初中数学七年级上学期期中试题.doc
- 格式:doc
- 大小:164.88 KB
- 文档页数:6
一、选择题1.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2015,则m的值是()A.43B.44C.45D.462.绝对值不大于4的整数的积是()A.16B.0C.576D.﹣13.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里4.下面四个图形中,是三棱柱的平面展开图的是( )A.B.C.D.5.23的相反数是()A.32B.32-C.23D.23-6.-2的倒数是()A.-2B.12-C.12D.27.下列数中,最小的负数是()A.-2 B.-1 C.0 D.18.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我9.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次收费(元)A类1500100B类300060C类400040例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( ) A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡D .不购买会员年卡10.如图,将一三角板按不同位置摆放,其中1∠与2∠互余的是( )A .B .C .D .11.若代数式x +2的值为1,则x 等于( ) A .1B .-1C .3D .-312.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是( )A .B .C .D .13.如果||a a =-,下列成立的是( ) A .0a >B .0a <C .0a ≥D .0a ≤14.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >015.周长为68的长方形ABCD 被分成7个全等的长方形,如图所示,则长方形ABCD 的面积为( )A .98B .196C .280D .284二、填空题16.当a =________时,关于x 的方程+23=136x x a+-的解是x =-1. 17.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D 得82分,则他答对了__________道题. 参赛者答对题数答错题数 得分A20 0100 B191 94 C 1466418.如图,90AOB ∠=︒,OD 平分BOC ∠,45DOE ∠=︒,则AOE ∠________COE ∠.(填“>”“<”或“=”)19.把六张形状大小完全相同的小长方形卡片(如图 1)不重叠地放在一个底面为长方形(长为 20cm ,宽为 16cm )的盒子底部(如图 2),盒子底面未被卡片覆盖的部分用阴影表示.则图 2 中两块阴影部分周长的和是_________ .20.如图,是小明用火柴搭的1条、2条、3条“金鱼”…,分别用去火柴棒8根、14根、 20根、…,则搭n 条“金鱼”需要火柴棒________根(含n 的代数式表示).21.整理一批数据,甲单独完成需要30小时,乙单独完成需要60小时,现在由甲乙两人合作5小时后,剩余的由乙单独做,还需要_______小时完成.22.太阳半径约为696000千米,数字696000用科学记数法表示为 千米. 23.2a -2-9 | = 0,则ab = ____________ 24.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n 个这样的三角形需要火柴棒______________根. 25.23-的相反数是______.三、解答题26.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( ) A .B .C .D .27.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.61545454 2.6154••=为例,进行探索:设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,② ②-①得:99261.54 2.61258.93x =-=25893287799001100x ∴== 因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•=(2)试说明3.1415••是一个有理数,即能用一个分数表示. 28.解下列方程:(1)x-7=10 - 4(x+0.5) ; (2)132123x x-+-=. 29.有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果. (1)计算:1269+﹣﹣;(2)若请推算12696÷⨯=﹣,□内的符号;(3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数. 30.一个角的余角比这个角的补角的13还小10°,求这个角.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题二、填空题16.-1【解析】由题意得:解得:a=-1故答案为-117.17【解析】【分析】由参赛者A的得分就可以得出答对一题的得5分再由参赛者BC可知答错一题扣1分;设答对的题有x题则答错的有(20-x)题根据答对的得分-答错题的得分=82分建立方程求出其解即可;【详18.