2016-2017学年浙江省金华市高一(上)期末数学试卷及答案
- 格式:doc
- 大小:668.00 KB
- 文档页数:18
浙江省金华市2017-2018学年高一数学上学期期末考试试题试卷满分100分, 考试时80分钟一、单选题(共18题,每小题3分,共54分)1、已知集合U ={1,3,5,7,9},A ={1,5,7},则 ∁U A =( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}2、下列函数与y=x 有相同图象的一个函数是( )A 、y=B 、y=C 、 x aa y log = D 、x a a y log =(a >0且a≠1)3、函数()1y x =-的定义域为 ( )A. ()0,1B. [)0,1C. (]0,1D. []0,14、7log 74log 22+=( ) A 、﹣2 B 、2 C 、21 D 、﹣21 5、已知0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===,则,,a b c 的大小关系是 A a b c << B a c b << C b a c << D c a b <<6、已知幂函数)(x f y =的图象过点)2,2(, 则)(x f 的值为( )A 、B 、2C 、21 D 、8 7、函数y=a x -2 +1(a >0且a≠1)的图象必经过点( )A 、(0,1)B 、(1,1)C 、(2,0)D 、(2,2)8、函数)6(log y 221x x -+=的单调增区间是( )A.⎝ ⎛⎦⎥⎤-∞,12B.⎝ ⎛⎦⎥⎤-2,12C.⎣⎢⎡⎭⎪⎫12,+∞D.⎣⎢⎡⎭⎪⎫12,39、函数2()ln f x x x=-的零点所在的大致区间是 ( ) A 、(1,2) B 、(2,3) C 、(1,1e )和(3,4) D 、(,)e +∞10、下列各角中与4π-终边相同的是( )A 、﹣B 、C 、D 、 11、已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( )A .4 cm 2B .6 cm 2C .8 cm 2D .16 cm 212.已知集合下列角中,终边在y 轴非正半轴上的是( ) A.4π B.2π C.π D.32π 13. 化简0sin 690的值是( )A .0.5B .0.5-C .14. 若点),(43-P 在角α的终边上,则=cos α( ) A. 53- B. 53 C. 54- D. 54 15、下列命题:(1)钝角是第二象限的角,(2)小于90°的角是锐角,(3)第一象限的角一定不是负角,(4)第二象限的角一定大于第一象限的角. 其中正确的命题的个数是( )A 、1B 、2C 、3D 、416. 已知()33,,tan 224ππααπ⎛⎫∈-=- ⎪⎝⎭,则sin cos αα+的值是( ) A .15± B .15 C. 15- D . 75- 17.将函数f(x)=sin(2x -3π)的图象上各点的横坐标压缩到原来的21,再将图象向左平移3π个单位,那么所得到的图象的解析表达式为 ( )A .y=sin(4x+3π )B .y=sin(x -32π) C .y=sin4x D .y=x 4sin - 18、若m -=-)sin(α,则)2sin(21)3sin(απαπ-++等于( )A.m 32-B.m 23-C.m 32D. m 23二、填空题(共4题,每空3分,共15分)19、函数y=2sin (πx +2π)的最小正周期是________,对称中心是 . 20、已知函数f(x)=⎩⎨⎧ 2x ,x<0,x -4,x≥0,则f(f(1))=________ 21、已知y=f(x)是定义域为R 的奇函数,当x∈[0,+∞) 时,f(x)=x 2-2x ;当x<0时,函数的解析式为________ . 22、函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是____________三、解答题(共3题;共31分)23、(10分)已知集合A={x|﹣1<x <2},B={x|0≤ x ≤3}.(1)求A∩B,A∪B;(2)设集合M={x|a <x≤a+2},且M ⊆A ,求实数a 的取值范围.24、(10分)已知函数439)(1++-=+x x x f(1)求函数f (x )的零点;(2)当x ∈[0,1]时,求函数f (x )的值域..25、(11分)函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|<π )(x∈R)的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数f(x)的的增区间..。
基础课程教学资料高一(上)期末数学试卷一、选择题(本大题共8小题,每小题5分,共40分)1.(5分)已知实数集R,集合A={x|1<x<3},集合B={x|y=},则A∩(∁R B)=()A.{x|1<x≤2}B.{x|1<x<3}C.{x|2≤x<3}D.{x|1<x<2}2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是()A.y=log2(x+3)B.y=2|x|+1 C.y=﹣x2﹣1 D.y=3﹣|x|3.(5分)已知,,,为非零向量,且+=,﹣=,则下列说法正确的个数为()(1)若||=||,则•=0;(2)若•=0,则||=||;(3)若||=||,则•=0;(4)若•=0,则||=||A.1 B.2 C.3 D.44.(5分)三个数0.993.3,log3π,log20.8的大小关系为()A.log20.8<0.993.3<log3πB.log20.8<log3π<0.993.3C.0.993.3<log20.81<log3πD.log3π<0.993.3<log20.85.(5分)若角α∈(﹣π,﹣),则﹣=()A.﹣2tanα B.2tanαC.D.6.(5分)若函数y=f(x)的图象如图所示,则函数f(x)的解析式可以为()A.f(x)=B.f(x)=C.f(x)=D.f(x)= 7.(5分)函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点(,0)对称B.关于点(﹣,0)对称C.关于直线x=﹣对称D.关于直线x=对称8.(5分)若,,均为单位向量,且•=0,(﹣)•(﹣)≤0,则|+﹣2|的最大值为()A.1 B.C.﹣1 D.2﹣二、填空题(本大题共7小题,多空每题6分,每空3分;单空每题4分,共36分)9.(6分)已知扇形的周长为30厘米,它的面积的最大值为;此时它的圆心角α=.10.(6分)已知向量=(4,5cosα),=(3,﹣4tanα),若∥,则sinα=;若⊥,则cos(﹣α)+sin(π+α)=.11.(6分)设函数f(x)=,若a=,则函数f(x)的值域为;若函数f(x)是R上的减函数,求实数a的取值范围为.12.(6分)在平行四边形ABCD中,E,F分别是CD和BC的中点,若=x+y (x,y∈R),则2x+y=;若=λ+μ(λ,μ∈R),则3λ+3μ=.13.(4分)已知函数f(x)=log a(0<a<1)为奇函数,当x∈(﹣2,2a)时,函数f(x)的值域是(﹣∞,1),则实数a+b=.14.(4分)函数f(x)=3sin(πx)﹣,x∈[﹣3,5]的所有零点之和为.15.(4分)已知函数f(x)=(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列四个命题:①当b=0时,函数f(x)在(0,)上单调递增,在(,+∞)上单调递减;②函数f(x)的图象关于x轴上某点成中心对称;③存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;④关于x的方程g(x)=0的解集可能为{﹣3,﹣1,0,1}.则正确命题的序号为.三、解答题(本大题共5小题,共74分)16.(14分)已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.17.(15分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和最低点分别为(x0,2),(x0+,﹣2).(1)求函数y=f(x)的解析式和单调递增区间;(2)若当0≤x≤时,方程f(x)﹣m=0有两个不同的实数根α,β,试讨论α+β的值.18.(15分)已知函数f(x)=为偶函数.(1)求实数t值;(2)记集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5﹣1,判断λ与E 的关系;(3)当x∈[a,b](a>0,b>0)时,若函数f(x)的值域为[2﹣,2﹣],求实数a,b的值.19.(15分)如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B、P在单位圆上,且B(﹣,),∠AOB=α.(1)求的值;(2)设∠AOP=θ(≤θ≤),=+,四边形OAQP的面积为S,f(θ)=(•﹣)2+2S2﹣,求f(θ)的最值及此时θ的值.20.(15分)已知函数f(x)=(x﹣2)|x+a|(a∈R)(1)当a=1时,求函数f(x)的单调递增区间;(2)当x∈[﹣2,2]时,函数f(x)的最大值为g(a),求g(a)的表达式.2016-2017学年浙江省宁波市余姚中学、镇海中学、慈溪中学、效实中学等九所重点学校高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.(5分)已知实数集R,集合A={x|1<x<3},集合B={x|y=},则A∩(∁R B)=()A.{x|1<x≤2}B.{x|1<x<3}C.{x|2≤x<3}D.{x|1<x<2}【解答】解:由x﹣2>0得x>2,则集合B={x|x>2},所以∁R B={x|x≤2},又集合A={x|1<x<3},则A∩(∁R B)={x|1<x≤2},故选A.2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是()A.y=log2(x+3)B.y=2|x|+1 C.y=﹣x2﹣1 D.y=3﹣|x|【解答】解:对于A:函数不是偶函数,不合题意;对于B:函数是偶函数,且x>0时,y=2x+1递增;符合题意;对于C:函数是偶函数,在(0,+∞)递减,不合题意;对于D:函数是偶函数,在(0,+∞)递减,不合题意;故选:B.3.(5分)已知,,,为非零向量,且+=,﹣=,则下列说法正确的个数为()(1)若||=||,则•=0;(2)若•=0,则||=||;(3)若||=||,则•=0;(4)若•=0,则||=||A.1 B.2 C.3 D.4【解答】解:,,,为非零向量,且+=,﹣=,(1)若||=||,可知以,为邻边的四边形的形状是菱形,则•=0;正确.(2)若•=0,可得:(+)(﹣)=0,即,则||=||;正确.(3)若||=||,可知以,为邻边的四边形的形状是矩形,则•=0;正确.(4)若•=0,可知以,为邻边的四边形的形状是矩形,则||=||,正确.故选:D.4.(5分)三个数0.993.3,log3π,log20.8的大小关系为()A.log20.8<0.993.3<log3πB.log20.8<log3π<0.993.3C.0.993.3<log20.81<log3πD.log3π<0.993.3<log20.8【解答】解:∵0<0.993.3<1,log3π>1,log20.8<0,∴log20.8<0.993.3<log3π,故选:A.5.(5分)若角α∈(﹣π,﹣),则﹣=()A.﹣2tanα B.2tanαC.D.【解答】解:∵α∈(﹣π,﹣),第三象限,∴<,由﹣=====.故选C.6.(5分)若函数y=f(x)的图象如图所示,则函数f(x)的解析式可以为()A.f(x)=B.f(x)=C.f(x)=D.f(x)=【解答】解:根据图象可知:函数是非奇非偶函数,∴B排除.函数图象在第三象限,x<0,∴D排除.根据指数函数和幂函数的单调性:2x的图象比x3的图象平缓,∴A对.故选A.7.(5分)函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点(,0)对称B.关于点(﹣,0)对称C.关于直线x=﹣对称D.