案为:2.把按照二项式定理展开,可得的展开式中的常数项,再根据常数项为,求得a的值.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知椭圆的左焦点,过点作倾斜角为的直线与圆相交的弦长为,则椭圆的离心率为______.【答案】【解析】解:椭圆的左焦点,过点作倾斜角为的直线与圆相交的弦长为,可得:,可得:,,则,则椭圆的离心率为:.故答案为:.求出直线方程,利用过点作倾斜角为的直线与圆相交的弦长为,列出方程求解即可.本题考查椭圆的简单性质的应用,仔细与圆的位置关系的应用,考查计算能力.15.已知正项等比数列的前n项和为且,则的最小值为______.【答案】24【解析】解:由题意可得:,可得:,由等比数列的性质可得:,,成等比数列,则,综上可得:,当且仅当时等号成立综上可得,则的最小值为24.故答案为:24.由题意可得:,可得:,由等比数列的性质可得:,,成等比数列,可得:,展开利用基本不等式的性质即可得出.本题考查了等比数列的通项公式与求和公式及其性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.16.在中,,且,则的面积最大值为______.【答案】【解析】解:在中,,,即,由正弦定理可得:,解得:.,可得:,当且仅当时等号成立,可得:,当且仅当时等号成立故答案为:.使用半角公式化简条件式,利用正弦定理得出a,b,c的关系,使用余弦定理,同角三角函数基本关系式可求,利用基本不等式,三角形面积公式即可求解.本题考查了正弦定理,三角函数化简,三角形的面积公式,余弦定理,基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题(本大题共7小题,共82.0分)17.在中,角A,B,C的对边分别为a,b,c,且.求角A的大小;若等差数列的公差不为零,且,且、、成等比数列,求的前n项和.【答案】解:在中,由可得.所以.设的公差为,,由得,且即解得:那么数列的前n项和.【解析】由可得结合余弦定理可得答案.等差数列的公差不为零,根据,可得的值,由、、成等比数列,建立关系求解d,可得通项,利用裂项相消可得的前n项和.本题考查了等差等比数列,裂项相消法、余弦定理的应用,考查了推理能力与计算能力,属于中档题.18.如图,在四棱锥中,侧面SCD为钝角三角形且垂直于底面ABCD,,点M是SA的中点,,,.Ⅰ求证:平面平面SCD;Ⅱ若直线SD与底面ABCD所成的角为,求二面角余弦值.【答案】Ⅰ证明:取BC中点E,连接DE,设,,依题意得,四边形ABED为正方形,且有,,,则,又平面底面ABCD,平面底面,底面ABCD,平面SCD.又平面MBD,平面平面SCD;Ⅱ解:过点S作CD的垂线,交CD延长线于点H,连接AH,平面底面ABCD,平面底面,,平面SCD,底面ABCD,故DH为斜线SD在底面ABCD内的射影,为斜线SD与底面ABCD所成的角,即.由Ⅰ得,,在中,,,,在中,,,,由余弦定理得,,从而,过点D作,底面ABCD,、DC、DF两两垂直,如图,以点D为坐标原点,为x轴正方向,为y轴正方向,为z轴正方向建立空间直角坐标系,则0,,,,,,设平面MBD的法向量,由,取,得,设平面MCD的法向量,由,取,得,.故所求的二面角的余弦值为.【解析】Ⅰ取BC中点E,连接DE,设,,由已知可得,则,又平面底面ABCD,由面面垂直的性质可得平面从而得到平面平面SCD;Ⅱ过点S作CD的垂线,交CD延长线于点H,连接AH,可得,则底面ABCD,故DH为斜线SD在底面ABCD内的射影,求解三角形可得,从而,过点D作,则底面ABCD,可得DB、DC、DF两两垂直,以点D为坐标原点,为x轴正方向,为y轴正方向,为z轴正方向建立空间直角坐标系,然后分别求出平面BMD与平面MDC的一个法向量,由两法向量所成角的余弦值可得二面角余弦值.本题考查了平面与平面垂直的判定,考查了二面角的平面角的求法,解答的关键是建立正确的空间右手系,是中档题.19.IC芯片堪称“国之重器”,其制作流程异常繁琐,制作IC芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片达标,没有使用该工艺的20片单晶的晶圆中有12片达标.用列联表判断:这次实验是否有的把握认为单晶的晶圆的制作效果与使用西门子制程这一工艺标准有关?在得到单晶的晶圆后,接下来的生产制作还需对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为,每个环节出错需要修复的费用均为20元,第四环节生产正常的概率为,此环节出错需要修复的费用为10元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?假设质检与检测过程不产生费用参考公式:,参考数据:【答案】解:由题意列表为:故K,故有的把握认为晶圆的制作效果与使用西门子制程这一工艺技术有关.设表示检测到第i个环节有问题,2,3,,X表示成为一个合格的多晶圆需消耗的费用,则X的可能取值为:0,10,20,30,40,50,60,70,,表明四个环节均正常,,,表明第四环节有问题,,,表明前三环节有一环节有问题,表明前三环节有一环节及第四环节有问题,,表明前三环节有两环节有问题,,表明前三环节有两环节及第四环节有问题,,表明前三环节有问题,,表明四环节均有问题,X故E元故大约需要耗费元【解析】由题意列表求出,从而有的把握认为晶圆的制作效果与使用西门子制程这一工艺技术有关.设表示检测到第i个环节有问题,2,3,,X表示成为一个合格的多晶圆需消耗的费用,则X的可能取值为:0,10,20,30,40,50,60,70,分别求出相应的概率,由此能求出X的分布列和数学期望.本题考查独立检验的应用,考查离散型随机变量的分布列和数学期望的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.已知抛物线C顶点在原点,焦点在y轴上,抛物线C上一点到焦点的距离为3,线段AB的两端点,在抛物线C上.求抛物线C的方程;在抛物线C上存在点,满足,若是以角A为直角的等腰直角三角形,求面积的最小值.【答案】解:抛物线C顶点在原点,焦点在y轴上,设抛物线的方程为,抛物线的焦点为F,则,解得,抛物线C的方程为.如图所示,,,,,,,,根据抛物线关于y轴对称,取,记,,则有,,,,,又是以A为顶点的等腰直角三角形,,即,将,代入得,化简,得,则,,令,则,当,即时,最小值为,此时,即当,,时,为等腰直角三角形,且此时面积最小,最小值为16.【解析】设抛物线的方程为,抛物线的焦点为F,则,由此能求出抛物线C的方程.,,,取,记,,则,,,推导出,从而,则,,令,求出,当,,时,为等腰直角三角形,且此时面积最小,最小值为16.本题考查抛物线方程的求法,考查三角形的面积的最小值的求法,考查抛物线、直线方程等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21.已知函数,.若直线与曲线和分别交于A,B两点,且曲线在A处的切线与在B处的切线相互平行,求a的取值范围;设在其定义域内有两个不同的极值点,且已知,若不等式恒成立,求的取值范围.【答案】解:Ⅰ,,,,,曲线在点A处的切线与在点B处的切线相互平行,在有解,即在有解,,.令,则,得,当时,,单调递增,当时,,单调递减,,的取值范围是.Ⅱ由可知,,分别为方程的两个根,即,,不等式恒成立,等价于不等式恒成立.所以原式等价于因为,,所以原式等价于.又由,作差得,,即.所以原式等价于因为,原式恒成立,即恒成立.令,,则不等式在上恒成立.令,则,当,,即时,可见时,0'/>,所以在上单调递增,又,在恒成立,符合题意;当时,可见当时,;当时,0'/>,所以在时单调递减,在时单调递增.又,所以在上不能恒小于0,不符合题意,舍去.综上所述,若不等式恒成立,只须.【解析】Ⅰ由,,可得,由,可得,由曲线在点A处的切线与在点B处的切线相互平行,可得在有解,即在有解,由,可得令,利用导数研究其单调性即可得出.Ⅱ由可知,,分别为方程的两个根,即,,不等式恒成立,等价于不等式恒成立所以原式等价于由,,可得原式等价于又由,作差得,,即可得原式等价于由,原式恒成立,即恒成立令,,则不等式在上恒成立令,利用导数研究其单调性即可得出.本题考查了利用导数研究其单调性极值与最值、等价转化方法、分类讨论方法、数形结合方法,考查了推理能力与计算能力,属于难题.22.已知平面直角坐标系中,曲线C的参数方程为为参数,直线:,直线:,以原点O为极点,x轴的正半轴为极轴取相同的长度单位建立极坐标系.求曲线C和直线,的极坐标方程;若直线与曲C交于O,A两点,直线与曲线C交于O,B两点,求线段AB 的长.【答案】解:曲线C的参数方程为为参数,曲线C的普通方程为,即,将,代入上式,得曲线C的极坐标方程为.直线:,直线的极坐标方程为,直线:,直线的极坐标方程为.设A,B两点对应的极径分别为,,在中,令,得,令,得,,.【解析】由曲线C的参数方程消去参数,求出曲线C的普通方程,由此能求出曲线C的极坐标方程,由直线:,能求出直线的极坐标方程,由直线:,能求出直线的极坐标方程.设A,B两点对应的极径分别为,,在中,令,得,令,得,由此能求出.本题考查曲线的直线的极坐标方程的求法,考查弦长的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.23.已知,且.若是恒成立,求x的取值范围;Ⅱ证明:.【答案】解:Ⅰ,,且,,则,当时,不等式化为,解得,当,不等式化为,解得,当时,不等式化为,解得,综上所述x的取值范围为;证明:,当且仅当时,取得等号.另解:由柯西不等式可得,当且仅当时,取得等号.【解析】Ⅰ运用乘1法和基本不等式可得的最小值,再由绝对值不等式的解法,即可得到所求范围;Ⅱ变形、运用基本不等式或柯西不等式,即可得证.本题考查绝对值不等式的解法和基本不等式的运用:求最值,考查化简整理的运算能力和推理能力,属于中档题.。
黄冈中学2018年高三5月第二次模拟考试理科综合试题考试时间:2018年5月17日上午9:00~11:30 试卷满分:300分注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.可能用到的相对原子质量:H-1 O-16 S-32 Ca-40 Cu-64第I卷一、选择题(本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列关于真核细胞中的DNA说法错误的是A.植物细胞从土壤中吸收的磷元素可以用于DNA合成B.转录时,RNA聚合酶催化游离核糖核苷酸与模板链的碱基互补配对和磷酸二酯键的形成C.细胞中DNA分子的碱基对数与所有基因的碱基对数之和不相等D.一个基因转录时只能以其中的一条链作为模板2.柽柳能够在盐碱环境中正常生长。
研究发现柽柳能积累土壤中的无机盐离子,使其细胞液中的无机盐离子浓度高于土壤溶液。