【解析】【分析】先根据角的和差得出再根据角平分线的定义得出由此即可得出答案【详解】又即OD平分故答案为:【点睛】本题考查了角的和差角平分线的定义掌握角的和差运算是解题关键19.64【解析】试题分析:设小长方形的长为xcm宽为ycm根据题意得:20=x+3y则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y20.6n+2或8+6(n-1)【解析】【分析】关键是通过归纳与总结得到其中的规律【详解】解:观察图形发现:搭1条金鱼需要火柴8根搭2条金鱼需要14根即发现了每多搭1条金鱼需要多用6根火柴则搭n条金鱼需要21.45【解析】【分析】由已知先得到甲乙的工作效率再根据合作的工作总量为1得到方程求解即可【详解】由题意得:甲一小时完成乙一小时完成设乙还需x小时完成解得x=45故答案为:45【点睛】此题考查一元一次方22.【解析】试题分析:696000=696×105故答案为696×105考点:科学记数法—表示较大的数23.6或-6【解析】分析:根据非负数的性质列出方程求出ab的值代入所求代数式计算即可详解:+|b2﹣9|=0∴a﹣2=0b=±3因此ab=2×(±3)=±6故答案为:±6点睛:本题考查了非负数的性质:几24.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是325.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.-1【解析】由题意得:解得:a=-1故答案为-1解析:-1【解析】由题意得:1231 36a-+-+-=,解得:a=-1,故答案为-1.17.17【解析】【分析】由参赛者A的得分就可以得出答对一题的得5分再由参赛者BC可知答错一题扣1分;设答对的题有x题则答错的有(20-x)题根据答对的得分-答错题的得分=82分建立方程求出其解即可;【详解析:17【解析】【分析】由参赛者A的得分就可以得出答对一题的得5分,再由参赛者B,C可知,答错一题扣1分;设答对的题有x题,则答错的有(20-x)题,根据答对的得分-答错题的得分=82分,建立方程求出其解即可;【详解】由参赛者A的得分就可以得出答对一题的得5分,再由参赛者B,C可知,答错一题扣1分;设答对的题有x题,则答错的有(20-x)题,所以5x-(20-x)=82解得x=17故答案为:17.【点睛】考核知识点:一元一次方程的与比赛问题.理解题意,求出积分规则是关键.18.【解析】【分析】先根据角的和差得出再根据角平分线的定义得出由此即可得出答案【详解】又即OD平分故答案为:【点睛】本题考查了角的和差角平分线的定义掌握角的和差运算是解题关键解析:=【解析】 【分析】先根据角的和差得出45,45BOD C CO O E D A E O ∠+∠+∠==∠︒︒,再根据角平分线的定义得出BOD COD ∠=∠,由此即可得出答案. 【详解】45DOE ∠=︒45COE DO COD E ∴∠+∠=∠=︒又90AOB ∠=︒90DOE BOD OE AOB A ∠=∠∴+∠+=∠︒,即4905AOE BOD ︒+∠=+∠︒45AOE BOD ∴+∠=∠︒BOD CO OE AOE C D ∠=∠+∠∴∠+ OD 平分BOC ∠ BOD COD ∴∠=∠AOE COE ∴∠=∠ 故答案为:=. 【点睛】本题考查了角的和差、角平分线的定义,掌握角的和差运算是解题关键.19.64【解析】试题分析:设小长方形的长为xcm 宽为ycm 根据题意得:20=x+3y 则图②中两块阴影部分周长和是:40+2(16-3y )+2(16-x )=40+64-6y-2x=40+64-2(x+3y解析:64 【解析】试题分析:设小长方形的长为xcm ,宽为ycm , 根据题意得:20=x+3y , 则图②中两块阴影部分周长和是:40+2(16-3y )+2(16-x )=40+64-6y-2x=40+64-2(x+3y )=40+64-40=64(cm ) 考点:代数式的应用.20.6n+2或8+6(n-1)【解析】【分析】关键是通过归纳与总结得到其中的规律【详解】解:观察图形发现:搭1条金鱼需要火柴8根搭2条金鱼需要14根即发现了每多搭1条金鱼需要多用6根火柴则搭n 条金鱼需要解析:6n+2或8+6(n-1) 【解析】 【分析】关键是通过归纳与总结,得到其中的规律. 【详解】解:观察图形发现:搭1条金鱼需要火柴8根,搭2条金鱼需要14根,即发现了每多搭1条金鱼,需要多用6根火柴.则搭n 条“金鱼”需要火柴8+6(n ﹣1)=6n +2.故答案为:6n +2. 【点睛】本题考查了图形的变化类问题,此类题找规律的时候一定要注意结合图形进行发现规律.21.45【解析】【分析】由已知先得到甲乙的工作效率再根据合作的工作总量为1得到方程求解即可【详解】由题意得:甲一小时完成乙一小时完成设乙还需x 小时完成解得x=45故答案为:45【点睛】此题考查一元一次方解析:45 【解析】 【分析】由已知先得到甲、乙的工作效率,再根据合作的工作总量为1得到方程求解即可. 【详解】由题意得:甲一小时完成130,乙一小时完成160, 设乙还需x 小时完成,115()1306060x⨯++=, 解得x=45, 故答案为:45. 【点睛】 此题考查一元一次方程的实际应用,正确理解题意是解题的关键.22.【解析】试题分析:696000=696×105故答案为696×105考点:科学记数法—表示较大的数解析:56.9610⨯ . 【解析】试题分析:696000=6.96×105,故答案为6.96×105. 考点:科学记数法—表示较大的数.23.6或-6【解析】分析:根据非负数的性质列出方程求出ab 的值代入所求代数式计算即可详解:+|b2﹣9|=0∴a ﹣2=0b=±3因此ab=2×(±3)=±6故答案为:±6点睛:本题考查了非负数的性质:几解析:6或-6 【解析】分析:根据非负数的性质列出方程求出a 、b 的值,代入所求代数式计算即可.b 2﹣9|=0,∴a ﹣2=0,b =±3,因此ab =2×(±3)=±6. 故答案为:±6.