高一物理匀变速直线运动的位移与时间的关系1
- 格式:pdf
- 大小:201.54 KB
- 文档页数:8
第三节匀变速直线运动的位移与时间的关系一、位移时间公式1、推导:①图像法:(由v-t图像求位移)---微元的思想结论:做匀变速直线运动的物体的位移对应着v-t图象中的图线与对应的时间轴所包围的面积.即:位移与时间关系式:x=v0t+12at2.②解析法:(由平均速度求得)⎪⎪⎩⎪⎪⎨⎧+=+==atvvvvvt vxtt2得:x=v0t+12at2.2、物理意义:在匀变速直线运动中位移随时间变化的规律。
3、注意:①适用范围:匀变速直线运动。
②决定关系:位移的决定式,即匀变速直线运动中位移是由初速度、加速度、时间共同决定。
③比例关系:二次关系,也叫非线性关系。
④同一性:x、a、v0、vt具有同一性。
⑤合理性:已知位移反求时间,可能有两个值,要合理取舍。
二、速度--时间公式应用1、使用方法:①判断:运动性质(a为定值)。
②确定:研究对象和研究过程。
③设定:正方向(一般初速度的方向为正方向,无初速度则选择加速度为正方向)。
④公式应用:x=v0t+12at2;(此式子为矢量式,应将方向带入求解)⑤结果:结果如何为矢量,大小方向都需要求解。
2、例子:已知一个物体以向西的初速度4m/s做匀变速直线运动,其加速度大小为2m/s2,求1s末、2s末、4s末、8s末的速度和位移和路程,如果该物体是汽车,则结果又将如何?.三、推论1、逐差相等原理:在匀变速直线运动中,相邻相等的时间间隔位移之差是一个定值。
表达式:△x=aT 2.推导:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=212022019213421221T a T v x T a T v x aT T v x ⎪⎪⎩⎪⎪⎨⎧+=-+=-20232012521321T a T v x x T a T v x x 2aT x =∆ 2、比例关系:初速度为零的匀加速直线运动中①在前T ,前2T ,前3T 的位移之比1:4:9……n2②在第T ,第2T ,第3T 的位移之比1:3:4……(2n-1) 3、逆向思维法:末速度为零的匀减速直线运动可以看做反向的初速度为零的匀加速直线运动。
匀变速直线运动的位移与时间的关系[知识点]匀速直线运动的位移:匀速直线运动的位移为vt,其中v为恒定速度,t为运动时间。
匀变速直线运动的位移:匀变速直线运动的位移为v0t+(1/2)at2,其中v0为初速度,t为运动时间,a为加速度。
图像表示位移:纵轴为位移,横轴为时间,位移-时间图像。
[知识点分析]一、匀速直线运动的位移匀速直线运动的位移计算相对简单,但理解如何获得计算公式,理解速度-时间图像中速度线段和横纵坐标围成的面积为位移。
举例:汽车以恒定速度7.3m/s直线行驶在公路,请问行驶20秒后汽车的位移是多少?思路:分析是何种运动在运用该运动的相关公式。
分析过程:汽车速度恒定且直线运动,则是匀速直线运动,匀速直线运动的位移为vt,则7.3m/s*20s=146m二、匀变速直线运动的位移匀变速直线运动的位移和匀速直线运动位移一样,在图形方面都是速度-时间图像中速度线段和横纵坐标围成的面积,匀变速直线运动围成的图形是梯形,在理解梯形面积为位移时,运用将梯形分割成很多小梯形,然后每个小梯形用很接近小梯形的长方形近似代替,则可以理解梯形面积为匀变速直线运动的位移。
一般懂得运用匀变速直线运动的公式计算相关物理量。
举例:汽车从静止状态直线以6.4m/s加速5s后,稳定行驶,请问汽车从静止到稳定行驶前的位移是多少?思路:先分析物体是何种运动以及已知物理量,再考虑用相关公式计算问题。
分析过程:汽车从静止直线恒定数值加速,即可知物体是匀变速直线运动。