下列相关叙述,正确的是A.柽柳根尖细胞是自养细胞B.柽柳根细胞吸收无机盐离子和吸收水分子的过程是都需要消耗能量C.柽柳细胞的胞间连丝有信息交流的作用D.柽柳根尖细胞分裂间期染色体数目加倍,出现姐妹染色单体3.将一个濒临灭绝的生物的种群释放到一个新环境中,那里有充足的食物,没有天敌,请分析下列说法正确的是A.该种群的个体数一定会迅速增加B.人类对濒危动植物进行保护,有可能会干扰自然界正常的自然选择C.该濒危物种的不同个体之间、与天敌之间、与无机环境之间在相互影响中不断进化和发展就是共同进化D.该种群某个体的迁出不会导致该种群进化4.右图表示人体内的细胞与外界环境之间进行物质交换的过程。
Ⅰ、Ⅱ、Ⅲ、Ⅳ表示直接与内环境进行物质交换的四种主要器官,①②是有关的生理过程,据图分析下列说法正确的是A.葡萄糖只能从内环境进入细胞,而不能从细胞进入内环境B.内环境的稳态遭到破坏时,必将引起渗透压下降C.Ⅲ器官功能异常,会导致内环境稳态被破坏D.Ⅰ是产热的主要器官,Ⅳ是散热的主要器官5.植物激素甲、乙、丙和生长素类似物NAA的作用模式如右图所示,图中“+”表示促进作用,“-”表示抑制作用。
鄂南高中 华师一附中 黄冈中学 黄石二中 荆州中学 孝感高中 襄阳四中 襄阳五中2018届高三第二次联考理科数学试题命题学校:鄂南高中 命题人:陈佳敏 审题人:吕 骥 审题学校:襄阳四中 审定人:王启冲 张 婷本试卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|2,}xA y y x R ==∈,{|}B x y x R ==∈,则A B =IA .{}1B .(0,)+∞C .(0,1)D .(0,1]2.若复数z 满足22zi z i +=-(i 为虚数单位),z 为z 的共轭复数,则1z +=A B .2C D .33.在矩形ABCD 中,4,3AB AD ==,若向该矩形内随机投一点P ,那么使得ABP ∆与ADP ∆的面积都不小于2的概率为 A .14 B .13C .47 D .494.已知函数()(1)()f x x ax b =-+为偶函数,且在(0,)+∞单调递减,则(3)0f x -<的解集为A .(2,4)B .(,2)(4,)-∞+∞UC .(1,1)-D .(,1)(1,)-∞-+∞U5.已知双曲线22212x y a a-=-的离心率为2,则a 的值为 A .1 B .2-C .1或2-D .-16.等比数列的前n 项和,前2n 项和,前3n 项和分别为,,A B C ,则A .ABC += B .2B AC = C .3A B C B +-=D .22()A B A B C +=+7.执行如图所示的程序框图,若输入0,2m n ==,输出的 1.75x =,则空白判断框内应填的条件为A .1?m n -<B .0.5?m n -<C .0.2?m n -<D .0.1?m n -< 8.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移12π个单位得到函数()g x 的图象,在()g x 图象的所有对称轴中,离原点最近的对称轴为 A .24x π=-B .4x π=C .524x π=D .12x π=9.在239(1)(1)(1)x x x ++++++L 的展开式中,含2x 项的系数是A .119B .120C .121D .720 10.我国古代数学名著《九章算术》记载:“刍甍者,下有袤有广,而上有袤无丈.刍,草也;甍,屋盖也.”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形.则它的体积为 A .1603 B .160 C .2563 D .6411.已知椭圆22:143x y C +=,直线:4l x =与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于,A B 两点,点C 在直线l 上,则“BC //x 轴”是“直线AC 过线段EF 中点”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.下列命题为真命题的个数是①ln 33ln 2<; ②ln eππ<; ③15215<; ④3ln 242e <A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
届黄冈中学高三理科数学模拟试卷及答案2018届黄冈中学高三理科数学模拟试卷及答案多做数学模拟试卷可以熟悉知识点和积累知识,这样才能在高考中考出好。
以下是店铺为你整理的2018届黄冈中学高三理科数学模拟试卷,希望能帮到你。
2018届黄冈中学高三理科数学模拟试卷题目一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知i为虚数单位, R,复数,若为正实数,则的取值集合为( )A. B. C. D.2. 已知集合,,则集合 ( )A. B.C. D.3. 的展开式中的系数为( )A. B. C. D.4. 已知等比数列中,,,且公比,则 ( )A. B. C. D.5.设函数,若,且,则 ( )A. B. C. D.6.某高三毕业班的六个科任老师站一排合影留念,其中仅有的两名女老师要求相邻站在一起,而男老师甲不能站在两端,则不同的安排方法的种数是( )A. B. C. D.7.如下图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则此几何体的表面积为( )A. B. C. D.8.已知抛物线的焦点为,为坐标原点,若抛物线上存在点,使得,则的值为( )A. B. C. D.9.我们可以用随机模拟的方法估计π的值,如下程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生内的任何一个实数),若输出的结果为527,则由此可估计π的近似值为( )A.3.126B.3.132C.3.151D.3.16210.已知函数,,若的图像与的图象有且仅有两个不同的公共点、,则下列判断正确的是( )A. ,B. ,C. ,D. ,11.已知函数和函数在区间上的图象交于三点,则△ 的面积是( )A. B. C. D.12.已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为( )A. B.8 C. D.6第Ⅱ卷非选择题二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡相应的位置上.)13.已知向量 , 满足,,则在方向上的投影为 .14.成书于公元前1世纪左右的中国古代数学名著《周髀算经》曾记载有“勾股各自乘,并而开方除之”,用现代数学符号表示就是,可见当时就已经知道勾股定理.如果正整数满足,我们就把正整数叫做勾股数,下面依次给出前4组勾股数:3,4,5;5,12,13;7,24,25;9,40,41. 则按照此规律,第6组勾股数为 .15.设,实数满足,若恒成立,则实数的取值范围是 .16.在△中,,,且在边上分别取两点,点线段的对称点正好落在边上,则线段长度的.最小值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本题满分12分)在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令, .(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和 .18.(本题满分12分)如图1,在平行四边形中,,,是的中点,现将四边形沿折起,使平面,得到图2所示的几何体,是的中点.(Ⅰ)证明平面 ;(Ⅱ)求二面角的余弦值的大小.19.(本题满分12分)某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调研情况制成如下图所示的列联表:选择坐标系与参数方程选择不等式选讲合计男生 60女生合计 160(Ⅰ)完成列联表,并判断在犯错误的概率不超过0.025的前提下,能否认为选题与性别有关.(Ⅱ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望 .附:,其中 .0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.0010.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.82820.(本题满分12分)已知点分别是椭圆的左右焦点,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)过右焦点作两互相垂直的直线分别与椭圆相交于点和,求的取值范围.21.(本小题满分12分)设函数,,其中 R,…为自然对数的底数.(Ⅰ)当时,恒成立,求的取值范围;(Ⅱ)求证: (参考数据: ).请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中中,曲线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为 .(Ⅰ)把曲线的参数方程化为极坐标方程;(Ⅱ)设曲线与曲线交于两点,与曲线交于两点,若点的直角坐标为,求△ 的面积.23.(本小题满分10分)选修4-5:不等式选讲已知关于的不等式的解集不是空集,记的最小值为 .(Ⅰ)求的值;(Ⅱ)若正实数满足,求的最小值.2018届黄冈中学高三理科数学模拟试卷答案1.【答案】B【解析】为正实数,则 .2.【答案】C【解析】,, .3.【答案】A【解析】的展开通项式为,,即的系数为 .4.【答案】C【解析】由,,得,则 .5.【答案】D【解析】当时,为增函数,又,且,故,则即,所以 .6.【答案】B【解析】方法一: ;方法二: ;方法三: .7.【答案】C【解析】如图所示,可将此几何体放入一个边长为2的正方体内,则四棱锥即为所求,且,,可求得表面积为 .8.【答案】C【解析】方法一:由,得在线段的中垂线上,且到抛物线准线的距离为,则有 .方法二:设则有,则有 .9.【答案】 D【解析】由程序框图可得 .10.【答案】C【解析】方法一:在同一坐标系中分别画出两个函数的图象,则点在第三象限,为两函数在第一象限的切点,要想满足条件,则有如图,做出点关于原点的对称点 ,则点坐标为由图象知,即 .方法二:的图像与的图象有且仅有两个不同的公共点,则方程有且仅有两个根,则函数有且仅有两个零点,,又,则,当时满足函数有且仅有两个零点,此时,,,即 .11.【答案】D【解析】,有图像可得为等腰三角形,底边为一个周期长,高为,则12.【答案】B【解析】设椭圆长轴长为,双曲线实轴长为,焦距为,有题意可得,又,则 .13.【答案】【解析】向量在方向上的投影为 .14.【答案】【解析】方法一:由前4组勾股数可知,第一个数均为奇数,且成等差数列,后两个数是相邻的两正整数,有勾股数满足的关系得第6组勾股数为 .方法二:若设第一个数为,则第二,三个数分别为,第6组的一个数为13,可得第6组勾股数为 .15.【答案】【解析】作出直线所围成的区域,如图所示,,当时,满足题意.16.【答案】【解析】方法一:设,∵A点与点P关于线段MN对称,∴ ,,在中,,,,,由正弦定理:则,当时此时, .方法二:建立如图如示坐标系由得,设,,与交于点,由,得,,此时 .17.