点睛:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是3n解析:21【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,依次多2个,可推出第n个这样的三角形需要多少根火柴.【详解】∵第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,发现依次多2个,即可推出第n个这样的三角形需要2n+1根火柴.【点睛】本题考查图形的变换规律,得到每个图形中火柴的根数与图形的个数的关系式解决本题的关键.25.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数【解析】【分析】直接根据相反数的定义进行解答即可.【详解】-【点睛】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.三、解答题26.C【解析】【分析】先根据图形结合互余的定义进行一一判断,然后综合即可得出符合题意的选项.【详解】解:A、∠α与∠β不一定互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点睛】本题考查的知识点是对顶角、余角和补角.解题关键是熟记“互余的两个角的和等于90°”. 27.(1)149;(2)见解析 【解析】【分析】 (1)设 1.5x •=,两边乘10,仿照例题可解;(2)设 3.1415x ••=,两边乘100,仿照例题可化简求解.【详解】解:(1)设 1.5x •=,①两边乘10得:1015.5x •=,②②-①得:914x =, ∴149x =, ∴141.59•=; (2)设 3.1415x ••=,①两边同乘以100得:••100314.15x =,②②-①得:314.15 3.1499311.1105x ••••=-= 311011036799003300x ∴==, 因此3.1415••是有理数【点睛】本题需理解题中的例子,将一个循环小数化为分数的方法,需要学生有很好的分析理解能力.28.(1)3;(2)15-【解析】【分析】(1)首先将原方程去掉括号,然后进一步移项化简,最后通过系数化1即可求出解; (2)首先将原方程去掉分母,再去掉括号,然后进一步移项化简,最后通过系数化1即可求出解.【详解】(1)去括号可得:71042x x -=--,移项可得:41072x x +=+-,化简可得:515x =,解得:3x =;(2)去分母可得:()()312326x x --+=,去括号可得:33646x x ---=,移项可得:34636x x -=++,化简可得:15x -=,解得:15x =-.【点睛】本题主要考查了解一元一次方程,熟练掌握相关方法是解题关键.29.(1)-2;(2)-;(3)-20,理由详见解析.【解析】【分析】(1)根据有理数的加减法法则解答即可;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【详解】(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴112⨯⨯6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”; (3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点睛】本题考查了有理数的混合运算,明确有理数混合运算的计算方法是解答本题的关键. 30.60°【解析】【分析】设这个角是x 度,根据题意列方程求解.【详解】解:设这个角为xº,列方程:90-x=13(180-x )-10, 解得x=60,故这个角是60度.【点睛】本题考查余角补角性质;解一元一次方程,根据题目数量关系正确列方程计算是解题关键.。
2023~2024学年度第一学期期中质量检测七 年 级 数 学(2023.11)本试题分试卷和答题卡两部分.第Ⅰ卷共2页,满分为40分;第Ⅱ卷共6页,满分为110分.本试题共8页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将试卷、答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共40分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果“盈利3%”记作+3%,那么-5%表示A. 少赚5%B. 亏损-5%C. 盈利5%D. 亏损5%2.下列几何体中,属于棱柱的是A. B. C. D.3.据济南市统计局发布,2023年上半年蔬菜累计生产约3111000吨.数据3111000用科学记数法可表示为A. 0.3111×106B. 3.111×106C. 3.111×107D. 31.11×1054.下列各式符合代数式书写规范的是A. a 9B. x -3元C.D. 2x 5.用一个平面去截一个正方体,不可能出现的截面形状是A. 七边形B. 六边形C. 五边形D. 四边形6.下列各组数中,相等的一组是A. -(-1)与-|-1|B. (-5)3 与-53C. -32与(-3)2D. 与7.若|a +2|+|b -1|=0,则ab =A. 0 B. 3C. 2D. -28.下列说法正确的有①6x 2-3x -2的项是6x 2,3x ,2;t s 724322(34)②一个多项式的次数是3,则这个多项式中只有一项的次数是3;③单项式-3πx 2的系数是-3;④0是整式.A. 0个B. 1个C. 2个D. 3个9.如图1所示,点A ,B ,C 是数轴上从左到右排列的三个点,对应的数分别为-5,b ,4,某同学将刻度尺如图2放置,使刻度尺上的刻度0cm 对齐数轴上的点A ,发现点B 对齐刻度1.8cm ,点C 对齐刻度5.4cm ,则数轴上点B 所对应的数b 为A. 3B. -1C. -2D. -310.