上海市各区2018届九年级中考二模数学试卷精选汇编:综合计算专题(含详细答案)
- 格式:doc
- 大小:1.03 MB
- 文档页数:12
上海市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB 上,10=OA,12=AC ,AC ∥OB ,联结AB . (1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出 点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的 距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.25.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分 ∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H图8图10图8∵OH 经过圆心 ∴AC HC AH 21== ∵12=AC ∴6==HC AH 在Rt △AHO 中,222OA HO AH =+ ∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2 由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分. (3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin 由(2)可得:55sin =∠CAB ∵10=OA ∴52=OG ……………1分 ∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB ∴xBEBE -=-121058 ∴x BE -=22580 ……………1分∴52225802121⨯-⨯=⨯⨯=xOG BE y ∴xy -=22400……………1分自变量x 的取值范围为120<≤x ……………1分图10长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5, ∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO O AC DBO BA C DBAOxx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G , 则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG , 在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD 崇明区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G . (1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)(第25题图)A BCDGEF(备用图)ABCD(1)∵8AB =,12AC = 又∵2AB AD AC =g ∴163AD =∴16201233CD =-= ……………………………1分 ∵2AB AD AC =g ∴AD AB AB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分 ∴ABD C =∠∠,BD ADBC AB= ∴203BD =∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分 (2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分 ∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分∴BE BGCF EC= ∴12810x x x y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =-+…………2分 3° FG FE = 易证 32GE BE EF CF == ,即32x y =3BE =-+ ………2分奉贤区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD .(1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图9备用图ABO备用图ABO黄浦区25.(本题满分14分)如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当∠B=70°时,求∠AEC的度数;(3)当△ACE为直角三角形时,求边BC的长.25. 解:(1)过A作AH⊥BC于H,————————————————————(1分)由∠D=∠BCD=90°,得四边形ADCH为矩形.在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,所以22221y x =+-,——————————————————————(1分) 则()22303y x x x =-++<<.———————————————(2分)(2)取CD 中点T ,联结TE ,————————————————————(1分) 则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD .∴∠AET =∠B =70°. ———————————————————————(1分) 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°. ——————————————————(1分) 由ET 垂直平分CD ,得∠CET =∠DET =35°,————————————(1分) 所以∠AEC =70°+35°=105°. ——————————————————(1分)(3)当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ——————————————————————(2分)当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-=-,则2241174AD CAx x AC CBx -±=⇒=⇒=-(舍负)—————(2分) 易知∠ACE <90°.所以边BC 的长为2或117+.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分)如图9,已知在梯形ABCD 中,AD ∥BC ,AB =DC =AD =5,3sin 5B =,P 是线段BC 上 一点,以P 为圆心,PA 为半径的⊙P 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP =x .(1)求证△ABP ∽△ECP ;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设△APQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求BP 的长.25.解:(1)在⊙P 中,PA =PQ ,∴∠PAQ =∠PQA ,……………………………(1分)∵AD ∥BC ,∴∠PAQ =∠APB ,∠PQA =∠QPC ,∴∠APB =∠EPC ,……(1分) ∵梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ,…………………………(1分) ∴△APB ∽△ECP .…………………………………………………………(1分) (2)作AM ⊥BC ,PN ⊥AD ,∵AD ∥BC ,∴AM ∥PN ,∴四边形AMPN 是平行四边形,∴AM =PN ,AN =MP .………………………………………………………(1分) 在Rt △AMB 中,∠AMB =90°,AB =5,sinB =35, ∴AM =3,BM =4,∴PN =3,PM =AN =x -4,……………………………………(1分) ∵PN ⊥AQ ,∴AN =NQ ,∴AQ = 2x -8,……………………………………(1分) ∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………(1分) 定义域是1342x <<.………………………………………………………(1分) (3)解法一:由△QED 与△QAP 相似,∠AQP =∠EQD ,①如果∠PAQ =∠DEQ ,∵△APB ∽△ECP ,∴∠PAB =∠DEQ ,又∵∠PAQ =∠APB ,∴∠PAB =∠APB ,∴BP =BA =5.………………………(2分)ABCD图9备用图②如果∠PAQ =∠EDQ ,∵∠PAQ =∠APB ,∠EDQ =∠C ,∠B =∠C ,∴∠B =∠APB ,∴ AB =AP ,∵AM ⊥BC ,∴ BM =MP =4,∴ BP =8.………(2分) 综上所述BP 的长为5或者8.………………………………………………(1分) 解法二:由△QAP 与△QED 相似,∠AQP =∠EQD , 在Rt △APN 中,AP PQ ===∵QD ∥PC ,∴EQ EPQD PC=, ∵△APB ∽△ECP ,∴AP EPPB PC=,∴AP EQ PB QD =, ①如果AQ EQ QP QD =,∴AQ AP QP PB =x=,解得5x =………………………………………………………………………(2分) ②如果AQ DQ QP QE =,∴AQ PBQP AP==解得8x =………………………………………………………………………(2分) 综上所述BP 的长为5或者8.…………………………………………………(1分)静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 如图,平行四边形ABCD 中,已知AB =6,BC =9,31cos =∠ABC .对角线AC 、BD 交于点O .动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .设BP = x .(1) 求AC 的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果AC 是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距OP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)作AH ⊥BC 于H ,且31cos =∠ABC ,AB =6, A 第25题图B P OC DE · 第25题备用图ABOCDDA · POE那么2316cos =⨯=∠⋅=ABC AB BH …………(2分) BC =9,HC =9-2=7,242622=-=AH , ……………………(1分) 9493222=+=+=HC AH AC ﹒ ………(1分)(2)作OI ⊥AB 于I ,联结PO , AC =BC =9,AO =4.5 ∴∠OAB =∠ABC ,∴Rt △AIO 中, 31cos cos ==∠=∠AO AI ABC IAO∴AI =1.5,IO =2322=AI ……………………(1分) ∴PI =AB -BP -AI =6-x -1.5=x -29, ……………………(1分) ∴Rt △PIO 中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……(1分) ∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392 ……………………(1分) ∴y =x x x x x x -+-=-+-153364214153922…………………………(1分) ∵动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .∴定义域:0<x ≤3…………(1分) (3)由题意得:∵点E 在线段AP 上,⊙O 经过点E ,∴⊙O 与⊙P 相交 ∵AO 是⊙O 半径,且AO >OI ,∴交点E 存在两种不同的位置,OE =OA =29① 当E 与点A 不重合时,AE 是⊙O 的弦,OI 是弦心距,∵AI =1.5,AE =3, ∴点E 是AB 中点,321==AB BE ,23==PE BP ,3=PI , IO =23 3327)23(32222==+=+=IO PI OP ……………………(2分)② 当E 与点A 重合时,点P 是AB 中点,点O 是AC 中点,2921==BC OP ……(2分) ∴33=OP 或29. 闵行区25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在Rt △ABC 中,∠ACB = 90o,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合).(1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域;第25题图(2)(2)如果»»2EDEF =,求ED 的长; (3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=o∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H , 易得:35EH x =,45BH x =,15FH x =.…………………………(1分) 在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x x =<<.………………………………………(1分+1分) (2)取»ED的中点P ,联结BP 交ED 于点G ∵»»2EDEF =,P 是»ED 的中点,∴»»»EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵»»EPEF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分) 又∵∠CEA =∠DEB ,∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分) (备用图)CBA (第25题图)CBEF DADEBACF∴9169782222BE =-=-=.……………………………………………(1分) ∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形, 只可能∠ABD =∠CDB = 90o. 在Rt △CBD 中,∵8BC =, ∴32cos 5CD BC BCD =⋅∠=, 24sin 5BD BC BCD BE =⋅∠==. ∴321651025CD AB ==,328153245CE BE -==; ∴CD CEAB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分) ②当AC ∥BD 时,如果四边形ABDC 只可能∠ACD =∠CDB = 90o. ∵AC ∥BD ,∠ACB = 90o, ∴∠ACB =∠CBD = 90o . ∴∠ABD =∠ACB +∠BCD > 90o. 与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)普陀区25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =.(1)当6m =时,求线段CD 的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ;(3)△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.DEBACFDC25.解:(1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ········· (1分) ∵AB =6,∴3OC =. ······················ (1分)由勾股定理得 CH = ····················· (1分)∵OH ⊥DC ,∴2CD CH == ················ (1分) (2)在Rt △POH 中,∵1sin 3P =, PO m =,∴3mOH =. ········ (1分) 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ················ (1分)在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ·············· (1分)可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=. ········· (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ········· (1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.(1分)②11O P OO =n =,解得23m n =,即23n 23812n n -=,解得n ·········· (1分) ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n . ·· (2分)综上所述,n .青浦区25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON,∠MON=90o,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA= x,∠COM的正切值为y.(1)如图9-2,当AB⊥OM时,求证:AM =AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.25.解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM =∠BAM=90°.··········(1分)∵∠ABM +∠M =∠DOM +∠M,∴∠ABM =∠DOM.·········(1分)∵∠OAC=∠BAM,OC =BM,∴△OAC≌△ABM,······················(1分)∴AC =AM.·························(1分)(2)过点D作DE//AB,交OM于点E.················(1分)∵OB=OM,OD⊥BM,∴BD=DM.················(1分)∵DE//AB,∴=MD MEDM AE,∴AE=EM,∵OM,∴AE=)12x.················(1分)∵DE//AB,∴2==OA OC DMOE OD OD,···················(1分)∴2=DM OAOD OE,∴=y(0<≤x·················(2分)(3)(i)当OA=OC时,∵111222===DM BM OC x,O MNDCBA图9-1ONDCBA图9-2NMO备用图在Rt △ODM中,==OD =DM y OD,1=x=x=x .(2分) (ii )当AO =AC 时,则∠AOC =∠ACO ,∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在. ····················· (1分) (ⅲ)当CO =CA 时,则∠COA =∠CAO=α,∵∠CAO >∠M ,∠M =90α︒-,∴α>90α︒-,∴α>45︒,∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在. ·· (1分)松江区25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)如图,已知Rt △ABC 中,∠ACB =90°,BC =2,AC =3,以点C 为圆心、CB 为半径的圆交AB 于点D ,过点A 作AE ∥CD ,交BC 延长线于点E.(1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.① 如果△ACQ ∽△CPQ ,求CP 的长;② 如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分) 解:(1)∵AE ∥CD∴BC DC BE AE=…………………………………1分 ∵BC=DC∴BE=AE …………………………………1分 设CE =x(第25题图)CBA DE(备用图)CBADECBA DE则AE =BE =x +2 ∵ ∠ACB =90°, ∴222AC CE AE +=即229(2)x x +=+………………………1分 ∴54x =即54CE =…………………………………1分 (2)①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P …………………………………1分 又∵AE ∥CD ∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分 ∴△ACE ∽△PCA ,…………………………1分 ∴2AC CE CP =⋅…………………………1分 即2534CP =⋅ ∴365CP =……………………………1分 ②设CP =t ,则54PE t =- ∵∠ACB =90°,∴AP ∵AE ∥CD ∴AQ ECAP EP=……………………………1分5545454t t ==--∴AQ =1分若两圆外切,那么1AQ == 此时方程无实数解……………………………1分CBA DEPQ若两圆内切切,那么2595t AQ +== ∴21540160t t -+= 解之得2041015t ±=………………………1分又∵54t >∴2041015t +=………………………1分徐汇区25. 已知四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF ∥DB 交AB 延长线于点F ,联结EF 交BC 于点H . (1)如图1,当EF BC ⊥时,求AE 的长;(2)如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G (点C 、G 不重合),设AE 的长为x ,EH 的长为y ;① 求y 关于x 的函数关系式,并写出定义域;③ 联结EG ,当DEG ∆是以DG 为腰的等腰三角形时,求AE 的长.杨浦区25、(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.(1)当圆P过点A时,求圆P的半径;(2)分别联结EH和EA,当△ABE△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值。