【解析】(Ⅰ) 构成递增的等比数列,其中,则,又,得,,. …………………6分(Ⅱ) ,故上述两式相减,得…………………12分18.【解析】(Ⅰ)取的中点,连结、 .因为,,故 .又因为 , ,故 .所以四边形是平行四边形, .在等腰中,是的中点,所以 .因为平面,故 .而,而平面 .又因为,故平面. …………………5分(Ⅱ)建立如图所示空间直角坐标系,则,,,,,,, .设是平面的一个法向量,由,得,令,则 .设是平面的一个法向量,可得 .故,所以二面角的余弦值为. …………………12分19.【解析】(Ⅰ)选择坐标系与参数方程选择不等式选讲合计男生 60 45 105女生 40 15 55合计 100 60 160,故不能认为选题与性别有关.…………………5分(Ⅱ)选择“坐标系与参数方程”与选择“不等式选讲”的人数比例为100:60=5:3,所以抽取的8人中倾向“坐标系与参数方程”的人数为5,倾向“不等式选讲”的人数为3.依题意,得,,,,. …………………9分故的分布列如下:所以. …………………12分20.【解析】(Ⅰ)方法一:由题意得且∴方法二:由,得 .∴椭圆方程为. …………………4分(2)设,,直线为 .直线为联立则,,…………………6分.∵同理令,则当时,,∴ . …………………12分21.【解析】(Ⅰ)令,则①若,则,,在递增,,即在恒成立,满足,所以 ;②若,在递增,且且时,,则使,则在递减,在递增,所以当时,即当时,,不满足题意,舍去;综合①,②知的取值范围为. …………………5分(Ⅱ)由(Ⅰ)知,当时,对恒成立,令,则即; …………………7分由(Ⅰ)知,当时,则在递减,在递增,则,即,又,即,令,即,则,故有. …………………12分22.【解析】(1) 的普通方程为即,所以的极坐标方程为. …………………4分(2)依题意,设点的极坐标分别为 ,把代入,得,把代入,得,所以 ,依题意,点到曲线的距离,所以. …………………10分23.(本小题满分10分)选修4-5:不等式选讲已知关于的不等式的解集不是空集,记的最小值为 . (Ⅰ)求的值;(Ⅱ)若正实数满足,求的最小值.【解析】(Ⅰ)因为,当且仅当时取等号,故,即. …………………5分(Ⅱ)当且仅当时取等号. …………………10分【2018届黄冈中学高三理科数学模拟试卷及答案】。
湖北省黄冈中学2018年五月份模拟考试数学试题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ²B )=P (A )²P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率 k n k k n n P P C k P --=)1()(球的体积公式 334R V π=球 其中R 表示球的半径 一、选择题:本大题12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={直线},N={圆},则M ∩N 中元素的个数为 ( )A .0B .0,1,2其中之一C .无穷多个D .无法确定 2.tan15°-cot15°的值是 ( )A .-3B .-23C .3D .23 3.n 为正奇数,nn ii i i 22)11()11(+-+-+的值是( )A .2B .-2C .0D .2或-24.已知函数,1)(---=a x xa x f 其反函数)(1x f -的图象对称中心是(-1,3),则实数a 等于( )A .-4B .-2C .2D .45.将函数y=f (x )²cos x 的图象按向量a =(4π,1)平移,得到函数y=2sin 2x 的图象那么函数 f (x )可以是 ( ) A .cos x B .2cos x C .sin x D .2sin x则k 等于( )A .4B .4或-4C .-2D .-2或27.设)(),1,0()1(2x f x x x x x f n 且≠+++=- 中所有项的系数和为A n ,则nnn A 2l i m ∞→的值为( )A .2B .21 C .-21 D .-28.如图,在三棱锥P —ABC 中,PA ⊥平面ABC ,∠BAC=90°,AB ≠AC ,D 、E 分别是BC 、 AB 的中点,AC>AD ,设PC 与DE 所成的角为α,PD 与平面ABC 所成的角为β,二面 角P —BC —A 的平面角为γ,则α、β、γ的大小关系是( )A .α<β<γB .α<γ<βC .β<α<γD .γ<β<α9.在曲线y=x 3+x -2的切线中,与直线4x -y=1平行的切线方程是( )A .4x -y=0B .4x -y -4=0C .2x -y -2=0D .4x -y=0或4x -y -4=010.椭圆)0(2222>>=+b a by a x 的左顶点点为A ,左焦点为F ,上顶点为B ,下顶点为C ,离心率31=e ,则直线AB 与CF 的夹角为 ( )A .arctan1124 B .arctan1128 C .arctan524 D .arctan 528 11.棱长为1的正八面体的外接球的体积是( )A .6π B .π2734 C .π328 D .π32 12.我校家长学校邀请了6位同学的父母共12人,请这12位家长中的4位介绍对子女的教育情况,如果这4位中恰有一对是夫妻,那么不同选择方法的种数是 ( )A .60B .120C .240D .480第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在题中横线上. 13.函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 . 14.已知点P(x ,y)在曲线xy 1=上运动,作PM 垂直于x 轴于M ,则△OPM (O 为坐标原点)的周长的最小值为 .15.某两个数学班的学生成绩统计中,甲班标准差大于乙班标准差,而平均成绩相同,说明 .16.如图,以长方体ABCD —A 1B 1C 1D 1的顶点为顶点且四个面都是直角三角形的四面体 是 .(注:只写出其中一个,并 在图中画出相应的四面体)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量a =),23sin ,23(cos x x b =)2sin ,2(cos x x -,且].4,3[ππ-∈x (1)求a ²b 及|a +b |;(2)若)(x f =a ²b -|a +b |,求)(x f 的最大值和最小值.18.(本小题满分12分)一次考试出了12个选择填空题,每题5分,每个题有四个可供选择的答案,一个是正确的,三个是错误的,某同学只知道其中9个题的正确答案,其余3个题完全靠猜测回答.(1)试求这个同学卷面上正确答案不少于10个的概率;(2)设这个同学选择填空题得分为ξ,求Eξ(精确到个位).19.(本小题满分12分)已知函数223)(a bx ax x x f +++=在x =1处有极值10,试确定a ,b 的值.20.(本小题满分12分)如图,在长方体ABCD—A1B1C1D1中,AB=3,AD=6,AA1=3,N 在线段A1D上,AN⊥A1D,M为线段B1C1上一点,且AM⊥A1D.(1)求B1M的长;(3)求点C到平面AMN的距离.21.(本小题满分12分)过点M(-2,0)作直线l交双曲线x2-y2=1于A、B两点,已知=+,(1)求点P的轨迹方程,并说明轨迹是什么曲线;(2)是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程;若不存在,说明理由.22.(本小题满分14分)有n 2(n ≥4)个正数,排成n×n 矩阵(n 行n 列的数表,如图): a 11 a 12 … a 1n a 12 a 22 … a 2n… … … … a n1 a n2 … a nn其中每一行的数成等差数列,每一列的数成等比数列,并且所有的公比都相等,且满足:a 24=1, a 42=81,a 43=163, (1)求公比q ;(2)用k 表示a 4k ;(3)求a 11+a 22+a 33+…+a nn 的值.湖北省黄冈中学2018年五月份模拟考试数学试题(理)参考答案1.A 2.B 3.B 4.C 5.D 6.B 7.A 8.A 9.D 10.D 11.D 12.C 13.)2,1()1,21( 14.22+ 15.乙班学生成绩比较平衡,而甲班成绩差异较大16.A 1-ABC 等 17.解: (1)a ²b .2cos 2sin 23sin 2cos 23cosx xx x x =-= |a +b|],4,3[|,cos |22cos 22)2sin 23(sin )2cos 23(cos 22ππ-∈=+=-++=x x x x x x x∴>∴,0cos x |a+b |=x cos 2.(2)],4,3[.23)21(cos 21cos 2cos 2cos 22cos )(22ππ-∈--=--=-=x x x x x x x f ∴≤≤∴,1cos 21x 当21cos =x 时,)(x f 取得最小值;23-)(,1cos x f x 时=取得值大 值-1.18.解:“这个同学卷面上正确答案不少于10个”等价于3个选择题的答案中正确答案的个数不少于1个,该事件是3次独立重复试验,在每次试验中选中正确答案的概率为.41∴所求事件的概率为64376416496427)41()43()41()43()41(312232113=++=++C C ,或 .6437)43(13=-(2)ξ可能取值分别为45,50,55,60,P(ξ=45)=,649)55(,6427)50(,6427)43(3=====ξξP P.4975.486432106416064955642750642745,641)60(≈==⨯+⨯+⨯+⨯=∴==ξξE P 19.解1)(,23)(2=++='x x f b ax x x f 在 处有极值10,⎩⎨⎧=='∴.10)1(,0)1(f f 即时当或解得3,3.11,4,3,3,101,0232=-=⎩⎨⎧-==⎩⎨⎧=-=⎩⎨⎧=+++=++b a b a b a a b a b a , 1)(,)1(3)(,933)(223='-='++-=x x f x x f x x x x f 在处附近的正负号如图(1)所示,1)(=∴x x f 在处无极值,不合题意;当,16114)(,11,423+-+=-==x x x x f b a 时 1)(),311)(1(3)(='+-='x x f x x x f 在处附近的正负号如图(2)所示,1)(=∴x x f 在处取值极小值10)1(=f ,综上知11,4-==b a 符合题意.20.解法1:分别以AB ,AD ,AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系. (1)设B 1M=x ,则)3,6,0()3,,3(,),3,6,0(),3,,3(11-⋅∴⊥-==x A A x.23,23,0961==∴=-=M B x x 即 (2)∵A 1D ⊥AM ,A 1D ⊥AN ,∴A 1D ⊥平面AMN ,∴A 1D 是平面的法向量,设平面ABCD 的法向量是a =(0,0,1)5536)3,6,0()1,0,0(||||,cos 22111-=+-⋅=⋅><∴D A a A ∴直线AD 与平面AMN 所成的角为arccos55. (3)∵A 1是平面MAN 的法向量,)0,6,3(=,则点C 到平面AMN 的距离为.551253|)36,0()0,6,3(|11=-⋅=解法2:(1)作ME ⊥A 1D 1于E ,连AE.