如图所示的运算程序中,若开始输入的x 值为24,第1次输出的结果为12,第2次输出的结果为6,……,则第2023次输出的结果为A. 24B. 12C. 6D. 3第Ⅱ卷(非选择题 共110分)注意事项:所有答案必须用0.5毫米的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定9题图19题图210题图区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等.不按以上要求作答,答案无效.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.-2023的相反数是 .12.如图,下面的几何体是由图 (填写序号)的平面图形绕直线l 旋转一周得到的.13.某景点去年的游客数量为x 人,今年的游客数量是去年的2倍还多470人,则今年的游客数量为 人.(用含x 的代数式表示)14.如果单项式2x m +2y n +3与x 3y 5是同类项,那么m +n = .15.如图是一个正方体的展开图,则“数”字对面的字是 .16.定义一种新运算,规定:a ⊕b =3a -b .若a ⊕(-6b )=-2,请计算(2a +b )⊕(2a -5b )的值为 .三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分6分)把下列各数在数轴上表示出来,并用“>”比较大小.,-4.5,4,-3,-1. ① ② ③ ④12题图15题图14323118.(本小题满分6分)计算:(1) 3-(-7);(2) -20+3+5-7.19.(本小题满分6分)计算:7a+3(a-3b)-2(b-3a)20.(本小题满分8分)如图是由大小相同(棱长为1分米)的小正方体搭成的几何体.(1)请在方格中画出该几何体的左视图和俯视图;(2)求出它的表面积(含下底面).21.(本小题满分8分)阅读下题解答过程:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:∵=×(-24)=-16+18-21=-19.左视图俯视图20题图1237()()24348÷--+2371(()34824÷-237(348-+-5 -4 -3 -2 -1 0 1 2 3 4 5∴原式=-.根据阅读材料提供的方法,完成下面的计算:()÷[].22.(本小题满分8分)某种T 型零件尺寸如图所示(左右宽度相同).(1)用含x ,y 的代数式表示阴影部分的周长; (2)用含x ,y 的代数式表示阴影部分的面积;(3)当x=2,y =2.5时,计算阴影部分的面积.23.(本小题满分10分)某校举办了“废纸回收,变废为宝”活动,各班收集的废纸均以5kg 为标准,超过的记为“+”,不足的记为“-”,七年级六个班级的废纸收集情况如表所示,统计员小虎不小心将一个数据弄脏看不清了,但他记得三班收集废纸最少,且收集废纸最多和最少的班级的质量差为4kg .班级一二三四五六超过(不足)(kg)+1+2-1.50-1(1)请你计算七年级六班同学收集废纸的质量;(2)若本次活动收集废纸质量排名前三的班级可获得荣誉称号,请计算获得荣誉称号的班级收集废纸的总质量;(3)若七年级六个班级将本次活动收集的废纸卖出,30kg(包括30kg)以内的2元/kg ,超出30kg 的部分2.5元/kg ,求废纸卖出的总价格.191421-21152((6)2373 -++--22题图yx x 0.5x3y24.(本小题满分10分)(1)由图1得:2+4=2×3;由图2得:2+4+6= ;由图3得: ;(2)则由图n 可得:2+4+……+2(n +1)= ;(3)根据(2)的结论,求2+4+6+……+1000的值.25.(本小题满分12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,他从A 处出发去看望B 、C 、D 处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A 到B 记为A →B {1,4},从B 到A 记为:B →A {-1,-4},其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A →C { , },C →B { , };(2)若这只甲虫的行走路线为A →B →C →D ,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M 、N ,且M →A {1-a ,b -5},M →N {5-a ,b -2},则A →N 应记为什么?直接写出你的答案.24题图124题图224题图325题图26.(本小题满分12分)综合探究【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现了许多重要的规律:如图1,若数轴上点A 、点B 表示的数分别为a 、b (b >a ),则线段AB 的长(点A 到点B 的距离)可表示为b -a .请用上面材料中的知识解答下面的问题:【问题情境】如图2,一个点从数轴上的原点开始,先向左移动2个单位长度到达点A ,再向右移动3个单位长度到达点B ,然后再向右移动5个单位长度到达点C .(1)【问题探究】请在图2中表示出A 、B 、C 三点的位置;(2)【问题探究】若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,同时点M 、N 从点B 、点C 分别以每秒2个单位长度、每秒3个单位长度的速度沿数轴向右匀速运动.设运动时间为t 秒(t >0).①点A 到点B 的距离AB = ,点A 到点C 的距离AC = ;②用含t 的代数式表示:t 秒时,点P 表示的数为 ,点M 表示的数26题图2ba26题图1为 ,点N表示的数为 ;③试探究在运动的过程中,3PN-4PM的值是否随着时间t的变化而变化?若变化,说明理由;若不变,请求其值.。