关于直线x=对称【解答】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为=π,∴ω=2.若其图象向左平移个单位后得到的函数为y=sin[2(x+)+φ]=sin(2x++φ),再根据y=sin(2x++φ)为奇函数,∴+φ=kπ,k∈Z,即φ=kπ﹣,可取φ=﹣.故f(x)=sin(2x﹣).当x=时,f(x)=≠0,且f(x)=不是最值,故f(x)的图象不关于点(,0)对称,也不关于直线x=对称,故排除A、D;故x=﹣时,f(x)=sin=1,是函数的最大值,故f(x)的图象不关于点(﹣,0)对称,但关于直线x=对称,故选:C.8.(5分)若,,均为单位向量,且•=0,(﹣)•(﹣)≤0,则|+﹣2|的最大值为()A.1 B.C.﹣1 D.2﹣【解答】解:∵•=0,(﹣)•(﹣)≤0,∴﹣﹣•+≤0,∴(+)≥1,∴|+﹣2|2=(﹣)2+(﹣)2+2(﹣)•(﹣)=4﹣2(+)+2[﹣((+)+1]=6﹣4(+)≤6﹣4=2,∴|+﹣2|的最大值故选:B二、填空题(本大题共7小题,多空每题6分,每空3分;单空每题4分,共36分)9.(6分)已知扇形的周长为30厘米,它的面积的最大值为;此时它的圆心角α=2.【解答】解:设扇形的弧长为l,∵l+2R=30,∴S=lR=(30﹣2R)R=﹣R2+15R=﹣(R﹣)2+,∴当R=时,扇形有最大面积,此时l=30﹣2R=15,α=2,故答案为,2.10.(6分)已知向量=(4,5cosα),=(3,﹣4tanα),若∥,则sinα=﹣;若⊥,则cos(﹣α)+sin(π+α)=﹣.【解答】解:∵∥,∴15cosα+16tanα=0,15(1﹣sin2α)+16sinα=0,即15sin2α﹣16sinα﹣15=0,sinα∈[﹣1,1],解得sinα=﹣.∵⊥,∴•=12﹣20sinα=0,解得sinα=.则cos(﹣α)+sin(π+α)=﹣sinα﹣sinα=﹣,故答案为:﹣,﹣.11.(6分)设函数f(x)=,若a=,则函数f(x)的值域为R;若函数f(x)是R上的减函数,求实数a的取值范围为[,] .【解答】解:若a=,当x<1时,函数f(x)=x2﹣3x=﹣∈[﹣2,+∞);当x≥1时,f(x)=≤0,故函数f(x)的值域为[﹣2,+∞)∪(﹣∞,0]=R.若函数f(x)=在R上单调递减,则,求得≤a≤,故答案为:R;[,].12.(6分)在平行四边形ABCD中,E,F分别是CD和BC的中点,若=x+y (x,y∈R),则2x+y=2;若=λ+μ(λ,μ∈R),则3λ+3μ=4.【解答】解:如图所示,①=+=+,与=x+y(x,y∈R)比较可得:x=,y=1.则2x+y=2.②由②可得:=+,同理可得:=+,∴=λ+μ=λ(+)+μ(+)=+,又=,∴=1,=1.则3λ+3μ=4.故答案为:2,4.13.(4分)已知函数f(x)=log a(0<a<1)为奇函数,当x∈(﹣2,2a)时,函数f(x)的值域是(﹣∞,1),则实数a+b=+1.【解答】解:∵函数f(x)=log a(0<a<1)为奇函数,∴f(﹣x)=﹣f(x),即f(﹣x)+f(x)=0,∴log a+log a=log a•=0,即•=1,∴4﹣x2=b2﹣x2,即b2=4,解得b=±2,当b=﹣2时,函数f(x)=log a=f(x)=log a(﹣1)无意义,舍去.当b=2时,函数f(x)=log a为奇函数,满足条件.∵=﹣1+,在(﹣2,+∞)上单调递减.又0<a<1,∴函数f(x)=log a在x∈(﹣2,2a)上单调递增,∵当x∈(﹣2,2a)时,函数f(x)的值域是(﹣∞,1),∴f(2a)=1,即f(2a)=log a=1,∴=a,即1﹣a=a+a2,∴a2+2a﹣1=0,解得a=﹣1±,∵0<a<1,∴a=﹣1,∴a+b=﹣1+2=+1,故答案为:+1.14.(4分)函数f(x)=3sin(πx)﹣,x∈[﹣3,5]的所有零点之和为8.【解答】解:设t=1﹣x,则x=1﹣t,原函数可化为:x∈[﹣3,5],g(t)=2sin(π﹣πt)﹣=2sinπt﹣,其中,t∈[﹣4,4],因g(﹣t)=﹣g(t),故g(t)是奇函数,观察函数y=2sinπt(红色部分)与曲线y=(蓝色部分)的图象可知,在t∈[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,即t1+t2+…+t7+t8=0,从而x1+x2+…+x7+x8=8,故答案为:8.15.(4分)已知函数f(x)=(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列四个命题:①当b=0时,函数f(x)在(0,)上单调递增,在(,+∞)上单调递减;②函数f(x)的图象关于x轴上某点成中心对称;③存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;④关于x的方程g(x)=0的解集可能为{﹣3,﹣1,0,1}.则正确命题的序号为②③.【解答】解:对于①,b=0时,f(x)==,因为a正负不定,所以单调性不定,故错;对于②,f(x)=是奇函数h(x)=左右平移得到,故正确;对于③,当x≠0时,函数h(x)=存在最大、最小值,且f(0)=0,∴函数f(x)也存在最大、最小值,故正确;对于④,关于x的方程g(x)=0的解⇔f(x)=±的解,∵函数f(x)的图象关于x轴上某点成中心对称,故解集不可能是{﹣3,﹣1,0,1},故错;故答案为:②③.三、解答题(本大题共5小题,共74分)16.(14分)已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.【解答】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|﹣2<x<4},则A∪B={x|﹣2<x≤7},又∁R A={x|x<1或x>7},则(∁R A)∩B={x|﹣2<x<1},(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①、当A=∅时,有m﹣1>2m+3,解可得m<﹣4,②、当A≠∅时,若有A⊆B,必有,解可得﹣1<m<,综上可得:m的取值范围是:(﹣∞,﹣4)∪(﹣1,).17.(15分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和最低点分别为(x0,2),(x0+,﹣2).(1)求函数y=f(x)的解析式和单调递增区间;(2)若当0≤x≤时,方程f(x)﹣m=0有两个不同的实数根α,β,试讨论α+β的值.【解答】(本题满分为15分)解:(1)由题意可得:A=2,由在y轴右侧的第一个最高点和最低点分别为(x0,2),(x0+,﹣2),可得:=(x0+)﹣x0=,可得:T=π,∴ω=2,可得:f(x)=2sin(x+φ),又∵图象与y轴的交点为(0,1),可得:2sinφ=1,解得:sinφ=,∵|φ|<,可得:φ=,∴函数f(x)的解析式为:f(x)=2sin(2x+)…4分由2kπ﹣≤2x+≤2kπ+,k∈Z,可得:kπ﹣≤x≤kπ+,k∈Z,可解得f(x)的单调递增区间是:[kπ﹣,kπ+],k∈Z…8分(2)如图所示,在同一坐标系中画出y=2sin(2x+)和y=m(m∈R)的图象,由图可知,当﹣2<m≤0或1≤m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根,当﹣2<m≤0时,两根和为;当1≤m<2时,两根和为…15分18.(15分)已知函数f(x)=为偶函数.(1)求实数t值;(2)记集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5﹣1,判断λ与E 的关系;(3)当x∈[a,b](a>0,b>0)时,若函数f(x)的值域为[2﹣,2﹣],求实数a,b的值.【解答】解:(1)∵f(x)是偶函数,∴=,∴2(t﹣2)x=0,∵x是非0实数,故t﹣2=0,解得:t=2;(2)由(1)得,f(x)=,∴E={y|y=f(x),x∈{1,2,3}}={﹣3,0,},而λ=lg22+lg2lg5+lg5﹣1=lg2+lg5﹣1=0,∴λ∈E;(3)∵f(x)=1﹣,∴f(x)在[a,b]递增,∵函数f(x)的值域是[2﹣,2﹣],∴,∵b>a>0,解得:a=1,b=4.19.(15分)如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B、P在单位圆上,且B(﹣,),∠AOB=α.(1)求的值;(2)设∠AOP=θ(≤θ≤),=+,四边形OAQP的面积为S,f(θ)=(•﹣)2+2S2﹣,求f(θ)的最值及此时θ的值.【解答】解:(1)依题意,tanα═﹣2,∴==﹣;(2)由已知点P的坐标为P(cosθ,sinθ),又=+,|=|||,∴四边形OAQP为菱形,∴S=2S=sinθ,△OAP∵A(1,0),P(cosθ,sinθ),∴=(1+cosθ,sinθ),∴•=1+cosθ,∴f(θ)=(cosθ+)2+2sin2θ﹣=﹣(cosθ﹣)2+2∵﹣≤cosθ≤,∴当cosθ=,即θ=时,f(θ)max=2;当cosθ=﹣,即θ=时,f(θ)min=1.20.(15分)已知函数f(x)=(x﹣2)|x+a|(a∈R)(1)当a=1时,求函数f(x)的单调递增区间;(2)当x∈[﹣2,2]时,函数f(x)的最大值为g(a),求g(a)的表达式.【解答】解:(1)a=1时,f(x)=(x﹣2)|x+1|,当x≤﹣1时,f(x)=﹣(x﹣2)(x+1)=﹣x2+x+2,此时函数为增函数;当x>﹣1时,f(x)=(x﹣2)(x+1)=x2﹣x﹣2,此时函数在(﹣1,]上为减函数,在[,+∞)上为增函数;综上可得:当a=1时,函数f(x)的单调递增区间为(﹣∞,﹣1],[,+∞);(2)当x∈[﹣2,2]时,函数f(x)=,①当﹣a≤﹣2,即a≥2时,若x∈[﹣2,2],则f(x)≤0,故g(a)=f(2)=0;②当﹣a≥2,即a≤﹣2时,若x∈[﹣2,2],则f(x)≤0,故g(a)=f(2)=0;④当﹣2<﹣a<2,即﹣2<a<2时,若x∈[﹣2,2],则f(x)≤0,故g(a)=f(2)=0;综上可得:g(a)=0。
浙江省金华市2017-2018学年高一数学上学期期末考试试题(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省金华市2017-2018学年高一数学上学期期末考试试题(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省金华市2017-2018学年高一数学上学期期末考试试题(无答案)的全部内容。
浙江省金华市2017—2018学年高一数学上学期期末考试试题试卷满分100分, 考试时80分钟一、单选题(共18题,每小题3分,共54分)1、已知集合U ={1,3,5,7,9},A ={1,5,7},则 ∁UA =( )A.{1,3}B.{3,7,9} C.{3,5,9} D .{3,9} 2、下列函数与y=x有相同图象的一个函数是( )A 、y=B 、y =C、 x a a y log =D 、x a a y log =(a>0且a≠1)3、函数()ln 1y x x =-的定义域为 ( )A。
()0,1 B . [)0,1 C 。
(]0,1 D. []0,14、7log 74log 22+=( )A 、﹣2B 、2C 、21D 、﹣215、已知0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===,则,,a b c 的大小关系是A a b c <<B a c b << C b a c << D c a b <<6、已知幂函数)(x f y =的图象过点)2,2(, 则)(x f 的值为( )A 、 B、2 C、21D 、87、函数y =a x — 2 +1(a>0且a≠1)的图象必经过点( )A 、(0,1)B 、(1,1)C 、(2,0)D 、(2,2)8、函数)6(log y 221x x -+=的单调增区间是( )A。