∵AM ⊥A 1D ,由三垂线定理的逆定理知AE ⊥A 1D ,由Rt △A 1AE ∽Rt △DA 1A ,知A 1E=.23,2321111==∴=E A M B AA (2)∵A 1D ⊥AM ,A 1D ⊥AN ,∴A 1D ⊥平面AMN ,∴∠DAN=tan ∠DA 1A=21=AA AD,即直线AD 与平面AMN 所成的角为arctan2.(3)设过A 1、D 、C 的平面α交平面AMN 于NF ,∵A 1D ⊥平面AMN ,∴A 1D ⊥NF ,又A 1D ⊥CD ,且CD 与NF 共面α.∴CD//平面AMN.∴点D 到平面AMN 的距离DN=5512即为点C 到平面AMN 的距离. 21.(1)设l 的方程为y=k(x +2)(k ≠0),代入方程x 2-y 2=1,得(1-k 2)x 2-4k 2x -4k 2-1=0.当k ≠±1时,设A(x 1,y 1), B(x 2, y 2),则.114,1422212221-+=-=+k k x x k k x x ① y 1+y 2=k(x 1+2)+k(x 2+2)=k(x 1+x 2)+4k=22214414kk k k k k -=+-⋅. 设).14,14(),(),(,),,(2222121k kk k y y x x y x y x P --=++=+=得由 2224141k x k k y k ⎧=⎪⎪-∴⎨⎪=⎪-⎩①②②÷③得k y x =.④ 将④代入③得,2)(14y x y x y -=,化简, 得x 2-y 2+4x =0,即(x +2)2-y 2=4.⑤当斜率不存在时,易知P (-4,0)满足方程⑤,故所求轨迹方程为(x +2)2-y 2=4(y ≠0),其轨迹为双曲线.(2OAPB 为矩形的充要条件是⋅=0,即x 1x 2+y 1y 2=0.⑥ 当k 不存在时,A 、B 坐标分别为(-2,3)、(-2,-3),不满足⑥式. 又x 1x 2+y 1y 2= x 1x 2+k(x 1+2)k(x 2+2)=x 1x 2+k 2x 1x 2+2k 2(x 1+x 2)+4k 2=041421)14)(1(2222222=+-⋅--++k k k k k k k ,化简得01122=-+k k ,此方程无实数解.故不存在直线l 使OAPB 为矩形.22.解:(1)∵每一行的数列成等差数列,∴a 42, a 43, a 44成等差数列,∴2a 43=a 42+a 44, a 44=41;又每一列的数成等比数列,故a 44=a 24·q 2,a 24=1, ∴q 2=41,且a n >0, ∴q=21. (2)a 4k =a 42+(k -2)d=81+(k -2)(a 43-a 42)=16k. (3)∵第k 列的数成等比数列 ∴a kk =a 4k ²q k -4=16k ²(21)k -4=k ²(21)k (k=1,2,…,n). 记a 11+a 22+a 33+…a nn =S n ,由错位相消法,可得S n =2-.22n n +。
黄冈市2018届高三理科数学交流试卷2本试卷共150分,考试用时120分钟注意事项:1.本卷1-10题为选择题,共50分;11-21题为非选择题,共100分,全卷共4页。
2.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在试题卷和答题卷指定位置,并将准考证号条形码粘贴在答题卷上的指定位置。
3.选择题的作答:选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题的作答:用0.5毫米黑色墨水的签字笔直接答在答题卷上的每题所对应的答题区域内。
答在指定区域外无效。
第一部分选择题(50分)一、选择题(每小题5分,共50分)1.已知}01|{},0|{=-==-=ax x N a x x M ,若N N M =⋂,则实数a 的值为( )A 、1B 、-1C 、1或-1D 、0或1或-12.“a=2”是“直线ax+2y=0与直线x+y=1平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.若||1a = ,||b = ()a a b ⊥- ,则向量,a b的夹角为( )A. 45°B. 60°C. 120°D.135° 4.甲校有3600名学生。
乙校有5400名学生,丙校有1800名学生,为统计三校学生 某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,则应在 这三校分别抽取学生( )A .30人,30人,30人B .30人,45人,15人C .20人,30人,10人 D. 30人,50人,10人5.设{}n a 是公差为正数的等差数列,若80,15321321==++a a a a a a ,则=++131211a a a ( )A. 120 B .118 C .90 D .75 6. 已知两个不重合的平面α和β,下面给出四个条件:①α内有无穷多条直线均与平面β平行; ②平面α,β均与平面γ平行;③平面α,β与平面γ都相交,且其交线平行; ④平面α,β与直线l 所成的角相等.其中能推出α∥β的是( )A .① B. ② C .①和③ D .③和④7.某中学高三年级共有12个班级,在即将进行的月考中,拟安排12个班主任老师监考数学,每班1人,要求有且只有8个班级是自己的班主任老师监考,则不同的监考安排方案共有( )A. 4455种B.495种C.4950种D.7425种8. 如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上 按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d=f (l )的图像大致是( )9.已知函数2()log |1|f x x =-,且关于x 的方程2[()]()0f x af x b ++=有6个不同的实数解,若最小实数解为-3,则a b +的值为A .-3 B. -2 C .0D .不能确定10.在锐角ABC ∆中,2,A B B C ∠=∠∠∠、的对边长分别是b c 、,则bb c+的取值范围是( )A 、11(,)43B 、11(,)32C 、12(,)23D 、23(,)34第二部分非选择题(100分)二、填空题(每小题5分,共25分)11.在某项测量中,测量结果ξ服从正态分布)0)(,1(2>σσN .若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为 .12. 若(ax -1)5的展开式中x 3的系数是80,则实数a 的值是 .13.向量),2(),1,1(x x-==,且<⋅b a 0,则实数x 的取值范围是 。
湖北省黄冈中学2018届高三适应性考试数学(理工类)试题本试卷共6页,共22题,其中第15、16题为选考题.满分150分.考试用时120分钟.★祝考试顺利★命题:张卫兵审稿:尚厚家张淑春校对:郭旭张智注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B铅笔涂黑.考生应根据自己选做的题目准确填涂题号,不得多选.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数720146i 8i +(其中i 是虚数单位)的共轭复数在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.已知条件:p 2log (1)1x -<;条件:q |2|1x -<,则p 是q 成立的(A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.a 为如图所示的程序框图中输出的结果,则化简 cos()a πθ-的结果是( )A .cos θB .cos θ-C .sin θD .sin θ-4.在长为5cm 的线段AB 上任取一点C ,以,AC BC 为邻边作一矩形,则矩形面积小于24cm 的概率为( ) A .15B .25C .35D .455.在△ABC 中,3AB =,2AC =,12BD BC = ,则AD BD ⋅=( )A .52- B .52C .54- D .546.甲、乙两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次不同视为不同情形)共有( ) A .10种 B .15种 C .20种 D .30种3题图7.设函数()n f x =,其中n 是集合{1,2,3}的非空真子集的个数,则()f x 的展开式中常数项是( )A .52- B .160- C .160 D .208.如图是函数5cos(2)6y x π=-在一个周期内的图象,则阴影 部分的面积是( ) A .34B .54C .32D.32-的9.函数e x y m =+(其中e 是自然对数的底数)图象上存在 点(,)x y 满足条件:2e x y xy x ⎧⎪⎨⎪⎩≤≤≥,则实数m 的取值范围是( )A .2[1,2e e ]--B .2[2e ,1]--C .22[2e ,2e e ]--D .2[2e ,0]- 10.定义函数348,12,2()1(), 2.22x x f x x f x ⎧--⎪⎪=⎨⎪>⎪⎩≤≤,则函数()()6g x xf x =-在区间[1,2](n n *)∈N 内的所有零点的和为( )A .nB .2nC .3(21)4n- D .3(21)2n -二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题) 11.函数1ln(1)y x=+的定义域为12.一个几何体的三视图如图所示,则此几何体的体积是正视图侧视图 俯视图12题图13.已知222(1)(1)(1)4x y z ++++-=,则23x y z ++的最大值是 中,14.已知双曲线22221(0,0)x y a b a b -=>>点,12,A A 是左、右顶点,F 是右焦B 是虚轴的上端点.若在线段BF上(不含端点)存在不同的两点成(1,2)i P i =,使得△12(1,2)i PA A i =构以12A A 为斜边的直角三角形,则双曲线离心率e 的取值范围是 (二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,PB 为△ABC 外接圆O 的切线,BD 平分PBC∠, 交圆O 于D ,,,C D P 共线.若AB BD ⊥,PC PB ⊥,1PD =,则圆O 的半径是 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,曲线1C 的参数方程是11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是sin()13πρθ+=,则两曲线交点间的距离是三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.P ABO15题图CD 14题图17.