上海市各区2018届中考数学二模试卷精选汇编:综合计算含解析21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 图4DCB 图4DCBAH设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CH AH =+ ∴22210)3()10(=+-x x ∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BEADB第21题图∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)崇明区21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.(第21题图1)A BOP CD (第21题图2)OABDPC21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-=- ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F .(1) 求EAD ∠的余切值;(2) 求BF CF的值.21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.图6ABCD EF(2)求CE∶DE.21. 解:(1)由AB=AC=6,AH⊥BC,得BC=2BH.—————————————————————————(2分)在△ABH中,AB=6,cosB=23,∠AHB=90°,得BH=2643⨯=,AH=————————————(2分)则BC=8,所以△ABC面积=182⨯=——————————————(1分)(2)过D作BC的平行线交AH于点F,———————————————(1分)由AD∶DB=1∶2,得AD∶AB=1∶3,则31CE CH BH ABDE DF DF AD====. ——————————————(4分)金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F.A DF(2)如果BE∶EC=2∶1,求∠CDF的余切值.21.解:(1)∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∴∠DAF=∠AEB,……………………………………………………………………(1分)∵AE=BC,DF⊥AE,∴AD=AE,∠AFD=∠EBA=90°,………………………(2分)∴△ADF≌△EAB,∴AF=EB,………………………………………………………(2分)(2)设BE=2k,EC=k,则AD=BC=AE=3k,AF=BE=2k,…………………………(1分)∵∠ADC=90°,∠AFD=90°,∴∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠CDF=∠DAF…………………………………………………………………(2分)在Rt△ADF中,∠AFD=90°,DF∴cot∠CDF=cot∠DAF=AFDF==.………………………………(2分)静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD中,AC 、DB交于点H.DE平分∠ADB,交AC于点E.联结BE并延长,交边AD于点F.(1)求证:DC=EC;(2)求△EAF 的面积.21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90°AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分)又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分)Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区第21题图21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x=-+的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC = 90o,1 tan2ABC∠=(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点MC位于直线AB的同侧,使得ABCABMSS∆∆=2求点M的坐标.21.解:(1)令0y=,则240x-+=,解得:2x=,∴点A坐标是(2,0).令0x=,则4y=,∴点B坐标是(0,4).………………………(1分)∴AB==.………………………………(1分)∵90BAC∠=,1tan2ABC∠=,∴AC过C点作CD⊥x轴于点D,易得OBA DAC∆∆∽.…………………(1分)∴2AD=,1CD=,∴点C坐标是(4,1).………………………(1分)(2)11522ABCS AB AC∆=⋅=⨯=.………………………………(1分)∵2ABM ABCS S∆∆=,∴52ABMS∆=.……………………………………(1分)∵(1M,)m,∴点M在直线1x=上;令直线1x=与线段AB交于点E,2ME m=-;……………………(1分)分别过点A、B作直线1x=的垂线,垂足分别是点F、G,∴AF+BG = OA = 2;……………………………………………………(1分)(第21题图)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长;(2)求CDA ∠的余弦值.21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ···································································· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE .······························· (1分)设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ··························································· (2分) ∴3=DE . ····································································································· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ············································· (1分)同理得5=BD . ····························································································· (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ······················ (1分)ABCDE 图7∴53=CD . ····································································································· (1分)∴102cos ==∠AD CD CDA . ··········································································· (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE .(1)求线段CD 的长;(2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ························································ (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ························································································ (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ······················································· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ··························································································· (1分) ∴43=x . ··································································································· (1分)(2)1141052233=⋅=⨯⨯=ABD S AB DH . ······················································· (1分)∵BD=2DE ,ED A图5∴2==ABD ADES BDSDE, ··············································································· (3分) ∴1015323=⨯=ADES. ·············································································· (1分) 松江区21.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =,BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.21.(本题满分10分, 每小题各5分)解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6(第21题图)DA∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH =4在Rt AHC ∆中,AC =…………………2分 ∵DE 垂直平分AC∴12CD AC == ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分∴DE = ………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D . (1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用 尺规作图的方法确定点O 的位置并求出的⊙O 半径. (保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对角线BD的长和梯形ABCD的面积。
上海市各区2018届九年级中考二模数学试卷精选汇编 综合计算宝山区、嘉定区21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CHAH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分图4DCB A图4DCBAH∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分) 崇明区ADB第21题图21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠(第21题图1)ABOPCD (第21题图2)OABDPC∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-= ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值; (2) 求BFCF的值. 21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.图6ABD EF(1)求△ABC 的面积; (2)求CE ∶DE.21. 解:(1)由AB =AC =6,AH ⊥BC ,得BC =2BH .—————————————————————————(2分) 在△ABH 中,AB =6,cosB =23,∠AHB =90°, 得BH =2643⨯=,AH=2分) 则BC =8,所以△ABC 面积=182⨯=——————————————(1分) (2)过D 作BC 的平行线交AH 于点F ,———————————————(1分)由AD ∶DB =1∶2,得AD ∶AB =1∶3, 则31CE CH BH AB DE DF DF AD ====. ——————————————(4分)金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F .(1)求证:AF=BE ;(2)如果BE ∶EC=2∶1,求∠CDF 的余切值.21.解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°,ABCDFE图5∴∠DAF=∠AEB ,……………………………………………………………………(1分) ∵AE=BC ,DF ⊥AE ,∴AD=AE ,∠ AFD=∠EBA=90°,………………………(2分) ∴△ADF ≌△EAB ,∴AF =EB ,………………………………………………………(2分)(2)设BE =2k ,EC =k ,则AD =BC =AE =3k ,AF =BE =2k ,…………………………(1分)∵∠ADC =90°,∠AFD =90°,∴∠CDF +∠ADF =90°,∠DAF +∠ADF =90°, ∴∠CDF =∠DAF …………………………………………………………………(2分) 在Rt △ADF 中,∠AFD =90°,DF∴cot ∠CDF =cot ∠DAF=5AF DF ==.………………………………(2分) 静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD 中,AC 、DB 交于点H .DE 平分∠ADB ,交AC 于点E .联结BE 并延长,交边AD 于点F . (1)求证:DC =EC ; (2)求△EAF 的面积.21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90° AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分)第21题图H又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分)Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o,1tan 2ABC ∠=.(1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点MC 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2求点M 的坐标.21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分) ∴AB =1分) ∵90BAC ∠=,1tan 2ABC ∠=,∴AC =. (第21题图)过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分) (2)11522ABC S AB AC ∆=⋅=⨯=.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分) ∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分) 分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长; (2)求CDA ∠的余弦值. 21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ······································································· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE . ······························ (1分)设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ····························································· (2分) ∴3=DE . ············································································································· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ················································ (1分)ABCDE 图7同理得5=BD . ······································································································ (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ····················· (1分) ∴53=CD . ············································································································ (1分)∴102cos ==∠AD CD CDA . ················································································ (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE .(1)求线段CD 的长; (2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ································································· (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ·································································································· (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ····························································· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ·································································································· (1分) ∴43=x . ·········································································································· (1分)(2)1141052233=⋅=⨯⨯=ABD S AB DH . ···························································· (1分)∵BD=2DE , ∴2==ABD ADES BDSDE, ····················································································· (3分) ∴1015323=⨯=ADES. ··················································································· (1分) 松江区ED C BA图521.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =, BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.21.(本题满分10分, 每小题各5分)解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH=4在Rt AHC ∆中,AC =2分 ∵DE 垂直平分AC ∴12CD AC == ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分 (第21题图)DACE∴DE = ………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D .(1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用尺规作图的方法确定点O 的位置并求出的⊙O 半径.(保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD 中,DC//AB, AD=BC, BD 平分∠ABC ,∠A =600求:(1)求∠CDB 的度数(2)当AD =2时,求对角线BD 的长和梯形ABCD 的面积。