高一数学第一学期期末测试题本试卷共4页,20题,满分为150分钟,考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13,4,5,7,9}=A ,B {3,5,7,8,10}=,那么=AB ( )A 、{13,4,5,7,8,9},B 、{1,4,8,9}C 、{3,5,7}D 、{3,5,7,8} 2.cos()6π-的值是( )A B . C .12 D .12- 3.函数)1ln()(-=x x f 的定义域是( )A . ),1(+∞B .),1[+∞C . ),0(+∞D .),0[+∞ 4.函数cos y x =的一个单调递增区间为 ( ) A .,22ππ⎛⎫-⎪⎝⎭ B .()0,π C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ 5.函数tan(2)4y x π=+的最小正周期为( )A .4π B .2πC .πD .2π 6.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A .(1,2) B .(,3)e C .(2,)e D .(,)e +∞7.已知0.30.2a=,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a 8.若函数23()(23)m f x m x-=+是幂函数,则m 的值为( )A 、1-B 、0C 、1D 、2 9.若1tan()47πα+=,则tan α=( )A 、34 B 、43C 、34-D 、43-10.函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是( ) A.最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数二、填空题:本大题共4小题,每小题5分,满分20分.11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩,则()0f f =⎡⎤⎣⎦ . 12.已知3tan =α,则ααααsin 3cos 5cos 2sin 4+-= ;13.若cos α=﹣,且α∈(π,),则tan α= .14.设{1,2,3,4,5,6},B {1,2,7,8},A ==定义A 与B 的差集为{|},A B x x A x B A A B -=∈∉--,且则()三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(满分12分)(1)4253sin cos tan()364πππ-(2)22lg 4lg 25ln 2e -+-+16.(满分12分)已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭)(R x ∈ (1)求()f x 的振幅和初相;(2)该函数图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?17.(本题满分14分) 已知函数()sin 2cos 21f x x x =+-(1)把函数化为()sin(),(0,0)f x A x B A ωϕω=++>>的形式,并求()f x 的最小正周期;(2)求函数()f x 的最大值及()f x 取得最大值时x 的集合; 18.(满分14分)()2sin(),(0,0,),()62.1(0)228730(),(),sin 35617f x x A x R f x f ABC A B C f A f B C πωωπωππ=->>∈+=+=-已知函数且的最小正周期是()求和的值;()已知锐角的三个内角分别为,,,若求的值。
浙江省金华市高一上学期数学期末教学质量检测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高一上·田阳月考) 已知是实数集,集合,则阴影部分表示的集合是()A .B .C .D .2. (2分) (2018高二下·河南月考) 已知是定义在上的偶函数且它的图象是一条连续不断的曲线,当时,,若,则的取值范围是()A .B .C .D .3. (2分) (2019高三上·葫芦岛月考) 已知两个单位向量的夹角为60°,向量,则()A .B .C .D . 74. (2分)已知是第二象限角,,则cos= ()A . -B . -C .D .5. (2分) (2017高一上·河北月考) 已知点,动点的坐标满足,那么的最小值是()A .B .C .D . 16. (2分)已知,则与的夹角为()A .B .C .D .7. (2分)已知函数f(x)在区间[﹣5,5]上是奇函数,在区间[0,5]上是单调函数,且f(3)<f(1),则()A . f(﹣1)<f(﹣3)B . f(0)>f(﹣1)C . f(﹣1)<f(1)D . f(﹣3)>f(﹣5)8. (2分) (2016高一下·宜昌期中) 已知,,则与的夹角为()A .B .C .D . π9. (2分) (2016高一下·福建期末) 已知角α的终边上一点P的坐标为(,﹣1),则角α的最小正值为()A .B .C .D .10. (2分) (2016高一上·武城期中) 已知a=log2 ,b=30.5 , c=0.53 ,则有()A . a>b>cB . b>c>aC . c>b>aD . c>a>b11. (2分)(2020·鹤壁模拟) 要得到函数的图象,只需把函数的图象()A . 向左平移个单位B . 向左平移个单位C . 向右平移个单位D . 向右平移个单位12. (2分)甲、乙两个工厂2015年1月份的产值相等,甲厂的产值逐月增加,且每月增长的产值相同;乙厂的产值也逐月增加,且每月增长的百分率相同,已知2016年1月份的产值又相等,则2016年7月份产值()A . 甲厂高B . 乙厂高C . 甲、乙两厂相等D . 甲、乙两厂高低无法确定二、填空题 (共4题;共4分)13. (1分)方程lg x+lg (x-1)=1-lg 5的根是________.14. (1分)不重合的三个平面把空间分成n部分,则n的可能值为________.15. (1分)设对应法则f是从集合A到集合B的函数,则下列结论中正确的是 ________.①B必是由A中数对应的输出值组成的集合;②A中的每一个数在B中必有输出值;③B中的每一个数在A中必有输入值;④B中的每一个数在A中对应惟一的输入值.16. (1分)设函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的图象关于直线对称,它的周期为π,则下列说法正确是________.(填写序号)①f(x)的图象过点;②f(x)在上单调递减;③f(x)的一个对称中心是;④将f(x)的图象向右平移|φ|个单位长度得到函数y=2sinωx的图象.三、解答题 (共6题;共60分)17. (5分)在△ABC中,cosA=-, cosB=.(Ⅰ)求sinC的值;(Ⅱ)设BC=5,求△ABC的面积.18. (10分) (2018高一下·桂林期中) 已知函数的最小正周期为 ,且点为图象上的一个最低点.(1)求的解析式;(2)设函数,求的值域.19. (5分) (2016高三上·杭州期中) 已知点O为△ABC的外心,角A,B,C的对边分别满足a,b,c,(Ⅰ)若3 +4 +5 = ,求cos∠BOC的值;(Ⅱ)若• = • ,求的值.20. (10分) (2016高三上·长宁期中) 某种型号汽车四个轮胎半径相同,均为R=40cm,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为l=280cm (假定四个轮胎中心构成一个矩形).当该型号汽车开上一段上坡路ABC(如图(1)所示,其中∠ABC=a(),且前轮E已在BC段上时,后轮中心在F位置;若前轮中心到达G处时,后轮中心在H处(假定该汽车能顺利驶上该上坡路).设前轮中心在E和G处时与地面的接触点分别为S和T,且BS=60cm,ST=100cm.(其它因素忽略不计)(1)如图(2)所示,FH和GE的延长线交于点O,求证:OE=40cot (cm);(2)当a= π时,后轮中心从F处移动到H处实际移动了多少厘米?(精确到1cm)21. (15分) (2016高一上·浦城期中) 己知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;(2)当0<a<1且t=﹣1时,解不等式f(x)≤g(x);(3)若函数F(x)=af(x)+tx2﹣2t+1在区间(﹣1,2]上有零点,求t的取值范围.22. (15分) (2018高一上·长安期末) 设为奇函数,为常数.(1)求的值;(2)证明:在区间内单调递增;(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、。
浙江省金华市2017-2018学年高一数学上学期期末考试试题试卷满分100分, 考试时80分钟一、单选题(共18题,每小题3分,共54分)1、已知集合U ={1,3,5,7,9},A ={1,5,7},则 ∁U A =( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}2、下列函数与y=x 有相同图象的一个函数是( )A 、y=B 、y=C 、 x a a y log =D 、x a a y log =(a >0且a≠1) 3、函数()ln 1y x x =-的定义域为 ( )A. ()0,1B. [)0,1C. (]0,1D. []0,14、7log 74log 22+=( ) A 、﹣2 B 、2 C 、21 D 、﹣21 5、已知0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===,则,,a b c 的大小关系是A a b c <<B a c b <<C b a c <<D c a b <<6、已知幂函数)(x f y =的图象过点)2,2(, 则)(x f 的值为( )A 、B 、2C 、21 D 、8 7、函数y=a x -2 +1(a >0且a≠1)的图象必经过点( )A 、(0,1)B 、(1,1)C 、(2,0)D 、(2,2)8、函数)6(log y 221x x -+=的单调增区间是( )A.⎝ ⎛⎦⎥⎤-∞,12B.⎝ ⎛⎦⎥⎤-2,12C.⎣⎢⎡⎭⎪⎫12,+∞D.⎣⎢⎡⎭⎪⎫12,39、函数2()ln f x x x=-的零点所在的大致区间是 ( ) A 、(1,2) B 、(2,3) C 、(1,1e )和(3,4) D 、(,)e +∞10、下列各角中与4π-终边相同的是( ) A 、﹣ B 、 C 、D 、 11、已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( )A .4 cm 2B .6 cm 2C .8 cm 2D .16 cm 212.已知集合下列角中,终边在y 轴非正半轴上的是( ) A.4π B.2π C.π D.32π 13. 化简0sin 690的值是( ) A .0.5 B .0.5- C .32 D .32- 14. 若点),(43-P 在角α的终边上,则=cos α( ) A. 53- B. 53 C. 54- D. 54 15、下列命题:(1)钝角是第二象限的角,(2)小于90°的角是锐角,(3)第一象限的角一定不是负角,(4)第二象限的角一定大于第一象限的角.其中正确的命题的个数是( )A 、1B 、2C 、3D 、416. 已知()33,,tan 224ππααπ⎛⎫∈-=- ⎪⎝⎭,则sin cos αα+的值是( ) A .15± B .15 C. 15- D . 75- 17.将函数f(x)=sin(2x -3π)的图象上各点的横坐标压缩到原来的21,再将图象向左平移3π个单位,那么所得到的图象的解析表达式为 ( )A .y=sin(4x+3π ) B .y=sin(x -32π) C .y=sin4x D .y=x 4sin - 18、若m -=-)sin(α,则)2sin(21)3sin(απαπ-++等于( )A.m 32-B.m 23-C.m 32D. m 23二、填空题(共4题,每空3分,共15分) 19、函数y=2sin (πx +2π)的最小正周期是________,对称中心是 . 20、已知函数f(x)=⎩⎨⎧ 2x ,x<0,x -4,x≥0,则f(f(1))=________ 21、已知y=f(x)是定义域为R 的奇函数,当x∈[0,+∞) 时,f(x)=x 2-2x ;当x<0时,函数的解析式为________ . 22、函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是____________三、解答题(共3题;共31分)23、(10分)已知集合A={x|﹣1<x <2},B={x|0≤ x ≤3}.(1)求A∩B,A∪B;(2)设集合M={x|a <x≤a+2},且M ⊆A ,求实数a 的取值范围.24、(10分)已知函数439)(1++-=+x x x f(1)求函数f (x )的零点;(2)当x ∈[0,1]时,求函数f (x )的值域..25、(11分)函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|<π )(x∈R)的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数f(x)的的增区间..。