(本小题满分12分)已知函数1()2sin cos()2f x x x ϕ=--(02πϕ<<)的图像过点(,1)3π.(Ⅰ)求ϕ的值;(Ⅱ)求函数()f x 的单调递增区间.18.(本小题满分12分)在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率0.25,在B 处的命中率为0.8,该同学选择先在A 处投一球,以后都在B 处投,用X 表示该同学投篮训练结束后所得的总分. (Ⅰ)求该同学投篮3次的概率; (Ⅱ)求随机变量X 的数学期望EX .19.(本小题满分12分)已知在等比数列{}n a 中,213121,1a a a a =+-=,数列{}n b 满足321()23n n b b b b a n n*+++⋅⋅⋅+=∈N . (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)设数列{}n b 的前n 项和为n S ,若*n ∀∈N ,n n S a λ>恒成立,求λ的取值范围.20.(本小题满分12分)如图1,AD 是直角△ABC 斜边上的高,沿AD 把△ABC 的两部分折成直二面角(如图2),DF AC ⊥于F . (Ⅰ)证明:BF AC ⊥;(Ⅱ)设DCF θ∠=,AB 与平面BDF 所成的角为α,二面角B FA D --的大小为β,求证:tan tan cos αθβ=;(Ⅲ)设AB AC =,E 为AB 的中点,在线段DC 上是否存在一点P ,使得DE ∥平面PBF ?若存在,求DP PC 的值;若不存在,请说明理由.21.(本小题满分13分)动圆E 过点(1,0)F ,且与直线1x =-相切,圆心E 的轨迹是曲线C .图2BCAD F EPD图1AC B(Ⅰ)求曲线C 的方程;(Ⅱ)过点(4,2)Q 的任意一条不过点(4,4)P 的直线与曲线C 交于,A B 两点,直线AB 与直线4y x =+交于点M ,记直线,,PA PB PM 的斜率分别为123,,k k k ,问是否存在实数λ,使得123k k k λ+=恒成立?若存在,求出λ的值,若不存在,说明理由.22.(本小题满分14分)已知()(1)e x f x x a =--(其中e 是自然对数的底数). (Ⅰ)若x ∀∈R ,()0f x ≤恒成立,求a 的取值范围; (Ⅱ)若数列{}n x 满足1ln(e 1)ln nxn n x x +=--,且11x =,证明:(ⅰ)数列{}n x 的各项为正且单调递减; (ⅱ)12n nx >.湖北省黄冈中学2018届高三适应性考试数学(理工类) 答案及评分标准一、A 卷答案BCABC CBBDD B 卷答案BACBD CBDAD 以下是A 卷答案1.720146i 8i 6i 8+=--,共轭复数为86i -+,对应的点位于第二象限,选B.2.2log (1)101213x x x -<⇒<-<⇒<<;|2|112113x x x -<⇒-<-<⇒<<.选C.3. 由程序框图知,12,1;1,2;,3;2,4,2a i a i a i a i ===-===== ,直到2014i =,故2a =,cos()cos(2)cos a πθπθθ-=-=,选A.4.设AC x =,则(5)4x x -<,解得1x <或4x >,又05x ≤≤,所以01x <≤或45x <≤,于是所求的概率为25,选B.5.由12BD BC = 得,D 是BC 的中点,所以1()2AD AB AC =+ .22111115()()()()222244AD BD AB AC BC AB AC AC AB AC AB ⋅=+⋅=+⋅-=-=- ,选C.6.两人比赛局数为3局、4局或5局.当局数为3时,情况为甲或乙连赢3局,共2种;当局数为4时,若甲胜,则甲第4局胜,且前3局胜2局,有23C 3=种情况,同理乙胜也有3种情况,共6种;当局数为5时,前四局甲、乙各胜两局,最后一局赢的人获胜,有242C 12=种情况.故总共有20种情况,选C. 7.3226n =-=,所以6()f x=,其展开式通项是66C (rr r -6626(1)2C r r rr --=-⋅,故3r =时,通项是常数项3336(1)C 2160-⋅=-,选B.8.函数的周期T π=,2623πππ+=.阴影部分面积为:22363600665515155cos(2)cos(2)sin(2)|sin(2)|6626264x dx x dx x x ππππππππππ---=---=⎰⎰.选B.9.当e x y m =+的图象与e y x =相切时,设切点为00(,e )x x ,则切线斜率为0x e .由0xe e =得01[0,2]x =∈.所以当e x y m =+的图象与e y x =相切于(1,e)时,m 的值最大.此时0m =.当e x y m =+过原点时,1m =-.此时e 1x y =-的图象与直线2x =的交点为2(2,e 1)-在点(2,2)的上方.故当e x y m =+图象过点(2,2)时,m 的值最小,此时22e m =-.综上所述,2[2e ,0]m ∈-,选D. 10. ()()60g x xf x =-=⇒6()f x x=. 作出函数()f x 在[1,2]上的图象,它是顺次连接点3(1,0),(,4),(2,0)2的两条线段;再作函数在(2,4]上的图象,它是前一段图象横坐标伸长为原来的两倍,纵坐标缩为原来的12得到的,即为顺次连接点(2,0),(3,2),(4,0)的两条线段;再作函数在(4,8]上的图象,它是顺次连接点(4,0),(6,1),(8,0)的两条线段;……;如此下去,可得函数()f x 的图象.而反比例函数6y x=的图象正好过点3(,4),(3,2),(6,1)2,….所以函数的零点从小到大依次构成首项为32,公式为2的等比数列,该数列记为{}k a ,则1322k k a -=⋅.又1232223222k n n k n k k n --+⋅⇒⇒-+⇒≤≥≥≤,故函数的[1,2]n 上有n 个零点,它们的和为3(12)32(21)122n n -=--,选D.xx二、填空题:以下是解答:11.111011x xx+>⇒>-⇒<-或x >;2101x x -⇒-≥≤≤1.故所求定义域为(0,1].12. 几何体是一个半球和一个圆台的组合体,体积为32214121243(2244)2333V πππ=⋅⋅+⋅+⋅+=.13.由柯西不等式得,23(1)2(1)3(1)xy z x y z ++=++++-等号当且仅当111023y z x +-+==>,且222(1)(1)(1)4x y z ++++-=,即x y z ===时成立,故所求的最大值为14.以12A A 为直径的圆与线段BF 有两个不同的交点,所以圆的半径大于点O 到BF 的距离,且小于OB 的长.故a ab ><e <15. 连接AD,则AD是圆的直径,于是90ACD ∠=.P ABO15题图CDPB 为ABC ∆外接圆O 的切线PDB BAD BCD ⇒∠=∠=∠,BD 平分PBC ∠PBD DBC ⇒∠=∠,又90BCD CBD PBD ∠+∠+∠= ,∴30BCD CBD PBD ∠=∠=∠= .∴30BAD ∠=∴22BD PD ==,24AD BD ==,∴圆O 的半径是2.16.1C 的一般方程为224y x -=.曲线2C 的直角坐标方程为20y +-=.由22420y x y ⎧-=⎪⎨-=⎪⎩得交点坐标为4)-,它们之间的距离为. 三、17.(Ⅰ)12sincos()1cos()3323πππϕϕ--=⇒-=, ………………………………3分∵02336ππππϕϕ<<⇒-<-<,∴366πππϕϕ-=-⇒=.…………………………………6分(Ⅱ)111()2sin cos()2sin sin )6222f x x x x x x π=--=+-2cos sin x x x =+…8分1cos 21222x x -=+-sin(2)6x π=-, ……………………………………10分∴当222,262k x k k πππππ--+∈Z ≤≤时,即在区间[,]()63k k k ππππ-+∈Z 上()f x 单调递增. …………………………………………………………………12分 18.(Ⅰ)10.80.250.8P =-⨯=.……………………………………………………………4分(Ⅱ)(0)0.750.20.20.03P X ==⨯⨯=;12(2)0.75C (0.20.8)0.24P X ==⨯⨯=; (3)0.250.20.20.01P X ==⨯⨯=; (4)0.750.80.80.48P X ==⨯⨯=;(5)0.250.80.250.20.80.24P X ==⨯+⨯⨯=.…………………………………………………9分随机变量X 的分布列为∴00.0320.2430.0140.4850.24 3.63EX =⨯+⨯+⨯+⨯+⨯=.……………………………12分19.(Ⅰ)设公比为q ,则21222n n q q q a -=⇒=⇒=.111b a ==.……………………………………………………………………………………2分2n ≥时,122212222n n n n nn n n b a a b n n-----=-=-=⇒=⋅. ∴21,12,2n n n b n n -=⎧=⎨⋅⎩≥………………………………………………………………………5分(Ⅱ)012122322n n S n -=+⋅+⋅++⋅ ,1212222322n n S n -=+⋅+⋅++⋅ , 两式相减得:1221112222(1)21n n n n S n n ---=-----+⋅=-⋅+ . ∴1n =时,11S =;2n ≥时,012122322n n S n -=+⋅+⋅++⋅ ,1212222322n n S n -=+⋅+⋅++⋅ ,两式相减得:1221112222(1)21n n n n S n n ---=-----+⋅=-⋅+ . ∴*n ∀∈N ,有1(1)21n n S n -=-⋅+ (7)分n n n nS S a a λλ>⇒<,记nn n S c a =,则111(1)211122n n n n n c n ----⋅+==-+,∴11111(1)10222n n n n n c c n n +--=+---=->, ∴数列{}n c 递增,其最小值为11c =.故1λ<.…………………………………………………………………12分20.(Ⅰ)∵,AD DB AD DC ⊥⊥,∴BDC ∠是二面角B DA C --的平面角.又∵二面角B DAC --是直二面角,∴BD DC ⊥,∴BD ⊥平面ADC ,∴BD AC ⊥,又DF AC ⊥,∴AC ⊥平面BDF,∴BF AC ⊥ (4)分图2BCAD FEP M(Ⅱ)由(Ⅰ)tan AFABF BF αα∠=⇒=,cos DF BFD BFββ∠=⇒=.又tan AF ADF DCF DFθθ∠=∠=⇒=,∴tan cos tan AF BFθβα==.………………………8分(Ⅲ)连接CE 交BF 于点M ,连接PM ,则PM ∥DE . ∵AB AC =,∴AD DC =,∴F 为AC 的中点, 而E 为AB 的中点,∴M 为ABC ∆的重心, ∴12EMMC=,∴12DP PC =. 即在线段DC 上是否存在一点P ,使得DE ∥PBF ,此时12DP PC= (12)分21. (Ⅰ)点E 到A 的距离与到直线1x =-的距离相等,所以曲线C 是以A 为焦点的抛物线.设为22y px =,则122pp =⇒=,故曲线C的方程为24y x =.…………………………………………4分(Ⅱ)设直线AB 的斜率为k ,则直线AB 的方程为2(4)y k x -=-. 由2(4)4y k x y x -=-⎧⎨=+⎩得4282(,)11k k M k k +---.∴3824211341k k k k k --+-==--.………………………6分设1122(,),(,)A x y B x y . 由22(4)4y k x y x-=-⎧⎨=⎩得,2222(844)161640k x k k x k k --++-+=.∴2212122284416164,k k k k x x x x k k -+-++==.………………………………………………8分 ∴121212121244(4)2(4)24444y y k x k x k k x x x x ------+=+=+---- 121212122(8)1122()2444()16x x k k x x x x x x +-=-+=----++2222228442(8)216164844416k k k k k k k k k k -+-=--+-+-⋅+423k +=……………………………………………………………………………11分 ∴1232k k k +=,即2λ=.………………………………………………………………………13分22.(Ⅰ)()(1)e e e x x x f x x x '=--=-. 在(,0)-∞上,()0f x '>,()f x 单调递增; 在(0,)+∞上,()0f x '<,()f x 单调递减; ∴max ()(0)10f x f a ==-≤.∴1a ≥ (4)分(Ⅱ)(ⅰ)用数学归纳法证明0n x >.当1n =时,110x =>,结论成立;若n k =时结论成立,即0kx >.令()e 1x g x x =--,则()e 1x g x '=-,在(0,)+∞上()0g x '>,()g x 递增. 而(0)0g =,∴在(0,)+∞上()0g x >,∴e 1x x ->. 于是,由e 10ln(e 1)ln 0kk xx k k x x ->>⇒-->,即10k x +>,1n k =+时结论成立.由数学归纳原理,*,0n n x ∀∈>N .又由(Ⅰ)知0x >时,e 1(1)e 10e x xx x x---<⇒<.∴1e 1ln(e 1)ln ln ln e n nn x x x n n nnx x x x +-=--=<=,数列{}n x 单调递减.……………………9分 (ⅱ)我们先证明112n n x x +>.①2222111ln(e 1)ln e 1e (e )2e 10222n nn n n x x xx x n n n n n n x x x x x x +>⇔-->⇔->⇔-⋅->.② 令2()e 12e x x h x x =--,则2()2e 2e 2e 2e (e 1)x x x x x h x x x '=--=--,在(0,)+∞上,()0h x '>,()h x 递增. 而(0)0h =,∴在(0,)+∞上,()0h x >. 故②成立,从而①成立. 由于112x >,所以1212111112222n n n n n x x x x --->>>>= .………………………………14分。
湖北省黄冈中学2018年高三5月第二次模拟考试数学(理科)试卷试卷满分:150分一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{{},1,0,1,2,3A x y B ==-,则()R C A B =( )A .{}0,1B .{}0,1,2C .{}1,0,1-D .{}1,3-2. 若复数232018|34|134i z i i i i i-=++++++-…,则z 的共轭复数的虚部为( ) A .15-B .95-C .95D .95i -3. 设537535714(),(),log 755a b c -===,则c b a ,,的大小关系是( )A .c a b <<B .b a c <<C .a c b <<D .a b c <<4.一个几何体的三视图如图所示,那么这个几何体的表面积是( )A .16+B .16+C .20+D .20+5. 下列命题正确的个数是( )1:p 若,m n 是两条不同的直线,,αβ是两个不同的平面,若,,,m n m n ααββ⊂⊂∥∥,则αβ∥2:p 命题“32000,10x x x ∃∈-+≤R ”的否定是“32,10x R x x ∀∈-+≥”3:p 函数sin()6y x πω=+在2x =处取得最大值,则正数ω的最小值为6π4:p 若随机变量()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.已知随机变量()~6,4X N ,则()280.8185P X <≤=A .1个B .2个C .3个D .4个6. 过双曲线22:1x y Γ-=上任意点P 作双曲线Γ的切线,交双曲线Γ两条渐近线分别交于,A B 两点,若O 为坐标原点,则AOB ∆的面积为( )A .4B .3C .2D .1 7. 函数2sin ()xxf x e=在[,]ππ-的图像大致为( )8.数量总和.列题,0,2,4,8,12,18前n 项和的程序框图,执行该程序框图,输入10m =出的S 为( )A. 100B. 250C. 140D. 190 9.已知ABC∆所在平面内有两点,P Q,满足0,PA PC QA QB QC BC+=++=,若4,2 AB AC==,23APQS∆=,则2AB AC BC⋅+的值为( )A. ±B. 8± C. 12± D.20±10.已知三棱锥S ABC-的底面是以AB为斜边的等腰直角三角形,且2AB SA SB SC====,则该三棱锥的外接球的体积为( )11.实数x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩≤≥≥,它表示的平面区域为C,目标函数2z x y=-的最小值为1p.由曲线()230y x y=≥,直线3x=及x轴围成的平面区域为D,向区域D内任投入一个质点,该质点落入C的概率为2p,则1224p p-的值为( )A .12B .23 C .35D .4312. 若函数2()ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( ) A. 1(1,)1e e e -- B. 1[1,]1e e e -- C. 1(,1)1e e e --- D. 1[,1]1ee e ---二.填空题:本大题共4小题,每小题5分,共20分.13.若()6111ax x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是11-,则实数a 的值为_________.14.已知椭圆22221(0)x y a b a b+=>>的左焦点1F ,过点1F 作倾斜角为30︒的直线与圆222x y b +=,则椭圆的离心率为_________.15.已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则9101112a a a a +++的最小值为_________.16.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知6a c +=,(3cos )tansin 2BA A -=,则ABC ∆的面积的最大值为 . 三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. (一)必考题17.(本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且22()(2a b c bc --=.(1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,且1sin 1=A a ,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .18.(本小题满分12分)如图,在四棱锥S ABCD -中,SCD ∆为钝角三角形,侧面SCD 垂直于底面ABCD ,CD SD =,点M 是SA 的中点,AD BC ∥,90ABC ∠=︒,12AB AD BC ==.(1)求证:平面MBD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60,求二面角B MD C --余弦值.19.(本小题满分12分)IC 芯片堪称“国之重器”,其制作流程异常繁琐,制作IC 芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemens process )这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片达标,没有使用该工艺的20片单晶的晶圆中有12片达标.(1)用列联表判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemens process )这一工艺标准有关?(2)在得到单晶的晶圆后,接下来的生产制作还需对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,每个环节出错需要修复的费用均为20元,第四环节生产正常的概率为34,此环节出错需要修复的费用为10元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)参考公式:22()=,()()()()n ad bc K n a b c d a b c d a c b d -=+++++++ 参考数据:20.(本小题满分12分)已知抛物线C 顶点在原点,焦点在y 轴上,抛物线C 上一点(),2Q a 到焦点的距离为3,线段AB 的两端点()11,A x y , ()22,B x y 在抛物线C 上.(1)求抛物线C 的方程;(2)在抛物线C 上存在点()33,D x y ,满足312x x x <<,若ABD ∆是以角A 为直角的等腰直角三角形,求ABD ∆面积的最小值.21.(本小题满分12分)已知函数2()ln ,()().2a f x x x g x x x a a R ==+-∈ (1)若直线(0)()(),x t t y f x y g x A B =>==与曲线和分别交于两点,且曲线()y f x =在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ>>已知若不等式112e x x λλ+<⋅恒成立,求λ的取值范围.(二)选考题 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C 的参数方程为1()2x y ααα⎧=⎪⎨=+⎪⎩为参数,直线1:0l x =,直线 2:0l x y -=,以原点O 为极点,x 轴的正半轴为极轴(取相同的长度单位)建立极坐标系.(1)求曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长.23.(本小题满分10分)选修4-5:不等式选讲 已知0a >,0b >,且222a b +=. (1)若2214|21||1|x x a b +≥---恒成立,求x 的取值范围; (2)证明:5511()()4a b a b++≥.黄冈中学2018年高三5月第二次模拟考试数学(理科)答案 试卷满分:150分一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{{},1,0,1,2,3A x y B ===-,则()R C A B =( )A .{}0,1B .{}0,1,2C .{}1,0,1-D .{}1,3- 【答案】B2.若复数232018|34|134i z i i i i i-=++++++-…,则z 的共轭复数的虚部为( ) A .15- B .95- C .95 D .95i - 【答案】B3.设537535714(),(),log 755a b c -===,则c b a ,,的大小关系是( )A .c a b <<B .b a c <<C .a c b <<D .a b c << 【答案】D4. 一个几何体的三视图如图所示,那么这个几何体的表面积是( )A .16+B .16+C .20+D .20+【答案】B5.下列命题正确的个数是( )1:p 若,m n 是两条不同的直线,,αβ是两个不同的平面,若,,,m n m n ααββ⊂⊂∥∥,则αβ∥【错误】2:p 命题“32000,10x x x ∃∈-+≤R ”的否定是“32,10x R x x ∀∈-+≥”【错误】3:p 函数sin()6y x πω=+在2x =处取得最大值,则正数ω的最小值为6π【正确】4:p 若随机变量()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.已知随机变量()~6,4X N ,则()280.8185P X <≤=【正确】A .1个B .2个C .3个D .4个 【答案】B6. 过双曲线22:1x y Γ-=上任意点P 作双曲线Γ的切线,交双曲线Γ两条渐近线分别交于,A B 两点,若O 为坐标原点,则AOB ∆的面积为( )A .4B .3C .2D .1 【答案】D 7. 函数2sin ()xxf x e=在[,]ππ-的图像大致为( )8. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的 推论,如图一,主要用于解释中国传统文化中的太极衍生原理. 数列中的每一项,都代表太极衍生过程中曾经经历过的两仪 数量总和.它是中华传统文化中隐藏着的世界数学史上第一道数 列题,0,2,4,8,12,18,…,如图二,是求大衍数列 前n 项和的程序框图,执行该程序框图,输入10m =,则输 出的S 为( )A. 100B. 250C. 140D. 190【答案】D9.已知ABC∆所在平面内有两点,P Q,满足0,PA PC QA QB QC BC+=++=,若4,2 AB AC==,23APQS∆=,则2AB AC BC⋅+的值为( )A. ±B. 8± C. 12± D.20±【答案】D【解析】因为0PA PC+=,所以P为AC 中点,又因为QA QB QC BC++=即QA QB BC QC BQ+=-=,所以2QA BQ=,所以Q为线段AB的靠近B的三等分点.所以13APQ ABCS S∆∆=,所以1sin 22ABCS AB AC A∆==,所以1sin2A=,cos A=或cosAB AC AB AC A⋅=⋅=±10.已知三棱锥S ABC-的底面是以AB为斜边的等腰直角三角形,且2AB SA SB SC====,则该三棱锥的外接球的体积为( )【答案】D11.实数x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩≤≥≥,它表示的平面区域为C,目标函数2z x y=-的最小值为1p.由曲线()230y x y=≥,直线3x=及x轴围成的平面区域为D,向区域D内任投入一个质点,该质点落入C的概率为2p,则1224p p-的值为( )A.12B.35C.23D.43【答案】C【解析】画出可行域如下图所示,由图可知,目标函数在点31,22A ⎛⎫⎪⎝⎭处取得最小值,且最小值为12z =,即112p =.区域C 的面积为1112222⨯⨯=,平面区域D 的面积为2112612p ==,所以121224133p p -=-=. 12. 若函数2()ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( ) A. 1(1,)1e e e -- B.1[1,]1e e e -- C. 1(,1)1e e e --- D. 1[,1]1ee e --- 【解析】由题意可得ln ,(0,)ln x xa x x x x=-∈+∞-有3个不同解,令ln (),ln x xg x x x x=--22221ln 1ln ln (1ln )(2ln )(0,),'(),(ln )(ln )x x x x x x x g x x x x x x x ----∈+∞=-=--则当(0,)x ∈+∞时,令2ln y x x =-,则1211'2,(0,),'0,2x y x y y x x -=-=∈<当递减;当1(,),'0,2x y y ∈+∞>递增,则min11ln 1ln 20,(0,)2y x =-=+>∈+∞则当时,恒有2ln 0.'()0,x x g x ->=令得1x =或,(0,1),'()0,()x e x g x g x =∈<且时递减;(1,),'()0,()x e g x g x ∈>时递增;(,)x e ∈+∞时,'()0,()g x g x <递减,则()g x 的极小值为(1)1,()g g x =的极大值为1(),1e g e e e=--结合函数图象可得实数a 的取值范围是1(1,)1e e e--.[答案]A 二.填空题:本大题共4小题,每小题5分,共20分.13. 若()6111ax x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是11-,则实数a 的值为_________.【答案】214.已知椭圆22221(0)x y a b a b+=>>的左焦点1F ,过点1F 作倾斜角为30︒的直线与圆222x y b +=,则椭圆的离心率为_________.【答案】15.已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则9101112a a a a +++的最小值为_________.【解析】由题意可得:9101112128a a a a S S +++=-,由8426S S -=可得8446S S S -=+,由等比数列的性质可得:484128,,S S S S S --成等比数列,则()()2412884S S S S S -=-,综上可得:249101112128444(6)361224S a a a a S S S S S ++++=-==++≥ 当且仅当46S =时等号成立.综上可得,则9101112a a a a +++的最小值为24.16.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知6a c +=,(3cos )tansin 2BA A -=,则ABC ∆的面积的最大值为 .【答案】(3cos )tansin 2B A A -=,∴sin (3cos )sin 1cos B A A B-=+,整理得 3sin sin sin B A C =+,则3b a c =+ 又6a c +=,∴2b =.又2222cos b a c ac B =+-,则24()22cos 362(1cos )a c ac ac B ac B =+--=-+,∴16cos 1B ac=-∴11cos 22ABC S ac B ∆===,6a c +=,∴9ac ≤∴ABC S ∆=3a c ==时取等号.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. (一)必考题17. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且22()(2a b c bc --=. (1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,且1sin 1=A a ,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .【解析】(1)由22()(2a b c bc --=,222a b c --=,所以222cos 2b c a A bc +-==6A π∴= (2)设{}n a 的公差为d ,由得21=a ,且2428a a a =,∴2111(3)()(7)a d a d a d +=++.又0d ≠,∴2d =,∴2n a n =.∴14111(1)1n n a a n n n n +==-++, ∴11111111(1)()()()122334111n nS n n n n =-+-+-++-=-=+++…18. 如图,在四棱锥S ABCD -中,SCD ∆为钝角三角形,侧面SCD 垂直于底面ABCD ,CD SD =,点M 是SA 的中点,AD BC ∥,90ABC ∠=︒,12AB AD BC ==. (1)求证:平面MBD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60,求二面角B MD C --余弦值.【解析】(1)证明:取BC 中点E ,连接DE ,设AB AD a ==,2BC a =, 依题意得,四边形ABED 为正方形,且有BE DE CE a ===,BD CD ==, 所以222BD CD BC +=,所以BD CD ⊥,又平面SCD ⊥底面ABCD ,平面SCD I 底面ABCD CD =,BD ⊂底面ABCD , 所以BD ⊥平面SCD . 