某某市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.〔此题总分为14分,第〔1〕小题4分,第〔2〕小题5分,第〔3〕小题5分〕在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB 上,10=OA ,12=AC ,AC ∥OB ,联结AB .〔1〕如图8,求证:AB 平分OAC ∠;〔2〕点M在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出点M 的位置并求CM 的长;〔3〕如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值X 围.25.〔1〕证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分 ∴B OAB ∠=∠…………1分 ∵AC ∥OB图8图10∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H∵OH 经过圆心 ∴AC HC AH 21==∵12=AC ∴6==HC AH在Rt △AHO 中,222OA HO AH =+ ∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB ∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分. 〔3〕过点O 作AB OG ⊥,垂足为点G 由〔1〕、〔2〕可知,CAB OAG ∠=∠sin sin 由〔2〕可得:55sin =∠CAB∵10=OA ∴52=OG ……………1分 ∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB∴x BEBE -=-121058∴xBE -=22580……………1分∴52225802121⨯-⨯=⨯⨯=x OG BE y ∴xy -=22400……………1分自变量x 的取值X 围为120<≤x ……………1分长宁区25.〔此题总分为14分,第〔1〕小题4分,第〔2〕小题4分,第〔3〕小题6分〕在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 圆O 的半径长为5 ,弦AB 的长为8.〔1〕如图1,当点D 是弧AB 的中点时,求CD 的长; 〔2〕如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; 〔3〕假如四边形AOBD 是梯形,求AD 的长.O A C DBO BA C DBAO25.〔此题总分为14分,第〔1〕小题4分,第〔2〕小题4分,第〔3〕小题6分〕 解:〔1〕∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC 〔2分〕 在Rt △AOC 中,︒=∠90ACO ,AO =5, ∴322=-=AC AO CO 〔1分〕5=OD ,2=-=∴OC OD CD 〔1分〕〔2〕过点O 作OH ⊥AB ,垂足为点H ,如此由〔1〕可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , 〔1分〕∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-=〔80<<x 〕 〔3分〕 〔3〕①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,如此OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD .〔3分〕 ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,如此由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD 〔 3分〕综上得6514或=AD 崇明区25.〔此题总分为14分,第(1)小题4分,第(2)小题4分,第(3)小题6分〕如图,ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点〔点E 不与B 、C 重合〕,AEF C ∠=∠,AE 与BD 相交于点G .〔1〕求证:BD 平分ABC ∠;〔2〕设BE x =,CF y =,求y 与x 之间的函数关系式; 〔3〕联结FG ,当GEF △是等腰三角形时,求BE 的长度.25.〔总分为14分,第〔1〕小题4分,第〔2〕小题4分,第〔3〕小题6分〕 〔1〕∵8AB =,12AC =又∵2AB AD AC = ∴163AD =∴16201233CD =-=……………………………1分∵2AB AD AC =∴AD ABAB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△…………………………1分〔第25题图〕A BCDGEF〔备用图〕ABCD∴ABD C =∠∠,BD ADBC AB= ∴203BD =∴BD CD =∴DBC C =∠∠………………………1分 ∴ABD DBC =∠∠∴BD 平分ABC ∠………………………1分 〔2〕过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH =∴163AD DH ==∴12BH =……1分 ∵AH BC ∥∴AH HG BE BG =∴812BG x BG -=∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠∴BEA EFC =∠∠又∵DBC C =∠∠∴BEG CFE △∽△……………………………………………………………1分∴BE BG CF EC=∴12810xx x y x +=-∴228012x x y -++=…………………………………………………………1分〔3〕当△GEF 是等腰三角形时,存在以下三种情况: 1°GE GF =易证23GE BE EF CF ==,即23x y =,得到4BE =………2分 2°EG EF =易证BE CF =,即x y =,5BE =-+2分 3°FG FE =易证32GE BE EF CF ==,即32x y=3BE =-………2分奉贤区25.〔此题总分为14分,第(1)小题总分为5分,第(2)小题总分为5分,第(3)小题总分为4分〕:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD . 〔1〕假如C 是半径OB 中点,求∠OCD 的正弦值; 〔2〕假如E 是弧AB 的中点,求证:BC BO BE ⋅=2;〔3〕联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图9备用图ABO备用图ABO黄浦区25.〔此题总分为14分〕如图,四边形ABCD中,∠BCD=∠D=90°,E是边ABAD=1,AB=2. 〔1〕设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;〔2〕当∠B=70°时,求∠AEC的度数;〔3〕当△ACE为直角三角形时,求边BC的长.25. 解:〔1〕过A 作AH ⊥BC 于H ,————————————————————〔1分〕 由∠D =∠BCD =90°,得四边形ADCH 为矩形.在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,所以22221y x =+-,——————————————————————〔1分〕如此()22303y x x x =-++<<.———————————————〔2分〕〔2〕取CD 中点T ,联结TE ,————————————————————〔1分〕 如此TE 是梯形中位线,得ET ∥AD ,ET ⊥CD .∴∠AET =∠B =70°.———————————————————————〔1分〕 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.——————————————————〔1分〕 由ET 垂直平分CD ,得∠CET =∠DET =35°,————————————〔1分〕 所以∠AEC =70°+35°=105°.——————————————————〔1分〕〔3〕当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 如此在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2.——————————————————————〔2分〕当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-=-如此221411724AD CA x x AC CB x x -±=⇒=⇒=-〔舍负〕—————〔2分〕 易知∠ACE <90°. 所以边BC 的长为2或1172+.——————————————————〔1分〕金山区25.〔此题总分为14分,第〔1〕小题4分,第〔2〕小题5分,第〔3〕小题5 分〕 如图9,在梯形ABCD 中,AD ∥BC ,AB =DC =AD =5,3sin 5B =,P 是线段BC 上 一点,以P 为圆心,PA 为半径的⊙P 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP =x .〔1〕求证△ABP ∽△ECP ;〔2〕如果点Q 在线段AD 上〔与点A 、D 不重合〕,设△APQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; 〔3〕如果△QED 与△QAP 相似,求BP 的长.25.解:〔1〕在⊙P 中,PA =PQ ,∴∠PAQ =∠PQA ,……………………………〔1分〕ABPCDQ EABCD图9备用图∵AD ∥BC ,∴∠PAQ =∠APB ,∠PQA =∠QPC ,∴∠APB =∠EPC ,……〔1分〕 ∵梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ,…………………………〔1分〕 ∴△APB ∽△ECP .…………………………………………………………〔1分〕 〔2〕作AM ⊥BC ,PN ⊥AD ,∵AD ∥BC ,∴AM ∥PN ,∴四边形AMPN 是平行四边形,∴AM =PN ,AN =MP .………………………………………………………〔1分〕 在Rt △AMB 中,∠AMB =90°,AB =5,sinB =35, ∴AM =3,BM =4,∴PN =3,PM =AN =x -4,……………………………………〔1分〕 ∵PN ⊥AQ ,∴AN =NQ ,∴AQ =2x -8,……………………………………〔1分〕∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………〔1分〕 定义域是1342x <<.………………………………………………………〔1分〕〔3〕解法一:由△QED 与△QAP 相似,∠AQP =∠EQD ,①如果∠PAQ =∠DEQ ,∵△APB ∽△ECP ,∴∠PAB =∠DEQ ,又∵∠PAQ =∠APB ,∴∠PAB =∠APB ,∴BP =BA =5.………………………〔2分〕 ②如果∠PAQ =∠EDQ ,∵∠PAQ =∠APB ,∠EDQ =∠C ,∠B =∠C , ∴∠B =∠APB ,∴AB =AP ,∵AM ⊥BC ,∴BM =MP =4,∴BP =8.………〔2分〕 综上所述BP 的长为5或者8.………………………………………………〔1分〕 解法二:由△QAP 与△QED 相似,∠AQP =∠EQD ,在Rt △APN 中,AP PQ ===∵QD ∥PC ,∴EQ EPQD PC=, ∵△APB ∽△ECP ,∴AP EP PB PC =,∴AP EQPB QD=,①如果AQ EQQP QD =,∴AQ APQP PB ==,解得5x =………………………………………………………………………〔2分〕 ②如果AQ DQQP QE =,∴AQ PB QP AP ==解得8x =………………………………………………………………………〔2分〕 综上所述BP 的长为5或者8.…………………………………………………〔1分〕静安区25.〔此题总分为14分,第〔1〕小题总分为4分,第〔2〕小题总分为6分,第〔3〕小题总分为4分〕如图,平行四边形ABCD 中,AB =6,BC =9,31cos =∠ABC .对角线AC 、BD 交于点O .动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .设BP = x .(1) 求AC 的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果AC 是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距OP 的长.25.〔此题总分为14分,第〔1〕小题4分,第〔2〕小题6分,第〔3〕小题4分〕 解:〔1〕作AH ⊥BC 于H ,且31cos =∠ABC ,AB =6, 那么2316cos =⨯=∠⋅=ABC AB BH …………〔2分〕 BC =9,HC =9-2=7,242622=-=AH , ……………………〔1分〕 9493222=+=+=HC AH AC ﹒………〔1分〕〔2〕作OI ⊥AB 于I ,联结PO , AC =BC =9,AO ∴∠OAB =∠ABC , ∴Rt △AIO 中,31cos cos ==∠=∠AO AI ABC IAO ∴AI =1.5,IO =2322=AI ……………………〔1分〕A 第25题图B P OC DE · 第25题备用图ABOCDDA · 第25题图(1)BP OCHE第25题图(2)∴PI =AB -BP -AI =6-x -1.5=x -29, ……………………〔1分〕 ∴Rt △PIO 中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……〔1分〕∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392……………………〔1分〕 ∴y =x x x x x x -+-=-+-153364214153922…………………………〔1分〕 ∵动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .∴定义域:0<x ≤3…………〔1分〕 〔3〕由题意得:∵点E 在线段AP 上,⊙O 经过点E ,∴⊙O 与⊙P 相交 ∵AO 是⊙O 半径,且AO >OI ,∴交点E 存在两种不同的位置,OE =OA =29① 当E 与点A 不重合时,AE 是⊙O 的弦,OI 是弦心距,∵AI =1.5,AE =3, ∴点E 是AB 中点,321==AB BE ,23==PE BP ,3=PI , IO =23 3327)23(32222==+=+=IO PI OP ……………………〔2分〕② 当E 与点A 重合时,点P 是AB 中点,点O 是AC 中点,2921==BC OP ……〔2分〕 ∴33=OP 或29. 闵行区25.〔此题总分为14分,其中第〔1〕小题4分,第〔2〕、〔3〕小题各5分〕如图,在Rt △ABC 中,∠ACB = 90o,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D 〔点D 、E 不重合〕.〔1〕如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域; 〔2〕如果2ED EF =,求ED 的长;〔3〕联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.CBA CBEFDA25.解:〔1〕在Rt △ABC 中,6AC =,8BC =,90ACB ∠=∴10AB =.……………………………………………………………〔1分〕 过E 作EH ⊥AB ,垂足是H ,易得:35EH x =,45BH x =,15FH x =.…………………………〔1分〕在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x =<<.………………………………………〔1分+1分〕 〔2〕取ED 的中点P ,联结BP 交ED 于点G∵2ED EF =,P 是ED 的中点,∴EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵EP EF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………〔1分〕 又∵∠CEA =∠DEB ,∴∠CAE =∠EBP =∠ABC .……………………………………………〔1分〕又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………〔1分〕 ∴9169782222BE =-=-=.……………………………………………〔1分〕 ∴6672125525ED EG x ===⨯=.……………………………………〔1分〕 〔3〕四边形ABDC 不可能为直角梯形.…………………………………〔1分〕①当CD ∥AB 时,如果四边形ABDC 是直角梯形, 只可能∠ABD =∠CDB = 90o.在Rt △CBD 中,∵8BC =,DEBACF∴32cos 5CD BC BCD =⋅∠=, 24sin 5BD BC BCD BE =⋅∠==. ∴321651025CD AB ==,328153245CE BE -==; ∴CD CEAB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………〔2分〕 ②当AC ∥BD 时,如果四边形ABDC 是直角梯形, 只可能∠ACD =∠CDB = 90o. ∵AC ∥BD ,∠ACB = 90o, ∴∠ACB =∠CBD = 90o . ∴∠ABD =∠ACB +∠BCD > 90o. 与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC 不可能为直角梯形.…………………………〔2分〕普陀区25.〔此题总分为14分〕P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =.〔1〕当6m =时,求线段CD 的长;〔2〕设圆心1O 在直线AB 上方,试用n 的代数式表示m ;〔3〕△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.OABPDOABC25.