2017年浙江省金华市高三上学期人教A版数学期末考试试卷一、选择题(共10小题;共50分)1. 已知全集,集合,,那么A. B. C. D.2. 双曲线的离心率为A. B. C. D.3. 某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为A. B. C. D.4. 有各不相同的个红球,个黄球,个白球,事件:从红球和黄球中各选球,事件:从所有球中选取球,则事件发生是事件发生的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 在中,若,则自然数的值是A. B. C. D.6. 若等差数列的公差为,前项和为,记,则A. 数列是等差数列,的公差为B. 数列是等差数列,的公差为C. 数列是等差数列,的公差为D. 数列是等差数列,的公差为7. 函数的图象如图所示,则函数可能是A. B. C. D.8. 设,且,下列不等式中成立的是①;②;③;④.A. ①②B. ③④C. ①④D. ②③9. 设,下列不等式成立的是A. B.C. D.10. 如图,在三棱柱中,已知,分别是线段与上的动点,异面直线与所成角为,记线段中点的轨迹为,则等于(注:表示的测度,在本题,为曲线,平面图形,空间几何体时,分别对应长度、面积、体积.)A.B.C.D. (是三棱柱的体积)二、填空题(共7小题;共35分)11. 计算,.12. 已知直线:,直线:,若,则,若,则两直线间的距离为.13. 已知函数,在和中,为奇函数;若,则.14. 已知随机变量的分布列如下:则,数学期望.15. 已知抛物线的焦点为,过焦点的直线与抛物线交于,两点,则直线的斜率为时,取得最小值.16. 设单位向量,的夹角为锐角,若对任意的,都有成立,则的最小值为.17. 若函数的最大值为,则.三、解答题(共5小题;共65分)18. 在中,角,,所对的边分别为,,,若.(1)求角的大小;(2)若,,求边.19. 已知四边形为直角梯形,,,且,,点,分别在线段和上,使四边形为正方形,将四边形沿翻折至使.(1)求证: 平面;(2)求直线与平面所成角的正弦值.20. 已知函数.(1)求及时函数的解析式;(2)若对任意恒成立,求实数的最小值.21. 已知椭圆的右焦点的坐标为,且椭圆上任意一点到两焦点的距离之和为.(1)求椭圆的标准方程;(2)过右焦点的直线与椭圆相交于,两点,点关于轴的对称点为,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.22. 已知数列按如下方式构成:,函数在点处的切线与轴交点的横坐标为.(1)证明:当时,;(2)证明:;(3)若,,求证:对任意的正整数,都有.答案第一部分1. C 【解析】因为全集,集合,所以,又,则.2. D 【解析】因为,,所以,所以,,所以.3. D 【解析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,其直观图如图所示:底面的面积为:,高,故该几何体的体积.4. A 【解析】事件发生事件一定发生,事件发生事件不一定发生,所以事件发生是事件发生的充分不必要条件.5. B【解析】,因为,所以,解得.6. D 【解析】故数列是公差为的等差数列.选项A,B错;,故数列是公差为的等差数列,选项C错,,故数列是等差数列,公差为,选项D正确.7. A 【解析】图象关于原点对称,所以函数为奇函数,判断,故为偶函数,排除B;由排除C;当时,,所以D不正确.8. B 【解析】设点,点,由于函数的图象在上是上凸型的,而表示线段中点的纵坐标,故有,故①不正确;由于函数的图象在上是上凸型的,表示线段中点的纵坐标,故有,故②不正确;由于函数的图象在上是上凹型的,表示线段中点的纵坐标,故有,故③正确;由于函数的图象在上是上凹型的,故有,故④正确.9. A 【解析】对于B,当,,显然不成立;对于 C,当,,也不成立;对于 D,当,,不成立.10. C【解析】当分别位于,处,而在上移动时,的轨迹为平行于的两条线段,当分别位于,处,而在上移动时,的轨迹为平行于的两条线段,其他情况下,的轨迹构成图中平行四边形区域.所以.第二部分11. ,【解析】,则,故.12. ,【解析】因为,则,即,所以,若,则,即,所以,则两直线距离.13. ,【解析】由,得,故为奇函数.由得,,所以,.14. ,【解析】因为,则.故.15.【解析】由题意,设,,则,所以,当且仅当时,的最小值为,设直线的斜率为,方程为,代入抛物线方程,得.化简后为:.设,,则有,.根据抛物线性质可知,,,所以,联立可得=.16.【解析】设向量,的夹角为,,因为,所以.又,则,所以恒成立,因为,所以.即的最小值为.17.【解析】由其中.则,结合图象知函数是周期为的周期函数,当时,又函数的最大值为,即,,.第三部分18. (1)由,可得,所以,又是三角形的内角,所以.(2)由可得,所以.又,可得,由余弦定理,所以,解得或,而,所以,所以.19. (1)取的中点为,连接,,,如图,因为,,所以.因为,,所以.又,,所以平面 平面,由平面,所以 平面.(2)解法一:由(Ⅰ)可知,.所以直线与平面所成角就是直线与平面的所成角.过作于点,连接,如图,由四边形为正方形,所以,,所以平面,所以,所以平面,所以为直线与平面所成的角,因为为的中点,所以,因为,所以,因为,所以.解法二:分别取,的中点,,连接,.由四边形为正方形,得,,,所以平面.又,,所以为等边三角形,所以,故以为坐标原点,延长线为轴,为轴,为轴建立空间直角坐标系如图,则,,所以,又平面的一个法向量为,所以.所以直线与平面所成角的正弦值为.20. (1),当时,,所以.(2)①当时,,则对任意,恒成立,即,设,则,令,可得或,易得在上递增,在上递减,所以;②当时,,当时,显然成立;③当时,恒成立,令,则在恒成立,,令,可得存在,函数在时取最大值,而时,,所以,当时,成立.综上所述:,所以.21. (1)由已知得,,所以,所以椭圆的标准方程为.(2)显然直线的斜率存在且不为,设直线的方程为,,,则,联立消得:.所以,由韦达定理得:,,直线的方程为:,令,得:即直线与轴交于一个定点,记为,则:22. (1)设,则,故当时,,函数在上单调递增,所以,即有.(2)由,知曲线在点处的切线方程为:,令,则,由()及知,.(3)令,因为,且,,所以,从而有所以要证,只需证,即证,由()及,可得.。
2016-2017学年度第一学期高一级数学科期末试题答案二、填空题:(本大题共4小题,每小题5分,共20分。
)2y x =或 30x y +-= 16. 1118三、解答题:(本大题共6小题,共70分。
)17.(本题满分10分)【解答】解:(1)∵点O (0,0),点C (1,3),∴OC 所在直线的斜率为.(2)在平行四边形OABC 中,AB ∥OC , ∵CD ⊥AB ,∴CD ⊥OC .∴CD 所在直线的斜率为.∴CD 所在直线方程为,即x+3y ﹣10=0.18. (本题满分12分) 【解答】证明:(Ⅰ)∵AE ⊥平面CDE ,CD ⊂平面CDE , ∴AE ⊥CD ,又在正方形ABCD 中,CD ⊥AD ,AE∩AD =A , ∴CD ⊥平面ADE ,又在正方形ABCD 中,AB ∥CD , ∴AB ⊥平面ADE .…(6分) 解:(Ⅱ)连接BD ,设B 到平面CDE 的距离为h , ∵AB ∥CD ,CD ⊂平面CDE ,∴AB ∥平面CDE ,又AE ⊥平面CDE , ∴h=AE=1,又=,∴=,又==,∴凸多面体ABCDE 的体积V=V B ﹣CDE +V B ﹣ADE =.…(12分)19. (本题满分12分) 解:1)、(0)01x R f a ∈∴=∴=-……………….3分2)、22()1()13131x x f x f x =-∴+=++, 012314x x ≤≤∴≤+≤ ……………….5分1()112f x ∴≤+≤……………….7分 112t ∴≤≤……………….8分 (3)1132)(-+=xx f 在R 上单调递减,…………….9分 )22()(2m x f mx x f -≥-m x mx x 222-≤-…………….10分02)2(2≤++-m x m x0))(2(≤--m x x …………….11分(1)当2>m 时,不等式的解集是{}m x x ≤≤2| (2)当2=m 时,不等式的解集是{}2|=x x(3)当2<m 时,不等式的解集是{}2|≤≤x m x …………….14分20. 解:(1)由题意,112(),(),0;0)f x k x g x k k k x ==≠≥ 又由图知f (1.8)=0.45 ,g(4)=2.5;解得1215,44k k == ………….2分∴1()(0);()0)4f x x x g x x =≥=≥ ……….3分 (不写定义域扣1分)(2)设对股票等风险型产品B 投资x 万元,则对债券等稳键型产品A 投资(10-x )万元, 记家庭进行理财投资获取的收益为y 万元, ……….4分则1(10)0)4y x x =-+≥ ……….6分t =,则2x t =,(0t ≤ ……….8分∴21565()4216y t =--+ ……….10分 当52t =也即254x =时,y 取最大值6516……….11分答:对股票等风险型产品B 投资254万元,对债券等稳键型产品A 投资154万元时,可获最大收益6516万元. ……….12分 21. 解:(1)连接CN .因为ABC A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC , 所以AC ⊥CC 1. 因为AC ⊥BC , 所以AC ⊥平面BCC 1B 1.因为MC =1,CN =CC 21+C 1N 2=5, 所以MN = 6.(2)证明:取AB 中点D ,连接DM ,DB 1.在△ABC 中,因为M 为AC 中点,所以DM ∥BC ,DM =12BC .在矩形B 1BCC 1中,因为N 为B 1C 1中点,所以B 1N ∥BC ,B 1N =12BC .所以DM ∥B 1N ,DM =B 1N .所以四边形MDB 1N 为平行四边形,所以MN ∥DB 1. 因为MN ⊄平面ABB 1A 1,DB 1⊂平面ABB 1A 1, 所以MN ∥平面ABB 1A 1.(3)线段CC 1上存在点Q ,且Q 为CC 1中点时,有A 1B ⊥平面MNQ . 证明如下:连接BC 1.在正方形BB 1C 1C 中易证QN ⊥BC 1.又A 1C 1⊥平面BB 1C 1C ,所以A 1C 1⊥QN ,从而NQ ⊥平面A 1BC 1. 所以A 1B ⊥QN .同理可得A 1B ⊥MQ ,所以A 1B ⊥平面MNQ . 故线段CC 1上存在点Q ,使得A 1B ⊥平面MNQ . 22. 解:(I )抛物线的对称轴为2b x a=-, ①当22ba-<时,即4b a >-时, 当2bx a =-时,222max 29()()24248b b b b f x f ac c a a a a -=-=⨯-+=+=, min ()(2)422f x f a b c ==++=-,∴2948422b c a a b ⎧-+=⎪⎨⎪+=-⎩, ∴2,3a b =-=.②当22ba-≥时,即4b a ≥-时, ()f x 在[0,2]上为增函数,min ()(0)0f x f ==与min ()2f x =-矛盾,无解,综合得:2,3a b =-=.(II )()||2f x x ≤对任意[1,2]x ∈恒成立,即1||2ax b x ++≤对任意[1,2]x ∈恒成立, 即122ax b x-≤++≤对任意[1,2]x ∈恒成立,令1()g x ax b x =++,则max min [()]2[()]2g x g x ≤⎧⎨≥-⎩, ∵01a <<1>,2≥,即104a <≤时,()g x 在[1,2]单调递减,此时max min [()](1)2[()](2)2g x g g x g =≤⎧⎨=≥-⎩,即121222a b a b ++≤⎧⎪⎨++≥-⎪⎩,得1522b ab a ≤-⎧⎪⎨≥--⎪⎩,此时57(2)(1)022a a a ----=--<, ∴5(2)(1)2a a --<- ∴5212a b a --≤≤-.(ⅱ)12<<,即114a <<时,()g x在单调递减,在单调递增,此时,min [()]222g x g b b =≥-⇒≥-⇒≥--只要(1)121(2)2222g a b g a b b ⎧=++≤⎪⎪=++≤⎨⎪⎪≥-⎩13222b a b a b ⎧≤-⎪⎪⇒≤-⎨⎪⎪≥-⎩,31(1)(2)22a a a ---=-当112a ≤<时,3122a a -≥-,3222b a -≤≤- 当1142a <<时,3122a a -<-,21b a -≤≤-. 综上得:①104a <≤时,5212a b a --≤≤-;②1142a <<时,21b a -≤≤-; ③112a ≤<时,3222b a -≤≤-.。