已知物理量有:初速度0m/s,运动时间5s,加速度6.4m/s2,需要计算的是位移,相关公式可想到x=v0t+(1/2)at2,计算位移为:0m/s * 5s + (1/2)* 6.4m/s2* 5s * 5s = 80m三、图像表示位移速度-时间图像展现速度和时间信息,横轴为时间,纵轴为速度,斜率为速度;同样展现位移和时间的信息,可以建立横轴为时间,纵轴为位移的坐标轴。
第3节匀变速直线运动的位移与时间的关系1.在v -t 图像中图线与t 轴所围的面积表示物体的位移。
2.匀变速直线运动的位移公式x =v 0t +12at 2。
3.匀速直线运动的x -t 图线是一条倾斜的直线,匀变速直线运动的x -t 图线是抛物线的一部分。
一、匀速直线运动的位移1.做匀速直线运动的物体在时间t 内的位移x =v t 。
2.在速度图像中,位移在数值上等于v -t 图像与对应的时间轴所围的面积。
二、匀变速直线运动的位移1.在v -t 图像中的表示:做匀变速直线运动的物体的位移对应着v -t 图像中的图线和时间轴包围的面积。
如图2-3-1所示,在0~t 时间内的位移大小等于梯形的面积。
图2-3-12.位移公式x =v 0t +12at 2。
式中v 0表示初速度,x 表示物体在时间t 内运动的位移。
三、用图像表示位移1.定义:以时间t 为横坐标,以位移x 为纵坐标,描述位移随时间变化情况的图像叫位移—时间图像。
2.匀速直线运动的x -t 图像:是一条倾斜直线。
3.匀变速直线运动的x -t 图像:是一条过原点的抛物线。
1.自主思考——判一判(1)匀速直线运动表示任意相等的时间内,质点的位移都是相等的。
(√)(2)匀变速直线运动的位移与时间成正比。
(×)(3)由x-t图像能得出对应时刻物体所在的位置。
(√)(4)x-t图像中的图线就是物体的实际运动轨迹。
(×)(5)由x-t图像能得到某时间内物体的位移。
(√)2.合作探究——议一议(1)如何利用速度图像求解物体运动的位移?提示:速度图像中,图线与坐标轴所围图形的面积表示位移的大小,若面积处于时间轴上方,则说明位移为正;若面积处于时间轴下方,则位移为负。
(2)什么是微分思想与微元法?提示:利用微分思想的分析方法称为微元法。
它是将研究对象(物体或物理过程)进行无限细分,再从中抽取某一微小单元进行讨论,从而找出研究对象变化规律的一种思想方法。
匀变速直线运动的位移与时间的关系匀变速直线运动是物理学中的一个重要概念,它描述了一个物体在直线上以恒定加速度进行运动的情况。
在这种运动中,我们可以通过物体的位移与时间的关系来揭示运动的规律。
本文将详细探讨匀变速直线运动的位移与时间之间的关系。
首先,让我们来了解一下匀变速直线运动的基本概念。
在匀变速直线运动中,物体的速度在运动过程中是不断变化的,但加速度保持恒定。
这意味着物体在每个时间单位内的速度变化相等。
基于这个特点,我们可以用物体在一个时间段内的平均速度来描述匀变速直线运动。
在匀变速直线运动中,物体的位移与时间之间的关系可以通过一条简单的公式来表达,即位移等于初速度乘以时间加速度乘时间的平方的一半。
这个公式可以用以下数学表达形式来表示:S = V0 * t + (1/2) * a * t^2其中,S表示位移,V0表示初速度,t表示时间,a表示加速度。
这个公式可以解释为,物体在匀变速直线运动中,位移等于物体的初始速度与时间的乘积加上物体在运动过程中由速度的变化引起的位移。
需要注意的是,这个公式只适用于匀变速直线运动,不适用于其他类型的运动。
如果我们从该公式中暂时忽略掉物体的初始速度,我们可以得到一个更简化的公式:S = (1/2) * a * t^2从这个公式中可以明显看出,位移与时间的关系是二次函数关系,即位移随时间的平方成正比增加。
这也说明了在匀变速直线运动中,物体的位移是随时间的平方增加的。
另外,我们还可以从匀变速直线运动的速度-时间图中推导出位移与时间的关系。