解:〔1〕过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =.〔1分〕 ∵AB =6,∴3OC =.〔1分〕由勾股定理得 CH =〔1分〕∵OH ⊥DC ,∴2CD CH ==〔1分〕 〔2〕在Rt △POH 中,∵1sin 3P =, PO m =,∴3m OH =.〔1分〕 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=.〔1分〕在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=.〔1分〕可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=.〔2分〕〔3〕△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =.〔1分〕即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.〔1分〕②11O P OO =n =,解得23m n =,即23n 23812n n-=,解得n 〔1分〕 ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n .〔2分〕综上所述,n .青浦区25.〔此题总分为14分,第〔1〕小题4分,第〔2〕小题6分,第〔3〕小题4分〕如图9-1,扇形MON∠MON =90,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC =BM ,联结BC 并延长交半径OM 于点A ,设OA = x ,∠的正切值为y .〔1〕如图9-2,当AB ⊥OM 时,求证:AM =AC ; 〔2〕求y 关于x 的函数关系式,并写出定义域; 〔3〕当△OAC 为等腰三角形时,求x 的值.25.解:〔1〕∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°.〔1分〕∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM .〔1分〕 ∵∠OAC =∠BAM ,OC =BM , ∴△OAC ≌△ABM ,〔1分〕 ∴AC =AM .〔1分〕〔2〕过点D 作DE //AB ,交OM 于点E .〔1分〕∵OB =OM ,OD ⊥BM ,∴BD =DM .〔1分〕 ∵DE //AB , ∴=MD MEDM AE,∴AE =EM , ∵OMAE=)12x .〔1分〕 ∵DE //AB , ∴2==OA OC DMOE OD OD,〔1分〕 OMND C BA图9-1 OMNDCBA图9-2NMO备用图∴2=DM OAOD OE,∴=y〔0<≤x〔2分〕〔3〕〔i〕当OA=OC时,∵111222===DM BM OC x,在Rt△ODM中,==OD=DMyOD,∴1=x.解得2=x,或2=x〔舍〕.〔2分〕〔ii〕当AO=AC时,如此∠AOC =∠ACO,∵∠ACO >∠COB,∠COB =∠AOC,∴∠ACO >∠AOC,∴此种情况不存在.〔1分〕〔ⅲ〕当CO=CA时,如此∠COA =∠CAO=α,∵∠CAO >∠M,∠M=90α︒-,∴α>90α︒-,∴α>45︒,∴290α∠=>︒BOA,∵90∠≤︒BOA,∴此种情况不存在.〔1分〕松江区25.〔此题总分为14分,第〔1〕小题4分,第〔2〕小题每个小题各5分〕如图,Rt△ABC中,∠ACB=90°,BC=2,AC=3,以点C为圆心、CB为半径的圆交AB于点D,过点A作AE∥CD,交BC延长线于点E.〔1〕求CE的长;〔2〕P是 CE延长线上一点,直线AP、CD交于点Q.①如果△ACQ∽△CPQ,求CP的长;②如果以点A为圆心,AQ为半径的圆与⊙C相切,求CP的长.ADAD25.〔此题总分为14分,第〔1〕小题4分,第〔2〕小题每个小题各5分〕 解:〔1〕∵AE ∥CD∴BC DCBE AE=…………………………………1分 ∵BC=DC∴BE=AE …………………………………1分 设CE =x 如此AE =BE =x +2 ∵∠ACB =90°, ∴222AC CE AE +=即229(2)x x +=+………………………1分∴54x = 即54CE =…………………………………1分〔2〕①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P …………………………………1分 又∵AE ∥CD ∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分 ∴△ACE ∽△PCA ,…………………………1分 ∴2AC CE CP =⋅…………………………1分即2534CP =⋅ CBA DEPQ(第25题图)CBA DE∴365CP =……………………………1分 ②设CP =t ,如此54PE t =-∵∠ACB =90°,∴AP ∵AE ∥CD∴AQ ECAP EP=……………………………1分5545454t t ==--∴45AQ t =-……………………………1分假如两圆外切,那么1AQ ==此时方程无实数解……………………………1分假如两圆内切切,那么5AQ ==∴21540160t t -+=解之得t =………………………1分又∵54t >∴t =1分徐汇区25. 四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF ∥DB 交AB 延长线于点F ,联结EF 交BC 于点H . 〔1〕如图1,当EF BC ⊥时,求AE 的长;〔2〕如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G 〔点C 、G 不重合〕,设AE的长为x,EH的长为y;①求y关于x的函数关系式,并写出定义域;是以DG为腰的等腰三角形时,求AE的长.③联结EG,当DEG杨浦区25、〔此题总分为14分,第〔1〕小题4分,第〔2〕小题6分,第〔3〕小题4分〕如图9,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.(1)当圆P过点A时,求圆P的半径;(2)分别联结EH和EA,当△ABE△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值X围;(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值。
精品文档,欢迎下载如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!上海市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB上,10=OA ,12=AC ,AC ∥OB ,联结AB .(1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.图8图1025.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分 ∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H∵OH 经过圆心 ∴AC HC AH 21==∵12=AC ∴6==HC AH 在Rt △AHO 中,222OA HO AH =+ ∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB ∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分.图8(3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin 由(2)可得:55sin =∠CAB ∵10=OA ∴52=OG ……………1分 ∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB∴xBEBE -=-121058 ∴x BE -=22580 ……………1分∴52225802121⨯-⨯=⨯⨯=xOG BE y ∴xy -=22400……………1分自变量x 的取值范围为120<≤x ……………1分 长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.图10O AC BO BA C BAO25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5, ∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD 崇明区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G .(1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) (1)∵8AB =,12AC = 又∵2AB AD AC =g ∴163AD =∴16201233CD =-= ……………………………1分 (第25题图)A BCDGEF(备用图)ABCD∵2AB AD AC =g ∴AD ABAB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分 ∴ABD C =∠∠,BD ADBC AB= ∴203BD =∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分 (2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分 ∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分∴BE BGCF EC= ∴12810x x x y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况: 1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =-+…………2分 3° FG FE = 易证32GE BE EF CF == ,即32x y =3BE =-+ ………2分奉贤区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD . (1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图9备用图ABO备用图ABO黄浦区25.(本题满分14分)如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当∠B=70°时,求∠AEC的度数;(3)当△ACE为直角三角形时,求边BC的长.25. 解:(1)过A 作AH ⊥BC 于H ,————————————————————(1分) 由∠D =∠BCD =90°,得四边形ADCH 为矩形.在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,所以22221y x =+-,——————————————————————(1分) 则()22303y x x x =-++<<.———————————————(2分)(2)取CD 中点T ,联结TE ,————————————————————(1分) 则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD .∴∠AET =∠B =70°. ———————————————————————(1分) 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°. ——————————————————(1分) 由ET 垂直平分CD ,得∠CET =∠DET =35°,————————————(1分) 所以∠AEC =70°+35°=105°. ——————————————————(1分)(3)当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ——————————————————————(2分)当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =--则2241174AD CAx x AC CBx -±=⇒=⇒=-2分) 易知∠ACE <90°.所以边BC 的长为2或1172+.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分) 如图9,已知在梯形ABCD 中,AD ∥BC ,AB =DC =AD =5,3sin 5B,P 是线段BC 上 一点,以P 为圆心,PA 为半径的⊙P 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP =x .(1)求证△ABP ∽△ECP ;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设△APQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求BP 的长.25.解:(1)在⊙P 中,PA =PQ ,∴∠PAQ =∠PQA ,……………………………(1分)∵AD ∥BC ,∴∠PAQ =∠APB ,∠PQA =∠QPC ,∴∠APB =∠EPC ,……(1分) ∵梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ,…………………………(1分) ∴△APB ∽△ECP .…………………………………………………………(1分) (2)作AM ⊥BC ,PN ⊥AD ,∵AD ∥BC ,∴AM ∥PN ,∴四边形AMPN 是平行四边形,ABPCDQ EABCD图9备用图∴AM =PN ,AN =MP .………………………………………………………(1分) 在Rt △AMB 中,∠AMB =90°,AB =5,sinB =35, ∴AM =3,BM =4,∴PN =3,PM =AN =x -4,……………………………………(1分) ∵PN ⊥AQ ,∴AN =NQ ,∴AQ = 2x -8,……………………………………(1分)∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………(1分)定义域是1342x <<.………………………………………………………(1分)(3)解法一:由△QED 与△QAP 相似,∠AQP =∠EQD ,①如果∠PAQ =∠DEQ ,∵△APB ∽△ECP ,∴∠PAB =∠DEQ ,又∵∠PAQ =∠APB ,∴∠PAB =∠APB ,∴BP =BA =5.………………………(2分) ②如果∠PAQ =∠EDQ ,∵∠PAQ =∠APB ,∠EDQ =∠C ,∠B =∠C ,∴∠B =∠APB ,∴ AB =AP ,∵AM ⊥BC ,∴ BM =MP =4,∴ BP =8.………(2分) 综上所述BP 的长为5或者8.………………………………………………(1分) 解法二:由△QAP 与△QED 相似,∠AQP =∠EQD ,在Rt △APN 中,AP PQ ===∵QD ∥PC ,∴EQ EPQD PC=, ∵△APB ∽△ECP ,∴AP EPPB PC=,∴AP EQ PB QD =,①如果AQ EQQP QD =,∴AQ AP QP PB =x=,解得5x =………………………………………………………………………(2分) ②如果AQ DQQP QE =,∴AQ PBQP AP ==解得8x =………………………………………………………………………(2分) 综上所述BP 的长为5或者8.…………………………………………………(1分)静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,平行四边形ABCD 中,已知AB =6,BC =9,31cos =∠ABC .对角线AC 、BD 交于点O .动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .设BP = x .(1) 求AC 的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果AC 是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距OP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)作AH ⊥BC 于H ,且31cos =∠ABC ,AB =6, 那么2316cos =⨯=∠⋅=ABC AB BH …………(2分) BC =9,HC =9-2=7,242622=-=AH , ……………………(1分) 9493222=+=+=HC AH AC ﹒ ………(1分)(2)作OI ⊥AB 于I ,联结PO , AC =BC =9,AO =4.5 ∴∠OAB =∠ABC , ∴Rt △AIO 中, 31cos cos ==∠=∠AO AI ABC IAO ∴AI =1.5,IO =2322=AI ……………………(1分) ∴PI =AB -BP -AI =6-x -1.5=x -29, ……………………(1分) ∴Rt △PIO 中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……(1分)∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392 ……………………(1分) A第25题图B P OC DE · 第25题备用图ABOCDDA · 第25题图(1)BP OCHE第25题图(2)∴y =x x x x x x -+-=-+-153364214153922…………………………(1分) ∵动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .∴定义域:0<x ≤3…………(1分) (3)由题意得:∵点E 在线段AP 上,⊙O 经过点E ,∴⊙O 与⊙P 相交 ∵AO 是⊙O 半径,且AO >OI ,∴交点E 存在两种不同的位置,OE =OA =29① 当E 与点A 不重合时,AE 是⊙O 的弦,OI 是弦心距,∵AI =1.5,AE =3, ∴点E 是AB 中点,321==AB BE ,23==PE BP ,3=PI , IO =23 3327)23(32222==+=+=IO PI OP ……………………(2分) ② 当E 与点A 重合时,点P 是AB 中点,点O 是AC 中点,2921==BC OP ……(2分)∴33=OP 或29. 闵行区25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在Rt △ABC 中,∠ACB = 90o,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合). (1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域; (2)如果»»2EDEF =,求ED 的长; (3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.(备用图)CA (第25题图)CBEF DA25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=o∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H , 易得:35EH x =,45BH x =,15FH x =.…………………………(1分) 在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x x =<<.………………………………………(1分+1分) (2)取»ED的中点P ,联结BP 交ED 于点G ∵»»2EDEF =,P 是»ED 的中点,∴»»»EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵»»EPEF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分) 又∵∠CEA =∠DEB ,∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分) ∴9169782222BE =-=-=.……………………………………………(1分) ∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形, 只可能∠ABD =∠CDB = 90o. 在Rt △CBD 中,∵8BC =, ∴32cos 5CD BC BCD =⋅∠=, 24sin 5BD BC BCD BE =⋅∠==∴321651025CD AB ==,328153245CE BE -==;DEBACF∴CD CEAB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分) ②当AC ∥BD 时,如果四边形ABDC 只可能∠ACD =∠CDB = 90o. ∵AC ∥BD ,∠ACB = 90o, ∴∠ACB =∠CBD = 90o . ∴∠ABD =∠ACB +∠BCD > 90o. 