2023-2024学年四川省成都市西川中学、锦都学校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,满分30分)A .-13B .13C .3D .-31.(3分)-3的倒数为( )A .1个B .2个C .3个D .4个2.(3分)π、227,-3,3343,3.1416,0.•3中,无理数的个数是( )√A .①②③B .①②④C .①③④D .①②③④3.(3分)如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α-β,③β-α,④360°-α-β,∠AEC 的度数可能是( )A .a •a 2=a 3B .(a 3)2=a 5C .a +a 2=a 3D .a 6÷a 2=a 34.(3分)下列计算正确的是( )A .某校要对七年级学生的身高进行调查B .卖早餐的师傅想了解一锅茶鸡蛋的咸度C .班主任了解每位学生的家庭情况D .了解九年级一班全体学生立定跳远的成绩5.(3分)下列调查最适合于抽样调查的是( )A .B .C .D .6.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是( )二、填空题(本大题共6个小题,每小题3分,共18分)A .1个B .2个C .3个D .4个7.(3分)下图中是中心对称图形而不是轴对称图形的共有( )A .向左移动1个单位,向上移动3个单位B .向右移动1个单位,向上移动3个单位C .向左移动1个单位,向下移动3个单位D .向右移动1个单位,向下移动3个单位8.(3分)二次函数y =-2x 2+4x +1的图象如何移动就得到y =-2x 2的图象( )A .7B .6C .5D .49.(3分)如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,若CD =3,则BD 的长是( )A .14S B .13S C .12S D .11S10.(3分)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .已知AM 为Rt △ABM 较长直角边,AM =23EF ,则正方形ABCD 的面积为( )√11.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为 .12.(3分)若关于x 的分式方程2x −2+mx x 2−4=3x +2无解,则m = .三、解答题(本大题共9个小题,共72分)13.(3分)若不等式组V W X 2x −3≥0x ≤m 无解,则m 的取值范围是 .14.(3分)质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是 .15.(3分)半径为1的⊙O 中,两条弦AB =2,AC =1,∠BAC 的度数为 .√16.(3分)直角三角形纸片的两直角边BC ,AC 的长分别为6,8,现将△ABC 如图那样折叠,使点A与点B 重合,折痕为DE ,则CE 的长为 .17.(6分)附加题:(y -z )2+(x -y )2+(z -x )2=(y +z -2x )2+(z +x -2y )2+(x +y -2z )2.求(yz +1)(zx +1)(xy +1)(x 2+1)(y 2+1)(z 2+1)的值.18.(6分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A ,B ,C ,D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是 (填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.19.(6分)如图所示,△ABC 中,∠B =90°,AB =6cm ,BC =8cm .(1)点P 从点A 开始沿AB 边向B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动.如果P ,Q 分别从A ,B 同时出发,经过几秒,使△PBQ 的面积等于8cm 2?(2)点P 从点A 开始沿AB 边向B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动.如果P ,Q 分别从A ,B 同时出发,线段PQ 能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P 点沿射线AB 方向从A 点出发以1cm /s 的速度移动,点Q 沿射线CB 方向从C 点出发以2cm /s的速度移动,P ,Q 同时出发,问几秒后,△PBQ 的面积为1cm 2?20.(7分)如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF.(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.21.(6分)如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2,m),B(n,-2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>k2x的解集;(3)若P(p,y1),Q(-2,y2)是函数y=k2x图象上的两点,且y1≥y2,求实数p的取值范围.22.(8分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为弧BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=63,求弧BD的长.(结果保留π)√23.(10分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?24.(10分)我们定义:如图1,在△ABC看,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.。
