2015广东高考理科数学新思维训练Ⅱ
- 格式:doc
- 大小:32.50 KB
- 文档页数:1
2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N =( )A .{}1,4B .{}1,4--C .{}0D .∅2、若复数()32z i i =-(i 是虚数单位),则z =( )A .23i -B .23i +C .32i +D .32i -3、下列函数中,既不是奇函数,也不是偶函数的是( )A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 4、袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .521B .1021C .1121D .1 5、平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A .250x y ++=或250x y +-= B.20x y ++=或20x y +=C .250x y -+=或250x y --= D.20x y -+=或20x y -=6、若变量x ,y 满足约束条件4581302x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则32z x y =+的最小值为( )A .4B .235C .6D .3157、已知双曲线C:22221x y a b -=的离心率54e =,且其右焦点为()2F 5,0,则双曲线C 的方程为( ) A .22143x y -= B .221916x y -= C .221169x y -= D .22134x y -= 8、若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .至多等于3B .至多等于4C .等于5D .大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9、在)41的展开式中,x 的系数为 . 10、在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += .11、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若3a =,1sin 2B =,C 6π=,则b = .12、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)13、已知随机变量X 服从二项分布(),n p B ,若()30E X =,()D 20X =,则p = .(二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)已知直线l 的极坐标方程为2sin 24πρθ⎛⎫-= ⎪⎝⎭,点A 的极坐标为722,4π⎛⎫A ⎪⎝⎭,则点A 到直线l 的距离为 . 15、(几何证明选讲选做题)如图1,已知AB 是圆O 的直径,4AB =,C E 是圆O 的切线,切点为C ,C 1B =.过圆心O 作C B 的平行线,分别交C E 和C A 于点D 和点P ,则D O = .三、解答题16.(本小题满分12分)在平面直角坐标系xOy 中,已知向量(1) 若m n ⊥,求tan x 的值;(2) 若m 与n 的夹角为3π,求x 的值. 17. (本小题满分12分)某工厂36名工人年龄数据如下表(1) 用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2) 计算(1)中样本的均值x 和方差2s ;(3) 36名工人中年龄在x s -和x s +之间有多少人?所占百分比是多少(精确到0.01%)?18.(本小题满分14分)如图2,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4,6,3PD PC AB BC ====,点E 是CD 的中点,点、F G 分别在线段、AB BC 上,且2,2AF FB CG GB ==.(1) 证明:PE FG ⊥; (2) 求二面角P AD C --的正切值;(3) 求直线PA 与直线FG 所成角的余弦值.19. (本小题满分14分)设1a >,函数2()(1)x f x x e a =+-(1) 求()f x 的单调区间; (2) 证明()f x 在(,)-∞+∞上仅有一个零点;(3) 若曲线()y f x =在点P 处的切线与x 轴平行,且在点M (m,n )处的切线与直线OP 平行,(O 是坐标原点),证明:1m ≤-.20. (本小题满分14分)已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A 、B.(1) 求圆1C 的圆心坐标;(2) 求线段AB 的中点M 的轨迹C 的方程;(3) 是否存在实数k,使得直线:(4)l y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21. (本小题满分14分) 数列{a }n 满足:*12122......3,2n n n a a na n N -+++=-∈. (1) 求3a 的值;(2) 求数列{a }n 的前 n 项和n T ;(3) 令111111,(1......)(2),23n n n T b a b a n n n-==+++++≥证明:数列{}n b 的前n 项和S n 满足22ln n S n <+2015年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案。
2015年广州市普通高中毕业班综合测试(二)数学(理科)一、选择题:本大题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项 是符合题目要求的. 1。
命题“若2x =,则2320x x -+="的逆否命题是( )A .若2x ≠,则2320x x -+≠ B .若2320x x -+=,则2x =C .若2320xx -+≠,则2x ≠ D .若2x ≠,则2320xx -+=【答案】C 【解析】试题分析:命题“若2x =,则2320x x -+=”的逆否命题是“若2320x x -+≠,则2x ≠",故选C . 考点:逆否命题.2。
已知0a b >>,则下列不等关系式中正确的是( ) A .sin sin a b> B .22log log a b< C .1122a b<D .1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】试题分析:因为0a b >>,所以sin a 与sin b 的大小关系是sin sin a b >或sin sin a b=或sin sin a b <,22log log a b >,1122a b >,1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选D .考点:基本初等函数的单调性.3。
已知函数()40,1,0,x f x x x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦( )A .14B .12C .2D .4【答案】A 【解析】试题分析:因为()2f =()(44124f f f ⎛⎛====⎡⎤ ⎣⎦⎝⎝,故选A .考点:1、分段函数;2、函数值.4.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1所示,则此函数的解析 式为( )A .3sin y x ππ⎛⎫=+ ⎪44⎝⎭B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭C .3sin y x ππ⎛⎫=+ ⎪24⎝⎭D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭【答案】A 【解析】试题分析:由图象知:3A =,5142T=-=,所以8T =,因为28πωT ==,所以4πω=,所以()3sin 4f x x πϕ⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象过点()1,3,所以3sin 34πϕ⎛⎫+= ⎪⎝⎭,图1即sin 14πϕ⎛⎫+= ⎪⎝⎭,因为0ϕπ<<,所以5444πππϕ<+<,所以42ππϕ+=,解得:4πϕ=,所以函数()f x 的解析式是()3sin 44f x x ππ⎛⎫=+ ⎪⎝⎭,故选A .考点:三角函数的图象. 5。
2015年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则,则y=y=x+y=y=x++4.(5分)(2015•广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个B个球的取法有22x+y+=0=,所以6.(5分)(2015•广东)若变量x,y满足约束条件,则z=3x+2y的最小值为()对应的平面区域如图:﹣x+x+﹣,经过点x+的截距最小,,解得)×=,7.(5分)(2015•广东)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),﹣=1 B﹣=1 ﹣=1 ﹣=1:﹣e=,=3所求双曲线方程为:﹣二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)(2015•广东)在(﹣1)4的展开式中,x的系数为6.﹣•﹣==1二项式(的系数为=610.(5分)(2015•广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.11.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=1.,可得或B=,结合a=C=及正弦定理可求sinB=或B=B=,A=由正弦定理可得,B=,与三角形的内角和为12.(5分)(2015•广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560条毕业留言.(用数字作答)=4013.(5分)(2015•广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.q=p=,故答案为:.14.(5分)(2015•广东)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A(2,),则点A到直线l的距离为.),对应的直角坐标方程为:,=故答案为:15.(2015•广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=8.OP=,OP=BC=OD三、解答题16.(12分)(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.)若⊥,则•=0)若与的夹角为,利用向量的数量积的坐标公式进行求解即可求)若⊥•(,﹣sinx﹣sinx=cosx)∵||=1||=1•(,﹣=与的夹角为•=|||=,cosx=,),,∈(﹣)=+=(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?)中样本的均值)由平均值公式得=[=.∴∈名工人中年龄在+s名工人中年龄在+s之间所占百分比为18.(14分)(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.PE==,PDC===3AP===5PAC=19.(14分)(2015•广东)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP 平行,(O是坐标原点),证明:m≤﹣1..∴,∴20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.联立方程组,,其中﹣<)=,其中<,﹣,联立方程组,±,的端点(,±±的取值范围为(﹣,}21.(14分)(2015•广东)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.﹣=﹣﹣﹣,,=++)=1+(1+)1++)1++)++)1+++=lnx+=.时,,(=ln﹣ln>∴ln,1++)<。