上学期期末考试卷高一数学(必修2)试卷一、选择题:每小题5分,共65分. 在给出的A,B,C,D 四个选项中,只有一项符合题目要求.1. 20y +-=的倾斜角为( ) A. o 30B. o 150C. o 60D. o 1202.若方程220x y x y m +-++=表示圆,则实数m 的取值范围是( ) A. 12m <B. 12m >C. 1m <D. 1m >.3. 下列说法正确的是( )A. 截距相等的直线都可以用方程1x ya a+=表示B. 方程20()x my m R +-=∈不能表示平行y 轴的直线C. 经过点(1,1)P ,倾斜角为θ的直线方程为1tan (1)y x θ-=-D. 经过两点11122212(,),(,)()P x y P x y x x ≠的直线方程为211121()y y y y x x x x --=-- 4.已知两直线12:40,:(1)330l x my l m x my m ++=-++=.若1l ∥2l ,则m 的值为( )A. 0B. 0或4C. -1或12D.125.已知,m n 是两条直线,,αβ是两个平面,则下列命题中正确的是( ) A. ,,m m ααβ⊥⊥∥n n ⇒∥β B. m ∥α,n αβ= n ⇒∥m C. α∥,βm ∥,α,m n n β⊥⇒⊥ D. ,,m n m αβ⊥⊥∥n α⇒∥β6.如图:在正方体1111ABCD A BC D -中,设直线1A B 与平面11A DCB 所成角为1θ,二面角1A DC A --的大小为2θ,则12,θθ为( )Aoo45,30B. o o3045,C. o o3060,D.o o 6045,7.圆22(1)(2)1x y -+-=关于直线20x y --=对称的圆的方程为( ) A. 22(4)(1)1x y -++= B. 22(4)(1)1x y +++= C. 22(2)(4)1x y +++=D. 22(2)(1)1x y -++=8.如图,一个直三棱柱形容器中盛有水,且侧棱18AA =.若侧面11AA B B 水平放置时,液面恰好过1111,,,AC BC AC B C 的中点,当底面ABC 水平放置时,液面高为( )A. 7B. 6C. 4D. 29.若直线y x m =+与曲线y =有两个不同的交点,则实数m 的取值范围为( )A. (B.C. (1-D.10. 在梯形ABCD 中,090ABC ∠=,AD ∥BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A.23πB.43π C.53π D. 2π11. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18+B. 54+C. 90D. 8112.右图是一几何体的平面展开图,其中四边形ABCD 为正方形,,,,PDC PBC PAB PDA ∆∆∆∆为全等的等边三角形,E 、F 分别为PA 、PD 的中点,在此几何体中,下列结论中错误的为( ) A. 直线BE 与直线CF 共面 B. 直线BE 与直线AF 是异面直线 C. 平面BCE ⊥平面PADD. 面PAD 与面PBC 的交线与BC 平行13.如图,在等腰梯形ABCD 中,222C D A B E F a ===,,E F 分别是底边,A B C D的中点,把四边形BEFC 沿直线EF 折起,使得平面BEFC ⊥平面ADFE .若动点P ∈平面ADFE ,设,P B P C 与平面ADFE 所成的角分别为12,θθ (12,θθ均不为0).若12θθ=,则动点P 的轨迹围成的图形的面积为( )A. 214a B.249a C.214a π D.249a π二、填空题:每小题5分,共25分.14.已知球O 有个内接正方体,且球O 的表面积为36π,则正方体的边长为_______ 15.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是 . 16.无论λ取何值,直线(2)(1)630x y λλλ+--++=必过定点_______17.已知圆心为C (0,2)-,且被直线230x y -+=截得的弦长为C 的方程为 _____________.18.如图所示,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E F 、,且EF =则下列结论中正确的是_____________. ①EF ∥平面ABCD ;FPDA EEB CBAFCD②平面ACF ⊥平面BEF ; ③三棱锥E ABF -的体积为定值;④存在某个位置使得异面直线AE 与BF 成角o 30.三、解答题:要求写出过程,共60分. 19. (本小题满分12分)如图,矩形ABCD 的两条对角线相交于点(2,0)M ,AB 边所在直线方程为360x y --=,点(1,)T -在AD 边所在直线上.求:(Ⅰ)直线AD 的方程; (Ⅱ)直线DC 的方程.20.(本小题满分12分)如图,ABC ∆为等边三角形,EA ⊥平面ABC ,EA ∥DC ,2EA DC =,F 为EB 的中点.(Ⅰ)求证:DF ∥平面ABC ; (Ⅱ)求证:平面BDE ⊥平面AEB .21. (本小题满分12分)已知线段PQ 的端点Q 的坐标为(2,3)-,端点P 在圆22:(8)(1)4C x y -+-=上运动. (Ⅰ)求线段PQ 中点M 的轨迹E 的方程;(Ⅱ)若一光线从点Q 射出,经x 轴反射后,与轨迹E 相切,求反射光线所在的直线方程.22.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1C F A C ⊥,请说明作法和理由.23. (本小题满分12分)已知圆22:(2)1C x y +-=,直线:20l x y -=,点P 在直线l 上,过P 点作圆C 的切线PA PB 、,切点分别为A 、B .(Ⅰ)若o 60APB ∠=,求点P 的坐标;(Ⅱ)求证:经过A P 、、C 三点的圆必过定点,并求出所有定点的坐标.高一数学必修2参考答案1.D2.A3.D4.A5.D6.B7.A8.B9.D 10.C 11.B 12.C 13.D14.(-3,3) 17.22(2)25x y ++= 18.①②③④ 19解:(1)在矩形ABCD 中,AD AB ^\所求直线AD 的方程可设为30x y m ++= 又 点(1,1)T -在直线AD 上,310m \-++=,2m \=\直线:320AD x y ++=(2)解:320320210200360391800x y x y y y x y x y x 祆?++=++==-镲镲?揶+=?眄?镲?--=--==镲铑? (0,2)A \-又 在矩形ABCD 中,点C 与点A 关于点M 对称\设(,)C x y ,02422202x x y y ì+ïï=ïì=ïï镲\?眄镲-=ïîï=ïïïî (4,2)C \ :320CD l x y ∴-+= (第2小题也可以用等距离法求直线DC ,计算量更小) 20(1)证明:取AB 的中点G ,连结FG ,GC在EAB D 中,FG ∥AE ,12FG AE =DC ∥AE ,12DC AE =DC \∥FG ,FG DC =\四边形DCGF 为平行四边形FD \∥GC又FD Ë 平面ABCFD \∥平面ABC(2)证:EA ^ 面ABC ,CG Ì平面ABCEA GC \^又ABC D 为等边三角形CG AB \^又EA AB A = ,CG \^平面EAB 又CG ∥FD ,FD ^面EAB又FD Ì 面BDE ,\面BDE ^面EAB21解:设(,)M x y ,00(,)P x y ,000022222332x x x x y y y y ì-ïï=ïì=+ïï镲Þ眄镲=-+ïîï=ïïïî则代入2200(8)(1)4x y -+-= 轨迹E 的方程为22(3)(2)1x y -+-= (2)设(2,3)Q -关于x 轴对称点'(2,3)Q --设过'(2,3)Q --的直线:3(2)y k x +=+ ,即230kx y k -+-=1d ==22(55)1k k -=+ 2225(21)1k k k -+=+22450240k k -+= (34)(43)0k k --= 43k \=或34k = \反射光线所在4:3(2)3y x +=+ 即4310x y --= 33(2)4y x +=+即3460x y --=22解:(1)取BC 中点E 连结AE . 在等边三角形ABC 中,AE BC ^又 在直三棱柱111ABC A B C -中 侧面11BB CC ^面ABC 面11BB CC 面ABC BC =AE \^面11BBCCAE \为三棱锥11B ACC -的高又1AB AC BC ===2AE \=又 底面11CC B 为Rt D111111121122CC B S C C B C D \==创= 11111113C ACB A CB C CB C V V S AE --D \==113=创= (2)作法:在1BB 上取F ,使得14BF =,连结CF ,CF 即为所求直线. 证明:如图,在矩形11BB C C 中,连结1EC12412CC CE ==,1414CB BF == 1CC CB CE BF\=,1Rt C CE \D ∽Rt CBF D ,12\??又2390??? ,1390\???1CF EC \^又AE ^ 面11BB C C ,而CF Ì面11BB C CAE CF \^又1AE EC E = ,CF \^面1AEC 又1AC Ì 面1AEC ,1CF AC \^23(1)解:P 、A 、C 、B 四点共圆,且90CAP CBP???又60APB?? ,120ACB\??,60ACP\??在Rt CAP D 中,1CA r ==,2CP \=设点00(,)P x y 满足:220000000(2)4020x x y y x y ìì=ï+-=ï镲Þ眄镲=-=ïîïî或008545x y ìïï=ïïíïï=ïïïî\点P 坐标为(0,0)或84(,)55(2)设CP 的中点为M ,过C 、A 、P 三点的圆是以CP 为直径的圆M , 设00(,)P x y ,则002(,)22x y M +又CP =圆222002:()()22x y M x y +-+-= (1)又002x y = 代入(1)式,得:22200002544()()24y y y x y y +-+-+-= 整理得:2202(22)0x y y y x y +-+--+=无论0y 取何值时,该圆M 都经过2220220x y y x y ìï+-=ïíï+-=ïî的交点02x y ì=ïïíï=ïî或4525x y ìïï=ïïíïï=ïïïî 综上所述,过C 、A 、P 的圆必过定点(0,2)和42(,)55。