人教版初中数学七年级上期中考试数学试卷含答案!一、选择题(本大题共15小题,每小题4分,共60分)7.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+18.如图是正方体的平面展开图,每个面上标有一个汉字,与“油”字相对的面上的字是()A.M或RB.N或PC.M或ND.P或R11.若﹣3x2my3与2x4yn是同类项,那么m﹣n=()A.0B.1C.﹣1D.﹣212.计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4B.a2﹣3a+2C.a2﹣7a+2D.a2﹣7a+413.代数式x2+2x+7的值是6,则代数式4x2+8x﹣5的值是()A.﹣9B.9C.18D.﹣1814.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1B.1C.3D.﹣315.计算(﹣4)2012×(﹣)2011的结果是()A.4B.﹣4C.16D.﹣16二、填空题(本大题共5小题,每小题4分,共20分)四、化简求值题(本大题共2小题,共12分)22.化简:﹣2x2﹣5x+3﹣3x2+6x﹣1.23.(8分)先化简,后求值:3(a2﹣ab+7)﹣2(3ab﹣a2+1)+3,其中a=2,b=.1/3五、解答题(本大题共4小题,共42分)24.(8分)如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?25.(10分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x ﹣2,求正确答案.26.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度。
【压轴卷】七年级数学上期中试题(附答案)一、选择题1.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.92.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8673.7-的绝对值是()A.17-B.17C.7D.7-4.2019的倒数的相反数是()A.-2019B.12019-C.12019D.20195.下面四个图形中,是三棱柱的平面展开图的是( )A.B.C.D.6.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为()A.66.6×107B.0.666×108C.6.66×108D.6.66×1077.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补8.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .9.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯10.如图,将一三角板按不同位置摆放,其中1∠与2∠互余的是( )A .B .C .D .11.下列等式变形正确的是( )A .由a =b ,得5+a =5﹣bB .如果3a =6b ﹣1,那么a =2b ﹣1C .由x =y ,得x y m m =D .如果2x =3y ,那么262955x y --= 12.若代数式x +2的值为1,则x 等于( ) A .1B .-1C .3D .-3 二、填空题13.两根木条,一根长60cm ,另一根长80cm ,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是 cm .14.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.15.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.16.已知3x -8与2互为相反数,则x = ________.17.单项式234x y -的系数是__________,次数是__________.18.已知x=3是方程ax ﹣6=a+10的解,则a= .19.已知12,2x y =-=,化简 2(2)()()x y x y x y +-+- = _______. 20.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km .三、解答题21.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?22.已知:223+2A B a ab -=,223A a ab =-+-.(1)求B ;(用含a 、b 的代数式表示)(2)比较A 与B 的大小.23.“*”是新规定的这样一种运算法则:a *b=a 2+2ab .比如3*(﹣2)=32+2×3×(﹣2)=﹣3(1)试求2*(﹣1)的值;(2)若2*x=2,求x 的值;(3)若(﹣2)*(1*x )=x+9,求x 的值.24.某公园门票价格规定如下表:购票张数1—50张 51—100张 100张以上 单张票价 13元 11元 9元某校七年级(一)(二)班共104人去游园,其中(一)班有40多人,不足50人.经估算,如果两个班以班为单位购票,则一共应付1240元.(1)问两个班各有多少名学生?(2)如果两个班联合起来作为一个团体购票,可省多少钱?(3)如果七年级(一)班单独组织去游园,作为组织者的你应如何购票?25.计算:(1)-14+|3-5|-16÷(-2)×12;(2)6×11-32⎛⎫ ⎪⎝⎭-32÷(-12).