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2015年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:样本数据1x ,2x ,⋅⋅⋅,n x 的方差2222121()()()n s x x x x x x n⎡⎤=-+-+⋅⋅⋅+-⎣⎦,其中x 表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( )A .∅B .{1,4}--C .{0}D .{1,4} 2.若复数i(32i)z =-(i 是虚数单位),则z =( )A .32i -B .32i +C .2+3iD .23i - 3.下列函数中,既不是奇函数,也不是偶函数的是( )A .x y x e =+B .1y x x=+C .122x xy =+D.y 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1B .1121C .1021 D .5215.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A.20x y -=或20x y -= B.20x y +或20x y += C .250x y -+=或250x y --=D .250x y ++=或250x y +-=6.若变量x ,y 满足约束条件458,13,02,x y x y +⎧⎪⎨⎪⎩≥≤≤≤≤则32z x y =+的最小值为( )A .315B .6C .235D .47.已知双曲线C :22221x y a b -=的离心率54e =,且其右焦点为2(5,0)F ,则双曲线C 的方程为( )A .22143x y -=B .221169x y-= C .221916x y -=D .22134x y -= 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5B .等于5C .至多等于4D .至多等于3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.在41)的展开式中,x 的系数为 .10.在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += . 11.设ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若a =,1sin 2B =,π6C =,则b = .12.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言(用数字作答).13.已知随机变量X 服从二项分布(,)B n p .若()30E X =,()20D X =,则p = . (二)选做题(14-15题,考生只能从中选做一题) 14.(坐标系与参数方程)已知直线l的极坐标方程为π2sin()4ρθ-,点A的极坐标为7π)4A ,则点A 到直线l 的距离为 .姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)15.(几何证明选讲)如图,已知AB 是圆O 的直径,4AB =,EC 是圆O 的切线,切点为C ,1BC =.过圆心O 作BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在平面直角坐标系xOy 中,已知向量m (22=,n (sin ,cos )x x =,π(0,)2x ∈. (Ⅰ)若m ⊥n ,求tan x 的值; (Ⅱ)若m 与n 的夹角为π3,求x 的值.17.(本小题满分12分)(Ⅰ)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (Ⅱ)计算(Ⅰ)中样本的均值x 和方差2s ;(Ⅲ)36名工人中年龄在x s -与x s +之间有多少人?所占的百分比是多少(精确到0.01%)?18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且2AF FB =,2CG GB =.(Ⅰ)证明:PE FG ⊥;(Ⅱ)求二面角P AD C --的正切值; (Ⅲ)求直线PA 与直线FG 所成角的余弦值.19.(本小题满分14分)设1a >,函数2()(1)x f x x e a =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:()f x 在(,)-∞+∞上仅有一个零点;(Ⅲ)若曲线()y f x =在点P 处的切线与x 轴平行,且在点(,)M m n 处的切线与直线OP 平行(O 是坐标原点),证明:1m .20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (Ⅰ)求圆1C 的圆心坐标;(Ⅱ)求线段AB 的中点M 的轨迹C 的方程;(Ⅲ)是否存在实数k ,使得直线L :(4)y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,请说明理由.21.(本小题满分14分)数列{}n a 满足:1212242n n n a a na -+++⋅⋅⋅+=-,*n ∈Ν. (Ⅰ)求3a 的值;(Ⅱ)求数列{}n a 的前n 项和n T ; (Ⅲ)令11b a =,1111(1)(2)23n n n T b a n n n-=++++⋅⋅⋅+≥,证明:数列{}n b 的前n 项和n S 满足22ln n S n <+.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)2015年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析一、选择题 1.【答案】D【解析】由题意可得{1,4}{1,4}M N M N =--==∅I ,,. 【提示】求出两个集合,然后求解交集即可. 【考点】交集及其运算 2.【答案】B【解析】由题意可得i(32i)23i z =-=-,因此23i z =+. 【提示】直接利用复数的乘法运算法则化简求解即可. 【考点】复数的基本计算以及共轭复数的基本概念 3.【答案】D【解析】A 选项,()()f x f x -===,偶函数;B 选项,()11()f x x x f x x x ⎛⎫-=-+=-+=- ⎪-⎝⎭,奇函数; C 选项,11()22()22x x x x f x f x ---=+=+=,偶函数;D 选项,1()e ()()ex x f x x x f x f x --=-+=-+=≠≠-,因此选D .【提示】直接利用函数的奇偶性判断选项即可. 【考点】函数的奇偶性的判定 4.【答案】B【解析】任取两球一共有215151415712C ⨯==⨯⨯种情况,其中一个红球一个白球一共有11105105C C =⨯g ,因此概率为1051015721⨯=⨯. 【提示】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可. 【考点】古典概型及其概率计算公式 5.【答案】A【解析】与直线210x y ++=平行的直线可以设为20x y m ++=,= ∴||5m =,解得5m =±,因此我们可以得到直线方程为:250x y ++=或250x y +-=.【提示】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【考点】解析几何中的平行,圆的切线方程 6.【答案】B【解析】依据题意,可行域如右图所示,初始函数为032l y x =- :,当0l 逐渐向右上方平移的过程中,32z x y =+不断增大,因此我们可以得到当l 过点41,5E ⎛⎫⎪⎝⎭的时候,min 235z =.【提示】作出不等式组对应的平面区域,根据z 的几何意义,利用数形结合即可得到最小值.【考点】线性规划问题 7.【答案】C数学试卷 第7页(共16页) 数学试卷 第8页(共16页)【解析】已知双曲线22221x y C a b-=:,54c e a ==,又由焦点为()25,0F,因此45435c a c b =⇒==⇒=,因此双曲线方程为221169x y -=.【提示】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程. 【考点】圆锥曲线的离心率求解问题 8.【答案】B【解析】解:考虑平面上,3个点两两距离相等,构成等边三角形,成立; 4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n 大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若4n >,由于任三点不共线,当5n =时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立; 同理5n >,不成立. 故选:B .【提示】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断. 【考点】棱锥的结构特征 二、填空题 9.【答案】6【解析】展开通式为144(1)m m m C ---,令2m =可得14124244(1)(1)4m m m C C x ----=-=,因此系数为6.【提示】根据题意二项式41)的展开的通式为144(1)m m m C ---,分析可得,2m =时,有x 的项,将2m =代入可得答案. 【考点】二项式定理的运用 10.【答案】10【解析】根据等差中项可得:345675525a a a a a a ++++==,55a =,因此285210a a a +==.【提示】根据等差数列的性质,化简已知的等式即可求出5a 的值,然后把所求的式子也利用等差数列的性质化简后,将5a 的值代入即可求出值. 【考点】等差中项的计算 11.【答案】1【解析】由1sin 2B =,得π6B =或者5π6B =,又因为π6C =,因此π6B =,2π3A =,根据正弦定理可得sin sin a bA B =1sin 1sin 2a b B A ===g g . 【提示】由1sin 2B =,可得π6B =或者5π6B =,结合a ,π6C =及正弦定理可求b .【考点】正弦定理,两角和与差的正弦函数 12.【答案】1560【解析】某高三毕业班有40人,每人给彼此写一条留言,因此每人的条数为39,故而一共有40391560⨯=条留言.【提示】通过题意,列出排列关系式,求解即可. 【考点】排列与组合的实际应用 13.【答案】13【解析】根据随机变量X服从二项分布(,)B n p ,根据()30()(1E X n p D X n p p===-=,,可得()21()3D X p E X -==,化简后可得13p =. 【提示】直接利用二项分布的期望与方差列出方程求解即可. 【考点】离散型随机变量的期望与方差 14.【答案】2【解析】考察基本的极坐标和直角坐标的化简以及点到直线距离问题.由数学试卷 第9页(共16页) 数学试卷 第10页(共16页)2sin 4πρθ⎛⎫- ⎪⎝⎭l 的直角坐标系方程为10x y --=,由7π4A ⎛⎫ ⎪⎝⎭可得它的直角坐标为()2,2A -, 因此,点A 到直线l的距离为d ==. 【提示】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可. 【考点】简单曲线的极坐标方程 15.【答案】8 【解析】连接OC ,根据AOC △为等腰三角形可得CAO ACO ∠=∠,又因为AB 为直径, 因此可得90CAO B ∠+∠=︒,90ACO B ∠+∠=︒, ∵OP BC ∥∴90AC OP ACO COP ⊥∠+∠=︒,, 因此可得COP B ∠=∠,因此Rt Rt DOC ABC △∽△, 故而可得21OD OC AB BC ==,∴8OD =. 【提示】连接OC ,根据AOC △为等腰三角形可得CAO ACO ∠=∠,AB 为直径以及OP BC ∥得出Rt Rt DOC ABC △∽△即可求出OD 的值.【考点】相似三角形的判定 三、解答题16.【答案】(Ⅰ)tan 1x =(Ⅱ)5π12x =【解析】∵m n ⊥u r r,π(sin ,cos )sin 22224m n x x x x x ⎛⎛⎫=-=-=- ⎪ ⎝⎭⎝⎭u r r g g , ∴||1||1m n ==u r r, ,因此:(Ⅰ)若m n ⊥u r r ,可得πsin 04m n x ⎛⎫=-= ⎪⎝⎭u r r g ,∴ππππ44x k x k -=⇒=+,又∵π0,2x ⎛⎫∈ ⎪⎝⎭,π04k x ==,,因此可得πtan tan 14x ==.(Ⅱ)若m u r 和n r 的夹角为π3,可得ππ1sin ||||cos 432m n x m n ⎛⎫=-== ⎪⎝⎭u r r u r r g g, ∴ππ2π46x k -=+或π5π2π46x k -=+, 又∵π0,2x ⎛⎫∈ ⎪⎝⎭,∴πππ,444x ⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭,∴ππ46x -=,解得5π12x =.【提示】(Ⅰ)若m n ⊥u r r ,则0m n =u r rg ,结合三角函数的关系式即可求tan x 的值.(Ⅱ)若m u r 和n r 的夹角为π3,利用向量的数量积的坐标公式进行求解即可求x 的值.【考点】平面向量数量积的运算,数量积表示两个向量的夹角 17.【答案】(Ⅰ)444036433637444337, , , , , , , , (Ⅱ)40x =21009s =(Ⅲ)23人63.89%.【解析】(Ⅰ)根据系统抽样的方法,抽取9个样本,因此分成9组,每组4人.又因为第一组中随机抽样可抽到44,因此按照现有的排序分组.故而每组中抽取的都是第二个数,因此我们可得样本数据为第2个,第6个,第10个,第14个,第18个,第22个,第26个,第30个,第34个, 分别为:444036433637444337, , , , , , , , (Ⅱ)由平均值公式得444036433637444337409x ++++++++==,由方差公式得数学试卷 第11页(共16页) 数学试卷 第12页(共16页)22222212291100()()()(994440)(4040)(3740)s x x x x x x ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦-+-=+-+.(Ⅲ)103s ===,因此可得21364333x s x s -=+=,,因此在x s -和x s +之间的数据可以是444036433637444337, , , , , , , , ,因此数据一共有23人,占比为23100%63.89%36⨯≈.【提示】(Ⅰ)利用系统抽样的定义进行求解即可.(Ⅱ)根据均值和方差公式即可计算(Ⅰ)中样本的均值x 和方差2s . (Ⅲ)求出样本和方差即可得到结论. 【考点】极差,方差与标准差,分层抽样方法 18.【答案】(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)证明:由PD PC =可得三角形PDC 是等腰三角形, 又因为点E 是CD 边的中点,因此可得PE CD ⊥,又因为三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,而且相交于CD ,因此PE ⊥平面ABCD ,又因为FG 在平面ABCD 内,因此可得PE FG ⊥,问题得证.(Ⅱ)因为四边形ABCD 是矩形,因此可得AD CD ⊥, 又因为PE ⊥平面ABCD ,故而PE AD ⊥, 又PECD E =,因此可得AD ⊥平面PDC ,因此,AD PD AD CD ⊥⊥,所以P AD C PDE ∠--=∠.在等腰三角形PDC 中,46PD CD AB ===,,132DE CD==.因此可得PE ==tan 3PE PDE DE ∠==. (Ⅲ)如图所示,连接AC AE ,.∵22AF FB CG GB ==,, ∴BF BGAB BC=,BFG BAC △∽△,GF AC ∥, 因此,直线PA 与直线FG 所成角即为直线PA 与直线AC 所成角PAC ∠, 在矩形ABCD 中,点E 为CD中点,因此AE ==,而且AC =.又PE ⊥面ABCD ,三角形PAE 为直角三角形,故5PA ==,因此在PAC △中,54PA PC AC ===,,,因此可得222cos 2PA AC PC PAC PA AC +-∠==g .【提示】(Ⅰ)通过等腰三角形PDC 可得PE CD ⊥,利用线面垂直判定定理及性质定理即得结论.(Ⅱ)通过(Ⅰ)及面面垂直定理可得PE AD ⊥,则PDE ∠为二面角P AD C ∠--的平面角,利用勾股定理即得结论.(Ⅲ)连结连接AC AE ,,利用勾股定理及已知条件可得GF AC ∥,在PAC △中,利用余弦定理即得直线PA 与直线FG 所成角即为直线PA 与直线FG 所成角PAC ∠的余弦值.【考点】二面角的平面角及求法,异面直线及其所成的角,直线与平面垂直的性质 19.【答案】(Ⅰ)单调增区间为R (Ⅱ)见解析 (Ⅲ)见解析【解析】()()()()2222e 1e 12e 1e x x x xf x x x x x x '=++=++=+Qg ,因此:(Ⅰ)求导后可得函数的导函数()()21e 0x f x x '=+≥恒成立,因此函数在(,)-∞+∞上是增函数.数学试卷 第13页(共16页) 数学试卷 第14页(共16页)故而单调增区间为R .(Ⅱ)证明:令2()(1)e 0x f x x a =+-=可得2(1)e xx a +=,设212(1)e x y x y a =+=,,对函数21(1)e xy x =+, 求导后可得21(1)e 0x y x '=+≥恒成立,因此函数21(1)e xy x =+单调递增,因此可以得到函数图像. 函数2()(1)e x f x x a =+-有零点,即方程2(1)e xx a +=有解, 亦即函数212(1)e xy x y a =+=,,图像有交点.当0x =时,11y =,因此根据函数的图像可得:212(1)e xy x y a =+=,有且只有一个交点,即2()(1)e xf x x a =+-有且只有一个零点.(Ⅲ)证明:设点P 的坐标为00(,)x y ,故而在点P 处切线的斜率为:0200()(1)e 0xf x x '=+=,01x =-,因此21,1e P ⎛⎫-- ⎪⎝⎭.在点M 处切线的斜率为:22()(1)e em OP f m m k a '=+==-, 因为1a >,因此20ea ->.欲证1m ≤-,即证322(1)(1)e e m m a m +≤-=+,1e m m +≤,设()e 1x g x x =--,求导后可得()e 1xg x '=-,0x =,令()e 10xg x '=-=,因此函数在(,0)-∞上单调递减,在(0,)+∞上单调递增.因此可得()(0)0g x g ≥=,所以()e 10xg x x =--≥,e 1x x ≥+,e 1m m ≥+问题得证.【提示】(Ⅰ)利用()0f x '≥,求出函数单调增区间.(Ⅱ)证明只有1个零点,需要说明两个方面:函数单调以及函数有零点. (Ⅲ)利用导数的最值求解方法证明.【考点】利用导数研究函数的单调性,利用导数研究曲线上某点切线方程 20.【答案】(Ⅰ)1(3,0)C(Ⅱ)2230x y x +-=,其中5,33x ⎛⎤∈ ⎥⎝⎦(Ⅲ)存在34k ⎛⎧⎫∈± ⎨⎬ ⎩⎭⎝⎭【解析】依题意得化成标准方程后的圆为:22(3)4x y -+=,因此:(Ⅰ)根据标准方程,圆心坐标为1(3,0)C . (Ⅱ)数形结合法:①当动线l 的斜率不存在是,直线与圆不相交. ②设动线l 的斜率为m ,因此l y mx =:, 联立22650y mxx y x =⎧⎨+-+=⎩,则22(1)650m x x +-+=根据有两个交点可得:()22224362010056151A B A B m m x x m x x m ⎧∆=-+>⇒≤<⎪⎪⎪+=⎨+⎪⎪=⎪+⎩,故而点M 的坐标为2233,11m m m ⎛⎫ ⎪++⎝⎭,令223131x m m y m ⎧=⎪⎪+⎨⎪=⎪+⎩,因此由此可得2230x y x +-=,其中235,313x m ⎛⎤=∈ ⎥+⎝⎦. (Ⅲ)证明:联立2230(4)x y x y k x ⎧+-=⎨=-⎩,所以,2222(1)(83)160k x k x k +-++=因此,当直线L 与曲线相切时,可得29160k ∆=-=,解得34k =±. 设2230x y x +-=,5,33x ⎛⎤∈ ⎥⎝⎦的两个端点是C D 、,设直线L 恒过点(4,0)E数学试卷 第15页(共16页) 数学试卷 第16页(共16页)因此可得53C ⎛ ⎝⎭,5,3D ⎛ ⎝⎭,故而可得77CE DE k k ==-, 由图像可得当直线L 与曲线有且只有一个交点的时候,34k ⎛⎧⎫∈± ⎨⎬ ⎩⎭⎝⎭.【提示】(Ⅰ)通过将圆1C 的一般式方程化为标准方程即得结论(Ⅱ)设当直线l 的方程为y mx =,通过联立直线l 与圆1C 的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论. (Ⅲ)通过联立直线L 与圆1C 的方程,利用根的判别式0∆=及轨迹C 的端点与点(4,0)E 决定的直线斜率,即得结论.【考点】轨迹方程,直线与圆的位置关系 21.【答案】(Ⅰ)14(Ⅱ)1122n n T -=- (Ⅲ)见解析【解析】由给出的递推公式可得: ①当1n =时,1431a =-=②当2n ≥时,121122(1)42n n n n a a n a na --+++⋅⋅⋅+-+=-, 121212(1)42n n n a a n a --+++⋅⋅⋅+-=-, 所以12n n n na -=,112n n a -⎛⎫= ⎪⎝⎭其中1n =也成立,因此可得11()2n n a n -⎛⎫=∈ ⎪⎝⎭*N(Ⅰ)因此231124a ⎛⎫== ⎪⎝⎭.(Ⅱ)∵11()2n n a n -⎛⎫=∈ ⎪⎝⎭*N ,所以数列{}n a 的公比12q =,利用等比数列的求和公式可得: 111121*********n nn n T -⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎡⎤⎢⎥⎛⎫⎣⎦==-=- ⎪⎢⎥⎝⎭⎣⎦-. (Ⅲ)因为()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭11b a =,1221122a b a ⎛⎫=++ ⎪⎝⎭,1233111323a a b a +⎛⎫=+++ ⎪⎝⎭, 123111123n n n a a a a b a n n +++⋅⋅⋅+⎛⎫=++++⋅⋅⋅+ ⎪⎝⎭,因此,欲证22ln n S n <+,即证1111112122ln ln 2323n n n n ⎛⎫+++⋅⋅⋅+<+⇐++⋅⋅⋅+< ⎪⎝⎭,将ln n 化简为132l n l n l n l n l n1221n n n n n -=++⋅⋅⋅++--,即证1111l n l n l n 11n n n n n n n-⎛⎫>⇐-=--> ⎪-⎝⎭, 令()ln 1g x x x =-+,所以11()1xg x x x-'=-=,因此函数在(0,1)上单调递增,在(1,)+∞上单调递减,因此()(1)0g x g ≤=, 又因为111n-<,因此11111()0l l n1g g x nnn n⎛⎫⎛⎫⎛-<=⇒⇒-- ⎪ ⎪ ⎝⎭⎝⎭⎝, 问题得证.【提示】(Ⅰ)利用数列的递推关系即可求3a 的值.(Ⅱ)利用作差法求出数列{}n a 的通项公式,利用等比数列的前n 项和公式即可求数列{}n a 的前n 项和n T .(Ⅲ)利用构造法,结合裂项法进行求解即可证明不等式.【考点】数列与不等式的综合,数列的求和。
2015年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M ∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅2.(5分)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+ D.y=x+e x4.(5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.15.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=06.(5分)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4 B.C.6 D.7.(5分)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=18.(5分)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)在(﹣1)4的展开式中,x 的系数为.10.(5分)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.12.(5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5分)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.14.(5分)已知直线l的极坐标方程为2ρsi n(θ﹣)=,点A的极坐标为A (2,),则点A到直线l的距离为.15.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=.三、解答题16.(12分)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.17.(12分)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4 5 6 7 8 9404440413340454243101112131415161718363138394345393836192021222324252627274341373442374442282930313233343536343943384253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s 和+s之间有多少人?所占百分比是多少(精确到0.01%)?18.(14分)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.19.(14分)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m ≤﹣1.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n 项和S n满足S n<2+2lnn.2015年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅【分析】求出两个集合,然后求解交集即可.【解答】解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.故选:D.2.(5分)(2015•广东)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i【分析】直接利用复数的乘法运算法则化简求解即可.【解答】解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+ D.y=x+e x【分析】直接利用函数的奇偶性判断选项即可.【解答】解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2x+是偶函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.故选:D.4.(5分)(2015•广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.1【分析】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为=50;∴P(A)=.故选:B.5.(5分)(2015•广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.6.(5分)(2015•广东)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4 B.C.6 D.【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最小值.【解答】解:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A(1,),此时z=3×1+2×=,故选:B.7.(5分)(2015•广东)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.【解答】解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选:C.8.(5分)(2015•广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5【分析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.【解答】解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,且球的半径等于边长,即有球心与正四面体的底面的中心重合,故不成立;同理n>5,不成立.故选:B.二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)(2015•广东)在(﹣1)4的展开式中,x的系数为6.【分析】根据题意二项式(﹣1)4的展开式的通项公式为T r=•(﹣1)+1r•,分析可得,r=2时,有x的项,将r=2代入可得答案.=•(﹣1)r•,【解答】解:二项式(﹣1)4的展开式的通项公式为T r+1令2﹣=1,求得r=2,∴二项式(﹣1)4的展开式中x的系数为=6,故答案为:6.10.(5分)(2015•广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.【分析】根据等差数列的性质,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求出值.【解答】解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.11.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=1.【分析】由sinB=,可得B=或B=,结合a=,C=及正弦定理可求b 【解答】解:∵sinB=,∴B=或B=当B=时,a=,C=,A=,由正弦定理可得,则b=1当B=时,C=,与三角形的内角和为π矛盾故答案为:112.(5分)(2015•广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560条毕业留言.(用数字作答)【分析】通过题意,列出排列关系式,求解即可.【解答】解:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560条.故答案为:1560.13.(5分)(2015•广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.【分析】直接利用二项分布的期望与方差列出方程求解即可.【解答】解:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,故答案为:.14.(5分)(2015•广东)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A 的极坐标为A(2,),则点A到直线l的距离为.【分析】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可.【解答】解:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,点A的极坐标为A(2,),它的直角坐标为(2,﹣2).点A到直线l的距离为:=.故答案为:.15.(2015•广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD= 8.【分析】连接OC,确定OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,即可得出结论.【解答】解:连接OC,则OC⊥CD,∵AB是圆O的直径,∴BC⊥AC,∵OP∥BC,∴OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,∴4=OD,∴OD=8.故答案为:8.三、解答题16.(12分)(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.【分析】(1)若⊥,则•=0,结合三角函数的关系式即可求tanx的值;(2)若与的夹角为,利用向量的数量积的坐标公式进行求解即可求x的值.【解答】解:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx ﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=,||==1,•=(,﹣)•(sinx,cosx)=sinx ﹣cosx,∴若与的夹角为,则•=||•||cos =,即sinx ﹣cosx=,则sin(x ﹣)=,∵x∈(0,).∴x ﹣∈(﹣,).则x ﹣=即x=+=.17.(12分)(2015•广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4404440411011121336313839192021222743413728293031343943385 6 7 8 93340454243141516171843453938362324252627344237444232333435364253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s 和+s之间有多少人?所占百分比是多少(精确到0.01%)?【分析】(1)利用系统抽样的定义进行求解即可;(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;(3)求出样本和方差即可得到结论.【解答】解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s 和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s 和+s 之间所占百分比为≈63.89%.18.(14分)(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.【分析】(1)通过△PDC为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;(2)通过(1)及面面垂直定理可得PG⊥AD,则∠PDC为二面角P﹣AD﹣C的平面角,利用勾股定理即得结论;(3)连结AC,利用勾股定理及已知条件可得FG∥AC,在△PAC中,利用余弦定理即得直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC的余弦值.【解答】(1)证明:在△PDC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)解:连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.19.(14分)(2015•广东)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤﹣1.【分析】(1)利用f′(x)>0,求出函数单调增区间.(2)证明只有1个零点,需要说明两个方面:①函数单调;②函数有零点.(3)利用导数的最值求解方法证明,思路较为复杂.【解答】解:(1)f′(x)=e x(x2+2x+1)=e x(x+1)2,∴f′(x)>0,∴f(x)=(1+x2)e x﹣a在(﹣∞,+∞)上为增函数.(2)证明:∵f(0)=1﹣a,a>1,∴1﹣a<0,即f(0)<0,∵f()=(1+a)﹣a=+a(﹣1),a>1,∴>1,﹣1>0,即f()>0,且由(1)问知函数在(﹣∞,+∞)上为增函数,∴f(x)在(﹣∞,+∞)上有且只有一个零点.(3)证明:f′(x)=e x(x+1)2,设点P(x0,y0)则)f'(x)=e x0(x0+1)2,∵y=f(x)在点P处的切线与x轴平行,∴f′(x0)=0,即:e x0(x0+1)2=0,∴x0=﹣1,将x0=﹣1代入y=f(x)得y0=.∴,∴,要证m≤﹣1,即证(m+1)3≤a﹣,需要证(m+1)3≤e m(m+1)2,即证m+1≤e m,因此构造函数g(m)=e m﹣(m+1),则g′(m)=e m﹣1,由g′(m)=0得m=0.当m∈(0,+∞)时,g′(m)>0,当m∈(﹣∞,0)时,g′(m)<0,∴g(m)的最小值为g(0)=0,∴g(m)=e m﹣(m+1)≥0,∴e m≥m+1,∴e m(m+1)2≥(m+1)3,即:,∴m≤.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为(﹣,)∪{﹣,}.21.(14分)(2015•广东)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n 项和S n满足S n<2+2lnn.【分析】(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{a n}的通项公式,利用等比数列的前n项和公式即可求数列{a n}的前n项和T n;(3)利用构造法,结合裂项法进行求解即可证明不等式.【解答】解:(1)∵a1+2a2+…na n=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+na n=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)a n﹣1=4﹣,n∈N+.两式相减得na n=4﹣﹣(4﹣)=,n≥2,则a n=,n≥2,当n=1时,a1=1也满足,∴a n=,n≥1,则a3=;(2)∵a n=,n≥1,∴数列{a n}是公比q=,则数列{a n}的前n项和T n==2﹣21﹣n.(3)b n=+(1+++…+)a n,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴b n=+(1+++…+)a n,∴S n=b1+b2+…+b n=(1+++…+)a1+(1+++…+)a2+…+(1+++…+)a n=(1+++…+)(a1+a2+…+a n)=(1+++…+)T n=(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)=2+2×(++…+)<2+2lnn,即S n<2(1+lnn)=2+2lnn.。
2015年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4} B.{﹣1,﹣4} C.{0} D.∅2.(5分)(2015•广东)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+e x4.(5分)(2015•广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.15.(5分)(2015•广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=06.(5分)(2015•广东)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4B.C.6D.7.(5分)(2015•广东)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1C.﹣=1D.﹣=18.(5分)(2015•广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)(2015•广东)在(﹣1)4的展开式中,x的系数为.10.(5分)(2015•广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.11.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.12.(5分)(2015•广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5分)(2015•广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.14.(5分)(2015•广东)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A(2,),则点A到直线l的距离为.15.(2015•广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=.三、解答题16.(12分)(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.17.(12分)(2015•广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4 5 6 7 8 9 404440413340454243101112131415161718363138394345393836192021222324252627274341373442374442282930313233343536343943384253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?18.(14分)(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.19.(14分)(2015•广东)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP 平行,(O是坐标原点),证明:m≤﹣1.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)(2015•广东)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.答案:1、解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.故选:D.2、解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.3、解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2x+是偶函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.故选:D.4、解:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为=50;∴P(A)=.故选:B.5、解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.6、解:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A(1,),此时z=3×1+2×=,故选:B.7、解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选:C.8、解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,且球的半径等于边长,即有球心与正四面体的底面吗的中心重合,故不成立;同理n>5,不成立.故选:B.9、解:二项式(﹣1)4的展开式的通项公式为T r+1=•(﹣1)r•,令2﹣=1,求得r=2,∴二项式(﹣1)4的展开式中x的系数为=6,故答案为:6.10、解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.11、解:∵sinB=,∴B=或B=当B=时,a=,C=,A=,由正弦定理可得,则b=1当B=时,C=,与三角形的内角和为π矛盾故答案为:112、解:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560条.故答案为:1560.13、解:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,故答案为:.14、解:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,点A的极坐标为A(2,),它的直角坐标为(2,﹣2).点A到直线l的距离为:=.故答案为:.15、解:连接OC,则OC⊥CD,∵AB是圆O的直径,∴BC⊥AC,∵OP∥BC,∴OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,∴4=OD,∴OD=8.故答案为:8.16、解:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=1,||=1,•=(,﹣)•(sinx,cosx)=sinx﹣cosx,∴若与的夹角为,则•=||•||cos=,即sinx﹣cosx=,则sin(x﹣)=,∵x∈(0,).∴x﹣∈(﹣,).则x﹣=即x=+=.17、解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s和+s之间所占百分比为≈63.89%.18、(1)证明:在△POC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)解:连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.19、解:(1)f'(x)=e x(x2+2x+1)=e x(x+1)2…2分∴f′(x)≥0,∴f(x)=(1+x2)e x﹣a在(﹣∞,+∞)上为增函数.…3分(2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数.又f(0)=1﹣a,∵a>1.∴1﹣a<0…5分∴f(0)<0.当x→+∞时,f(x)>0成立.∴f(x)在(﹣∞,+∞)上有且只有一个零点…7分(3)证明:f'(x)=e x(x+1)2,设点P(x0,y0)则)f'(x)=e x0(x0+1)2,∵y=f(x)在点P处的切线与x轴平行,∴f'(x0)=0,即:e x0(x0+1)2=0,∴x0=﹣1…9分将x0=﹣1代入y=f(x)得y0=.∴,∴…10分令;g(m)=e m﹣(m+1)g(m)=e m﹣(m+1),则g'(m)=e m﹣1,由g'(m)=0得m=0.当m∈(0,+∞)时,g'(m)>0当m∈(﹣∞,0)时,g'(m)<0∴g(m)的最小值为g(0)=0…12分∴g(m)=e m﹣(m+1)≥0∴e m≥m+1∴e m(m+1)2≥(m+1)3即:∴m≤…14分20、解:(1)∵圆C1:x2+y2﹣6x+5=0,21、 解:(1)∵a 1+2a 2+…na n =4﹣,n ∈N +. ∴a 1=4﹣3=1,1+2a 2=4﹣=2,解得a 2=, ∵a 1+2a 2+…+na n =4﹣,n ∈N +.∴a 1+2a 2+…+(n ﹣1)a n ﹣1=4﹣,n ∈N +.整理,得其标准方程为:(x ﹣3)2+y 2=4, ∴圆C 1的圆心坐标为(3,0);(2)设当直线l 的方程为y=kx 、A (x 1,y 1)、B (x 2,y 2), 联立方程组,消去y 可得:(1+k 2)x 2﹣6x+5=0, 由△=36﹣4(1+k 2)×5>0,可得k 2< 由韦达定理,可得x 1+x 2=,∴线段AB 的中点M 的轨迹C 的参数方程为,其中﹣<k <,∴线段AB 的中点M 的轨迹C 的方程为:(x ﹣)2+y 2=,其中<x ≤3; (3)结论:当k ∈(﹣,)∪{﹣,}时,直线L :y=k (x ﹣4)与曲线C只有一个交点. 理由如下: 联立方程组,消去y ,可得:(1+k 2)x 2﹣(3+8k )x+16k 2=0, 令△=(3+8k )2﹣4(1+k 2)•16k 2=0,解得k=±, 又∵轨迹C 的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L :y=k (x ﹣4)与曲线C 只有一个交点时, k 的取值范围为(﹣,)∪{﹣,}.两式相减得na n=4﹣﹣(4﹣)=,n≥2,则a n=,n≥2,当n=1时,a1=1也满足,∴a n=,n≥1,则a3=;(2)∵a n=,n≥1,∴数列{a n}是公比q=,则数列{a n}的前n项和T n==2﹣21﹣n.(3)b n=+(1+++…+)a n,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴S n=b1+b2+…+b n=(1+++…+)(a1+a2+…+a n)=(1+++…+)T n =(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)<2+lnn,即S n<2(1+lnn)=2+2lnn.11。
2015广东高考理科数学新思维训练Ⅲ1.下列各式中值为21的是( ) 2.某气象站天气预报的准确率为80%,则5次预报中至少有4次准确的概率为( )A .0.2B .0.41C .0.74D .0.673.若平面α⊥β,α∩β=l ,且点P ∈α,P ∉l ,则下列命题中的假命题...是( ) A .过点P 且垂直于α的直线平行于β B .过点P 且垂直于l 的直线在α内C .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的平面垂直于β4.函数y=|tanx|·cosx )2230(ππ≠≤≤x x ,的图象是( )5.已知方程1||+=ax x 有一负根且无正根,则实数a 的取值范围是( ) A .a >-1 B .a=1 C .a ≥1 D .a ≤1 6.=-︒==k a a b k b a b a 垂直,则与,要使的夹角为与,若 45,2||2|| .7.如图,三棱锥P -ABC 中,PA ⊥PC ,BC ⊥平面PAC ,下列五个结论正确的是 . ①平面PAB ⊥平面PBC ②平面PAB ⊥平面ABC③平面PAC ⊥平面ABC ④平面PAC ⊥平面PAB⑤平面PBC ⊥平面ABC8.直三棱柱ABC -A 1B 1C 1中,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 为A 1C 1的中点,E 为B 1C 的中点,在线段AA 1上是否存在点F ,使CF ⊥平面B 1DF ,若存在,求出|AF|;若不存在,说明理由.k μ oo o o D C B A 5.22tan 15.22tan .26cos 1.12sin 12cos .15cos 15sin .222--- πππ。
2015年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】由已知得{|21}B x x =-<<,故,}10{A B -=I ,故选A . 【提示】解一元二次不等式,求出集合B ,然后进行交集的运算即可. 【考点】集合的交集运算和一元二次方程求根. 2.【答案】B【解析】由已知得24+(4)i 4i a -=-,所以40a =,244a -=-,解得0a =,故选B .【提示】首先将坐标展开,然后利用复数相等解之. 【考点】复数的四则运算. 3.【答案】D【解析】解:A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B .2004~2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误. 故选:D【提示】A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A 正确; B .从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误. 【考点】柱形图信息的获得. 4.【答案】B【解析】设等比数列公比为q ,则24111++21a a q a q =,又因为13a =,所以42+60q q -=,解得22q =,所以2357135++(++)42a a a a a a q ==,故选B .【提示】由已知,13a =,135++21a a a =,利用等比数列的通项公式可求q ,然后在代入等比数列通项公式5k=-,所以1AB CB32622()0x g x >,数形结合解不等式组即可.Ⅱ卷+a b λ与+2a b 平行,所以+(+2)a b k a b λ=,则1λ⎧⎨+a b λ与+2a b 之间的关系,利用向量相等解析1n S ,两边同时除以+1n S ,得1S 11(n S =--,所以n S =-1n S ,并变形可得数列sin AB AD BAD ∠sin AC AD CAD ∠∠AD BD ADBcos∠AD DC ADCcos,【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下:【解析】(Ⅰ)交线围成的正方形EHGF 如图:为坐标原点,DA 的方向为.(0,HE =-,(10,0,0)FE =设(,,)n x y z =是平面EHGF 00n FE n HE ⎧=⎪⎨=⎪⎩,即,所以可取(0,4,3)n =又(10,4,8)AF -=||45,|=15||||n AF n AF n AF =所成的角的正弦值为4515.轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确的法向量为(,,)n x y z=n FEn HE⎧=⎪⎨=⎪⎩即可求出法向量AF坐标可以求出,,|n A F即可求得直线【考点】线面平行、相交,线面夹角的求解.又因为O分别与∥.EF BC(Ⅱ)由(Ⅰ)知,是EF的垂直平分线,又为O的弦,等于O的半径的,30=,因此△OAE︒2,3。
2015年高考全国新课标卷Ⅱ理科数学真题一、选择题1、已知集合A={–2,–1,0,1,2},B={x|(x –1)(x+2)<0},则A∩B=() A .{–1,0} B .{0,1} C .{–1,0,1} D .{0,1,2}2、若a 为实数,且(2+ai)(a –2i)=–4i ,则a=() A .–1 B .0 C .1 D .23、根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较,2008年减少二氧化硫排放量的效果最显着B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .20064、已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则A .21 B .42 C .63 D .84 5、设函数f(x)=,则f(–2)+f(log 212)=() A .3 B .6 C .9 D .12 6.一个正方体被一个平面截去一部分后,分体积的比值为()A .B .C .D .7、过三点A .2 8、如上左2a=() A .0 9、已知A ,C 为该球上的动点,若三棱锥O –ABC 的体积最大值为36A .36π.256π10、如上左O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x x 的函数,则y=f(x)的图像大致为()A .B .C .D . 11、已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为()A .B .2C .D .12、设函数f’(x)是奇函数f(x)(x R)的导函数,f(–1)=0,当x>0时,xf’(x)–f(x)<0,则使得f(x)>0成立的x 的取值范围是() A .(–∞,–1)∪(0,1) B .(,0)∪(1,+∞)C .(–∞,–1)∪(–1,0) D .(,1)∪(1,+∞) 二、填空题13、设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ=. 14、若x ,y 满足约束条件,则z=x+y 的最大值为.15、(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a=.16、设S n 是数列{a n }的前n 项和,且a 1=–1,a n+1=S n S n+1,则S n =________________. 三、解答题17、△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2倍. (1)求.(2)若AD=1,DC=,求BD 和AC 的长.18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下: A 地区:62738192958574645376 78869566977888827689B 地区:73836251914653736482 93486581745654766579(1)均值及分散程度(记事件C :“A 地区用户的满意等级高于B 19、如图,长方形ABCD –A 1B 1C 1D 1中,AB=16,BC=101F=4.过点E ,F 的平面α(1)在途中画出这个正方形(不必说明画法和理由(2)求直线AF 与α平面所成角的正弦值.20、已知椭圆C :9x 2+y 2=M 2(m>0).直线l A ,B ,线段AB 的中点为M .(1)(2)若l l 的21、设函数(1)证明:(2)2)|≤e –1,求m 的取值范围.22、[选修4ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N E ,F 两点. (1)(2)若AG EBCF 的面积. 23、[选修4xOy 中,曲线C 1:(t 为参数,t≠0),其中0≤α<π. 在以O C 2:ρ=2sinθ,C 3:ρ=2cosθ. (1)求C 2与C (2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值24、[选修4–5:不等式选讲]设a ,b ,c ,d 均为正数,且a+b=c+d ,证明: (1)若ab>cd ,则+>+;(2)+>+是|a –b|<|c –d|的充要条件. 2015年高考全国新课标卷Ⅱ理科数学真题 一、选择题1、答案:A .∵(x–1)(x+2)<0,解得–2<x<1,∴B={x|–2<x<1},∴A∩B={–1,0}.2、答案:B .∵(2+ai)(a–2i)=(2a+2a)+(a 2–4)i=–4i ,∴a 2–4=–4,解得a=0.3、答案:D .由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.4、答案:B .∵a 1+a 3+a 5=a 1+a 1q 2+a1q 4=3(1+q 2+q 4)=21,∴1+q 2+q 4=7,整理得(q 2+3)(q 2–2)=0.解得q 2=2,∴a 3+a 5+a 7=a 1q 2+a 1q 4+a 1q 6=a 1q 2(1+q 2+q 4)=3×2×7=42. 5、答案:C .∵f(–2)=1+log 2(2+2)=3,()222log 121log 3log 412log 1222f -+-==222log 3log 2log 6226+===,∴f(–2)+f(log 212)=9.6、答案:D .如图所示截面为ABC ,设边长为a ,则截取部分体积为S △ADC ·|DB|=a 3, 所以截去部分体积与剩余部分体积的比值为=.7、答案:C .由题可得,解得,所以圆方程为x 2+y 2–2x+4y –20=0,令x=0,解得y=–2±2, 所以|MN|=|–2+2–(–2–2)|=4. 8、答案:B .输入a=14,b=18.第一步a≠b 成立,执行a>b ,不成立执行b=b –a=18–14=4; 第二步a≠b第三步a≠b 第四步a≠b 第四步a≠b 第五步a≠b 9、答案:C 点C 到平面10、答案:当点P 在CD 当x=时,从点P B . 11、答案:过点M 作, 12、答案:因为当x>0 又因为函数且g(–, 二、填空题131415、答案:所以Ca+Ca+C+C+C=32,解得a=3.16、答案:–.∵a n+1=S n+1–S n =S n S n+1,∴–=1.即–=–1,∴{}是等差数列, ∴=–(n –1)=–1–n+1=–n ,即S n =–. 三、解答题17、答案:(1);(2)|BD|=,|AC|=1.(1)如图,由题意可得S △ABD =|AB||AD|sin ∠BAD,S △ADC =|AC||AD|sin ∠CAD, ∵S △ABD =2S △ADC ,∠BAD=∠DAC,∴|AB |=2|AC|,∴==. (2)设BC 边上的高为h ,则S △ABD =|BD|·h=2S △ADC =2××h ,解得|BD|=,设|AC|=x ,|AB|=2x ,则cos ∠BAD=,cos ∠DAC=.∵cos∠DAC=cos ∠BAD ,∴=,解得x=1或x=–1(舍去).∴|AC|=1. 18、(1)如图所示.通过茎叶图可知A 地区的平均值比B 地区的高,A地区的分散程度大于B地区.(2)记事件不满意为事件A1,B1,满意为事件A2,B2,非常满意为事件A3,B3.则由题意可得P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,则P(C)=P(A2)P(B1)+P(A3)(P(B1)+P(B2))=×+×(+)=.19、(1)如图所示(2)建立空间直角坐标系.由题意和(1)可得A(10,0,0),F(0,4,8),E(10,4,8),G(10,10,0),则向量AF=(–10,4,8),EF=(–10,0,0),EG=(0,6,–8).设平面EFHG的一个法向量为n=(x,y,z),则,即,解得x=0,令y=4,z=3,则n=(0,4,3).所以直线AF与α平面所成角的正弦值为sinθ=|cos<AF,n>|===.20、(1)设直线l的方程为y=kx+b(k≠0),点A(x1,y1),B(x2,y2),则M(,),联立方程,消去y整理得(9+k2)x2+2kbx+b2–m2=0(*),∴x1+x2=–,y1+y2=k(–)+2b=,∴kOM ·kAB=·k=·(–)·k=–9.k=4±,有21∴∴,所以此时当令e–m–2m 在而.当当22则∵.在在Rt△AEO中,sin∠OAE===.∴∠OAE=60°,∵∠OAE=∠OAF=∠EAF,AE=AF,∴∠EAF=2∠OAE=60°,∴△AEF、△ABC是等边三角形.连接OM,∴OM=2.∵OD⊥MN,∴MD=ND=MN=.在Rt△ODM中,OD===1,∴AD=OA+AD=4+1=5.在Rt△ADB中,AB===.∴四边形EBCF的面积为S△ABC –S△AEF=×()2–×(2)2=.23、(1)将曲线C2,C3化为直角坐标系方程C2:x2+y2–2y=0,C3:x2+y2–2x=0.联立,解得或.所以交点坐标为(0,0),(,).(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.∵A的极坐标为(2sinα,α),B的极坐标为(2cosα,α).∴|AB|=|2sinα–2 cosα|=4|sin(α–)|.当α=时,|AB|取得最大值,最大值为4.24、(1)由题意可得(+)2=a+b+2,(+)2=c+d+2,∵ab>cd,∴>,而a+b=c+d,∴(+)2>(+)2,即+>+.(2)+>+,即a+b+2>c+d+2,∴>,∴ab>cd,∴–4ab<–4cd,∴(a+b)2–4ab<(c+d)2–4cd,∴(a–b)2<(c–d)2,∴|a–b|<|c–d|.。
试卷类型:A湛江市2015届普通高考测试(二)数学(理科)本试卷共4页,共21小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上,用2B 铅笔将答题卡试卷类型(A )填涂在答题卡上。
在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号。
将相应的试室号、座位号信息点涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考试结束后,将试卷和答题卡一并交回.参考公式:球的表面积公式:24R S ⋅⋅=π 其中R 是球的半径.圆柱的侧面积公式:l r S ⋅⋅=π2 其中r 是底面半径,l 是母线长 参考数据:))()()(()(2d b c a d c b a bc ad n K ++++-=,(其中d c b a n +++=)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}231x x M =-<,集合{}13x x N =-<<,则MN =( ).A .MB .NC .{}12x x -<<D .{}3x x <2.已知z 是复数,i 是虚数单位,若i zi +=1,则z =( ).A .i +1B .i -1C .i +-1D .i --13.随机变量ξ服从正态分布)4,3(N ,若)2()32(+>=-<a P a P ξξ,则a 的值为( ).A .37B .34 C .3 D .44.一个几何体的三视图如图,正视图和侧视图 都是由一个半圆和一个边长为2的正方形组 成,俯视图是一个圆,则这个几何体的表面 积为( ). A .5π B .6πC .7πD .9π5.在右图所示的程序框图中,输出的i 和s 的值分别为( ). A .3,21 B .3,22C .4,21D .4,226.设)(x f 是定义在R 上的周期为3的周期函 数,如图表示该函数在区间]1,2[-上的图像,则)2015()2014(f f +=( ). A .3 B .2C .1D .07.若平面向量()1,2a =-与b的夹角是︒180,且53||=b,则b 的坐标为( ).A .)6,3(-B .)6,3(-C .)3,6(-D .)3,6(-8.对于任意正整数n ,定义“!!n ”如下:当n 是偶数时,()()!!24642n n n n =⋅-⋅-⋅⋅⋅⋅⋅⋅⋅⋅; 当n 是偶数时,()()!!24531n n n n =⋅-⋅-⋅⋅⋅⋅⋅⋅⋅⋅; 且有()()!12321n n n n =⋅-⋅-⋅⋅⋅⋅⋅⋅⋅⋅. 则如下四个命题:①()()2015!!2016!!2016!⋅=;②10082016!!21008!=⨯;③2015!!的个位数是5; ④2014!!的个位数是0.其中正确..的命题有( ). A .1个 B .2个C .3个D .4个二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.) (一)必做题(9~13题)9.曲线x x y sin +=在点(0,0)处的切线方程是________________.10.双曲线C :221916x y -=的离心率是 . 11.=-⎰dx x |1|20_______________.12.某所学校计划招聘男教师x 名,女教师y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧<≤-≥-6252x y x y x ,则该校招聘的教师最多是 名.13.已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,43214321b b b b a a a a +++<+++,则集合A 的取法共有____________种.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)直线l 的参数方程为1x y t ⎧=⎪⎨=+⎪⎩(t 为参数),则直线l 的倾斜角为 .15.(几何证明选讲选做题)如图,在梯形CD AB 中,D//C A B ,D 2A =,C 5B =,点E .F 分别在AB .CD 上,且F//D E A ,若34AE =EB ,则F E 的长为 .三.解答题(本大题共6小题,共80分.解答应写出文字说明.证明过程或演算步骤.) 16.(本小题满分12分)设函数)(,sin 3cos )(R x x x x f ∈-= (1)求函数)(x f 在区间]2,0[π上的值域(2)记ABC ∆内角C B A ,,的对应边分别为c b a ,,,若1)3(=-πA f ,且b a 23=,求B sin 的值.17.(本小题满分12分)某中学一名数学教师对全班50名学生某 次考试成绩分男生女生进行了统计(满分150 分),得到右面频率分布表:其中120分(含120分)以上为优秀. (1)根据以上频率表的数据,完成下面的2⨯2 列联表;(2)根据(1)中表格的数据计算,你有多大把握 认为学生的数学成绩与性别之间有关系?(3)若从成绩在[130,140]的学生中任取3人, 已知取到的第一个人是男生,求取到的另外 2人中至少一名女生的概率.18.(本小题满分14分)如图,四棱锥ABCD P -中,045BCD 1AD AB 2CD ,,//AB ABCD =∠===⊥⊥,,且,平面DC AD DC PD . (1)若点M 是PD 的中点,证明:PBC AM//平面;(2)若PBC ∆得面积为2,求二面角D -PC -B的余弦值.19.(本小题满分14分)数列{}n a 的前n 项和记为n S ,对任意的正整数n ,均有()241n n S a =+,且0n a >.()1求1a 及数列{}n a 的通项公式; ()2令114)1(+--=n n n n a a nb ,求数列}{n b 的前n 项和n T .20.(本小题满分14分)已知曲线E 上的任一点到点)3,0(1-F 和点)3,0(2F 的距离之和为4.(1)求曲线E 的方程;(2)已知点)0,1(),2,0(C A ,设直线)0(,>=k kx y 与曲线E 交于B .D 两点(B 在第一象限),求四边形ABCD 面积的最大值.21.(本小题满分14分)已知函数b a bx ax x f ,(,1)(2++=为实数,),0R x a ∈≠. (1)若0)1(=-f ,且函数)(x f 的值域为),0[+∞,求)(x f ;(2)设0,0,)()()(<>⎩⎨⎧-=x x x f x f x F ,0,0,0>>+<a n m mn ,且函数)(x f 为偶函数.证明:0)()(>+n F m F ;(3)设)(,1ln )(x g ex x g x+=的导函数是),(x g '当1==b a 时,证明:对任意实数0>x ,21)(]1)([-+<'-e x g x f .数学(理科)参考答案。
2015广东高考理科数学新思维训练Ⅳ1.已知直线l 1:ax +2y+6=0与l 2:x +(a +1)y+a 2-1=0平行,则实数a 的取值是( )A .-1或2B .0或1C .-1D .2 2.函数 f (x )=|log a x | (0<a <1)的单调减区间是( )A .(0,a ]B .(0,+∞)C .(0,1]D .[1,+∞]3.经过点(0,2)作直线l ,使它与双曲线1422=-y x 有且只有一个公共点,则这样的直线l 一共有( )A .1条B .2条C .3条D .4条4.函数)3sin()3cos(3)(θθ---=x x x f 是奇函数,则θ等于( )336πππππππ-++k D k C k B k A . . . .5.水池有两个进水口,1个出水口,每个进出水口进出水速度如图甲、乙所示,某天0点到6 点,该水池的蓄水量如图丙所示(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的论断是( )A .①B .①②C .①③D .①②③6.下列结论正确的是 .①α⊥β,a ∈α⇒ a ⊥β ②α∥β,a ∈α⇒ a ∥β ③a ⊥α,b ∈α⇒ a ⊥b④a ∥α,b ∈α⇒ a ∥b ⑤a ,b ∈α,c ⊥a ,c ⊥b ⇒ c ⊥α7.的交点的轨迹方程是和两条直线)1(0101±≠=--=++a ay x y ax . 8.已知矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面ABCD ,且PA =1. (Ⅰ)问BC 边上是否存在一点Q ,使得PQ ⊥QD ,并说明理由.(Ⅱ)若BC 边上有且只有一个点Q ,使得PQ ⊥QD ,求这时二面角Q -PD -A 的大小.k μ。
2015广东高考理科数学新思维训练Ⅱ
1.若a 、b 是异面直线,则以下命题正确的是
A .至多有一条直线与a 、b 都垂直
B .至多有一个平面分别与a 、b 平行
C .过a 至少有一个平面平行于b
D .过a 至少有一个平面垂直于b
2.在4次独立重复实验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是
A .[O .4,1]
B .(O ,0.4]
C .(O ,0.6]
D .[0.6,1)
3.在四个函数|x |sin (4)y 2
x cos -2x
tan (3)y |sinx |(2)y sin2x (1)y ====,其中周期T =π,且在(0,2
π)上是增函数的个数是 A .1个 B .2个 C .3个 D .4个 4.f(x)=x 3+ax-2在(1,+∞)内是增函数,则实数a 的取值范围为
A .[3,+∞)
B .[-3,+∞)
C .(-3,+∞)
D .(-∞,-3)
5.有一道试题,A 解决的概率为21,B 解决的概率为31,C 解决的概率为4
1,则A 、B 、C 三人独立解答此题,只有1人解出的概率为
3
1.2417.2411.241.D C B A 6.若==+ααπ2cos 5
3)2sin(,则 . 7.在△ABC 中,∠C =90o ,AB =8,∠ABC =30o ,PC ⊥面ABC ,PC =4,P '是AB 上一动点,则PP '的最小值为 .
8.已知a ≠0,函数]2
0[22sin 32cos π
,,∈++--=x b a x a x a y ,若函数值域为[-5,1],求常数a 、b 的值.
k μ。