浙江省2016-2017学年高一上学期期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩(∁R B )=( ) A .{x|x >1}B .{x|x ≥1}C .{x|1<x ≤2}D .{x|1≤x ≤2}2.函数f (x )=|cosx|的最小正周期为( )A .2πB .πC .D .3.若a=20.5,b=log π3,c=log 2,则有( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a4.函数f (x )=sin (2x+φ)|φ|<)的图象向左平移个单位后关于原点对称,则φ等于( )A .B .﹣C .D .5.在平面内,已知,则=( )A .3B .C .D .6.已知sin α=m (|m|<1),,那么tan α=( )A .B .C .D .7.已知函数f (x )是奇函数,且当x >0时,f (x )=x 2+,则f (﹣1)=( ) A .﹣2 B .0C .1D .28.设二次函数f (x )=x 2﹣bx+a (a ,b ∈R )的部分图象如图所示,则函数g (x )=lnx+2x ﹣b 的零点所在的区间( )A .B .C .D .(2,3)二、填空题:(本大题有7小题,每小题4分,共28分,请将答案填在答题卷中的横线上.)9.向量=(2,3),=(﹣1,2),若m+与﹣2平行,则m等于.10.在△ABC中,D是BC的中点,向量=a,向量=b,则向量= .(用向量a,b表示)11.函数y=sin2x+2cosx在R上的值域是.12.已知弧长为πcm的弧所对的圆心角为,则这条弧所在的扇形面积为cm2.13.已知a>0且a≠1,若函数f(x)=,在[﹣2,2]的最大值为2,则f[f(﹣1)]= ,a= .14.已知向量=(1,),=(3,m),若向量的夹角为,则实数m= .15.已知函数满足:对于实数a的某些值,可以找到相应正数b,使得f(x)的定义域与值域相同,那么符合条件的实数a的个数是.三、解答题:(本大题有5小题,共48分,解答题应写出文字说明,证明过程或演算步骤.)16.设角,求的值;(Ⅱ)已知,求值:.17.(8分)如图,图1是定义在R上的指数函数g(x)的图象,图2是定义在(0,+∞)上的对数函数h(x)的图象,设f(x)=h(g(x)﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)求方程f(x)﹣x+1=0的解;(Ⅲ)求不等式f(x)<2成立的x的取值范围.18.(10分)已知函数f (x )=Asin (ωx+φ),x ∈R (其中A >0,ω>0,)的周期为π,且图象上一个最低点为.(Ⅰ)求f (x )的解析式; (Ⅱ)求f (x )的单调区间;(Ⅲ)当,求f (x )的值域.19.(10分)设非零向量向量=,=,已知||=2||,( +)⊥.(1)求与的夹角;(2)在如图所示的直角坐标系xOy 中,设B (1,0),已知M (,),=λ1+λ2(λ1,λ2∈R ),求λ1+λ2的值.20.(12分)已知二次函数f (x )=ax 2+bx+c (a ,b ,c ∈R ),f (﹣2)=f (0)=0,f (x )的最小值为﹣1.(1)求函数f (x )的解析式;(2)设g (x )=f (﹣x )﹣λf (x )+1,若g (x )在[﹣1,1]上是减函数,求实数λ的取值范围;(3)设函数h (x )=log 2[p ﹣f (x )],若此函数在定义域范围内不存在零点,求实数p 的取值范围.浙江省2016-2017学年高一上学期期末数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={x|﹣1≤x≤2},B={x|x<1},则A∩(∁B)=()RA.{x|x>1} B.{x|x≥1} C.{x|1<x≤2} D.{x|1≤x≤2}【考点】交、并、补集的混合运算.【分析】由集合B,求出集合B的补集,然后求出集合A和集合B补集的交集即可.【解答】解:由B={x|x<1},B={x|x≥1},得到CR又集合A={x|﹣1≤x≤2},B)={x|1≤x≤2}.则A∩(CR故选:D.【点评】此题考查学生会进行补集及交集的运算,是一道基础题.学生在求补集时注意全集的范围.2.函数f(x)=|cosx|的最小正周期为()A.2π B.πC.D.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的图象与性质,画出函数f(x)的图象,即可得出f(x)的最小正周期.【解答】解:根据余弦函数的图象与性质,画出函数f(x)=|cosx|的图象,如图所示,则函数f(x)的最小正周期为π.故选:B .【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.3.若a=20.5,b=log π3,c=log 2,则有( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a 【考点】对数值大小的比较.【分析】利用对数和指数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=log π3<log ππ=1,<log 21=0.∴a >b >c . 故选:A .【点评】本题考查了对数和指数函数的单调性,属于基础题.4.函数f (x )=sin (2x+φ)|φ|<)的图象向左平移个单位后关于原点对称,则φ等于( )A .B .﹣C .D .【考点】函数y=Asin (ωx+φ)的图象变换.【分析】由条件根据函数y=Asin (ωx+φ)的图象变换规律,正弦函数的图象的对称性可得+φ=k π,k ∈z ,由此根据|φ|<求得φ的值.【解答】解:函数f (x )=sin (2x+φ)φ|<)的图象向左平移个单位后,得到函数y=sin[2(x+)+φ]=sin (2x++φ)的图象,再根据所得图象关于原点对称,可得+φ=k π,k ∈z ,∴φ=﹣,故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.5.在平面内,已知,则=( )A.3 B.C.D.【考点】向量在几何中的应用;两向量的和或差的模的最值;平面向量数量积的坐标表示、模、夹角;平面向量数量积的运算.【分析】利用向量模平方等于向量的平方列出等式;利用向量的数量积公式用模夹角余弦表示数量积,求出向量的模.【解答】解:∵=1+2 +16=13故故选B.【点评】本题考查向量模的平方等于向量的平方;向量的数量积公式.6.已知sinα=m(|m|<1),,那么tanα=()A.B.C.D.【考点】同角三角函数基本关系的运用.【分析】由sinα的值及α的范围,利用同角三角函数间的基本关系求出cosα的值,即可确定出tanα的值.【解答】解:∵sinα=m,<α<π,∴cosα=﹣=﹣,则tanα=.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.7.已知函数f(x)是奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.﹣2 B.0 C.1 D.2【考点】函数奇偶性的性质.【分析】由奇函数定义得,f(﹣1)=﹣f(1),根据x>0的解析式,求出f(1),从而得到f(﹣1).【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),f(﹣1)=﹣f(1),又当x>0时,f(x)=x2+,∴f(1)=12+1=2,∴f(﹣1)=﹣2,故选:A.【点评】本题考查函数的奇偶性及运用,主要是奇函数的定义及运用,解题时要注意自变量的范围,正确应用解析式求函数值,本题属于基础题.8.设二次函数f(x)=x2﹣bx+a(a,b∈R)的部分图象如图所示,则函数g(x)=lnx+2x﹣b 的零点所在的区间()A.B.C.D.(2,3)【考点】函数的零点与方程根的关系.【分析】由二次函数的图象确定出b的范围,计算出g()和g(1)的值的符号,从而确定零点所在的区间.【解答】解:结合二次函数f(x)=x2﹣bx+a的图象知,f(0)=a∈(0,1),f(1)=1﹣b+a=0,∴b=a+1,∴b∈(1,2),∵g(x)=lnx+2x﹣b在(0,+∞)上单调递增且连续,g()=ln+1﹣b<0,g(1)=ln1+2﹣b=2﹣b>0,∴函数g(x)的零点所在的区间是(,1);故选:A.【点评】本题考查了二次函数的图象与性质以及函数零点的应用,解题的关键是确定b 的范围.二、填空题:(本大题有7小题,每小题4分,共28分,请将答案填在答题卷中的横线上.)9.向量=(2,3),=(﹣1,2),若m +与﹣2平行,则m 等于 .【考点】平面向量共线(平行)的坐标表示.【分析】由已知向量的坐标求得m +与﹣2的坐标,再由向量平行的坐标表示列式求得m 的值.【解答】解:∵ =(2,3),=(﹣1,2),∴m +=m (2,3)+(﹣1,2)=(2m ﹣1,3m+2),﹣2=(2,3)﹣2(﹣1,2)=(4,﹣1).又m +与﹣2平行,∴(2m ﹣1)•(﹣1)﹣4(3m+2)=0,解得:m=﹣.故答案为:.【点评】平行问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若=(a 1,a 2),=(b 1,b 2),则⊥⇔a 1a 2+b 1b 2=0,∥⇔a 1b 2﹣a 2b 1=0,是基础题.10.在△ABC 中,D 是BC 的中点,向量=a ,向量=b ,则向量=(+) .(用向量a ,b 表示)【考点】向量加减混合运算及其几何意义.【分析】直接利用向量的加法的平行四边形法则,求出结果即可【解答】解:因为D 是△ABC 的边BC 上的中点,向量=,向量=,所以=(+)=(+),故答案为:(+)【点评】本题考查向量的四边形法则的应用,考查计算能力.11.函数y=sin 2x+2cosx 在R 上的值域是 [﹣2,2] .【考点】函数的值域.【分析】根据同角三角函数关系,将函数的解析式化为y=1﹣cos2x+2cosx,结合函数的cosx 为[﹣1,1],将问题转化为二次函数在定区间上的值域问题,结合余弦函数及二次函数的性质,即可得到答案.【解答】解:y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx﹣1)2+2,∵cosx∈[﹣1,1],cosx﹣1∈[﹣2,0],∴﹣(cosx﹣1)2∈[﹣4,0],∴﹣(cosx﹣1)2+2∈[﹣2,2].∴y∈[﹣2,2].故答案为:[﹣2,2].【点评】本题考查的知识点是正弦函数的定义域和值域,考查二次函数在定区间上的最值问题,是解答本题的关键.12.已知弧长为πcm的弧所对的圆心角为,则这条弧所在的扇形面积为2πcm2.【考点】扇形面积公式.【分析】根据弧长公式求出对应的半径,然后根据扇形的面积公式求面积即可.【解答】解:∵弧长为πcm的弧所对的圆心角为,∴半径r=,∴这条弧所在的扇形面积为S=cm2.故答案为:2π【点评】本题主要考查扇形的面积公式和弧长公式,要求熟练掌握相应的公式,比较基础.13.已知a>0且a≠1,若函数f(x)=,在[﹣2,2]的最大值为2,则f[f(﹣1)]= 0 ,a= .【考点】分段函数的应用.【分析】对a讨论,a>1,0<a<1时,由指数函数和对数函数的单调性可得最值,判断a>1不成立,计算即可得到a,再求f(﹣1),进而得到f[f(﹣1)].【解答】解:当a>1时,y=a x+1在[﹣2,1)递增,无最大值,y=log2x在[1,2]上递增,则最大值为log22=1,与题意不符,则舍去;当0<a<1时,y=a x+1在[﹣2,1)上递减,则最大值为a﹣1=2,即a=,f(﹣1)=()0=1,f[f(﹣1)]=f(1)=log21=0,故答案为:0,.【点评】本题考查分段函数的运用:求函数值,考查指数函数和对数函数的单调性的运用,考查分类讨论的思想方法,考查运算能力,属于中档题和易错题.14.已知向量=(1,),=(3,m),若向量的夹角为,则实数m= .【考点】数量积表示两个向量的夹角.【分析】利用两个向量的数量积的定义以及两个向量的数量积公式,求得实数m的值.【解答】解:∵向量=(1,),=(3,m),若向量的夹角为,则=||•||•cos,即 3+m=2••,求得m=,故答案为:.【点评】本题主要考查两个向量的数量积的定义以及两个向量的数量积公式,属于基础题.15.已知函数满足:对于实数a的某些值,可以找到相应正数b,使得f(x)的定义域与值域相同,那么符合条件的实数a的个数是 2 .【考点】函数的值域;函数的定义域及其求法.