与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)普陀区25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =.(1)当6m =时,求线段CD 的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ;(3)△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由. 25.解:(1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ········· (1分) ∵AB =6,∴3OC =. ······················ (1分)OAB备用图PDOABC 图11由勾股定理得 CH = ····················· (1分)∵OH ⊥DC ,∴2CD CH == ··············· (1分) (2)在Rt △POH 中,∵1sin 3P =, PO m =,∴3m OH =. ········ (1分) 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ················ (1分)在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ·············· (1分)可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=. ········· (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ········· (1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.(1分)②11O P OO =n =,解得23m n =,即23n 23812n n-=,解得n ········· (1分) ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n . ·· (2分)综上所述,n .青浦区25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON ,∠MON =90o ,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC =BM ,联结BC 并延长交半径OM 于点A ,设OA = x ,∠COM 的正切值为y .(1)如图9-2,当AB ⊥OM 时,求证:AM =AC ; (2)求y 关于x 的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.25.解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM =∠BAM=90°.··········(1分)∵∠ABM +∠M =∠DOM +∠M,∴∠ABM =∠DOM.·········(1分)∵∠OAC=∠BAM,OC =BM,∴△OAC≌△ABM,······················(1分)∴AC =AM.·························(1分)(2)过点D作DE//AB,交OM于点E.················(1分)∵OB=OM,OD⊥BM,∴BD=DM.················(1分)∵DE//AB,∴=MD MEDM AE,∴AE=EM,∵OM,∴AE=)12x.················(1分)∵DE//AB,∴2==OA OC DMOE OD OD,···················(1分)∴2=DM OAOD OE,∴=y(0<≤x·················(2分)(3)(i)当OA=OC时,∵111222===DM BM OC x,在Rt△ODM中,==OD=DMyOD,O MNDCBA图9-1ONDCBA图9-2NO备用图1=x=x=x .(2分) (ii )当AO =AC 时,则∠AOC =∠ACO ,∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在. ····················· (1分) (ⅲ)当CO =CA 时,则∠COA =∠CAO=α,∵∠CAO >∠M ,∠M =90α︒-,∴α>90α︒-,∴α>45︒,∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在. ·· (1分)松江区25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)如图,已知Rt △ABC 中,∠ACB =90°,BC =2,AC =3,以点C 为圆心、CB 为半径的圆交AB 于点D ,过点A 作AE ∥CD ,交BC 延长线于点E.(1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.① 如果△ACQ ∽△CPQ ,求CP 的长;② 如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分) 解:(1)∵AE ∥CD∴BC DC BE AE=…………………………………1分 (第25题图)CBA DE(备用图)CBADEAD∵BC=DC∴BE=AE …………………………………1分 设CE =x 则AE =BE =x +2 ∵ ∠ACB =90°, ∴222AC CE AE +=即229(2)x x +=+………………………1分∴54x = 即54CE =…………………………………1分(2)①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P …………………………………1分 又∵AE ∥CD ∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分 ∴△ACE ∽△PCA ,…………………………1分 ∴2AC CE CP =⋅…………………………1分即2534CP =⋅ ∴365CP = ……………………………1分②设CP =t ,则54PE t =-∵∠ACB =90°,∴AP ∵AE ∥CD∴AQ ECAP EP=……………………………1分5545454t t ==--C BA DEPQ∴AQ =1分若两圆外切,那么1AQ == 此时方程无实数解……………………………1分若两圆内切切,那么545AQ t ==- ∴21540160t t -+=解之得t =………………………1分又∵54t >∴t =………………………1分徐汇区25. 已知四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF ∥DB 交AB 延长线于点F ,联结EF 交BC 于点H . (1)如图1,当EF BC ⊥时,求AE 的长;(2)如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G (点C 、G 不重合),设AE 的长为x ,EH 的长为y ;① 求y 关于x 的函数关系式,并写出定义域;③ 联结EG ,当DEG ∆是以DG 为腰的等腰三角形时,求AE 的长.杨浦区25、(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.(1)当圆P过点A时,求圆P的半径;(2)分别联结EH和EA,当△ABE△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值。
图22018学年九年级数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.下列二次根式中,与a 是同类二次根式的是( )(A )2a ; (B )a 2; (C )a 4; (D )a +4.2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( ) (A )众数; (B )中位数; (C )平均数; (D )方差.3.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图1所示,这个不等式组是( )(A )⎩⎨⎧->≥;,32x x (B )⎩⎨⎧-<≤;,32x x (C )⎩⎨⎧-<≥;,32x x (D )⎩⎨⎧->≤.32x x ,4.如果将直线l 1:22-=x y 平移后得到直线l 2:x y 2=,那么下列平移过程正确的是( ) (A )将l 1向左平移2个单位; (B )将l 1向右平移2个单位; (C )将l 1向上平移2个单位; (D )将l 1向下平移2个单位. 5.将一把直尺和一块含30°和60°角的三角板ABC 按如图2所 示的位置放置,如果∠CDE =40°,那么∠BAF 的大小为( ) (A )10°; (B )15°; (C )20°; (D )25°.6.直线AB 、CD 相交于点O ,射线 OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重 合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是( ) (A )相离; (B )相切; (C )相交; (D )不确定.二、填空题(本大题共12题,每题4分,满分48分)图17.计算:=-aa 211 . 8.如果822=-b a ,且4=+b a ,那么b a -的值是 .9.方程242=-x 的根是 . 10.已知反比例函数)0(≠=k xky ,在其图像所在的每个象限内,y 的值随x 的值增大而减 小,那么它的图像所在的象限是第 象限.11.如果将抛物线22y x =平移,使平移后的抛物线顶点坐标为(1,2),那么所得新抛物线的表达式是 .12.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有 本.13.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是 .14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图3所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休 日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的 (填百分数) .15.如图4,在梯形ABCD 中,AD //BC ,BC=2AD ,E 、F 分别是边AD 、BC 的中点,设=, =,那么EF 等于 (结果用、的线性组合表示). 16.如果一个矩形的面积是40,两条对角线夹角的正切值是34,那么它的一条对角线长是 .17.已知正方形ABCD ,AB =1,分别以点A 、C 为圆心画圆,如果点B 在圆A 外,且圆A与圆C 外切,那么圆C 的半径长r 的取值范围是 .18.如图5,将△ABC 的边AB 绕着点A 顺时针旋转)900(︒<<︒αα得到AB ’,边AC 绕 着点A 逆时针旋转)900(︒<<︒ββ得到AC ’,联结B ′C ′.当︒=+90βα时,我们称△A B ′C ′ 是△ABC 的“双旋三角形”.如果等边△ABC 的边长为a ,那么它的“双旋三角形”的面 积是 (用含a 的代数式表示).图4A B DFE C图3BC图5AB ′C ′三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:1212)33(8231)12(--+++-.20.(本题满分10分) 解方程组:⎩⎨⎧=++=+.12,2222y xy x y x21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值; (2) 求BFCF的值.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.(1)设该学校需要印刷艺术节的宣传资料x 份,支付甲印刷厂的费用为y 元,写出y 关于x 的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.24.(本题满分12分,每小题满分各4分)图6AB CD E FACD E图7B已知平面直角坐标系xOy (如图8),抛物线)0(3222>++-=m m mx x y 与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴 为直线l ,过点C 作直线l 的垂线,垂足为点E ,联结DC 、(1)当点C (0,3)时,① 求这条抛物线的表达式和顶点坐标; ② 求证:∠DCE=∠BCE ;(2)当CB 平分∠DCO 时,求m 的值.25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD . (1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图8图9A BCD O E备用图ABO备用图AB O答案: 一、选择题:1、C ;2、B ;3、D ;4、C ;5、A ;6、A ; 二、填空题:7、12a ; 8、2; 9、4; 10、一三; 11、22(1)2y x =-+; 12、28; 13、38; 14、28%; 15、12a b +; 16、10; 171r << 18、214a三、解答题:19、3 20、1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩;21、(1)56; (2)58; 22、(1)0.27100(0)y x x =+>; (2)乙; 23、(1)略;(2)略;24、(1)①223y x x =-++;顶点D 为(1,4); ②提示:tan tan 1DCE BCE ∠=∠=;(225、(1)35; (2)提示:证OBE ∆∽EBC ∆; (3)2或2;。
上海市各区2018届九年级中考二模数学试卷精选汇编 选择题专题宝山区、嘉定区一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )0是正整数; (B )1是素数; (C )22是分数; (D )722是有理数. 2.关于x 的方程022=--mx x 根的情况是(▲)(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )无法确定.3. 将直线x y 2=向下平移2个单位,平移后的新直线一定不经过的象限是(▲) (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.4. 下列说法正确的是(▲)(A )一组数据的中位数一定等于该组数据中的某个数据; (B )一组数据的平均数和中位数一定不相等; (C )一组数据的众数可以有几个;(D )一组数据的方差一定大于这组数据的标准差. 5.对角线互相平分且相等的四边形一定是(▲)(A )等腰梯形; (B )矩形; (C )菱形; (D )正方形.6.已知圆1O 的半径长为cm 6,圆2O 的半径长为cm 4,圆心距cm O O 321=,那么圆1O 与圆2O 的位置关系是(▲)(A )外离; (B )外切; (C )相交; (D )内切.1. D2. A3. B4. C5. B6. C 长宁区一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 崇明区一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是…………………………………………………………………………………( ▲ )(A)18; (B)8;(C)18-;(D)8-.2.下列计算正确的是 …………………………………………………………………………( ▲ )(A)=; (B)23a a a +=;(C)33(2)2a a =;(D)632a a a ÷=.3.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是……………………………………………( ▲ )(A)15,14;(B)15,15;(C)16,14;(D)16,15.4.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是 ………………………( ▲ ) (A)120240420x x -=+; (B)240120420x x -=+;(C)120240420x x -=-;(D)240120420x x-=-. 5.下列所述图形中,既是轴对称图形又是中心对称图形的是 ……………………………( ▲ )(A) 等边三角形;(B) 平行四边形;(C) 菱形;(D) 正五边形.6.已知ABC △中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是 ………………………………………( ▲ )(A)EG FGGD AG=; (B)EG AEGD AD=; (C)EG AGGD GF=; (D)EG CFGD BF=. 一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.B ; 3.B ; 4.A ; 5.C ; 6.D. 奉贤区1.下列二次根式中,与a 是同类二次根式的是()(A )2a ; (B )a 2; (C )a 4; (D )a +4.2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()(A )众数; (B )中位数; (C )平均数; (D )方差.3.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图1所示,这个不等式组是()(A )⎩⎨⎧->≥;,32x x (B )⎩⎨⎧-<≤;,32x x (C)⎩⎨⎧-<≥;,32x x (D )⎩⎨⎧->≤.32x x ,4.如果将直线l 1:22-=x y 平移后得到直线l 2:x y 2=,那么下列平移过程正确的是() (A )将l 1向左平移2个单位; (B )将l 1向右平移2个单位;图1(C )将l 1向上平移2个单位; (D )将l 1向下平移2个单位. 5.将一把直尺和一块含30°和60°角的三角板ABC 按如图2所 示的位置放置,如果∠CDE =40°,那么∠BAF 的大小为() (A )10°; (B )15°; (C )20°; (D )25°.6.直线AB 、CD 相交于点O ,射线 OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重 合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是() (A )相离; (B )相切; (C )相交; (D )不确定. 一、选择题:1、C ;2、B ;3、D ;4、C ;5、A ;6、A ; 黄浦区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列实数中,介于23与32之间的是( ) (A;(B(C )227; (D )π.2.下列方程中没有实数根的是( )(A )210x x +-=;(B )210x x ++=;(C )210x -=;(D )20x x +=.3.一个反比例函数与一个一次函数在同一坐标平面内的图像如图示,如果其中的反比例函数解析式为ky x=,那么该一次函数可能的解析式是( ) (A )y kx k =+;(B )y kx k =-;图2(C )y kx k =-+; (D )y kx k =--.4.一个民营企业10名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )(工资单位:万元) (A )平均数;(B )中位数;(C )众数;(D )标准差.5.计算:AB BA +=( ) (A )AB ;(B )BA ; (C )0;(D )0.6.下列命题中,假命题是( )(A )如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦; (B )如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦; (C )如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦; (D )如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.一、选择题(本大题6小题,每小题4分,满分24分)1.A ;2.B ;3.B ;4.B ;5.C ;6.C . 金山区1.下列各数中,相反数等于本身的数是(▲) (A )1-; (B )0; (C )1; (D )2. 2.单项式32a b 的次数是(▲)(A )2; (B )3 (C )4; (D )5.3.如果将抛物线22y x =-向上平移1个单位,那么所得新抛物线的表达式是(▲)(A )()221y x =-+; (B )()221y x =--; (C )221y x =--; (D )221y x =-+.4.如果一组数据1,2,x ,5,6的众数为6,则这组数据的中位数为(▲) (A )1; (B )2 (C )5; (D )6.5.