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据角平分线的定义、垂直的定义、角互余的定义、角的和差即可得.【详解】∵OC 平分DOA ∠ ∴12AOC COD DOA ∠=∠=∠ ∵OE 平分DOB ∠∴DOE BOE ∠=∠ ∴11()1809022COE COD DOE DOA DOB ∠=∠+∠=∠+∠=⨯︒=︒ ∴90AOC DOE ∠+∠=︒,90AOC BOE ∠+∠=︒,90COD BOE ∠+∠=︒ ∵OF AB ⊥∴90AOF BOF ∠=∠=︒∴90AOC COF ∠+∠=︒,90BOE EOF ∠+∠=︒,90BOD DOF ∠+∠=︒ ∴90COD COF ∠+∠=︒,90DOE EOF ∠+∠=︒综上,互余的角共有9对故选:D .【点睛】本题考查了角平分线的定义、垂直的定义、角互余的定义、角的和差,熟记角的运算是解题关键.2.C解析:C【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C .【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算. 3.C解析:C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.4.B解析:B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键. 5.C解析:C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A、是三棱锥的展开图,故不是;B、两底在同一侧,也不符合题意;C、是三棱柱的平面展开图;D、是四棱锥的展开图,故不是.故选C.【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.6.C解析:C【解析】665 575 306≈6.66×108.故选C.7.D解析:D【解析】【分析】根据角平分线的性质,可得∠BOD=∠COD,∠COE=∠AOE,再根据余角和补角的定义求解即可.【详解】解:∵OD平分∠BOC,OE平分∠AOC,∴∠BOD=∠COD=12∠BOC,∠AOE=∠COE=12∠AOC,∵∠AOC+∠COB=180°,∴∠COE+∠COD=90°,A、∠DOE为直角,说法正确;B、∠DOC和∠AOE互余,说法正确;C、∠AOD和∠DOC互补,说法正确;D、∠AOE和∠BOC互补,说法错误;故选D.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.8.B解析:B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.考点:棱柱的侧面展开图.9.B解析:B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】210万=2100000,2100000=2.1×106,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.C解析:C【解析】【分析】根据余角的定义,可得答案.【详解】解:C 中的121809090∠∠+=-=o o o ,故选C .【点睛】本题考查余角,利用余角的定义是解题关键.11.D解析:D【解析】【分析】根据等式性质1对A 进行判断;根据等式性质2对B 、C 进行判断;根据等式性质1、2对D 进行判断.【详解】解:A 、由a =b 得a +5=b +5,所以A 选项错误;B 、如果3a =6b ﹣1,那么a =2b ﹣13,所以B 选项错误; C 、由x =y 得x m =y m(m ≠0),所以C 选项错误; D 、由2x =3y 得﹣6x =﹣9y ,则2﹣6x =2﹣9y ,所以262955x y --=,所以D 选项正确.故选:D .【点睛】 本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.12.B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.二、填空题13.70或10【解析】试题分析:设AB=60cmBC=80cmAB中点为点MBC中点为点N两线段重合的端点为点B分两种情况讨论:①点A点C在点B两侧时此时MN=BM+BN;②点A点C在点B同侧时此时MN解析:70或10.【解析】试题分析:设AB=60cm,BC=80cm,AB中点为点M,BC中点为点N,两线段重合的端点为点B.分两种情况讨论:①点A、点C在点B两侧时,此时MN=BM+BN;②点A、点C 在点B同侧时,此时MN=BN-BM.解:设AB=60cm,BC=80cm,AB中点为点M,BC中点为点N,两线段重合的端点为点B.①点A、点C在点B两侧时,如图:则BM=12AB=30cm,BN=12BC=40cm,则MN=BM+BN=30+40=70cm.②点A、点C在点B同侧时,如图:则BM=12AB=30cm,BN=12BC=40cm,则MN=BN-BM=40-30=10cm.故答案为70cm或10cm.14.【解析】寻找规律:上面是1234…;左下是14=229=3216=42…;右下是:从第二个图形开始左下数字减上面数字差的平方:(4-2)2(9-3)2(16-4)2…∴a=(36-6)2=900解析:【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=900.15.