【分析】由于函数解析式中,被开方式是一个类一元二次式,故我们可分a=0,a>0和a<0,三种情况,分别分析是否存在正实数b,使函数f(x)的定义域和值域相同,进而综合讨论结果,即可得到答案.【解答】解:(1)若a=0,则对于每个正数b,f(x)=的定义域和值域都是[0,+∞)故a=0满足条件.(2)若a>0,则对于正数b,的定义域为D=(﹣∞,﹣]∪[0,+∞),但f(x)的值域A⊆[0,+∞),故D≠A,即a>0不合条件;=,(3)若a<0,则对正数b,定义域D=[0,﹣],(f(x))maxf(x)的值域为[0,],则﹣=⇔.综上所述:a的值为0或﹣4.故答案为2.【点评】本题考查的知识点是函数的定义域及其求法,函数的值域,二次函数的图象和性质,其中熟练掌握一次函数和二次函数的图象和性质是解答本题的关键,解答中易忽略a=0时,也满足条件,而错解为a=﹣4.三、解答题:(本大题有5小题,共48分,解答题应写出文字说明,证明过程或演算步骤.)16.(Ⅰ)设角,求的值;(Ⅱ)已知,求值:.【考点】三角函数的化简求值;同角三角函数基本关系的运用.【分析】(Ⅰ)利用诱导公式化简,再结合特殊角的三角函数值得答案;(Ⅱ)由已知求得tanα,再把转化为正切求值.【解答】解:(Ⅰ)∵,∴===;(Ⅱ)由,得tanα=3.∴==.【点评】本题考查三角函数的化简求值,考查同角三角函数基本关系式及诱导公式的应用,是基础题.17.如图,图1是定义在R上的指数函数g(x)的图象,图2是定义在(0,+∞)上的对数函数h(x)的图象,设f(x)=h(g(x)﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)求方程f(x)﹣x+1=0的解;(Ⅲ)求不等式f(x)<2成立的x的取值范围.【考点】指、对数不等式的解法.【分析】(Ⅰ)由图象求出g(x)和h(x)的解析式,代入f(x)=h(g(x)﹣1)化简;(Ⅱ)由(Ⅰ)化简方程,利用指对互化和指数的运算求出方程的根;(Ⅲ)由(Ⅰ)化简不等式,由对数函数的性质、运算法则,指数函数的性质求出不等式的解集.【解答】解:(Ⅰ)由图知g(x)、h(x)的图象分别过(1,2)、(2,1)两点,∴g(x)=2x,h(x)=,∴f(x)=h(g(x)﹣1)=h(2x﹣1)=;(Ⅱ)由(Ⅰ)得,方程f(x)﹣x+1=0是:﹣x+1=0,∴=x﹣1,则2x﹣1=2x﹣1=,即2x=2,解得x=1,∴方程f(x)﹣x+1=0的根是1;(Ⅲ)由(Ⅰ)得,不等式f(x)<2是:<2,∴<,∵函数h(x)=在(0,+∞)上是增函数,∴,解得,∴不等式的解集是(0,).【点评】本题考查指数函数、对数函数的解析式、图象与性质,指数、对数的运算性质的应用,以及有关对数、指数的方程、不等式的求解,注意对数的定义域的限定.18.(10分)(2015秋•西湖区期末)已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,)的周期为π,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)的单调区间;(Ⅲ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)根据函数的周期,最值过定点,求出A,ω和φ的值即可,(Ⅱ)结合三角函数的单调性进行求解即可.(Ⅲ)求出角的范围结合三角函数的单调性求出函数的最值即可求出函数的值域.【解答】解:(Ⅰ)∵函数的最小正周期为π,最小值为﹣2,∴A=2,T=,即ω=2,则函数f(x)=2sin(2x+φ),∵图象上一个最低点为.∴2sin(2×+φ)=﹣2,即sin(+φ)=﹣1,则+φ=+2kπ,k∈Z,则φ=+2kπ,k∈Z,∵,∴当k=0时,φ=,即f (x )的解析式为f (x )=2sin (2x+);(Ⅱ)由2k π+≤2x+≤2k π+,k ∈Z ,得k π+≤x ≤k π+,k ∈Z ,即函数的单调递减区间为为.由2k π﹣≤2x+≤2k π+,k ∈Z ,得k π﹣≤x ≤k π+,k ∈Z ,即函数的单调递增区间为[k π﹣,k π+],k ∈Z ;(Ⅲ)当时,2x ∈[0,],则2x+∈[,],则sin (2x+)=sin =,sin (2x+)=sin=,则≤f (x )≤2×,即1≤f (x )≤,即f (x )的值域为[1,].【点评】本题主要考查三角函数解析式的求解以及函数单调性和值域的求解,结合条件求出A ,ω和φ的值是解决本题的关键.19.(10分)(2015秋•西湖区期末)设非零向量向量=, =,已知||=2||,( +)⊥.(1)求与的夹角;(2)在如图所示的直角坐标系xOy 中,设B (1,0),已知M (,),=λ1+λ2(λ1,λ2∈R ),求λ1+λ2的值.【考点】平面向量数量积的运算;平面向量的基本定理及其意义.【分析】(1)由(+)⊥.可得.又||=2||,利用向量夹角公式可得=.即可得出.(2)利用向量的线性运算及其相等即可得出.【解答】解:(1)∵(+)⊥.∴(+)•=+=0,∴.又||=2||,∴===﹣.∴与的夹角为;(2)由已知及(1)得A ,∵=λ1+λ2,∴(,)=+λ2(1,0)=,∴,解得λ1=,λ2=.∴λ1+λ2=.【点评】本题考查了数量积运算性质、向量夹角公式、向量基本定理,考查了推理能力与计算能力,属于中档题.20.(12分)(2010秋•杭州期末)已知二次函数f(x)=ax2+bx+c(a,b,c∈R),f(﹣2)=f(0)=0,f(x)的最小值为﹣1.(1)求函数f(x)的解析式;(2)设g(x)=f(﹣x)﹣λf(x)+1,若g(x)在[﹣1,1]上是减函数,求实数λ的取值范围;[p﹣f(x)],若此函数在定义域范围内不存在零点,求实数p的取(3)设函数h(x)=log2值范围.【考点】二次函数的性质;对数函数的单调性与特殊点.【分析】(1)由已知中二次函数f(x)=ax2+bx+c(a,b,c∈R),f(﹣2)=f(0)=0,f (x)的最小值为﹣1.我们易根据出关于系数a,b,c的方程组,解方程组求出a,b,c值后,即可得到函数f(x)的解析式;(2)由(1)的结论及g(x)=f(﹣x)﹣λf(x)+1,我们可以得到g(x)的表达式,由于其解析式为类二次函数的形式,故要对二次项系数进行分类讨论,最后综合讨论结果即可得到实数λ的取值范围;[p﹣f(x)]在定义域内不存在零点,则根据真数必须大于0,1的对(3)由函数h(x)=log2数等于0的法则,我们可以构造出一个关于p的不等式组,解不等式组,即可得到答案.【解答】解:(1)设f(x)=ax(x+2),又a>0,f(﹣1)=﹣1,∴a=1,∴f(x)=x2+2x.(2)∵g(x)=f(﹣x)﹣λf(x)+1,∴g(x)=(1﹣λ)x2﹣2(1+λ)x+1,①当λ=1时,g(x)=﹣4x=1在[﹣1,1]上是减函数,满足要求;②当λ≠1时,对称轴方程为:x=.ⅰ)当λ<1时,1﹣λ>0,所以≥1,解得0≤λ<1;ⅱ)当λ>1时,1﹣λ<0,所以≤﹣1,解得λ>1.综上,λ≥0.(7分)[p﹣f(x)]在定义域内不存在零点,必须且只须有(3)函数h(x)=log2p﹣f(x)>0有解,且p﹣f(x)=1无解.即[p﹣f(x)]max>0,且1不在[p﹣f(x)]的值域内.f(x)的最小值为﹣1,∴函数y=p﹣f(x)的值域为(﹣∞,p+1].∴,解得﹣1<p<0.∴p的取值范围为(﹣1,0).(10分)【点评】本题考查的知识点是二次函数的性质,对数函数的单调性与特殊点,其中根据已知条件确定出函数f(x)的解析式是解答本题的切入点和关键.。
2016-2017学年浙江省金华市高一(上)期末数学试卷一、选择题:(本大题10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则∁U(S∪T)等于()A.∅B.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}2.cos210°=()A.﹣B.﹣ C.D.3.函数y=f(x)和x=2的交点个数为()A.0个 B.1个 C.2个 D.0个或1个4.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为()A.B.2 C.2 D.25.如果lgx=lga+3lgb﹣5lgc,那么()A.x=a+3b﹣c B.C.D.x=a+b3﹣c36.已知sin=,cos=﹣,则角α终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.函数的图象为()A.B.C.D.8.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1﹣a,则()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.f(x1)<f(x2)和f(x1)=f(x2)都有可能9.已知函数f(x)=sin(ωx﹣)(<ω<2),在区间(0,)上()A.既有最大值又有最小值B.有最大值没有最小值C.有最小值没有最大值D.既没有最大值也没有最小值10.已知f(x)=log a(a﹣x+1)+bx(a>0,a≠1)是偶函数,则()A.b=且f(a)>f()B.b=﹣且f(a)<f()C.b=且f(a+)>f()D.b=﹣且f(a+)<f()二、填空题(共7小题,每小题3分,满分21分)11.已知角α的终边过点P(﹣8m,﹣6sin30°),且cosα=﹣,则m的值为,sinα=.12.计算lg4+lg500﹣lg2=, +(log316)•(log2)=.13.已知sinα=+cosα,且α∈(0,),则sin2α=,cos2α=.14.如果幂函数f(x)的图象经过点(2,8),则f(3)=.设g(x)=f(x)+x﹣m,若函数g (x)在(2,3)上有零点,则实数m的取值范围是.15.已知tan(π﹣x)=﹣2,则4sin2x﹣3sinxcosx﹣5cos2x=.16.已知函数f(x)=﹣2sin(2x+φ)(|φ|<π),若是f(x)的一个单调递增区间,则φ的取值范围为.17.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣x2,若存在实数a,b,使f(x)在[a,b]上的值域为[,],则ab=.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤。
2016-2017学年浙江省金华市高一(上)期末数学试卷一、选择题:(本大题10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则∁U(S ∪T)等于()A.∅B.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}2.cos210°=()A.﹣B.﹣ C.D.3.函数y=f(x)和x=2的交点个数为()A.0个 B.1个 C.2个 D.0个或1个4.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为()A.B.2 C.2 D.25.如果lgx=lga+3lgb﹣5lgc,那么()A.x=a+3b﹣c B.C.D.x=a+b3﹣c36.已知sin=,cos=﹣,则角α终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.函数的图象为()A.B.C.D.8.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1﹣a,则()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.f(x1)<f(x2)和f(x1)=f(x2)都有可能9.已知函数f(x)=sin(ωx﹣)(<ω<2),在区间(0,)上()A.既有最大值又有最小值B.有最大值没有最小值C.有最小值没有最大值D.既没有最大值也没有最小值10.已知f(x)=log a(a﹣x+1)+bx(a>0,a≠1)是偶函数,则()A.b=且f(a)>f()B.b=﹣且f(a)<f()C.b=且f(a+)>f()D.b=﹣且f(a+)<f()二、填空题(共7小题,每小题3分,满分21分)11.已知角α的终边过点P(﹣8m,﹣6sin30°),且cosα=﹣,则m的值为,sinα=.12.计算lg4+lg500﹣lg2=, +(log316)•(log2)=.13.已知sinα=+cosα,且α∈(0,),则sin2α=,cos2α=.14.如果幂函数f(x)的图象经过点(2,8),则f(3)=.设g(x)=f(x)+x﹣m,若函数g(x)在(2,3)上有零点,则实数m的取值范围是.15.已知tan(π﹣x)=﹣2,则4sin2x﹣3sinxcosx﹣5cos2x=.16.已知函数f(x)=﹣2sin(2x+φ)(|φ|<π),若是f(x)的一个单调递增区间,则φ的取值范围为.17.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣x2,若存在实数a,b,使f(x)在[a,b]上的值域为[,],则ab=.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤。