在这种运动中,物体的加速度是恒定的,因此速度-时间图是一条直线,斜率为加速度。
位移就是速度-时间图下方的面积,根据计算面积的方法,我们可以得到位移与时间的关系:S = (V + V0) * t / 2通过这个公式可以看出,位移与时间成正比增加,与速度的变化规律密切相关。
最后,需要强调的是,匀变速直线运动的位移与时间的关系是一个简单而重要的物理学概念。
匀变速直线运动位移与时间的关系知识集结知识元匀变速直线运动的位移与时间的关系知识讲解匀变速直线运动的位移与时间的关系式:x=v0t+at2.公式的推导①利用微积分思想进行推导:在匀变速直线运动中,虽然速度时刻变化,但只要时间足够小,速度的变化就非常小,在这段时间内近似应用我们熟悉的匀速运动的公式计算位移,其误差也非常小,如图所示.②利用公式推导:匀变速直线运动中,速度是均匀改变的,它在时间t内的平均速度就等于时间t内的初速度v0和末速度v的平均值,即.结合公式x=vt和v=v0+at可导出位移公式:x=v0t+ at2例题精讲匀变速直线运动的位移与时间的关系例1.一个物体由静止开始做匀加速直线运动,第1s内的位移是1m,物体在第3s内的位移是()A.2m B.3m C.5m D.8m例2.为了测定某轿车在平直路上启动阶段的加速度(轿车启动时的运动可近似看成是匀加速直线运动),某人拍摄一张在同一底片上多次曝光的照片,如图所示,如果拍摄时每隔2s曝光一次,轿车车身总长为4.5m,那么这辆轿车的加速度为()A.1m/s2B.2.25m/s2C.3m/s2D.4.25m/s2例3.2015年9月2日,“抗战专列”在武汉地铁4号线亮相,引得乘车市民纷纷点赞.若该地铁列车先从甲站开始做初速度为零、加速度大小为a的匀加速直线运动,通过位移L后,立即做加速度大小也为a的匀减速直线运动,恰好到乙站停下.则列车从甲站到乙站所用时间为()A.B.2C.2D.4当堂练习单选题练习1.一个物体在水平直线上做匀加速直线运动,初速度为3m/s,经过4s它的位移为24m,则这个物体运动的加速度等于()A.1.5m/s2B.2m/s2C.4m/s2D.0.75m/s2练习2.小球以某一较大初速度冲上一足够长光滑斜面,加速度大小为5m/s2则小球在沿斜面上滑过程中最后一秒的位移是()A.2.0m B.2.5m C.3.0m D.3.5m练习3.“蛟龙号”是我国首台自主研制的作业型深海载人潜水器,它是目前世界上下潜能力最强的潜水器.假设某次海试活动中,“蛟龙号”完成海底任务后竖直上浮,从上浮速度为v时开始计时,此后“蛟龙号”匀减速上浮,经过时间t上浮到海面,速度恰好减为零,则“蛟龙号”在t0(t0<t)时刻距离海平面的深度为()A.B.C.D.练习4.一个物体由静止开始做匀加速直线运动,第1s内的位移是1m,物体在第3s内的位移是()A.2m B.3m C.5m D.8m练习5.为了测定某轿车在平直路上启动阶段的加速度(轿车启动时的运动可近似看成是匀加速直线运动),某人拍摄一张在同一底片上多次曝光的照片,如图所示,如果拍摄时每隔2s曝光一次,轿车车身总长为4.5m,那么这辆轿车的加速度为()A.1m/s2B.2.25m/s2C.3m/s2D.4.25m/s2练习6.2015年9月2日,“抗战专列”在武汉地铁4号线亮相,引得乘车市民纷纷点赞.若该地铁列车先从甲站开始做初速度为零、加速度大小为a的匀加速直线运动,通过位移L后,立即做加速度大小也为a的匀减速直线运动,恰好到乙站停下.则列车从甲站到乙站所用时间为A.B.2C.2D.4。