如图1,□ABCD 中,E 是BC 的中点,设AB a =,AD b =, 那么向量AE 用向量a 、b 表示为(▲)(A )12a b + ;(B )12a b - ;(C )12a b -+;(D )12a b --.6.如图2,∠AOB=45°,OC 是∠AOB 的角平分线,PM ⊥OB , 垂足为点M ,PN ∥OB ,PN 与OA 相交于点N ,那么PMPN的值等于( ▲ )(A )12; (B; (C(D.一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.D ; 4.C ; 5.A ; 6.B . 静安区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列实数中,有理数是 (A )2; (B )21; (C )34; (D )4. 2.下列方程中,有实数根的是(A )x x -=-1;(B )01)2(2=-+x ; (C )012=+x ;(D )034=-+-x x .3.如果b a >,0<m ,那么下列不等式中成立的是 (A) bm am >; (B) mbm a >; (C) m b m a +>+; (D) m b m a +->+-.4.如图,AB //CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF , 如果∠EFG =64°,那么∠EGD 的大小是(A) 122°; (B) 124°; (C) 120°; (D) 126°. 5.已知两组数据:a 1,a 2,a 3,a 4,a 5和a 1-1,a 2-1,a 3-1,a 4-1,a 5-1, 下列判断中错误的是(A) 平均数不相等,方差相等; (B) 中位数不相等,标准差相等;图1ON A BC图2PABEDC G 第4题图F(C) 平均数相等,标准差不相等; (D) 中位数不相等,方差相等. 6.下列命题中,假命题是(A )两组对角分别相等的四边形是平行四边形;(B )有一条对角线与一组邻边构成等腰三角形的平行四边形是菱形; (C )一组邻边互相垂直,两组对边分别平行的四边形是矩形; (D )有一组邻边相等且互相垂直的平行四边形是正方形.闵行区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.在下列各式中,二次单项式是 (A )21x +;(B )213xy ;(C )2xy ;(D )21()2-.2.下列运算结果正确的是 (A )222()a b a b +=+; (B )2323a a a +=;(C )325a a a ⋅=; (D )112(0)2a a a-=≠. 3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内y 随着x 的增大而减小,那么它的图像的两个分支分别在 (A )第一、三象限; (B )第二、四象限; (C )第一、二象限;(D )第三、四象限.4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 (A )平均数;(B )中位数;(C )众数;(D )方差.5.已知四边形ABCD 是平行四边形,下列结论中不正确的是 (A )当AB = BC 时,四边形ABCD 是菱形; (B )当AC ⊥BD 时,四边形ABCD 是菱形; (C )当∠ABC = 90o时,四边形ABCD 是矩形;(D )当AC = BD 时,四边形ABCD 是正方形.6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O 与直线a 的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离.一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.A ;4.B ;5.D ;6.D . 普陀区1. 下列计算中,错误的是 ························· (▲) (A )120180=; (B )422=-; (C )2421=; (D )3131=-.2.下列二次根式中,最简二次根式是 ···················· (▲) (A )a 9; (B )35a ; (C )22b a +; (D )21+a . 3.如果关于x 的方程022=++c x x 没有实数根,那么c 在2、1、0、3-中取值是 · (▲) (A )2; (B ); (C )0; (D )3-.4.如图1,已知直线CD AB //,点E 、F 分别在AB 、CD 上,CFE ∠:EFB ∠3=:4,如果40B ∠=,那么BEF ∠= ······························· (▲) (A )20; (B )40; (C )60; (D )80.5. 自1993年起,联合国将每年的3月22日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出20名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.这组数据的中位数和众数分别是 ······················ (▲) (A )1.2,1.2; (B )1.4,1.2;(C )1.3, 1.4; (D )1.3,1.2.6. 如图2,已知两个全等的直角三角形纸片的直角边分别为a 、b )(b a ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有 ············ (▲) (A )3个; (B )4个; (C )5个; (D )6个.一、选择题:(本大题共6题,每题4分,满分24分)图2ABCDFE图1100.580.560.540.5图11.(B); 2.(C); 3.(A); 4.(C); 5.(D); 6.(B). 青浦区一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列实数中,有理数是( ▲ ) (A(B )2.1;(C )π;(D )135.2.下列方程有实数根的是( ▲ )(A )4+2=0x ; (B 1-; (C )2+21=0x x -;(D )111x x x =--. 3.已知反比例函数1y x=,下列结论正确的是( ▲ ) (A )图像经过点(-1,1);(B )图像在第一、三象限;(C )y 随着x 的增大而减小; (D )当1x >时,1y <. 4.用配方法解方程241=0x x -+,配方后所得的方程是( ▲ )(A )2(2)=3x -; (B )2(+2)=3x ; (C )2(2)=3x --;(D )2(+2)=3x -. 5. “a 是实数,20a ≥”这一事件是( ▲ )(A )不可能事件; (B )不确定事件; (C )随机事件; (D )必然事件. 6. 某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图1所示,成绩的中位数落在( ▲ ) (A )50.5~60.5分; (B )60.5~70.5分; (C )70.5~80.5分; (D )80.5~90.5分.一、选择题:1.B ; 2.C ; 3.B ; 4.A ; 5.D ;6.C . 松江区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1是同类二次根式的为(▲) (A(B(C(DCBA(第6题图)2.下列运算正确的是(▲) (A )532x x x =+;(B )532x x x =⋅; (C )235()x x =;(D )623x x x ÷=.3.下列图形中,既是中心对称又是轴对称图形的为(▲) (A )正三角形; (B )等腰梯形;(C )平行四边形; (D )菱形.4.关于反比例函数2y x=,下列说法中错误的是(▲) (A )它的图像是双曲线; (B )它的图像在第一、三象限; (C )y 的值随x 的值增大而减小;(D )若点(a ,b )在它的图像上,则点(b ,a )也在它的图像上.5.将一组数据中的每一个数都加上1得到一组新的数据,那么下列四个统计量中,值保持不变的是(▲) (A )方差;(B )平均数;(C )中位数;(D )众数.6.如图,在△ABC 中,∠C =90°,AC =3,BC =4,⊙B 的半径为1,已知⊙A 与直线BC 相交,且与⊙B 没有公共点,那么⊙A 的半径可以是(▲) (A )4; (B )5; (C )6;(D )7.一、选择题:(本大题共6题,每题4分,满分24分) 1.B; 2.B; 3. D; 4. C; 5. A; 6. D; 徐汇区 一. 选择题1. 下列算式的运算结果正确的是( )A. 326m m m ⋅=B. 532m m m ÷=(0m ≠)C. 235()m m --=D. 422m m m -= 2. 直线31y x =+不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 如果关于x 的方程210x +=有实数根,那么k 的取值范围是( )A. 0k >B. 0k ≥C. 4k >D. 4k ≥4. 某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( )A. 8、8B. 8、8.5C. 8、9D. 8、105. 如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. 45°B. 60°C. 120°D. 135°6. 下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆(2)圆既是轴对称图形,又是中心对称图形(3)在同圆中,相等的圆心角所对的弧相等(4)三角形的内心到该三角形三个顶点距离相等A. 1个B. 2个C. 3个D. 4个1. B2. D3. D4. B5. A6. C杨浦区一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个现象是正确的,选择正确项的代号并填涂在答题纸上相应位置上】1、下列各数中是无理数的是()(A)(B)1.(C)半径为1cm的圆周长(D)2、下列运算正确的是()(A)(B)(C)(D)3、若,则下列不等式中一定成立的是()(A)x(B)(C)(D)4、某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图1所示,其中阅读时间是8-10小时的组频数和组频率分别是()(A)15和0.125 (B)15和0.25 (C)30和0.125 (D)30和0.255、下列图形是中心对称图形的是()6、如图2,半径为1的圆O1和半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()(A) 1 (B)2 (C)3 (D)4CBADBC。
上海市各区2018届九年级中考二模数学试卷精选汇编 选择题专题宝山区、嘉定区一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )0是正整数; (B )1是素数; (C )22是分数; (D )722是有理数. 2.关于x 的方程022=--mx x 根的情况是(▲)(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )无法确定.3. 将直线x y 2=向下平移2个单位,平移后的新直线一定不经过的象限是(▲) (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.4. 下列说法正确的是(▲)(A )一组数据的中位数一定等于该组数据中的某个数据; (B )一组数据的平均数和中位数一定不相等; (C )一组数据的众数可以有几个;(D )一组数据的方差一定大于这组数据的标准差. 5.对角线互相平分且相等的四边形一定是(▲)(A )等腰梯形; (B )矩形; (C )菱形; (D )正方形.6.已知圆1O 的半径长为cm 6,圆2O 的半径长为cm 4,圆心距cm O O 321=,那么圆1O 与圆2O 的位置关系是(▲)(A )外离; (B )外切; (C )相交; (D )内切.1. D2. A3. B4. C5. B6. C 长宁区一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 崇明区一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是…………………………………………………………………………………( ▲ )(A)18; (B)8;(C)18-;(D)8-.2.下列计算正确的是 …………………………………………………………………………( ▲ )(A)+=; (B)23a a a +=;(C)33(2)2a a =; (D)632a a a ÷=.3.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是……………………………………………( ▲ )(A)15,14;(B)15,15;(C)16,14;(D)16,15.4.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是 ………………………( ▲ ) (A)120240420x x -=+; (B)240120420x x -=+;(C)120240420x x -=-;(D)240120420x x-=-. 5.下列所述图形中,既是轴对称图形又是中心对称图形的是 ……………………………( ▲ )(A) 等边三角形;(B) 平行四边形;(C) 菱形;(D) 正五边形.6.已知ABC △中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是 ………………………………………( ▲ )(A)EG FGGD AG=; (B)EG AEGD AD=; (C)EG AGGD GF=; (D)EG CFGD BF=. 一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.B ; 3.B ; 4.A ; 5.C ; 6.D. 奉贤区1.下列二次根式中,与a 是同类二次根式的是()(A )2a ; (B )a 2; (C )a 4; (D )a +4.2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()(A )众数; (B )中位数; (C )平均数; (D )方差.3.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图1所示,这个不等式组是()(A )⎩⎨⎧->≥;,32x x (B )⎩⎨⎧-<≤;,32x x (C )⎩⎨⎧-<≥;,32x x (D )⎩⎨⎧->≤.32x x ,4.如果将直线l 1:22-=x y 平移后得到直线l 2:x y 2=,那么下列平移过程正确的是() (A )将l 1向左平移2个单位; (B )将l 1向右平移2个单位; (C )将l 1向上平移2个单位; (D )将l 1向下平移2个单位. 5.将一把直尺和一块含30°和60°角的三角板ABC 按如图2所 示的位置放置,如果∠CDE =40°,那么∠BAF 的大小为() (A )10°; (B )15°; (C )20°; (D )25°.6.直线AB 、CD 相交于点O ,射线 OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重 合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是() (A )相离; (B )相切; (C )相交; (D )不确定. 一、选择题:1、C ;2、B ;3、D ;4、C ;5、A ;6、A ; 黄浦区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列实数中,介于23与32之间的是( ) (A;(B;(C )227; (D )π.2.下列方程中没有实数根的是( ) (A )210x x +-=;(B )210x x ++=;图 1图2(C )210x -=;(D )20x x +=.3.一个反比例函数与一个一次函数在同一坐标平面内的图像如图示,如果其中的反比例函数解析式为ky x=,那么该一次函数可能的解析式是( ) (A )y kx k =+; (B )y kx k =-; (C )y kx k =-+;(D )y kx k =--.4.一个民营企业10名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )(工资单位:万元) (A )平均数;(B )中位数;(C )众数;(D )标准差.5.计算:AB BA +=( ) (A )AB ;(B )BA ; (C )0;(D )0.6.下列命题中,假命题是( )(A )如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦; (B )如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦; (C )如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦; (D )如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.一、选择题(本大题6小题,每小题4分,满分24分)1.A ;2.B ;3.B ;4.B ;5.C ;6.C . 金山区1.下列各数中,相反数等于本身的数是(▲)(A )1-; (B )0; (C )1; (D )2. 2.单项式32a b 的次数是(▲)(A )2; (B )3 (C )4; (D )5.3.如果将抛物线22y x =-向上平移1个单位,那么所得新抛物线的表达式是(▲)(A )()221y x =-+; (B )()221y x =--; (C )221y x =--; (D )221y x =-+.4.如果一组数据1,2,x ,5,6的众数为6,则这组数据的中位数为(▲) (A )1; (B )2 (C )5; (D )6.5.如图1,□ABCD 中,E 是BC 的中点,设AB a =,AD b =, 那么向量AE 用向量a 、b 表示为(▲)(A )12a b + ;(B )12a b - ;(C )12a b -+;(D )12a b --.6.如图2,∠AOB=45°,OC 是∠AOB 的角平分线,PM ⊥OB , 垂足为点M ,PN ∥OB ,PN 与OA 相交于点N ,那么PMPN的值等于( ▲ )(A )12; (B )22; (C 3 (D 3.一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.D ; 4.C ; 5.A ; 6.B . 静安区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列实数中,有理数是 (A )2; (B )21; (C )34; (D )4. 2.下列方程中,有实数根的是(A )x x -=-1;(B )01)2(2=-+x ; (C )012=+x ;(D )034=-+-x x .3.如果b a >,0<m ,那么下列不等式中成立的是B图1N A BC图2P(A) bm am >; (B) mbm a >; (C) m b m a +>+; (D) m b m a +->+-.4.如图,AB //CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF , 如果∠EFG =64°,那么∠EGD 的大小是(A) 122°; (B) 124°; (C) 120°; (D) 126°. 5.已知两组数据:a 1,a 2,a 3,a 4,a 5和a 1-1,a 2-1,a 3-1,a 4-1,a 5-1, 下列判断中错误的是(A) 平均数不相等,方差相等; (B) 中位数不相等,标准差相等; (C) 平均数相等,标准差不相等; (D) 中位数不相等,方差相等. 6.下列命题中,假命题是(A )两组对角分别相等的四边形是平行四边形;(B )有一条对角线与一组邻边构成等腰三角形的平行四边形是菱形; (C )一组邻边互相垂直,两组对边分别平行的四边形是矩形; (D )有一组邻边相等且互相垂直的平行四边形是正方形.闵行区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.在下列各式中,二次单项式是 (A )21x +;(B )213xy ;(C )2xy ;(D )21()2-.2.下列运算结果正确的是 (A )222()a b a b +=+; (B )2323a a a +=;(C )325a a a ⋅=; (D )112(0)2a a a-=≠. 3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内y 随着x 的增大而减小,那么它的图像的两个分支分别在 (A )第一、三象限; (B )第二、四象限; (C )第一、二象限;(D )第三、四象限.ABEDC G 第4题图F4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 (A )平均数;(B )中位数;(C )众数;(D )方差.5.