)18.函数f(x)=的定义域为集合A,函数g(x)=x﹣a(0<x<4)的值域为集合B.(Ⅰ)求集合A,B;(Ⅱ)若集合A,B满足A∩B=B,求实数a的取值范围.19.设函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<,x∈R)的部分图象如图所示.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)将函数y=f(x)的图象沿x轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数y=g(x)的图象,当x∈[﹣,]时,求函数g(x)的值域.20.已知函数f(x)=lg.(Ⅰ)求函数f(x)的定义域,并证明其在定义域上是奇函数;(Ⅱ)对于x∈[2,6],f(x)>lg恒成立,求m的取值范围.21.设函数f(x)=4sinx(cosx﹣sinx)+3(Ⅰ)当x∈(0,π)时,求f(x)的单调递减区间;(Ⅱ)若f(x)在[0,θ]上的值域为[0,2+1],求cos2θ的值.22.已知函数f(x)=x|x﹣2a|+a2﹣4a(a∈R).(Ⅰ)当a=﹣1时,求f(x)在[﹣3,0]上的最大值和最小值;(Ⅱ)若方程f(x)=0有3个不相等的实根x1,x2,x3,求++的取值范围.2016-2017学年浙江省金华市高一(上)期末数学试卷参考答案与试题解析一、选择题:(本大题10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则∁U(S ∪T)等于()A.∅B.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}【考点】交、并、补集的混合运算.【分析】先求出S∪T,接着是求补集的问题.【解答】解:∵S∪T={1,3,5,6},∴C U(S∪T)={2,4,7,8}.故选B.2.cos210°=()A.﹣B.﹣ C.D.【考点】三角函数的化简求值.【分析】由诱导公式,特殊角的三角函数值即可化简求值得解.【解答】解:cos210°=cos=﹣cos30°=﹣.故选:A.3.函数y=f(x)和x=2的交点个数为()A.0个 B.1个 C.2个 D.0个或1个【考点】函数的概念及其构成要素.【分析】根据函数的定义可得函数y=f(x)的图象与直线x=2至多有一个交点,由此得到结论.【解答】解:根据函数y=f(x)的定义,当x=2为定义域内一个值,有唯一的一个函数值f(x)与之对应,函数y=f(x)的图象与直线x=2有唯一交点.当x=2不在定义域内时,函数值f(x)不存在,函数y=f(x)的图象与直线x=2没有交点.故函数y=f(x)的图象与直线x=2至多有一个交点,即函数y=f(x)的图象与直线x=2的交点的个数是0或1,故选:D.4.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为()A.B.2 C.2 D.2【考点】扇形面积公式.【分析】半径为r的扇形圆心角的弧度数为α,则它的面积为S=αr2,由此结合题中数据,建立关于圆心角的弧度数α的方程,解之即得该扇形的圆心角的弧度数.【解答】解:设扇形圆心角的弧度数为α,则扇形面积为S=αr2=α×22=4,解得:α=2.故选:B.5.如果lgx=lga+3lgb﹣5lgc,那么()A.x=a+3b﹣c B.C.D.x=a+b3﹣c3【考点】对数的运算性质.【分析】lgx=lga+3lgb﹣5lgc=lga+lgb3﹣lgc5=lg,由此能得到正确答案.【解答】解:∵lgx=lga+3lgb﹣5lgc=lga+lgb3﹣lgc5=lg,∴x=,故选C.6.已知sin=,cos=﹣,则角α终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】三角函数的化简求值.【分析】由已知利用倍角公式可求sinα,cosα,分别确定角α终边所在的象限,即可得出结论【解答】解:∵sin=,cos=﹣,∴sinα=2sin cos=2××(﹣)=﹣<0,可得α终边所在的象限是第三、四象限;cosα=2cos2﹣1=2×(﹣)2﹣1=>0,可得:α终边所在的象限是第一、四象限,∴角α终边所在的象限是第四象限.故选:D.7.函数的图象为()A.B.C.D.【考点】正切函数的图象.【分析】利用正切函数的奇偶性,判定函数的奇偶性,结合x的范围确定函数的图象的正确选项.【解答】解:因为y=tanx是奇函数,所以是奇函数,因此B,C不正确,又因为时函数为正数,所以D不正确,A正确;故选A.8.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1﹣a,则()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.f(x1)<f(x2)和f(x1)=f(x2)都有可能【考点】二次函数的性质.<,当(x1+x2)【分析】找到f(x)的对称轴x=﹣1,再考虑到以﹣1<(x1+x2)=﹣1时,此时f(x1)=f(x2),再通过图象平移求得.【解答】解:∵0<a<3,由函数表达式f(x)=ax2+2ax+4=a(x+1)2+4﹣a知,其对称轴为x=﹣1,又x1+x2=1﹣a,所以(x1+x2)=(1﹣a),∵0<a<3,∴﹣2<1﹣a<1,∴﹣1<(1﹣a)<,当(x1+x2)=﹣1时,此时f(x1)=f(x2),当图象向右移动时,又x1<x2,所以f(x1)<f(x2).故选:A.9.已知函数f(x)=sin(ωx﹣)(<ω<2),在区间(0,)上()A.既有最大值又有最小值B.有最大值没有最小值C.有最小值没有最大值D.既没有最大值也没有最小值【考点】三角函数的最值.【分析】根据题意,求出ωx﹣的取值范围,再利用正弦函数的图象与性质即可得出“函数f(x)在区间(0,)上有最大值1,没有最小值”.【解答】解:函数f(x)=sin(ωx﹣),当<ω<2,且x∈(0,)时,0<ωx<ω<,所以﹣<ωx﹣<,所以﹣<sin(ωx﹣)≤1;所以,当ωx﹣=时,sin(ωx﹣)取得最大值1,即函数f(x)在区间(0,)上有最大值1,没有最小值.故选:B.10.已知f(x)=log a(a﹣x+1)+bx(a>0,a≠1)是偶函数,则()A.b=且f(a)>f()B.b=﹣且f(a)<f()C.b=且f(a+)>f()D.b=﹣且f(a+)<f()【考点】对数函数的图象与性质.【分析】利用函数的偶函数,求出b,确定函数单调递增,即可得出结论.【解答】解:∵f(x)=log a(a﹣x+1)+bx(a>0,a≠1)是偶函数,∴f(﹣x)=f(x),即log a(a x+1)﹣bx=log a(a﹣x+1)+bx,∴log a(a x+1)﹣bx=log a(a x+1)+(b﹣1)x,∴﹣b=b﹣1,∴b=,∴f(x)=log a(a﹣x+1)+x,函数为增函数,∵a+>2=,∴f(a+)>f().故选C.二、填空题(共7小题,每小题3分,满分21分)11.已知角α的终边过点P(﹣8m,﹣6sin30°),且cosα=﹣,则m的值为,sinα=﹣.【考点】任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义,求出m的值,可得sinα.【解答】解:由题意可得x=﹣8m,y=﹣6sin30°=﹣3,r=|OP|=,cosα==﹣,解得m=,∴sinα=﹣.故答案为:,﹣.12.计算lg4+lg500﹣lg2=3, +(log316)•(log2)=﹣5.【考点】对数的运算性质.【分析】利用有理数指数幂、对数的性质、运算法则、换底公式求解.【解答】解:lg4+lg500﹣lg2==lg1000=3,+(log316)•(log2)=()﹣1+=3+=3+(﹣8)=﹣5.故答案为:3,﹣5.13.已知sinα=+cosα,且α∈(0,),则sin2α=,cos2α=﹣.【考点】二倍角的正弦;二倍角的余弦.【分析】利用同角三角函数的基本关系、二倍角公式求得sin2α=2sinαcosα 的值以及cosα的值,从而求得cos2α的值.【解答】解:∵sinα=+cosα,且α∈(0,),即sinα﹣cosα=①,平方可得1﹣2sinαcosα=,则sin2α=2sinαcosα=>0,∴α为锐角,∴sinα+cosα====②,由①②求得cosα=,∴cos2α=2cos2α﹣1=﹣,故答案为:;﹣.14.如果幂函数f(x)的图象经过点(2,8),则f(3)=27.设g(x)=f(x)+x﹣m,若函数g(x)在(2,3)上有零点,则实数m的取值范围是10<m<30.【考点】幂函数的概念、解析式、定义域、值域.【分析】设幂函数f(x)=xα,把点(2,8)代入函数的解析式,求得α的值,即可得到函数的解析式,从而求出f(3)的值,求出g(x)的导数,得到函数的单调性,根据零点定理得到g(2)<0且g(3)>0,解出即可.【解答】解:设幂函数f(x)=xα,把点(2,8)代入函数的解析式可得2α=8,解得α=3,故函数的解析式为f(x)=x3,故f(3)=27,g(x)=f(x)+x﹣m=x3+x﹣m,g′(x)=3x2+1>0,故g(x)在(2,3)递增,若函数g(x)在(2,3)上有零点,只需,解得:10<m <30,故答案为:27,10<m <30.15.已知tan (π﹣x )=﹣2,则4sin 2x ﹣3sinxcosx ﹣5cos 2x= 1 . 【考点】运用诱导公式化简求值;三角函数的化简求值.【分析】由已知利用诱导公式可求tanx=2,进而利用同角三角函数基本关系式化简所求即可计算得解.【解答】解:∵tan (π﹣x )=﹣2, ∴tanx=2, ∴4sin 2x﹣3sinxcosx﹣5cos 2x====1.故答案为:1.16.已知函数f (x )=﹣2sin (2x +φ)(|φ|<π),若是f (x )的一个单调递增区间,则φ的取值范围为 [,] .【考点】由y=Asin (ωx +φ)的部分图象确定其解析式.【分析】令2kπ+≤2x +φ≤2kπ+,k ∈z ,求得 kπ+﹣≤x ≤kπ+﹣.再由≤kπ+﹣,且≥kπ+﹣,结合|φ|<π 求得φ的取值范围.【解答】解:由题意可得,是函数y=2sin (2x +φ)的一个单调递减区间,令2kπ+≤2x +φ≤2kπ+,k ∈z ,求得 kπ+﹣≤x ≤kπ+﹣,故有≤kπ+﹣,且≥kπ+﹣,结合|φ|<π 求得≤φ≤,故φ的取值范围为[,],故答案为[,].17.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣x2,若存在实数a,b,使f(x)在[a,b]上的值域为[,],则ab=.【考点】奇偶性与单调性的综合.【分析】根据题意,先由奇函数的性质,分析可得x<0时,f(x)=x2+2x,对于正实数a、b,分三种情况讨论:①、当a<1<b时,②、当a<b<1时,③、当1≤a<b时,结合二次函数的性质,分析可得a、b的值,将其相乘可得答案.【解答】解:设x<0,则﹣x>0,∴f(﹣x)=﹣2x﹣(﹣x)2,即﹣f(x)=﹣x2﹣2x,∴f(x)=x2+2x,设这样的实数a,b存在,则或或,由得ab(a+b)=0,舍去;由,得a=1,b=矛盾,舍去;由得a,b是方程x3+2x2=1的两个实数根,由(x+1)(x2+x﹣1)=0得a=,b=﹣1,∴ab=,故答案为.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤。