中考数学复习知识点专题训练8---一次不等式(组)(培优版)
- 格式:doc
- 大小:138.50 KB
- 文档页数:8
中考数学一轮复习知识点课标要求专题训练:不等式与不等式组(含答案)一、知识要点:1、定义定义1:用符号“<”或“>”表示大小关系的式子,叫做不等式。
用符号“≠”表示不等关系的式子也是不等式。
定义2:使不等式成立的未知数的值叫做不等式的解。
定义3:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。
定义4:求不等式的解集的过程叫做解不等式。
定义5:含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式。
定义6:几个不等式的解集的公共部分,叫做由他们所组成的不等式组的解集。
2、不等式的性质性质1:若a>b,则a±c>b±c。
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
性质2:若a>b,c>0,则ac>bc,ac>bc。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
性质3:若a>b,c<0,则ac<bc,ac<bc。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
对于不等式组,应先求出各不等式的解集,然后在数轴上表示,找出解集的公共部分。
3、不等式(组)与实际问题解有关不等式(组)实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
根据题意及各个量的关系设未知数。
第3步:列不等式(组)。
根据题中各个量的关系列不等式(组)。
第4步:解不等式(组),找出满足题意的解(集)。
第5步:答。
二、课标要求:1、结合具体问题,了解不等式的意义,探索不等式的基本性质。
2、能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
3、能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
三、常见考点:1、一元一次不等式及不等式组的基本概念,能根据具体问题列出不等式(组)。
2、特定式子中字母的取值范围,不等式与函数图象的结合(在后面函数复习中体现)。
3、解一元一次不等式及不等式组,并能在数轴上表示出解集。
知识点:一、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有,叫做这个不等式的解集。
不等式组中各个不等式的叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)。
二、不等式(组)的类型及解法1、一元一次不等式:(1)概念:含有未知数并且含未知数的项的次数是的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(1)概念:含有的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的。
注:求不等式组的解集一般借助数轴求解较方便。
三、不等式与不等式的性质1、不等式:用不等号表示的式子。
(表不等关系的常用符号:手,v,〉)。
2、不等式的性质:(1) ______________________________________________。
用字母表示为:(2)。
用字母表示为:(3)。
用字母表示为:2.等腰三角形腰和底边长分别为xcm和ycm,周长小于20,则x和y必须满足的不等式组为。
3.某种商品的价格第一年上升了10%,第二年下降了(m-5)%(m〉5)后,仍不低于原价,则m的值应为。
a、b、4.已知ABC的三边,且a2-9+,碎=0,则第三边c的取值范围是।。
10.若不等式组j x)2m+1解集为x>—1,则m的值为I x>m+211.若不等式组j x—0-0有5个整数解,则a的取值范围13-2x>-1是。
j2x-1112、若不等式组J^->x-1的解集为x<2,则k的取值范围是x-k<013.若不等式j x<m+1无解,则m的取值范围[x>2m-1是。
17、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.18、中百超市和广联超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度:在中百超市累计购买500元商品后,发给中百会员卡,再购买的商品按原价的85%收费;在广联超市购买300元的商品后,发给广联会员卡,再购买的商品按原价的90%收费.讨论顾客怎样选择超市购物能获得最大优惠19、解方程I x-11+1x+21=5.由绝对值的几何意义知,该方程表示求在数轴上与1和一2的距离之和为5的点对应的x的值.在数轴上,1和一2的距离为3,满足方程的x对应点在1的右边或一2的左边,若乂对应点在1的右边,由图(17)可以看出卜牛=2;同理,若乂对应点在一2的左边,可得乂=—3,故原方程的解是船2或x=—3参考阅读材料,解答下列问题:(1)方程I x+3I=4的解为(2)解不等式I x-31+1x+4129;(3)若|x-3I-1x+4l Wa对任意的乂都成立,求a的取值范围注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
第8讲一元一次不等式(组)年份考查频次考查方向一元一次不等式的解法选择4个近三年考查得不多,只有部分地市对此进行了考查,基本上都是以单独考查的形式出现,考查得较为基础.解答2个选择2个填空1个一元一次不等式组的解法选择2个解答4个常考点考查得较多,大部分地市都有考查,考查的类型比较单一,主要是求一元一次不等式的解集或整数解.预计仍会对此知识进行考查.选择4个解答1个选择2个填空2个解答3个一元一次不等式的应用解答5个考查得不多,基本上都是与一次方程(组)、函数结合考查,题型以解答题为主,预计对此考查的可能性不大.解答4个解答2个不等式的概念及性质不等式的有关概念用不等号连接起来的式子叫做不等式,使不等式成立的未知数的取值范围叫做不等式的解集.不等式的基本性质性质1 若a<b,则a±c<b±c.性质2 若a<b且c>0,则ac①__bc(或ac②__bc).性质3 若a<b且c<0,则ac③__bc(或ac④____bc).【易错提示】不等式的两边乘(或除以)同一负数时,不等号的方向一定要改变.一元一次不等式(组)的解法一元一次不等式的解法(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.不等式组的解法一般先分别求出不等式组中各个不等式的解集,并表示在数轴上,再求出他们的公共部分,就得到不等式组的解集.不等式组的解集情况(假设b<a)错误!x>a 同大取大错误!x≤b 同小取小错误!b≤x<a 大小小大中间找错误!无解大大小小无处找不等式的应用列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:(1)审清题意;(2)设未知数;(3)列不等式;(4)解不等式;(5)⑤____作答.1.已知不等式(组)的解集确定不等式(组)中字母的取值范围有以下四种方法:(1)利用不等式(组)解集确定;(2)分类讨论确定;(3)从反面求解确定;(4)借助数轴确定.2.列不等式(组)解应用题应紧紧抓住“至多”、“至少”、“不大于”、“不小于”、“不超过”、“大于”、“小于”等关键词列出不等量关系式,进而求解.(·贵港模拟)解不等式:2x-13-9x+26≤1,并求出其负整数解.【思路点拨】通过观察发现,先去分母、去括号,再移项、合并同类项,系数化为1即可.【解答】一元一次不等式的解法步骤一般是:去分母、去括号、移项、合并同类项、系数化为1.值得注意的是:系数化为1时,如果两边同时乘以或除以的数为负数时,不等号的方向一定要改变.1.(·桂林)下列数值中不是不等式5x≥2x+9的解的是( )A.5 B.4C.3 D.22.(·梧州)不等式x-2>1的解集是( )A.x>1 B.x>2C.x>3 D.x>43.(·南宁)不等式2x-3<1的解集在数轴上表示为( )4.(·桂林)解不等式4x -3>x +6,并把解集在数轴上表示出来.(·玉林)解不等式组:⎩⎪⎨⎪⎧x -1≥0,①x -1<3x4,②并把解集在数轴上表示出来.【思路点拨】 先分别求出每个不等式的解集,再求出公共解集,并在数轴上表示出来. 【解答】求不等式组的解集时,先分别求出各个不等式的解集,然后再按口诀“大大取较大,小小取较小,大小小大中间找,大大小小解不了(无解)”或者通过数轴来求公共解,但是用口诀速度快些;用数轴表示不等式的解集时要注意包含界点需用实心的小圆圈,不包含界点需用空心的小圆圈.在数轴上表示不等式组的解集时,该用实心圆圈时易忽略.1.(·河池)不等式组⎩⎪⎨⎪⎧2x +1≤5,x +2>1的解集是( )A .-1<x<2B .1<x≤2C .-1<x≤2D .-1<x≤32.(·钦州)不等式组⎩⎪⎨⎪⎧3x≥9,x <5的整数解共有( )A .1个B .2个C .3个D .4个3.(·贵港)解不等式组⎩⎪⎨⎪⎧5x<1+4x ,①1-x 2≤x +43,②并在数轴上表示不等式组的解集.(·玉林)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?【思路点拨】(1)根据题意求出今年将报废电动车的数量,进而根据明年电动车数量列出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.【解答】此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数量是解题关键.1.(·来宾)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干把椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少把时,到乙厂家购买更划算?2.(·贺州)某商场销售一批同型号的彩电,第一个月售出50台.为了减少库存,第二个月每台降价500元将这批彩电全部售出,已知第一个月9台的销售额与第二个月10台的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?1.(·南宁模拟)已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A .a +c <b +cB .a -c >b -cC .ac <bcD .ac >bc2.(·崇左)不等式5x≤-10的解集在数轴上表示为( )3.(·来宾)不等式组⎩⎪⎨⎪⎧x +4>3,2x ≤4的解集是( )A .1<x ≤2B .-1<x≤2C .x>-1D .-1<x≤4 4.(·贺州)不等式⎩⎪⎨⎪⎧x +1>0,1-13x >0的解集在数轴上表示正确的是( )5.(·南通)关于x 的方程mx -1=2x 的解为正实数,则m 的取值范围是( )A .m ≥2B .m ≤2C .m >2D .m <26.(·柳州)如图:身高为x cm 的1号同学和身高为y cm 的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x________y .(用“>”或“<”填空) 7.(·绍兴)解不等式:3x -5≤2(x+2).8.(·东营)解不等式组:⎩⎪⎨⎪⎧x +23<1,①2(1-x )≤5,②把解集在数轴上表示出来,并将解集中的整数解写出来.9.(·柳州模拟)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?10.(·来宾)已知购买一个足球和一个篮球共需130元,购买2个足球和一个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4 000元,问最多可买多少个篮球?11.(·南宁改编)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元;(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和80万人次.若该公司要确保这10辆公交车在该线路的年均载客量总和不少于680万人次,且每种车型不少于3辆,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?参考答案考点解读①<②<③>④>⑤检验各个击破例1去分母,得2(2x-1)-(9x+2)≤6.去括号,得 4x-2-9x-2≤6.移项,得 4x-9x≤6+2+2.合并同类项,得-5x≤10.把x的系数化为1,得x≥-2.所以不等式的负整数解为-1,-2.题组训练1.D2.C3.D4.4x-x>6+3,3x>9,x>3.解集在数轴上表示出来为:例2解不等式①,得x≥1.解不等式②,得 x<4.∴原不等式组的解集是1≤x<4.在数轴上表示如图所示.题组训练1.C2.B3.由①得x<1.由②得x≥-1.∴不等式组的解集为-1≤x<1.把解集表示在数轴上为:例3 (1)设从今年年初起每年新增电动车数量是x 万辆,由题意可得: 今年将报废电动车:10×10%=1(万辆), ∴[(10-1)+x](1-10%)+x≤11.9. 解得 x≤2.答:从今年年初起每年新增电动车数量最多是2万辆.(2)∵今年年底电动车拥有量为(10-1)+x =11(万辆),明年年底电动车拥有量为11.9万辆,∴设今年年底到明年年底电动车拥有量的年增长率是y ,则 11(1+y)=11.9.解得 y≈0.082=8.2%.答:今年年底到明年年底电动车拥有量的年增长率是8.2%. 题组训练1.(1)甲厂家所需金额为3×800+80(x -9)=1 680+80x ; 乙厂家所需金额为(3×800+80x)×0.8=1 920+64x. (2)由题意,得1 680+80x >1 920+64x ,解得 x >15.答:购买的椅子至少16把时,到乙厂家购买更划算.2.(1)设第一个月每台彩电的售价为x 元,则第二个月每台彩电的售价为(x -500)元.由题意得: 9x =10(x -500). 解得 x =5 000.答:第一个月每台彩电的销售价格为5 000元. (2)设这批彩电有y 台,由题意得:5 000×50+(5 000-500)(y -50)>400 000. 解得 y>8313.∵y 为整数, ∴y ≥84.答:这批彩电最少有84台. 整合集训1.B 2.C 3.B 4.A 5.C 6.< 7.去括号,得3x -5≤2x+4. 移项、合并同类项,得x≤9. 8.解不等式①,得x<1. 解不等式②, 得x≥-32.∴不等式组的解集为-32≤x<1.不等式组的解集在数轴上表示如下:不等式组的解集中的整数解为-1,0. 9.设小明答对x 道题,由题意得10x -5(20-x)>90.解得 x >1223.∵x 取整数, ∴x 最小值为13.答:他至少要答对13道题.10.(1)设每个足球的售价为x 元,每个篮球的售价为y 元,根据题意,得⎩⎪⎨⎪⎧x +y =130,2x +y =180,解得⎩⎪⎨⎪⎧x =50,y =80.答:每个足球和每个篮球的售价分别为50元、80元.(2)设可购买z 个篮球,根据题意,得 50(54-z)+80z≤4 000.解得 z≤4313.∵z 取整数, ∴z 最大值为43.答:最多可买43个篮球.11.(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,依题意列方程,得⎩⎪⎨⎪⎧x +2y =400,2x +y =350.解得⎩⎪⎨⎪⎧x =100,y =150. 答:购买A 型和B 型公交车每辆各需100万元、150万元.(2)设购买y 辆A 型公交车,则购买(10-y)辆B 型公交车,依题意,得 60y +80(10-y)≥680. 解得 y≤6, 因为每种车型不少于3辆,所以3≤y≤6.有四种方案:①购买A 型公交车6辆,B 型公交车4辆;②购买A 型公交车5辆,B 型公交车5辆;③购买A 型公交车4辆,B 型公交车6辆;④购买A 型公交车3辆,B 型公交车7辆.因A 型公交车较便宜,故购买A 型车数量最多时,总费用最少,即第一种购车方案总费用最少,最少费用为6×100+150×4=1 200(万元).答:该公司有四种购车方案,第一种购车方案的总费用最少,最少总费用是1 200万元.。
一次不等式(组)的应用一.精讲点拨例1. 在一次“人与自然”知识竞赛中,竞赛试题共有25道选择题,每道题都给出四个答案,其中只有一个答案是对的。
选对一道得4分,选错或不选倒扣2分,竞赛规定成绩不低于82分可参加复赛,小颖要参加复赛,她至少要答对几道例2. 工人赵新5月份计划生产零件198个,前16天每天平均生产6个,后来改进技术,提前3天并超额完成任务,问赵新16天后平均每天至少生产多少个零件?例3. 为了加强学生的交通安全意识,某中学和交警大队联合举行了一次“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交警维持交通秩序。
若每个路口安排4人,则还剩下78人,若每个路口安排8人,则最后一个路口不足8人但不少于4人,求这个中学选派了多少学生值勤,交通路口有多少个?例4. 某工厂现有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B 两种产品共50件,已知生产一件A种产品需甲种原料9kg,乙种原料3kg,生产一件B 种产品需甲种原料4kg,乙种原料10kg,(1)设生产x件A种产品,写出x应满足的不等式;(2)如果x是整数,有哪几种符合题意的生产方案,请你帮助设计出来二.课后作业1.有一个两位数,它的十位数字比个位数字大1,并且这个两位数大于30而小于42,求这个两位数。
2.在一次“人与自然”知识竞赛中,竞赛试题共有25道选择题,每道题都给出四个答案,其中只有一个答案是对的。
选对一道得4分,选错或不选倒扣2分,竞赛规定成绩不低于82分可参加复赛,小颖要参加复赛,她至少要答对几道3.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则还剩20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空,问有多少辆汽车?4.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,(1)设生产L型号的童装x套, 写出x应满足的不等式;(2) 如果x是整数,有哪几种符合题意的生产方案,请你帮助设计出来。
● 选择题(每小题x 分,共y 分)5.(2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35 (2011•黑龙江省龙东地区)19、把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
则共有学生 ( )A 、4人B 、5人C 、6人D 、5人或6人 (2011•湖北省宜昌市)5.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( ).(A)a <b (B)a =b (C)a >b (D)ab >0(2011•深圳市)9、已知a 、b 、c 均为实数,且a>b ,c ≠0,下列结论不一定正确的是D(2011•威海市)11.如果不等式组()2131x x x m--⎧⎪⎨⎪⎩><的解集是2x <,那么m 的取值范围是 D A .m =2B .m >2C .m <2D .m ≥2(2011•苏州市)6.不等式组30,32x x -≥⎧⎪⎨<⎪⎩的所有整数解之和是BA .9B .12C .13D .15〔2011•日照市〕6.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是A(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =7 ● 二、填空题(每小题x 分,共y 分)(2011•襄阳市)15.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对—题记10分.答错(或不答)一题记 一5分.小明参加本次竞赛得分要超过100分.他至少要答对______14_________道题.(2011•眉山市)18.关于x 的不等式30x a -≤,只有两个正整数解.则a 的取值范围是__6≤a<9_____(2011•黄冈市)7.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为__ a <4____.(2011•鸡西市)18.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 2 种购买方案.(第5题)ba三、解答题:(共x 分)1.(2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米.⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x 14 B 14 总计 15 13 28 ⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案? (3)在(2)条件下,哪种方案获利最大?并求最大利润.3(2011•莆田) 某高科技公司根据市场需求,计划生产A 、B 两种型号的医疗器械,其部分信息如下:信息一:A 、B 两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.信息三:A 、B 两种医疗器械的生产成本和售价如下表:根据上述信息.解答下列问题:调入地 水量/万吨调出地(1)(6分)该公司对此两种医疗器械有哪-几种生产方案?哪种生产方案能获得最大利润? (2)(4分)根据市场调查,-每台A 型医疗器械的售价将会提高a 万元(0a >). 每台A 型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润? (注:利润=售价-成本)26、(2011•毕节地区)小明到一家批发兼零售的文具店给九年级学生购买考试用2B 铅笔,请根据下列情景解决问题.(1)这个学校九年级学生总数在什么范围内?(2)若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?(2011•黄石市)23.(本小题满分8分)今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数学教师编制了一道应用题: 为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1(2)记该用户六月份用水量为x 吨,缴纳水费为y 元,试列出y 与x 的函数式; (3)若该用户六月份用水量为40吨,缴纳水费y 元的取值范围为7090y ≤≤,试求m 的取值范围。
第 8 章《一元一次不等式(组)》培优习题2:解一元一次不等式考点汇编考点 1:一元一次不等式的定义例 1、以下各式中,是一元一次不等式的是()A、538B、 2x 11C、28 D 、x2x 18x3x2【同步练习】1、以下各式中,是一元一次不等式的是()A、548B、2x 1C、2x 5D、13x 0 x2、以下不等式中,属于一元一次不等式的是()A、4 1B、3x 2 4C、12D、 4x 3 2y 7 x例 2、已知2m4x|m|3 6 0 是关于 x 的一元一次不等式,则m 的值为()3A、 4B、4C、 3 D 、3【同步练习】1、若 m 1 x|m |20是关于 x 的一元一次不等式,则m________;2、若不等式 m 3 x|m2| 2 0 是关于 x 的一元一次不等式,则m 的值为.考点 2:一元一次不等式的解集例 3、关于x的不等式m 1 x m1的解集为x 1 ,那么m的取值范围是()A、m 1B、m 1C、m 0D、m 0【同步练习】1、已知关于 x 的不等式a 2 x 1的解集为 x1,则 a 的取值范围()a2A、a 2B、a 2C、a 2D、a 22、假如不等式 2 a x a 2 的解集为x1,则a一定满足的条件是()A、a 0B、a 2C、a 1D、a 1考点 3:解一元一次不等式例 3、解以下不等式,并把解集在数轴上表示出来:( 1)2 5x 8 2x( 2)x 513x 2 22【同步练习】1、解不等式1 2x11x,并把它的解集在数轴上表示出来;322、解不等式x 33x 21 ,并将解集在数轴上表示出来;233、解不等式:x1 x 1 1 ,并把解表示在数轴上。
3 3例 4、已知:关于 x 、 y 的方程组 3xy y 3a9的解为非负数。
x 5a7( 1)求 a 的取值范围;( 2)化简 | 2a 4 || a 1 |;( 3)在 a 的取值范围内, a 为什么整数时,使得 2ax 3x 2a 3 解集为 x 1【同步练习】1、已知关于 x , y 的方程组x y 3 的解满足不等式 xy 3 ,务实数 a 的取值范围;2x y6a2、已知关于 x , y 的方程组4x y 3my8 ,求 m 的取值范围;xy 7m 的解满足不等式 2 x53、若关于 x , y 的二元一次方程组3 x y 2m 1的解满足 x y 0 ,求 m 的取值范围;x 3 y 34、若关于 x 和 y 的二元一次方程组x 2 y 2,满足 x y 0 ,求 m 的取值范围;2x y3m12xy 5mx 、y 满足 x y 0 ,求 m 的取值范围。
一元一次不等式(组)培优训练(参数问题) 拔高级训练:1、已知关于x ,y 的二元一次方程组⎩⎨⎧-=++=-222323t y x t y x ,当A=x -2y 且-1<t ≤2,求A 的取值范围.2、若关于x ,y 的二元一次方程组⎩⎨⎧=++=+333y x a t y x 的解满足x+y<505,则a 的取值范围是( )A. a>2016B.a<2016C.a>505D.a<5053、已知关于x ,y 的方程组⎩⎨⎧-=++=+m y x m y x 12312的解x ,y 满足x+y1<1,且m 为正数,求m 的取值范围.4、已知关于x ,y 的方程组⎩⎨⎧-=-+=+34272a y x a y x . (1)若a=2,求方程组的解;(2)若方程组的解x ,y 满足x>y ,求a 的取值范围并化简110118+-+a a5、若关于x 的不等式组⎩⎨⎧≥-≥-0250x m x 有解,则m 的取值范围是?6、关于x 的不等式组⎩⎨⎧->-<-)1(2130x x m x 无解,那么m 的取值范围为( ) A. m ≤-1 B.m<-1 C.-1<m ≤0 D.-1≤m<07、(1)若不等于组⎩⎨⎧>≤<k x x 21无解,则k 的取值范围是( ) A.k ≤2 B.k<1 C.k ≥2 D.1≤k<2(2)已知关于x 的不等式组⎩⎨⎧>-≥-1250x a x 只有四个整数解,则实数a 的取值范围是________. (3)定义[]x 表示不大于x 的最大整数,即x 的整数部分,例如[]47.4=.①根据定义,[][][]______;4.1_____,2_____,=-==π②比较[][]1,,1,++x x x x 的大小关系,按照从小到大的顺序用不等号连接的结果为____________________________; ③解方程:412213+=⎥⎦⎤⎢⎣⎡-x x8、若整数使关于的x 方程x +2a=1的解为负数,且使关于x 的不等式组⎪⎩⎪⎨⎧+≥->--31210)(21x x a x 无解,则所有满足条件的整数a 的值之和是( )A.5B.7C.9D.109、关于x 、y 的方程组⎩⎨⎧+=+-=+ky x k y x 13233的解满足x+y>0,且关于x 的不等式组⎪⎩⎪⎨⎧≥+≤--x x k x x 323)1(2有解,则符合条件的整数k 的值的和为( )A.2B.3C.4D.510、已知关于x 的不等式组⎩⎨⎧<+>-13430x a x 有且只有3个整数解,则a 的取值范围是( ) A.a>-1 B.-1≤a<0 C.-1<a ≤0 D.a ≤0培优级训练:1、已知⎩⎨⎧+=+=+12242k y x k y x 且0<y -x<1,则k 的取值范围是( )A.211-<<-kB.210<<kC.10<<kD.121<<k 2、如果关于x 的不等式组⎩⎨⎧<->-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有______个.3、阅读以下材料:对于三个数a,b,c ,用M{a ,b ,c}表示这个三个数中最小的数,例如:M{-1,2,3}=343321-=++;⎩⎨⎧->--≤=--=-)1(1)1(},2,1min{;1}3,2,1min{a a a a 解决下列问题:(1)填空:如果min{2,2x+2,4-2x}=2,则x 的取值范围为_________.(2)如果M{2,x+1,2x}=min{2,x+1,2x},求x.4、社会主义核心价值观"富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善"体现了社会主义核心价值理念.我们用"核心符号"[x]来表示不大于x 的最大整数(如[1.5]=1,[-1.5]=-2,我们把满足[x]=a (a 为常数)的x 取值范围叫做的核心范围)(如[x]=3的x 的核心范围为3≤x<4,[x]=-1的x 的核心范目-1≤ x<0).(1)请直接写出[2.6]的值和[x]=1的的核心范围;(2)己知关于x 的不等式⎩⎨⎧<->a x x ]2.1[有且只有两个整数解,写出这两个整数解并求出a 的取值范围.5、先阅读理解下面的例题,再按要求解答下列问题:例题:对于(x -2)(x -4)>0,这类不等式我们可以通过下面的解题思路来分析:由有理数的乘法法则"两数相乘,同号得正",可得①⎩⎨⎧<->-0402x x ,②⎩⎨⎧<-<-0402x x .从而将陌生的高次不等式化为学过的一元一次不等式年解不等式组,分别去解两个不等式组即可求得原不等式的解集,即:解不等式组①得x>4,解不等式组②得x<2,所以(x -2)(x -4)>0的解集为x>4或x<2.请利用上述解题思想解决下面的问题:(1)请直接写出(x -2)(x -4)<0的解集;(2)对于0>nm ,请根据除法法则化为我们学过的不等式(组); (3)求不等式013>-+x x 的解集.6、先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x ²-4>0.解:∵x ²-4=(x +2)(x -2),∴x ²-4>0可化为(x +2)(x -2)>0.由有理数的乘法法则"两数相乘,同号得正",得①⎩⎨⎧>->+0202x x ,②⎩⎨⎧<-<+0202x x 解不等式组①,得x >2,解不等式组②,得x<-2.∴x ²-4>0的解集为x >2或x<-2,即一元二次不等式x ²-4>0的解集为x >2或x<-2.(1)一元二次不等式x ²-16>0的解集为______________.(2)分式不等式031>--x x 的解集为______________.课堂检测:1、已知关于x 、y 的方程组⎩⎨⎧=++=-ay x a y x 523的解满足x>y>0,求a 的取值范围.2、已知a>1,则a x x a -=-2)2(2中x 的取值范围是多少?3、若关于x 不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A.35≤m B.35<m C.35>m D.35≥m4、若关于x 的不等式组⎩⎨⎧+≥++≤)1(341m x m x 无解,则m 的取值范围是__________.5、已知关于x 的不等式a ≤x<b 的整数解为7,8,9,10.当a 、b 为实数时,a 、b 的取值范围分别为________、__________.。
一元一次不等式(基础练习)一. 解下列不等式,并在数轴上表示出它们的解集.1. 8223-<+x x2. x x 4923+≥-3. )1(5)32(2+<+x x4. 0)7(319≤+-x5. 31222+≥+x x6. 223125+<-+x x7. 5223-<+x x 8. 234->-x9. )1(281)2(3--≥-+y y 10. 1213<--m m11. )2(3)]2(2[3-->--x x x x 12. 215329323+≤---x x x 13. 41328)1(3--<++x x 14. )1(52)]1(21[21-≤+-x x x 15. 22416->--x x 16. x x x 212416-≤--17. 7)1(68)2(5+-<+-x x 18. 46)3(25->--x x19. 1215312≤+--x x 20. 31222-≥+x x二. 应用题1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。
4.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?5.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?6.某工程队计划在10天内修路6km,施工前2天修完1.2km后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少千米?不等式与不等式组(提升练习)一、选择题1. 如果a 、b 表示两个负数,且a <b ,则( ).(A)1>ba (B)ba <1 (C)ba 11< (D)ab <12. a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3. |a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4. 若由x <y 可得到ax >ay ,应满足的条件是( ).(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人 7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)5 8. 若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是( ).(A)k <2(B)k ≥2(C)k <1(D)1≤k <29. 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m ≤1(D)m ≥110. 对于整数a ,b ,c ,d ,定义bd ac cdb a -=,已知3411<<db ,则b +d 的值为_________. 11. 如果a 2x >a 2y (a ≠0).那么x ______y . 12. 若x 是非负数,则5231x-≤-的解集是______. 13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 14. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.17. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式18. 2(2x -3)<5(x -1). 10-3(x +6)≤1. 19. ⋅-->+22531x x⋅-≥--+612131y y y20. 3[x -2(x -7)]≤4x . .17)10(2383+-≤--y y y 21..151)13(21+<--y y y.15)2(22537313-+≤--+x x x22. ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组23. ⎩⎨⎧≥-≥-.04,012x x⎩⎨⎧>+≤-.074,03x x24. ⎪⎩⎪⎨⎧+>-<-.3342,121x x x x-5<6-2x <3.25. ⎪⎩⎪⎨⎧⋅>-<-322,352x x x x⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx26. ⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x.234512x x x -≤-≤-27. ⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x28. 解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、变式练习29. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .30. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.31. 已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.32. 适当选择a 的取值范围,使1.7<x <a 的整数解:(1) x 只有一个整数解; (2) x 一个整数解也没有. 33. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.34. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.35. (类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.36. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.37. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.38. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.39. (类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?40. (类型相同)已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.41. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.五、解答题42. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?43. 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?44.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?45.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?46.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?47.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?48.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?49.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?50.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?51.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?52.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.53.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B问:这。
第8章 一元一次不等式(培优篇)一、单选题(本大题共10小题,每小题3分,共30分) 1.如果,0a b c ><,那么下列不等式成立的是( ) A .a c b +> B .a c b c +>- C .11ac bc ->-D .()()11a c b c -<-2.一元一次不等式3(7﹣x )≥1+x 的正整数解有( ) A .3个B .4个C .5个D .6个3.数轴上A 、B 、C 三点依次从左向右排列,表示的数分别为-2,12x -,3x +,则x 可能是( )A .0B .-1C .-2D .34.已知a 、b 是不为0的实数,则下列选项中,解集可以为20222022x -<<的不等式组是( )A .11ax bx <⎧⎨>⎩B .11ax bx >⎧⎨>⎩C .11ax bx >⎧⎨<⎩D .11ax bx <⎧⎨<⎩5.小红购买了一本《数学和数学家的故事》·两位小伙伴想知道书的价格,小红让他们猜,小华说:“不少于20元”,小强说:“少于22元”,小红说:“你们两个人说的都没有错”,则这本书的价格x (元)所在的范围为( )A .2022x <<B .2022x ≤≤C .2022x ≤<D .2022x <≤6.如图,在数轴上A ,B ,C ,D 四个点所对应的数中是不等式组1202x x x -<⎧⎪⎨≤⎪⎩的解的是( )A .点A 对应的数B .点B 对应的数C .点C 对应的数D .点D 对应的数7.如图所示,运行程序规定:从“输入一个值x ”到“结果是否79>”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .9x >B .19x ≤C .919x <≤D .919x ≤≤8.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( ) A .2a >-B .2a <C .22a -<<D .2a ≤9.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .610.已知关于x 、y 的方程组,给出下列说法:①当a =1时,方程组的解也是方程x +y =2的一个解;①当x -2y >8时,15a >;①不论a 取什么实数,2x +y 的值始终不变;①若25y x =+,则4a =-. 以上说法正确的是( )A .①①①B .①①①C .①①D .①①二、填空题(本大题共8小题,每小题4分,共32分) 11.已知关于x 的不等式7xa <的解也是不等式27152x a a ->-的解,则常数a 的取值范围是_____.12.已知实数x ,y 满足x +y =3,且x >﹣3,y ≥1,则x ﹣y 的取值范围____.13.已知不等式组211x x x m <+⎧⎨->⎩的解集为1x >-,则m 的取值范围是________.14.若关于x 的不等式组()()324122x x x m x ⎧-<-⎨-≤-⎩,恰有两个整数解,则m 的取值范围是______.15.关于x 的不等式组2500x x a -<⎧⎨->⎩无整数解,则a 的取值范围为_____.16.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为_____.17.已知a 、b 、c 是非负数,且2a +3b +c =10,a +b -c =4,如果S =2a +b -2c ,那么S 的最大值和最小值的和等于_________.18.如图,用图1中的a 张长方形和b 张正方形纸板作侧面和底面,做成如图2的竖式和横式两种无盖纸盒,若a +b 的值在285和315之间(不含285与315),且用完这些纸板做竖式纸盒比横式纸盒多30个,则a 的值可能是____________.三、解答题(本大题共6小题,共58分)19.(8分)解不等式组2153112x x x -<⎧⎪⎨-+≥⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解.20.(8分)解关于x 的不等式组:05310531x a x a <+≤⎧⎨<-≤⎩,其中a 为参数.21.(10分)现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个数(或整式),不等号的方向不变.①在不等式的两边都乘同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变.请解决以下两个问题:(1) 利用性质①比较2a 与a 的大小(a ≠0). (2) 利用性质①比较2a 与a 的大小(a ≠0).22.(10分)若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x 的代数式2x ,当-1≤x ≤ 1时,代数式2x 在x =±1时有最大值,最大值为1;在x =0时有最小值,最小值为0,此时最值1,0均在-1≤x ≤1这个范围内,则称代数式2x 是-1≤x ≤1的“湘一代数式”.(1)若关于x 的代数式x ,当13x ≤≤时,取得的最大值为 ,最小值为 ,所以代数式“是”或“不是”)13x ≤≤的“湘一代数式”.(2)若关于x 的代数式12ax -+是22x -≤≤的“湘一代数式”,求a 的最大值与最小值. (3)若关于x 的代数式2x -是4m x ≤≤的“湘一代数式”,求m 的取值范围.23.(10分)为支援武汉抗击新冠肺炎,甲地捐赠了600吨的救援物质并联系了一家快递公司进行运送.快递公司准备安排A 、B 两种车型把这批物资从甲地快速送到武汉.其中,从甲地到武汉,A 型货车5辆、B 型货车6辆,一共需补贴油费3800元;A 型货车3辆、B型货车2辆,一共需补贴油费1800元.(1)从甲地到武汉,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)A型货车每辆可装15吨物资,B型货车每辆可装12吨物资,安排的B型货车的数量是A型货车的2倍还多4辆,且A型车最多可安排18辆、运送这批物资,不同安排中,补贴的总的油费最少是多少?24.(12分)老王是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产出情况如表:(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)(1)按目前市场行情,老王养殖A、B两种淡水鱼获得利润最多是多少万元?(2)基础建设投入、鱼苗投资、饲料支出及产量不变,但当老王的鱼上市时,A种鱼价格上涨a%,B种鱼价格下降20%,使老王养鱼实际获得利润5.68万元.求a的值.参考答案1.D【分析】根据不等式的性质即可求出答案. 解:①0c <, ①11c -<-, ①a b >,①()()11a c b c -<-, 故选D .【点拨】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.2.C【分析】先求出不等式的解集,根据解集得出答案即可. 解:3(7)1x x ≥﹣+ 2131x x -≥+3121x x --≥- 420x -≥-①5x ≤所以不等式的正整数解为1,2,3,4,5,共5个, 故选:C .【点拨】本题考查了解一元一次不等式,不等式的正整数解的应用,能求出不等式的解集是解此题的关键.3.A【分析】根据条件列出关于x 的一元一次不等式组,解得x 的范围,即可求得答案. 解:由题意知,212123x x x -<-⎧⎨-<+⎩ ,解得2332x -<<. 故选:A .【点拨】本题主要考查列一元一次不等式以及解一元一次不等式组,解决本题的关键是列出一元一次不等式组.4.D【分析】根据解集可以为20222022x -<<,所以a 、b 异号,分两种情况:当a >0,b <0时,则11a b>;当a <0,b >0时,则11a b <;分别逐项判定即可.解:①解集可以为20222022x -<<, ①a 、b 异号, 当a >0,b <0时,则11a b>, A 、11ax bx <⎧⎨>⎩的解集为x <1b ,故此选项不符合题意;B 、11ax bx >⎧⎨>⎩的无解,故此选项不符合题意;C 、11ax bx >⎧⎨<⎩的解集为x >1a ,故此选项不符合题意;D 、11ax bx <⎧⎨<⎩的解集为1b <x <1a ,故此选项符合题意;当a <0,b >0时,则11a b<, A 、11ax bx <⎧⎨>⎩的解集为x >1b ,故此选项不符合题意;B 、11ax bx >⎧⎨>⎩的无解,故此选项不符合题意;C 、11ax bx >⎧⎨<⎩的解集为x <1a ,故此选项不符合题意;D 、11ax bx <⎧⎨<⎩的解集为1a <x <1b ,故此选项符合题意;综上,a 、b 是不为0的实数,解集可以为20222022x -<<的不等式组是D , 故选:D .【点拨】本题考查不等式组的解集,解不等式组,熟练掌握不等式组解集的确定原则“大大取较大,小小取较小,大小小大中间找,大大小小无处找”是解题的关键.5.C【分析】根据不少于就是大于等于的意思去建立不等式即可. 解:①书的价格“不少于20元”,“少于22元”, ①2022x ≤<,故选C .【点拨】本题考查了列不等式,正确理解不少于的意义是解题的关键. 6.B【分析】先求出不等式组的解集,然后判断即可得出答案. 解:1202x x x-<⎧⎪⎨≤⎪⎩①② 解不等式①,得1x >-, 解不等式①,得0x ≤, ①不等式组的解为10-<≤x ,①在数轴上B 点所对应的数是不等式组的解. 故选①B .【点拨】本题考查了解不等式组和数轴上点的特征,正确求出不等式组的解集是解题的关键.7.C【分析】根据运算程序,前两次运算结果小于等于79,第三次运算结果大于79列出不等式组,然后求解即可.解:由题意得,()()217922117922211179x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++⎪⎣⎦⎩①②>③, 解不等式①得,x ≤39, 解不等式①得,x ≤19, 解不等式①得,x >9,所以,x 的取值范围是9<x ≤19. 故选:C .【点拨】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.8.D【分析】由不等式的最小正整数解为1x =,可得出关于a 的一元一次不等式,解之即可得出a 的取值范围.解:①关于x 的不等式52x x a -≥+的最小正整数解是1x = ①214a+≤ 2a ≤故选:D.【点拨】此题主要考查一元一次不等式的正整数解的问题,熟练利用数轴理解一元一次不等式的解集是解题的关键.9.B【分析】先解关于x 的一元一次不等式组,根据其解集x a ≤,求出a 的取值范围,再解分式方程,根据其有非负整数解,求出a 的取值范围,进而可得符合要求的a 值,最后求和即可.解:由不等式组()1142423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩,解得:5x a x ≤⎧⎨<⎩ ①不等式组的解集为x a ≤ ①5a < 由分式方程24111y a y y y---=-- ,去分母得241y a y y -+-=- 解得32a y +=,1y ≠ ①分式方程有非负数解 ①3a ≥-且3a ≠①a 的取值为321---,,,0,1,2,4①符合条件的所有整数a 的和为()()32101241-+-+-++++= 故选B .【点拨】本题考查了解一元一次不等式组,解分式方程.解题的关键在于求出符合条件的所有整数a .10.A解:试题分析:当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y=2的解,故①不正确;通过加减消元法可解方程组为x=3+a ,y=-2a -2,代入x -2y >8可解得a >15,故①正确;2x+y=6+2a+(-2a -2)=4,故①正确;代入x 、y 的值可得-2a -2=(3+a )2+5,化简整理可得a=-4,故①正确.故选:A 11.1009a -≤< 【分析】先把a 看作常数求出两个不等式的解集,再根据同小取小列出不等式求解即可. 解:关于x 的不等式27152x a a->-, 解得:19542x a >-, 关于x 的不等式7x a <的解也是不等式27152x a a->-的解, ∴0a <,∴不等式7xa<的解集是7x a >, ∴195742a a ≥-,解得:109a ≥-,0a <,1009a ∴-≤<, 故答案为:1009a -≤<. 【点拨】本题考查了一元一次不等式的解法,解题的关键是分别求出两个不等式的解集,再根据同小取小列出关于a 的不等式,注意在不等式两边都除以一个负数时,应只改变不等号的方向.12.91x y --≤<【分析】先设x ﹣y =m ,利用x +y =3,构造方程组,求出用m 表示x 、y 的代数式,再根据x >﹣3,y ≥1,列不等式求出m 的范围即可.解:设x ﹣y =m ,①3x y m x y -=⎧⎨+=⎩①②, ①+①得32mx +=, ①-①得32my -=, ①y ≥1, ①312m-≥,解得1m ,①x >﹣3, ①332m +>-, 解得9m >-,①91m ≤-<,x ﹣y 的取值范围91x y --≤<.故答案为91x y --≤<.【点拨】本题考查方程与不等式综合问题,解题关键是设出x ﹣y =m ,与x +y =3,构造方程组从中求出32m x +=,32m y -=,再出列不等式. 13.2m ≤-【分析】求出每个不等式的解集,根据已知得出关于m 的不等式,求出不等式的解集即可. 解:211x x x m <+⎧⎨->⎩①② 解①得,1x >-,解①得,1x m >+,不等式组211x x x m <+⎧⎨->⎩的解集为1x >-, 11m ∴+≤-,2m ∴≤-,故答案为:2m ≤-.【点拨】本题考查了解一元一次不等式组的应用,解题的关键是能根据不等式的解集和已知得出关于m 的不等式.14.21m -≤<【分析】不等式组整理后表示出解集,根据不等式组恰有两个整数解,确定出m 的范围即可.解:3(2)4(1)22x x x m x -<-⎧⎨-≤-⎩①②解不等式①得,2x >-,解不等式①得,23m x +≤, ①不等式解集为:223m x +-<≤, ①不等式组恰有两个整数解,即-1,0, ①0≤23m +<1, 解得:21m -≤<.故答案为:21m -≤<.【点拨】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.15.a ≥2.【分析】先求出两个不等式的解集,再根据不等式组无整数解列出关于a 的不等式求解即可 解:不等式组整理得:52x x a⎧<⎪⎨⎪>⎩ 不等式组的解集是:a <x <52, 当a ≥52时,不等式组无解, ①不等式组无整数解,①a ≥2故答案为:a ≥2.【点拨】本题考查了一元一次不等式组的解法,解题的关键是熟练掌握确定不等式组解集的方法.16.k≥1解:解不等式2x+9>6x+1可得x <2,解不等式x -k <1,可得x <k+1,由于x <2,可知k+1≥2,解得k≥1.故答案为k≥1.17.14【分析】把a 看成是已知数,分别用含a 的式子表示b ,c ,根据a ,b ,c 是非负数求出a 的范围,把b ,c 代入S =2a +b -2c ,根据a 的范围求出S 的最大值和最小值.解:由方程组23104a b c a b c ++=⎧⎨+-=⎩得,143424a b a c -⎧⎪⎪⎨-⎪⎪⎩==, 因为a ,b ,c 是非负数,所以014304204a a a ⎧⎪≥⎪-⎪≥⎨⎪-⎪≥⎪⎩,解得2≤a ≤143. S =2a +b -2c =2a +1434a --2×239442a a -=+, 当a =2时,S =39242⨯+=6; 当a =143时,S =3149432⨯+=8. 则6+8=14.故答案为14.【点拨】三个未知数,两个方程的问题,通常将其中的一个未知数看成是已知数,用这个字母表示出其它两个未知数,再根据题意,确定这个未知数的取值范围.18.218,225,232【分析】根据题意图形可知,竖式纸盒需要4个长方形纸板与1个正方形纸板,横式纸盒要3个长方形纸板与2个正方形纸板,设做成横式纸盒x 个,则做成竖式纸盒()30x +个,即可算出总共用的纸板数,再根据285315a b <+<,即可得到不等式组求出x 的值,即可进行求解.解:设做成横式纸盒x 个,则做成竖式纸盒()30x +个,①285315a b <+<,①()2853243030315x x x x <+++++<,解得13.516.5x <<,①x 为正整数,①14x =或15x =或16x =,当14x =时,30143044x +=+=,314444218a =⨯+⨯=,当15x =时,30153045x +=+=,315445225a =⨯+⨯=,当16x =时,30163046x +=+=,316446232a =⨯+⨯=,综上所述,a 的值为218,225,232,故答案为:218,225,232.【点拨】此题主要考查不等式的应用,解题的关键是根据题意设出未知数,找到不等关系进行求解,注意结合实际情况取整数解.19.13x -≤<,数轴上表示略,不等式组的所有整数解为-1,0,1,2【分析】先求出两个不等式的解集,再求其公共解集,然后确定这个范围内的整数解即可.解:由①得:3x <,由①得:3122x x -+≥,解得:1x ≥-,解集为:13x -≤<.不等式组的所有整数解为-1,0,1,2.【点拨】本题主要考查了一元一次不等式组解集的求法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;<”,“>”要用空心圆点表示.20.见分析【分析】求出不等式组中每个不等式的解集,分别求出当3355a a -=时、当131355a a -+=时、当31355a a +-=时、当31355a a -=时a 的值,结合不等式的解集,即可求出在各段的不等式组的解集.解:05310531x a x a <+≤⎧⎨<-≤⎩①② 解不等式①得:3513a x a -<≤-,31355a a x --<≤, 解不等式①得:3513a x a <≤+,31355a a x +<≤, ①当3355a a -=时,a =0, 当131355a a -+=时,a =0, 当31355a a +-=时,16a =-, 当31355a a -=时,16a =, ①当16a ≥ 或16a ≤-时,原不等式组无解; 当106a ≤<时,原不等式组的解集为31355a a x -<≤; 当106a -<<时,原不等式组的解集为:31355a a x +-<≤. 【点拨】本题考查了不等式组得解集,关键是能正确求出各段的不等式组的解集,本题比较特殊,有一定的难度.21.(1)2a<a;(2)2a<a试题分析:(1)根据不等式的性质①,可得答案;(2)根据不等式的性质①,可得答案.解:(1)当a >0时,a +a >a +0,即2a >a .当a <0时,a +a <a +0,即2a <a .(2)当a >0时,由2>1,得2·a >1·a ,即2a >a .当a <0时,由2>1,得2·a <1·a ,即2a <a .22.(1)3,1,是.(2)a 的最大值为6,最小值为2-;(3)20.m -≤≤【分析】(1)先求解当13x ≤≤时,x 的最大值与最小值,再根据定义判断即可; (2)当22x -≤≤时,得224,x ≤+≤分0,a ≥ a <0,分别求解12a x -+在22x -≤≤内时的最大值与最小值,再列不等式组即可得到答案;(3)当4m x ≤≤时,分24x ≤≤,2m x ≤≤两种情况分别求解2x -的最大值与最小值,再列不等式(组)求解即可.解:(1) 13x ≤≤当3x =时,x 取最大值3,当1x =时,x 取最小值1, 所以代数式x 是13x ≤≤的“湘一代数式”.故答案为:3,1,是.(2)①22x -≤≤,①0≤|x|≤2, ①224,x ≤+≤①当a≥0时,x=0时,12a x -+有最大值为12a -, x=2或-2时,12a x -+有最小值为1,4a - 所以可得不等式组122124a a ⎧-≤⎪⎪∴⎨⎪-≥-⎪⎩①②, 由①得:6,a ≤由①得:4,a ≥-所以:06,a ≤≤①a <0时,x=0时,12a x -+有最小值为12a -, x=2或-2时, 12a x -+的有大值为1,4a - 所以可得不等式组122124a a ⎧-≥-⎪⎪∴⎨⎪-≤⎪⎩①②, 由①得:2,a ≥-由①得:12,a ≤所以:2≤a -<0,综上①①可得26a -≤≤,所以a 的最大值为6,最小值为2-.(3) 2x -是4m x ≤≤的“湘一代数式”,当24x ≤≤时,2x -的最大值是2, 最小值是0,0,m ∴≤当2m x ≤≤时,22,x x -=-当2x =时,2x -取最小值0,当x m =时,2x -取最大值2m -,024m m ≤⎧∴⎨-≤⎩解得:20,m -≤≤综上:m 的取值范围是:20.m -≤≤【点拨】本题考查的是新定义情境下的不等式或不等式组的应用,理解定义列不等式(组)是解题的关键.23.(1)每辆A 型货车补贴油费400元,每辆B 型货车补贴油费300元;(2)16200元【分析】(1)设从甲地到武汉,每辆A 型货车补贴油费x 元,每辆B 型货车补贴油费y 元,根据“从甲地到武汉,A 型货车5辆、B 型货车6辆,一共需补贴油费3800元;A 型货车3辆、B 型货车2辆,一共需补贴油费1800元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排A 型货车m 辆,则安排B 型货车(2m+4)辆,根据A 型车最多可安排18辆且安排的车辆总的装载量不低于600吨,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数即可得出m 的值,再求出各安排方案所需补贴的总的油费,比较后即可得出结论.解:(1)设从甲地到武汉,每辆A 型货车补贴油费x 元,每辆B 型货车补贴油费y 元,依题意,得:563800321800x y x y +=⎧⎨+=⎩解得:400300x y =⎧⎨=⎩ 答:从甲地到武汉,每辆A 型货车补贴油费400元,每辆B 型货车补贴油费300元.(2)设安排A 型货车m 辆,则安排B 型货车(24m +)辆,依题意,得:()181********m m m ≤⎧⎨++≥⎩解得:6141839m ≤≤ ①m 为正整数①m =15,16,17,18当15m =时,补贴的总的油费为()40015300152416200⨯+⨯⨯+=(元)当16m =时,补贴的总的油费为()40016300162417200⨯+⨯⨯+=(元);当17m =时,补贴的总的油费为()40017300172418200⨯+⨯⨯+=(元);当18m =时,补贴的总的油费为()40018300182419200⨯+⨯⨯+=(元)①16200172001820019200<<<①运送这批物资,不同安排中,补贴的总的油费最少是16200元.【点拨】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(1)6.8万元;(2)36.试题分析:(1)根据题意求出30≤x≤35,再表示出A 、B 两种鱼所获利润,最后找最大利润;(2)表示出价格变动后,A 、B 两种鱼上市时所获利润,再解方程.解:(1)设他用x 只网箱养殖A 种淡水鱼,则用(80-x)只网箱养殖B 种淡水鱼.由题意,得700≤5x+9(80﹣x)+120≤720,解得:30≤x≤35设A 、B 两种鱼所获利润w="(10-5)x+(22-9)×(80-x)-120=-8x+920,"所以,当x=30时,所获利润w 最多是6.8万元(2)价格变动后,一箱A 种鱼的利润=100×0.1×(1+a%)﹣(2+3)=5+0.1a (百元), 一箱B 种鱼的利润=55×0.4×(1﹣20%)﹣(4+5)=8.6(百元).设A 、B 两种鱼上市时所获利润w="(5+0.1a)x+8.6×(80-x)-120=(0.1a -3.6)x+568," 所以,(0.1a -3.6)x+568=568,所以,(0.1a -3.6)x=0因为,30≤x≤35,所以,0.1a -3.6=0,a=36.考点:一元一次不等式组.。
一次不等式(组)1.若m >n ,则下列不等式不一定成立的是( ) A .m +3>n +3 B .-3m<-3n C.m 3>n 3D .m 2>n 22.不等式1-2x≥0的解集是( ) A .x≥2B .x≥12C .x≤2D .x≤123.(2019·宿迁)不等式x -1≤2的非负整数解有( ) A .1个B .2个C .3个D .4个4.不等式x +1≥2x-1的解集在数轴上表示为( )5.(2019·天门)不等式组⎩⎪⎨⎪⎧x -1>05-2x≥1的解集在数轴上表示正确的是( )6.若关于x 的不等式组⎩⎪⎨⎪⎧2(x -1)>2a -x<0的解集是x >a ,则a 的取值范围是( ) A .a <2B .a≤2C .a >2D .a≥27.(2019·常德)不等式3x +1>2(x +4)的解集为________ .8.(2019·铜仁)如果不等式组⎩⎪⎨⎪⎧x<3a +2x<a -4的解集是x <a -4,则a 的取值范围是________.9.(2019·攀枝花)解不等式x -25-x +42>-3,并把它的解集在数轴上表示出来.10.(2019·扬州)解不等式组:⎩⎪⎨⎪⎧4(x +1)≤7x+13x -4<x -83,并写出它的所有负整数解.11.(2019·桂林)为响应国家“足球进校园”的号召,某校购买了50个A类足球和25个B类足球共花费7 500元,已知购买一个B类足球比购买一个A类足球多花30元.(1)求购买一个A类足球和一个B类足球各需多少元;(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4 800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?1.(2019·无锡)某工厂为了要在规定期限内完成2 160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为( ) A .10 B .9 C .8 D .72。
中考数学复习知识点专题训练 第四节 一次不等式(组)
姓名:________ 班级:________ 用时:______分钟
1.(2019·广安)若m >n ,下列不等式不一定成立的是( ) A .m +3>n +3 B .-3m<-3n C.m 3>n 3
D .m 2>n 2
2.(2019·临沂)不等式1-2x≥0的解集是( ) A .x≥2
B .x≥1
2
C .x≤2
D .x≤12
3.(2019·宿迁)不等式x -1≤2的非负整数解有( ) A .1个
B .2个
C .3个
D .4个
4.(2019·石家庄长安区一模)关于x 的不等式组⎩⎨⎧-2x<4
3x -5<1的所有整数解是( )
A .0,1
B .-1,0,1
C .0,1,2
D .-2,-1,0,1,2
5.(2019·天门)不等式组⎩
⎨⎧x -1>0
5-2x≥1的解集在数轴上表示正确的是( )
6.(2019·常德)不等式3x +1>2(x +4)的解集为________.
7.(2019·廊坊广阳区一模改编)关于x
的不等式组⎩⎨⎧2x<3(x -3)+1
3x +24
>x +a
只有三个整数
解,则a 的取值范围是________ . 8.(2019·攀枝花)解不等式
x -25-x +4
2
>-3,并把它的解集在数轴上表示出来.
9.(2019·扬州)解不等式组:⎩⎨⎧4(x +1)≤7x+13
x -4<x -8
3
,并写出它的所有负整数解.
10.(2019·桂林)为响应国家“足球进校园”的号召,某校购买了50个A 类足球和25个B 类足球共花费7 500元,已知购买一个B 类足球比购买一个A 类足球多花30元. (1)求购买一个A 类足球和一个B 类足球各需多少元?
(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4 800元的经费再次购买A 类足球和B 类足球共50个,若单价不变,则本次至少可
以购买多少个A 类足球?
11.(2019·玉林)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产量分别是2.5万千克和3.6万千克,现假定该养殖场蛋鸡产蛋量的月增长率相同. (1)求该养殖场蛋鸡产蛋量的月平均增长率;
(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万千克,如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点.
1.(2019·聊城)若不等式组⎩⎨⎧x +13<x 2-1x<4m
无解,则m 的取值范围是( )
A.m≤2 B.m<2 C.m≥2 D.m>2
2.(2019·唐山路北区二模)如图所示是测量一物体体积的过程:
步骤一:将180 mL的水装进一个容量为300 mL的杯子;
步骤二:将三个相同的玻璃球放入水中,结果水没有满;
步骤三:同样的玻璃球再加入一个放入水中,结果水满溢出.
根据以上过程,推测一颗玻璃球的体积在下列哪一范围内.(1 mL=1cm3) ( )
A.10 cm3以上,20 cm3以下
B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下
D.40 cm3以上,50 cm3以下
3.(2018·娄底) “绿水青山就是金山银山”,某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台(A、B都购买),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.
(1)请你为该景区设计购买A、B两种设备的方案;
(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?
4.(2018·保定一模)下面是售货员与小明的对话:
根据对话内容解答下列问题:
(1)A、B两种文具的单价各是多少元?
(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案?
参考答案
基础训练
1.D 2.D 3.D 4.B 5.C 6.x>7 7.-52≤a<-94
8.解:去分母,得2(x -2)-5(x +4)>-30, 去括号得2x -4-5x -20>-30, 移项、合并同类项,得-3x>-6, 系数化为1,得x <2,
将不等式的解集表示在数轴上如解图:
9.解:解不等式4(x +1)≤7x +13,得:x ≥-3, 解不等式x -4<
x -8
3
,得:x <2, 则不等式组的解集为-3≤x <2,
所以不等式组的所有负整数解为-3、-2、-1.
10.解:(1)设购买一个A 类足球需要x 元,购买一个B 类足球需要y 元, 依题意,得⎩⎨⎧50x +25y =7 500y -x =30,解得⎩
⎨⎧x =90,
y =120.
答:购买一个A 类足球需要90元,购买一个B 类足球需要120元. (2)设购买m 个A 类足球,则购买(50-m)个B 类足球, 依题意,得90m +120(50-m)≤4 800, 解得:m ≥40.
答:本次至少可以购买40个A 类足球.
11.解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x,
根据题意得2.5(1+x)2=3.6,解得x
1=0.2,x
2
=-2.2,
∵增长率为正数,∴x=0.2,
答:该养殖场蛋鸡产蛋量的月平均增长率为20%.
(2)设需要再增加y个销售点,
根据题意得(
3.6
0.32
+y)×0.32≥3.6×(1+0.2),
解得y≥9 4,
∵y为整数,∴y的最小值为3,
∴该养殖场在五月份已有的销售点的基础上至少需要再增加3个销售点.拔高训练
1.A 2.C
3.解:(1)设购买A种设备x台,则购买B种设备(10-x)台,
根据题意,得12x+15(10-x)≥140,解得x≤31 2,
∵x为正整数,∴x=1,2,3.
∴该景区有三种购买方案:
方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;
(2)各方案购买费用分别为:
方案一:3×1+4.4×9=42.6>40,
实际付款:42.6×0.9=38.34(万元);
方案二:3×2+4.4×8=41.2>40,
实际付款:41.2×0.9=37.08(万元);
方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,
∴采用(1)设计的第二种方案,使购买费用最少.
4.解:(1)设A种文具的单价为x元,则B种文具的单价为(25-x)元,根据题意得80 x
=
120
25-x
,解得x=10,
经检验,x=10是原分式方程的解,且符合实际,
25-x=15,
∴A、B两种文具的单价分别为10元和15元.
(2)设购买A种文具m件,则购买B种文具(20-m)件,
∵A种文具的数量少于B种文具的数量,
∴m<20-m,即m<10,
∵购买的总费用不超过260元,∴10m+15(20-m)≤260,解得m≥8,∴8≤m<10.
∵m为整数,∴m为8,9,∴共有两种购买方案.。