又BD ⊂平面MBD ,所以平面MBD ⊥平面SCD (2)过点S 作CD 的垂线,交CD 延长线于点H ,连接AH ,因为平面SCD ⊥底面ABCD ,平面SCD I 底面ABCD CD =,SH CD ⊥SH ⊂平面SCD ,所以SH ⊥底面ABCD ,故DH 为斜线SD 在底面ABCD 内的射影,SDH ∠为斜线SD 与底面ABCD 所成的角,即60SDH ∠=︒由(1)得,SD =,所以在Rt SHD ∆中,SD =,2DH a =,2SH a =,在ADH ∆中,45ADH ∠=︒,AD a =,2DH a =,由余弦定理得2AH =, 所以222AH DH AD +=,从而90AHD ∠=︒,过点D 作DF SH ∥,所以DF ⊥底面ABCD,所以,,DB DC DF 两两垂直,如图,以点D 为坐标原点,DB uu u r为x 轴正方向,DC u u u r 为y 轴正方向,DF uuu r为z 轴正方向建立空间直角坐标系,则),0,0B,(),0C,0,2S a ⎛⎫- ⎪ ⎪⎝⎭,,,0A ⎫⎪⎪⎝⎭,,M ⎫⎪⎪⎝⎭, 设平面MBD 的法向量(),,n x y z =r0n DB n DM ⎧⋅=⎪⎨⋅=⎪⎩r uu u r r uuu u r得00x y z =-+= 取1z =得n ⎛⎫= ⎪ ⎪⎝⎭r ,设平面MCD 的法向量(),,m x y z '''=u r00m DC m DM ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuu u r得00424x y z '='''-+=⎪⎩,取1z '=得,()m =u r ,所以cos ,n m n m n m⋅===⋅r u rr u r r u r故所求的二面角B MD C--.19. IC芯片堪称“国之重器”,其制作流程异常繁琐,制作IC芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemens process)这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片达标,没有使用该工艺的20片单晶的晶圆中有12片达标.(1)用列联表判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemens process)这一工艺标准有关?(2)在得到单晶的晶圆后,接下来的生产制作还需对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,每个环节出错需要修复的费用均为20元,第四环节生产正常的概率为34,此环节出错需要修复的费用为10元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)参考公式:22()=,()()()()n ad bcK n a b c da b c d a c b d-=+++ ++++参考数据:【解析】(1)由题意列列表为:故250(288212)257.879302040103K ⨯-⨯==>⨯⨯⨯ 故有99.5%的把握认为晶圆的制作效果与使用西门子制程这一工艺技术有关(2)设i A 表示检测到第i 个环节有问题,(1,2,3,4)i =,X 表示成为一个合格的多晶圆需消耗的费用,则X 的可能取值为:0,10,20,30,40,50,60,700X =,表明四个环节均正常312342324(0)()()34108P X P A A A A ==== 10X =表明第四环节有问题31234218(10)()()34108P X P A A A A ==== 20X =表明前三环节有一环节有问题12312336(20)()()334108P X C === 30X =表明前三环节有一环节及第四环节有问题12312112(30)()()334108P X C === 40X =,表明前三环节有两环节有问题22312318(40)()()334108P X C === 50X =表明前三环节有两环节及第四环节有问题2231216(50)()()334108P X C === 60X =表明前三环节有问题31234133(60)()()34108P X P A A A A ==== 70X =四环节均有问题31234111(70)()()34108P X P A A A A ==== 费用X 分布列为:故:024108203630124018506603701121545108542EX ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯===(元)故大约需要耗费452元20. 已知抛物线C 顶点在原点,焦点在y 轴上,抛物线C 上一点(),2Q a 到焦点的距离为3,线段AB 的两端点()11,A x y , ()22,B x y 在抛物线C 上. (1)求抛物线C 的方程;(2)在抛物线C 上存在点()33,D x y ,满足312x x x <<,若ABD ∆是以角A 为直角的等腰直角三角形,求ABD ∆面积的最小值. 【答案】(1)24x y =;(2)最小值为16.【解析】(1)设抛物线的方程为22x py =,抛物线的焦点为F ,则322pQF ==+,所以1p =,则抛物线C 的方程为24x y =.(2)如图所示,设211,4x A x ⎛⎫ ⎪⎝⎭, 222,4x B x ⎛⎫ ⎪⎝⎭,233(,)4x D x ,根据抛物线关于y 轴对称,取10x ≥,记1AB k k =, 2AD k k =, 则有2114x x k +=, 3124x x k +=,所以2114x k x =-, 3214x k x =-, 121k k ⋅=-, 又因为ABD ∆是以A 为顶点的等腰直角三角形,所以AB AD =,2131x x x x -=-,将23,x x 代入得:112122k x k x -=- 化简求出1x ,得: 3112114422k x k k -=+, 则()2222112114411||122ABDk S AB k k k ∆⎛⎫+=⋅=⨯+⨯ ⎪+⎝⎭,可以先求AB 的最小值即可,2121144k AB k k +=+,令()32222211t t y t t t t++==++,则()()()()()1322222223122112t t t t t t y t t+⋅⋅+-+++'=()()()()()()11233223222222213322111t tt t t t tt t t t tt t ++----+-+-==++()()()()122222111tt t t t +-+=+所以可以得出当1t =即11k =时, AB最小值为10x =,即当()0,0A ,()4,4B , ()4,4D -时, ABD ∆为等腰直角三角形,且此时面积最小,最小值为16.21. 已知函数2()ln ,()().2a f x x x g x x x a a R ==+-∈ (1)若直线(0)()(),x t t y f x y g x A B =>==与曲线和分别交于两点,且曲线()y f x = 在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ>>已知 若不等式112e x x λλ+<⋅恒成立,求λ的取值范围.【解析】(1)依题意,函数()f x 的定义域为(0,+∞),'()ln 1,'() 1.f x x g x ax =+=+因为曲线()y f x =在A 处的切线与()y g x =在B 处的切线相互平行,所以'()'()(0,)f t g t =+∞在有解,即方程ln 0(0,)t at -=+∞在有解.……………………2分方程ln 0(0,)t at -=+∞在有解转化为函数ln y x y ax ==与函数的图像在(0,)+∞上有交点,如图,令过原点且与函数ln y x =的图像相切的直线的斜率为k ,只须.a k≤令切点为000000ln 1(,ln ),'|,x x x A x x k y k x x ====则又,所以000ln 1,x x x =解得 01,x e k e ==于是,所以1.a e≤………………………………………5分 (2)2()()()ln (0),'()ln .2a h x f x g x x x x x a x h x x ax =-=--+>=-所以因为12,()x x h x 为在其定义域内有两个不同的极值点,所以12,ln 0x x x ax -=是方程的两个根,即12112212ln ln ln ,ln ,.x x x ax x ax a x x -===-作差得……………………………6分因为120,0,,x x λ>>>所以112121ln ln 1e x x x x λλλλλ+<⋅⇔+<+⇔+<1212121()ax ax a x x a x x λλλλ++=+⇔>+⇔121121212212ln ln (1)()1ln x x x x x x x x x x x x λλλλ-+-+>⇔>-++⇔112122(1)(1)ln .x xx x x x λλ+->+……8分令12x t x =,则(1,)t ∈+∞,由题意知,不等式(1)(1)ln (1,)t t t t λλ+->∈+∞+在上恒成立. 令2222(1)(1)1(1)(1)()()ln ,'().()()t t t t t t t t t t t λλλϕϕλλλ+-+--=-=-=+++则 (ⅰ)若21,(1,),'()0,t t λϕ≥∈+∞>对一切所以()(1,)t ϕ+∞在上单调递增,又(1)0,ϕ=所以()0t ϕ>(1,)+∞在上恒成立,符合题意 (10)分(ⅱ)若221,(1,)t λλ>∈当时,2'()0;(,),t t ϕλ<∈+∞当时2'()0,()(1,)t t ϕϕλ>所以在上单调递减,在2(,)λ+∞上单调递增,又(1)0,())t ϕϕ=∞所以在(1,+上不能恒小于0,不符合题意,舍去.综合(ⅰ)(ⅱ)得,若不等式112e x x λλ+<⋅恒成立,只须2 1.0,1λλλ≤>≤又所以0<.………12分(二)选考题 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. 选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C的参数方程为1()2x y ααα⎧=⎪⎨=+⎪⎩为参数,直线1:0l x =,直线 2:0l x y -=,以原点O 为极点,x 轴的正半轴为极轴(取相同的长度单位)建立极坐标系.(1)求曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长.23. 选修4-5:不等式选讲 已知0a >,0b >,且222a b +=.(1)若2214|21||1|x x a b+≥---恒成立,求x 的取值范围; (2)证明:5511()()4a b a b++≥.【解析】(1)设,1,1|21||1|32,1,21,.2x x y x x x x x x ⎧⎪≥⎪⎪=---=-≤<⎨⎪⎪-<⎪⎩由222a b +=,得221()12a b +=, 故22222222221411414()()(14)22b a a b a b a b a b +=++=+++19(1422≥++=, 所以9|21||1|2x x ≥---. 当1x ≤时,92x ≤,得912x ≤≤; 当112x ≤<时,9322x -≤,解得136x ≤,故112x ≤<; 当12x <时,92x -≤,解得92x ≥-,故9122x -≤<. 综上,9922x -≤≤. (2)55554411()()b a a b a b a b a b ++=+++5522222222()2()=4b a a b a b a b a b =+++-≥+。