已知四边形ABCD 是平行四边形,下列结论中不正确的是 (A )当AB = BC 时,四边形ABCD 是菱形; (B )当AC ⊥BD 时,四边形ABCD 是菱形; (C )当∠ABC = 90o时,四边形ABCD 是矩形;(D )当AC = BD 时,四边形ABCD 是正方形.6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O 与直线a 的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离. 一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.A ;4.B ;5.D ;6.D . 普陀区1. 下列计算中,错误的是 ························ (▲) (A )120180=; (B )422=-; (C )2421=; (D )3131=-.2.下列二次根式中,最简二次根式是 ···················· (▲) (A )a 9; (B )35a ; (C )22b a +; (D )21+a . 3.如果关于x 的方程022=++c x x 没有实数根,那么c 在2、1、0、3-中取值是 (▲) (A )2; (B ); (C )0; (D )3-.4.如图1,已知直线CD AB //,点E 、F 分别在AB 、CD 上,CFE ∠:EFB ∠3=:4,如果40B ∠=,那么BEF ∠= ····························· (▲) (A )20; (B )40; (C )60; (D )80.5. 自1993年起,联合国将每年的3月22日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出20名学生统计出各自家庭一个ABCDFE图1月的节约用水量,有关数据整理如下表.这组数据的中位数和众数分别是 ······················ (▲) (A )1.2,1.2; (B )1.4,1.2; (C )1.3,1.4; (D )1.3,1.2.6. 如图2,已知两个全等的直角三角形纸片的直角边分别为a 、b )(b a ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有 ··········· (▲) (A )3个; (B )4个; (C )5个; (D )6个.一、选择题:(本大题共6题,每题4分,满分24分)1.(B); 2.(C); 3.(A); 4.(C); 5.(D); 6.(B).青浦区一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列实数中,有理数是( ▲ ) (A 2(B )2.1;(C )π;(D )135.2.下列方程有实数根的是( ▲ )(A )4+2=0x ; (B 22=1x --; (C )2+21=0x x -;(D )111x x x =--. 3.已知反比例函数1y x=,下列结论正确的是( ▲ ) (A )图像经过点(-1,1);(B )图像在第一、三象限;(C )y 随着x 的增大而减小; (D )当1x >时,1y <. 4.用配方法解方程241=0x x -+,配方后所得的方程是( ▲ )(A )2(2)=3x -; (B )2(+2)=3x ; (C )2(2)=3x --;(D )2(+2)=3x -. 5. “a 是实数,20a ≥”这一事件是( ▲ )(A )不可能事件; (B )不确定事件; (C )随机事件; (D )必然事件. 6. 某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图1所示,成绩的中位数落在( ▲ ) (A )50.5~60.5分; (B )60.5~70.5分;图2CBA(第6题图)(C )70.5~80.5分; (D )80.5~90.5分.一、选择题:1.B ; 2.C ; 3.B ; 4.A ; 5.D ; 6.C . 松江区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】13 (A 0.3(B 13(C 13(D 302.下列运算正确的是(▲) (A )532x x x =+;(B )532x x x =⋅; (C )235()x x =;(D )623x x x ÷=.3.下列图形中,既是中心对称又是轴对称图形的为(▲) (A )正三角形; (B )等腰梯形;(C )平行四边形; (D )菱形.4.关于反比例函数2y x=,下列说法中错误的是(▲) (A )它的图像是双曲线; (B )它的图像在第一、三象限; (C )y 的值随x 的值增大而减小;(D )若点(a ,b )在它的图像上,则点(b ,a )也在它的图像上.5.将一组数据中的每一个数都加上1得到一组新的数据,那么下列四个统计量中,值保持不变的是(▲) (A )方差;(B )平均数;(C )中位数;(D )众数.6.如图,在△ABC 中,∠C =90°,AC =3,BC =4,⊙B 的半径为1,已知⊙A 与直线BC 相交,且与⊙B 没有公共点,那么⊙A 的半径可以是(▲) (A )4; (B )5; (C )6;(D )7.一、选择题:(本大题共6题,每题4分,满分24分)1.B; 2.B; 3. D; 4. C; 5. A; 6. D;徐汇区一. 选择题1. 下列算式的运算结果正确的是( )A. 326m m m ⋅=B. 532m m m ÷=(0m ≠)C. 235()m m --=D. 422m m m -=2. 直线31y x =+不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 如果关于x 的方程210x k x -+=有实数根,那么k 的取值范围是( )A. 0k >B. 0k ≥C. 4k >D. 4k ≥4. 某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环)7 8 9 10 次数 1 4 3 2A. 8、8B. 8、8.5C. 8、9D. 8、105. 如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )A. 45°B. 60°C. 120°D. 135° 6. 下列说法中,正确的个数共有( )(1)一个三角形只有一个外接圆(2)圆既是轴对称图形,又是中心对称图形(3)在同圆中,相等的圆心角所对的弧相等(4)三角形的内心到该三角形三个顶点距离相等A. 1个B. 2个C. 3个D. 4个1. B2. D3. D4. B5. A6. C杨浦区一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个现象是正确的,选择正确项的代号并填涂在答题纸上相应位置上】1、下列各数中是无理数的是 ( )(A ) (B )1. (C )半径为1cm 的圆周长 (D )2、下列运算正确的是 ( )(A)(B)(C)(D)3、若,则下列不等式中一定成立的是()(A)x(B)(C)(D)4、某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图1所示,其中阅读时间是8-10小时的组频数和组频率分别是()(A)15和0.125 (B)15和0.25 (C)30和0.125 (D)30和0.255、下列图形是中心对称图形的是()6、如图2,半径为1的圆O1和半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()(A) 1 (B)2 (C)3 (D)4CBADBC。
上海市各区2018届九年级中考二模数学试卷精选汇编 综合计算宝山区、嘉定区21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10在Rt △CHA 中,222AC CH AH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分图4DCB A图4DCBAH∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)ADB第21题图崇明区21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H (第21题图1)ABOPCD (第21题图2)OABDPC∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-=- ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值; (2) 求BFCF的值. 21、(1)56; (2)58; 黄浦区图6ABCD EF21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.(1)求△ABC 的面积; (2)求CE ∶DE.21. 解:(1)由AB =AC =6,AH ⊥BC ,得BC =2BH .—————————————————————————(2分) 在△ABH 中,AB =6,cosB =23,∠AHB =90°, 得BH =2643⨯=,AH=(2分) 则BC =8,所以△ABC 面积=182⨯=——————————————(1分) (2)过D 作BC 的平行线交AH 于点F ,———————————————(1分)由AD ∶DB =1∶2,得AD ∶AB =1∶3, 则31CE CH BH AB DE DF DF AD ====. ——————————————(4分)金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F .(1)求证:AF=BE ;(2)如果BE ∶EC=2∶1,求∠CDF 的余切值.ABCDFE21.解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°,∴∠DAF=∠AEB ,……………………………………………………………………(1分)∵AE=BC ,DF ⊥AE ,∴AD=AE ,∠ AFD=∠EBA=90°,………………………(2分) ∴△ADF ≌△EAB ,∴AF =EB ,………………………………………………………(2分)(2)设BE =2k ,EC =k ,则AD =BC =AE =3k ,AF =BE =2k ,…………………………(1分)∵∠ADC =90°,∠AFD =90°,∴∠CDF +∠ADF =90°,∠DAF +∠ADF =90°, ∴∠CDF =∠DAF …………………………………………………………………(2分)在Rt △ADF 中,∠AFD =90°,DF=∴cot ∠CDF =cot ∠DAF=5AF DF ==.………………………………(2分) 静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD 中,AC 、DB 交于点H .DE 平分∠ADB ,交AC 于点E .联结BE 并延长,交边AD 于点F . (1)求证:DC =EC ; (2)求△EAF 的面积.第21题图21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90° AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分) 又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分)Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o ,1tan 2ABC ∠=. (1)求点C 的坐标;第21题图(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2, 求点M 的坐标.21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分)∴AB ==.………………………………(1分) ∵90BAC ∠=,1tan 2ABC ∠=,∴AC 过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分) (2)11522ABC S AB AC ∆=⋅=⨯=.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分)∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分) 分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长; (2)求CDA ∠的余弦值. CD21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ······································································· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE . ······························· (1分)设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ······························································ (2分) ∴3=DE . ············································································································· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ················································ (1分)同理得5=BD . ······································································································ (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ····················· (1分) ∴53=CD . ············································································································ (1分)∴102cos ==∠AD CD CDA . ················································································ (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE . (1)求线段CD 的长; (2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ································································· (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ··································································································· (1分)ED A图5则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ····························································· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ·································································································· (1分) ∴43=x . ·········································································································· (1分)(2)1141052233=⋅=⨯⨯=ABD S AB DH . ···························································· (1分)∵BD=2DE , ∴2==ABD ADES BDSDE, ····················································································· (3分) ∴1015323=⨯=ADES. ···················································································· (1分) 松江区21.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =, BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.21.(本题满分10分, 每小题各5分)解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分(第21题图)DA在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分∵BC =6∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分 (2)由(1)得AH =2,CH =4在Rt AHC ∆中,AC 2分∵DE 垂直平分AC∴12CD AC == ED ⊥AC …………………………………………………1分在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分∴DE = ………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D .(1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用尺规作图的方法确定点O 的位置并求出的⊙O 半径.(保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对角线BD的长和梯形ABCD的面积。