第2.3课匀变速直线运动的位移与时间的关系一、匀速直线运动的位移1.位移公式:x=.2.位移在v-t图象中的表示:对于匀速直线运动,物体的位移在数值上等于v-t图线与对应的时间轴所包围的矩形的_____.如图1所示,阴影图形的面积就等于物体在t1时间内的_____.二、匀变速直线运动的位移1.位移在v-t图象中的表示:做匀变速直线运动的物体的位移对应着v-t图线与时间轴所包围的_________.如图所示,阴影图形的面积等于物体在t1时间内的_____.2.公式:x=_________.三、位移—时间图象(x-t图象)1.x-t图象:以______为横坐标,以______为纵坐标,描述位移随时间的变化规律.2.常见的x-t图象:(1)静止:一条______________的直线.(2)匀速直线运动:一条_____的直线.3.x-t图象的斜率等于物体的.考点一 对位移公式的进一步理解(1)反映了位移随时间的变化规律。
(2)因为、、均为矢量,使用公式时应先规定正方向。
一般以的方向为正方向。
若与同向,则取正值;若与反向,则取负值;若位移计算结果为正值,说明这段时间内位移的方向为正;若位移计算结果为负值,说明这段时间内位移的方向为负。
(3)因为位移公式是关于的一元二次函数,故图象是一条抛物线(一部分)。
但它不表明质点运动的轨迹为曲线。
(4)对于初速度为零()的匀变速直线运动,位移公式为,即位移与时间的二次方成正比。
【注意】(1)是矢量式,应用时、、都要根据选定的正方向带上“+”、“—”号。
(2)此公式只适用于匀变速直线运动,对非匀变速直线运动不适用。
考点二 位移-时间图象一、对位移-时间图像的理解 1.位移-时间图象的物理意义描述物体相对于出发点的位移随时间的变化情况。
2.位移-时间图象的理解(1)能通过图像得出对应时刻物体所在的位置。
(2)图线的倾斜程度反映了运动的快慢。
斜率越大,说明在相同时间内的位移越大,即运动越快,速度越大。
第3节匀变速直线运动的位移与时间的关系一、匀速直线运动的位移1.做匀速直线运动的物体在时间t内的位移x=vt。
2.做匀速直线运动的物体,其vt图象是一条平行于时间轴的直线,其位移在数值上等于vt图线与对应的时间轴所包围的矩形的面积。
如图所示。
1.当“面积”在t轴上方时,位移取正值,这表示物体的位移与规定的正方向相同.2.当“面积”在t轴下方时,位移取负值,这表示物体的位移与规定的正方向相反.二、匀变速直线运动的位移1.微分与极限思想的应用在匀变速直线运动中,由加速度的定义易得速度的变化量Δv=a·Δt,只要时间足够短,速度的变化量就非常小,在非常短的时间内,我们就可以用熟悉的匀速直线运动的位移公式近似计算匀变速直线运动的位移。
如图所示,甲图中与Δt对应的每个小矩形的面积就可以看做Δt时间内的位移。
如果把每一小段Δt内的运动看做匀速直线运动,则各小矩形面积之和等于各段Δt 时间内做匀速直线运动的位移之和。
时间Δt 越短,速度变化量Δv 就越小,我们这样计算的误差也就越小。
当Δt →0时,各矩形面积之和趋近于v t 图象与时间轴所围成的面积。
由梯形面积公式得x =v0+v ·t 2在任何运动中都有x =v ·t因此v =v0+v 2(适用匀变速直线运动) 把v =v0+at 代入x =v0+v ·t 2得x =v0t +12at2 2.公式的矢量性公式中x 、v0、a 都是矢量,应用时必须选取统一的正方向,一般选v0方向为正方向,若物体做匀加速直线运动,a 与v0同向,a 取正值。
若物体做匀减速直线运动,a 与v0反向,a 取负值,若位移的计算结果为正值,说明这段时间内位移的方向与规定的正方向相同。
若位移的计算结果为负值,说明这段时间内位移的方向与规定的正方向相反。
3.公式的适用条件公式适用于匀变速直线运动。
4.公式的特殊形式(1)当a =0时,x =v0t(匀速直线运动)。
匀变速直线运动的位移与时间的关系一、考点梳理:要点一、匀速直线运动的位移1.匀速直线运动的位移公式:x =________2.图象表示:在v -t 图象中,图线和时间坐标轴包围的面积在数值上等于________的大小.&要点二、匀速直线运动的位移1.利用微分思想推导位移与时间的关系:匀变速直线运动的v-t 图象是一条_________直线,其中图线的斜率表示物体的__________,速度时间-图象与时间轴所围成的面积在数值上等于物体在该段时间内的位移大小。
2.匀变速直线运动的位移公式:x =____________!说明:①公式中若规定初速度的方向为正方向,当物体做加速运动时,a 取正值;当物体做减运动时,a 取负值.②若物体的初速度为零,匀加速运动的位移公式可以简化为x =____________3.匀变速直线运动的平均速度:①平均速度的一般表达式:txv ∆∆=②匀变速直线运动的平均速度:=v _______(用o v , v 表示),也等于_________的速度4.匀变速直线运动的位移图象:(5.匀变速直线运动的推论匀变速直线运动的物体在连续相等的时间(T)内的位移之差为一恒量。
① 公式:S 2-S 1=S 3-S 2=S 4-S 3=…=S n -S n-1=△S=__________ ②推广:S m -S n =_______aT 2二、典例分析:题型1:根据匀变速直线运动的图象求位移例1.一质点以一定初速度沿竖直方向抛出,得到它的速度一时间'图象如图2—3—6所示.试求出它在前2 s内的位移,后2 s内的位移,前4s内的位移.变式练习:一质点从0时刻开始由原点出发沿直线运动,其速度—时间图象如图所示,则该质点()=1s时离原点最远=2s时离原点最远=3s时回到原点=4s时回到原点,路程为10m题型2:匀变速直线运动公式的应用例2.一架飞机着陆时的速度为60m/s,滑行20s停下,它滑行的距离是多少(试用多种方法解答)@题型3:典型易错题例3.汽车以20m/s的速度行驶,发现前方有障碍后就立即以5m/s2的加速度刹车,则刹车后的5 S的位移是多少(试用多种方法解答)·题型4:生活中的运动问题…例4.某市规定,汽车在学校门前马路上的行驶速度不得超过40km/h。
物理匀变速直线运动的位移和时间的关系物理中的匀变速直线运动是指物体在相等时间内位移的增量是逐渐增加的运动。
在这种运动中,位移与时间之间存在着一定的关系。
我们来了解一下匀变速直线运动的基本概念。
匀变速直线运动是指物体在相等时间间隔内,其位移的增量是逐渐增加的运动。
这意味着物体在单位时间内的位移是不断增加的,即速度在变化。
而这种变化是有规律可循的。
在匀变速直线运动中,位移与时间之间的关系可以通过速度来描述。
速度是指物体在单位时间内位移的增量,可以用公式v = Δx/Δt来表示,其中v表示速度,Δx表示位移的增量,Δt表示时间的增量。
根据速度的定义,我们可以得出位移与时间的关系。
假设物体的初始位移为x0,初始时间为t0,位移的增量为Δx,时间的增量为Δt,那么根据速度的定义,我们可以得到以下关系:v = Δx/Δt将上述公式稍作变形,可以得到:Δx = v * Δt这个公式表明,位移的增量等于速度乘以时间的增量。
也就是说,位移的增量与时间的增量成正比,且比例系数为速度。
进一步地,我们可以将上述公式进行积分,得到位移与时间之间的具体关系。
假设物体的初始位移为x0,初始时间为t0,位移为x,时间为t,速度为v,则有:x - x0 = ∫(v dt)这个公式表示,位移与时间之间的关系可以通过速度的积分来描述。
通过对速度关于时间的积分,我们可以得到位移与时间之间的具体关系。
匀变速直线运动的位移与时间之间存在着一定的关系。
位移的增量等于速度乘以时间的增量,而位移与时间之间的具体关系可以通过速度的积分来描述。
这些关系可以帮助我们更好地理解和分析匀变速直线运动的特性和规律。
希望本文对您有所帮助,谢谢阅读!。
高一物理必修一匀变速直线运动的位移与时间的关系在高一物理的课堂上,匀变速直线运动就像是一场刺激的旅程,咱们要在这个运动中寻找位移和时间的关系。
想象一下,骑着自行车在公园里飞驰,刚开始你可能慢慢发力,后来车速越来越快,那种感觉就像是飞一样,简直太爽了!这时候,位移和时间就成了你最好的朋友。
位移就像是你骑车到达目的地的里程碑,而时间则是你从出发到抵达的那个不知不觉的过程。
你看,慢慢的、快快的,时间在变化,位移也在变化,这两者就像是相辅相成的,缺一不可。
先说说匀变速运动。
这个名字听起来好像很严肃,但其实它就是在说:在一段时间里,速度是变化的,变化的方式是均匀的。
比如说,你在街上骑车,刚开始你慢慢加速,可能前面有个小伙伴在追,你不想被他超越,于是就拼命踩踏板,速度渐渐变快。
这个过程就是匀变速运动。
位移与时间的关系,就像你追赶朋友的比赛,时间越长,位移也越大!而且这段距离不是简单的直线,而是随着时间的推进,位移会越来越多,就像是滚雪球一样,越滚越大。
让我们来聊聊公式。
别紧张,这个公式可不难!位移s等于初速度u加上加速度a 乘以时间t的一半再乘以时间t的平方。
哎呀,听起来复杂,但其实一想就明白。
想象一下,初速度就是你起步的速度,加速度是你骑车时逐渐加速的感觉,时间就是你从出发到现在的那段时光。
将这些因素结合起来,就能知道你在这段时间里跑了多远。
咱们生活中的许多事情都可以用这个公式来解释,比如你去超市购物的时间,越买越多,最终的消费就跟你逛的时间成正比。
说到这里,大家可能会想:“那我怎么才能快点到达目的地呢?”嗯,这就得看你如何利用加速度了。
如果你能有效地加速,那你就能迅速拉开与朋友的距离,成为骑车小达人!这就像你在生活中努力追赶自己的目标一样,时不时加把劲,搞得自己越来越快。
不过,要注意哦,速度不是越快越好,有时候慢慢来也许会更稳妥,关键是找到那个平衡点。
在学习这个概念的时候,可以做个有趣的实验。
找个空旷的地方,拿上个计时器,跟朋友比比谁骑得快,看看自己在不同时间段内的位移变化。
高中物理匀变速直线运动的位移与时间的关系高中物理中,匀变速直线运动是一个重要的概念。
在这种运动中,物体的位移与时间之间存在着一定的关系。
本文将围绕这个关系展开,以帮助读者更好地理解匀变速直线运动。
我们需要了解匀变速直线运动的概念。
匀变速直线运动是指物体在直线上以相同的时间间隔内,位移的变化量相等的运动。
也就是说,物体在相同时间内,其位移的增量是相同的。
在匀变速直线运动中,位移与时间的关系可以用图形来表示。
我们可以画出一个位移-时间图,横轴表示时间,纵轴表示位移。
在匀变速直线运动中,位移与时间的关系呈现出一条直线。
接下来,我们来讨论匀变速直线运动中位移与时间的具体关系。
根据物理学的原理,位移与时间的关系可以用一个公式来表示,即位移等于速度乘以时间。
在匀变速直线运动中,速度是随着时间而变化的。
因此,我们需要考虑不同时刻的速度对位移的影响。
一般来说,物体在运动开始的时候速度较小,随着时间的推移速度逐渐增加。
这就导致了位移与时间的关系不是简单的线性关系,而是一个曲线。
具体来说,在匀变速直线运动中,位移与时间的关系可以分为以下几个阶段:1. 初始阶段:在运动刚开始的时候,物体的速度较小,位移增加的速度也较慢。
这个阶段的位移-时间图呈现出一条斜率较小的直线。
2. 加速阶段:随着时间的推移,物体的速度逐渐增加,位移增加的速度也逐渐加快。
这个阶段的位移-时间图呈现出一条斜率逐渐增加的直线。
3. 稳定阶段:当物体的速度达到一定值后,位移增加的速度将保持不变。
这个阶段的位移-时间图呈现出一条水平直线。
4. 减速阶段:当物体的速度开始减小时,位移增加的速度也逐渐减慢。
这个阶段的位移-时间图呈现出一条斜率逐渐减小的直线。
通过分析位移-时间图,我们可以得出结论:在匀变速直线运动中,位移与时间的关系是一个非线性的曲线关系。
在不同的阶段,曲线的斜率有所不同,反映了物体运动的加速度和减速度。
除了通过图形来理解位移与时间的关系,我们还可以用数学公式来描述。