上海市各区2018届九年级中考二模数学试卷精选汇编 选择题专题宝山区、嘉定区一、选择题:(本大题共6题,每题4分,满分24分)1.下列说法中,正确的是(▲)(A )0是正整数; (B )1是素数; (C )22是分数; (D )722是有理数. 2.关于x 的方程022=--mx x 根的情况是(▲)(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )无法确定.3. 将直线x y 2=向下平移2个单位,平移后的新直线一定不经过的象限是(▲)(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.4. 下列说法正确的是(▲)(A )一组数据的中位数一定等于该组数据中的某个数据;(B )一组数据的平均数和中位数一定不相等;(C )一组数据的众数可以有几个;(D )一组数据的方差一定大于这组数据的标准差. 5.对角线互相平分且相等的四边形一定是(▲)(A )等腰梯形; (B )矩形; (C )菱形; (D )正方形.6.已知圆1O 的半径长为cm 6,圆2O 的半径长为cm 4,圆心距cm O O 321=,那么圆1O 与圆2O 的位置关系是(▲)(A )外离; (B )外切; (C )相交; (D )内切.1. D2. A3. B4. C5. B6. C 长宁区一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限.2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa121=; (D )6321)(aa-=--.3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ )(A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD ,下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形;(B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形;(C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.一、选择题:(本大题共6题,每题4分,满分24分)1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C .崇明区一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是…………………………………………………………………………………( ▲ )(A)18;(B)8;(C)18-;(D)8-.2.下列计算正确的是 …………………………………………………………………………( ▲ )(A)+=;(B)23a a a +=;(C)33(2)2a a =;(D)632a a a ÷=.3.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数14375那么这20名同学年龄的众数和中位数分别是……………………………………………( ▲ )(A)15,14;(B)15,15;(C)16,14;(D)16,15.4.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是 ………………………( ▲ )(A)120240420x x -=+;(B)240120420x x -=+;(C)120240420x x -=-;(D)240120420x x-=-.5.下列所述图形中,既是轴对称图形又是中心对称图形的是 ……………………………( ▲ )(A) 等边三角形;(B) 平行四边形;(C) 菱形;(D) 正五边形.6.已知ABC △中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是 ………………………………………( ▲ )(A)EG FGGD AG=;(B)EG AEGD AD=;(C)EG AGGD GF=;(D)EG CFGD BF=.一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.B ; 3.B ; 4.A ; 5.C ; 6.D.奉贤区1.下列二次根式中,与a 是同类二次根式的是()(A )2a ; (B )a 2; (C )a 4; (D )a +4.2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()(A )众数; (B )中位数; (C )平均数; (D )方差.3.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图1所示,这个不等式组是()(A )⎩⎨⎧->≥;,32x x (B )⎩⎨⎧-<≤;,32x x (C )⎩⎨⎧-<≥;,32x x (D )⎩⎨⎧->≤.32x x ,4.如果将直线l 1:22-=x y 平移后得到直线l 2:x y 2=,那么下列平移过程正确的是()(A )将l 1向左平移2个单位; (B )将l 1向右平移2个单位; (C )将l 1向上平移2个单位; (D )将l 1向下平移2个单位.5.将一把直尺和一块含30°和60°角的三角板ABC 按如图2所示的位置放置,如果∠CDE =40°,那么∠BAF 的大小为() (A )10°;(B )15°;(C )20°; (D )25°.6.直线AB 、CD 相交于点O ,射线 OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是()(A )相离; (B )相切; (C )相交; (D )不确定.一、选择题:1、C ;2、B ;3、D ;4、C ;5、A ;6、A ;黄浦区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,介于23与32之间的是( )图1图2(A ;(B ;(C )227; (D )π.2.下列方程中没有实数根的是( )(A )210x x +-=; (B )210x x ++=; (C )210x -=;(D )20x x +=.3.一个反比例函数与一个一次函数在同一坐标平面内的图像如图示,如果其中的反比例函数解析式为ky x=,那么该一次函数可能的解析式是( )(A )y kx k =+; (B )y kx k =-; (C )y kx k =-+;(D )y kx k =--.4.一个民营企业10名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )人次1112113工资30321.51.220.8(工资单位:万元)(A )平均数; (B )中位数; (C )众数; (D )标准差.5.计算:AB BA +=( )(A )AB ;(B )BA; (C )0 ;(D )0.6.下列命题中,假命题是( )(A )如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦; (B )如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦; (C )如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;(D )如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.一、选择题(本大题6小题,每小题4分,满分24分)1.A ;2.B ;3.B ;4.B ;5.C ;6.C .金山区1.下列各数中,相反数等于本身的数是(▲)(A )1-; (B )0; (C )1; (D )2.2.单项式32a b 的次数是(▲)(A )2; (B )3 (C )4; (D )5.3.如果将抛物线22y x =-向上平移1个单位,那么所得新抛物线的表达式是(▲)(A )()221y x =-+; (B )()221y x =--; (C )221y x =--; (D )221y x =-+.4.如果一组数据1,2,x ,5,6的众数为6,则这组数据的中位数为(▲)(A )1; (B )2 (C )5; (D )6.5.如图1,□ABCD 中,E 是BC 的中点,设AB a =,AD b= ,那么向量AE 用向量a 、b表示为(▲)(A )12a b + ;(B )12a b - ;(C )12a b -+ ;(D )12a b -- .6.如图2,∠AOB=45°,OC 是∠AOB 的角平分线,PM ⊥OB ,垂足为点M ,PN ∥OB ,PN 与OA 相交于点N ,那么PMPN的值等于( ▲ )(A )12; (B; (C; (D.一、选择题:(本大题共6题,每题4分,满分24分)1.B ; 2.C ; 3.D ; 4.C ; 5.A ; 6.B .静安区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】AC图1OMN A BC图2P1.下列实数中,有理数是 (A )2; (B )21; (C )34; (D )4.2.下列方程中,有实数根的是(A )x x -=-1;(B )01)2(2=-+x ; (C )012=+x ;(D )034=-+-x x .3.如果b a >,0<m ,那么下列不等式中成立的是(A) bm am >; (B)mbm a >; (C) m b m a +>+; (D) m b m a +->+-. 4.如图,AB //CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,如果∠EFG =64°,那么∠EGD 的大小是(A) 122°; (B) 124°; (C) 120°; (D) 126°. 5.已知两组数据:a 1,a 2,a 3,a 4,a 5和a 1-1,a 2-1,a 3-1,a 4-1,a 5-1,下列判断中错误的是(A) 平均数不相等,方差相等; (B) 中位数不相等,标准差相等; (C) 平均数相等,标准差不相等; (D) 中位数不相等,方差相等. 6.下列命题中,假命题是(A )两组对角分别相等的四边形是平行四边形;(B )有一条对角线与一组邻边构成等腰三角形的平行四边形是菱形;(C )一组邻边互相垂直,两组对边分别平行的四边形是矩形; (D )有一组邻边相等且互相垂直的平行四边形是正方形.题号123456答案 D B C A CB闵行区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.在下列各式中,二次单项式是(A )21x +;(B )213xy ;(C )2xy ;(D )21(2-.2.下列运算结果正确的是第4题图(A )222()a b a b +=+;(B )2323a a a +=;(C )325a a a ⋅=;(D )112(0)2a a a-=≠.3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内y 随着x 的增大而减小,那么它的图像的两个分支分别在(A )第一、三象限;(B )第二、四象限;(C )第一、二象限;(D )第三、四象限.4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(A )平均数;(B )中位数;(C )众数;(D )方差.5.已知四边形ABCD 是平行四边形,下列结论中不正确的是(A )当AB = BC 时,四边形ABCD 是菱形;(B )当AC ⊥BD 时,四边形ABCD 是菱形;(C )当∠ABC = 90o 时,四边形ABCD 是矩形;(D )当AC = BD 时,四边形ABCD 是正方形.6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O 与直线a 的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离.一、选择题:(本大题共6题,每题4分,满分24分)1.C ;2.C ;3.A ;4.B ;5.D ;6.D .普陀区1. 下列计算中,错误的是∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(▲)(A )120180=; (B )422=-; (C )2421=; (D )3131=-.2.下列二次根式中,最简二次根式是∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(▲)(A )a 9; (B )35a ; (C )22b a +; (D )21+a .3.如果关于x 的方程022=++c x x 没有实数根,那么c 在2、1、0、3-中取值是∙(▲)(A )2; (B ); (C )0; (D )3-.4.如图1,已知直线CD AB //,点E 、F 分别在AB 、CD 上,CFE ∠:EFB ∠3=:4,如果40B ∠= ,那么BEF ∠=∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(▲)(A )20 ; (B )40 ; (C )60 ; (D )80 .5. 自1993年起,联合国将每年的3月22日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出20名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表. 节约用水量(单位:吨)1 1.2 1.42 2.5家庭数46532这组数据的中位数和众数分别是∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(▲)(A )1.2,1.2; (B )1.4,1.2; (C )1.3,1.4; (D )1.3,1.2.6. 如图2,已知两个全等的直角三角形纸片的直角边分别为a 、b )(b a ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有∙∙∙∙∙∙∙∙∙∙∙(▲)(A )3个; (B )4个; (C )5个; (D )6个.一、选择题:(本大题共6题,每题4分,满分24分)1.(B); 2.(C); 3.(A); 4.(C); 5.(D); 6.(B).青浦区一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列实数中,有理数是( ▲ )(A ;(B )2.1;(C )π; (D )135.2.下列方程有实数根的是( ▲ )(A )4+2=0x ; (B 1-; (C )2+21=0x x -;(D )111x x x =--.3.已知反比例函数1y x=,下列结论正确的是( ▲ )(A )图像经过点(-1,1);(B )图像在第一、三象限; (C )y 随着x 的增大而减小; (D )当1x >时,1y <.图2ABCDFE图11图14.用配方法解方程241=0x x -+,配方后所得的方程是( ▲ )(A )2(2)=3x -; (B )2(+2)=3x ;(C )2(2)=3x --;(D )2(+2)=3x -.5. “a 是实数,20a ≥”这一事件是( ▲ )(A )不可能事件; (B )不确定事件; (C )随机事件; (D )必然事件. 6. 某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图1所示,成绩的中位数落在( ▲ )(A )50.5~60.5分; (B )60.5~70.5分; (C )70.5~80.5分; (D )80.5~90.5分.一、选择题:1.B ; 2.C ; 3.B ; 4.A ; 5.D ; 6.C .松江区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】13(A 0.3;(B 13(C 13(D 302.下列运算正确的是(▲)(A )532x x x =+;(B )532x x x =⋅;(C )235()x x =;(D )623x x x ÷=.3.下列图形中,既是中心对称又是轴对称图形的为(▲)(A )正三角形;(B )等腰梯形;(C )平行四边形;(D )菱形.4.关于反比例函数2y x=,下列说法中错误的是(▲) (A )它的图像是双曲线; (B )它的图像在第一、三象限; (C )y 的值随x 的值增大而减小;(D )若点(a ,b )在它的图像上,则点(b ,a )也在它的图像上.C B(第6题图)5.将一组数据中的每一个数都加上1得到一组新的数据,那么下列四个统计量中,值保持不变的是(▲)(A )方差;(B )平均数;(C )中位数;(D )众数.6.如图,在△ABC 中,∠C =90°,AC =3,BC =4,⊙B 的半径为1,已知⊙A 与直线BC 相交,且与⊙B 没有公共点,那么⊙A 的半径可以是(▲)(A )4;(B )5;(C )6;(D )7.一、选择题:(本大题共6题,每题4分,满分24分)1.B; 2.B; 3. D; 4. C; 5. A; 6. D;徐汇区一. 选择题1. 下列算式的运算结果正确的是( )A. 326m m m ⋅=B. 532m m m ÷=(0m ≠)C. 235()m m --=D. 422m m m -=2. 直线31y x =+不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 如果关于x 的方程210x k x -+=有实数根,那么k 的取值范围是( )A. 0k >B. 0k ≥C. 4k >D. 4k ≥4. 某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( )成绩(环)78910次数1432A. 8、8B. 8、8.5C. 8、9D. 8、105. 如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )A. 45°B. 60°C. 120°D. 135°6. 下列说法中,正确的个数共有( )(1)一个三角形只有一个外接圆(2)圆既是轴对称图形,又是中心对称图形(3)在同圆中,相等的圆心角所对的弧相等(4)三角形的内心到该三角形三个顶点距离相等A. 1个B. 2个C. 3个D. 4个1. B2. D3. D4. B5. A6. C杨浦区一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个现象是正确的,选择正确项的代号并填涂在答题纸上相应位置上】1、下列各数中是无理数的是()cos600338(A)(B)1.(C)半径为1cm的圆周长(D)2、下列运算正确的是()m∙m=2m(m2)3=m6(mn)3=mn3m6÷m2=m3(A)(B)(C)(D)3x>‒3y3、若,则下列不等式中一定成立的是()+y>0x‒y>0x+y<0x‒y<0(A)x(B)(C)(D)4、某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图1所示,其中阅读时间是8-10小时的组频数和组频率分别是()(A)15和0.125 (B)15和0.25 (C)30和0.125 (D)30和0.255、下列图形是中心对称图形的是()6、如图2,半径为1的圆O1和半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()(A) 1 (B)2 (C)3 (D)4CBADBC。
上海市各区2018届九年级中考二模数学试卷精选汇编 综合计算
宝山区、嘉定区
21.(本题满分10分,第(1)小题5分,第(2)小题5分)
如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,3
1
cot =
∠D ,求梯形ABCD 的面积.
21.解:(1)∵AD ∥BC
∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA
∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD
∴BAC ∠︒=∠+90CAD
∴︒=∠40CAD …………………1分 ∵AD AC =
∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD
∴︒=∠70D …………………1分
(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,3
1cot =∠D ∴3
1
cot ==
∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10
在Rt △CHA 中,2
2
2
AC CH AH =+ ∴2
2210)3()10(=+-x x
∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分
图4
D
C
B A
图4
D
C
B
A
H
∵︒=∠=∠90CHD BAD ∴AB ∥CH
∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(2
1
)(21=⨯+=⨯+=
CH BC AD S ………1分 长宁区
21.(本题满分10分,第(1)小题4分,第(2)小题6分)
如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,
13
5
sin =∠ABC .
(1)求AB 的长;
(2)若AD =6.5,求DCB ∠的余切值.
21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E
又∵AB =AC ∴BC BE 2
1= ∵BC =24 ∴ BE =12 (1分)
在ABE Rt ∆中,︒
=∠90AEB ,13
5
sin ==
∠AB AE ABC (1分)
设AE=5k,AB=13k ∵2
22BE AE AB += ∴1212==k BE
∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5
∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //
∴
BD
AB
BF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,2
15
==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,5
4
2
156cot ===
∠DF CF DCB (1分)
A
D
B
第21题图
崇明区
21.(本题满分10分,第(1)、(2)小题满分各5分)
已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.
21.(本题满分10分,每小题5分)
(1)解:联结OD
∵直径12AB = ∴6OB OD == ……………………………………1分
∵PD OP ⊥ ∴90DPO =︒∠
∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =
∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222
PO PD OD += ……………………………1分
∴2
2
2
6PD +=
∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H
(第21题图1)
A
B
O
P
C
D (第21题图2)
O
A
B
D
P
C。