【解析】【分析】根据题意观察探索规律知全部智慧数从小到大可按每三个数分一组从第2组开始每组的第一个数都是4的倍数归纳可得第n组的第一个数为4n(n≥2)又因为所以第2020个智慧数是第674组中的第解析:【解析】【分析】根据题意观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2),又因为202036731=?L,所以第2020个智慧数是第674组中的第1个数,从而得到4×674=2696【详解】解:观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得第n组的第一个数为4n(n≥2).=?L,∵202036731∴第2020个智慧数是第674组中的第1个数,即为4×674=2696.故答案为:2696.【点睛】本题考查了探索规律的问题,解题的关键是根据题意找出规律,从而得出答案.16.2【解析】根据互为相反数的两个数的和为0可得3x-8+2=0解得x=2点睛:根据互为相反数的和为零可得关于x的一元一次方程解方程即可得答案解析:2【解析】根据互为相反数的两个数的和为0可得,3x-8+2=0,解得x=2.点睛:根据互为相反数的和为零,可得关于x的一元一次方程,解方程即可得答案.17.-4;5【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数【详解】解:单项式-4x2y3的系数是-4次数是5故答案为-45【点睛】此题考查了单项式的知识解析:-4; 5.【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】解:单项式-4x2y3的系数是-4,次数是5.故答案为-4、5.【点睛】此题考查了单项式的知识,掌握单项式的系数、次数的定义是解答本题的关键.18.8【解析】【分析】将x=3代入方程ax ﹣6=a+10然后解关于a 的一元一次方程即可【详解】∵x=3是方程ax ﹣6=a+10的解∴x=3满足方程ax ﹣6=a+10∴3a﹣6=a+10解得a=8故答案为解析:8【解析】【分析】将x=3代入方程ax ﹣6=a+10,然后解关于a 的一元一次方程即可.【详解】∵x=3是方程ax ﹣6=a+10的解,∴x=3满足方程ax ﹣6=a+10,∴3a ﹣6=a+10,解得a=8.故答案为8.19.-【解析】【分析】先根据完全平方公式和平方差公式去括号再合并同类项最后把xy 的值代入计算即可【详解】∵把代入得:原式故答案为:﹣【点睛】本题考查代数式的化简求值快速解题的关键是先利用完全平方公式和平解析:-114【解析】【分析】 先根据完全平方公式和平方差公式去括号,再合并同类项,最后把x ,y 的值代入计算即可.【详解】∵2(2)()()x y x y x y +-+- 222244x xy y x y =++-+245xy y =+ 把12,2x y =-=代入得: 原式()21142522⎛⎫=⨯-⨯+⨯ ⎪⎝⎭ 544=-+ 114=-故答案为:﹣114 【点睛】 本题考查代数式的化简求值,快速解题的关键是先利用完全平方公式和平方差公式化简原式.20.【解析】【分析】根据逆流速度=静水速度-水流速度顺流速度=静水速度+水流速度表示出逆流速度与顺流速度根据题意列出方程求出方程的解问题可解【详解】解:设A 港与B 港相距xkm 根据题意得:解得:x=504解析:【解析】【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.【详解】解:设A 港与B 港相距xkm ,根据题意得:3262262x x +=+- , 解得:x=504,则A 港与B 港相距504km .故答案为:504.【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程.三、解答题21.(1)画图见解析;(2)小彬家与学校之间的距离是3km ;(3)小明跑步共用了36分钟.【解析】试题分析:(1)根据题意画出即可;(2)计算 2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速 度即可求出答案.试题解析:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km ).故小彬家与学校之间的距离是 3km ;(3)小明一共跑了(2+1.5+1)×2=9(km ), 小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了 36 分钟长时间.22.(1)-5a 2+2ab-6;(2)A >B .【解析】【分析】(1)根据题意目中223+2A B a ab -=,223A a ab =-+-,可以用含a 、b 的代数式表示出B ;(2)根据题目中的A 和(1)中求得的B ,可以比较它们的大小.【详解】(1)∵2A-B=3a 2+2ab ,A=-a 2+2ab-3,∴B=2A-(3a 2+2ab )=2(-a 2+2ab-3)-(3a 2+2ab )=-2a 2+4ab-6-3a 2-2ab=-5a 2+2ab-6,(2)∵A=223a ab -+-,B=-5a 2+2ab-6,∴A-B=(223a ab -+-)-(-5a 2+2ab-6)=-a 2+2ab-3+5a 2-2ab+6=4a 2+3,∵无论a 取何值,a 2≥0,所以4a 2+3>0,∴A >B .【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.23.(1)0;(2):x=﹣12;(3)x=﹣1. 【解析】根据规定的运算法则,将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.解:(1)根据题中的新定义得:原式=4﹣4=0;(2)根据题中的新定义化简得:4+4x=2,解得:x=﹣;(3)根据题中的新定义化简得:(﹣2)*(1+2x )=4﹣4(1+2x )=x+9,去括号得:4﹣4﹣8x=x+9,解得:x=﹣1.24.(1)七年级(一班)有48名学生,(二)班有56名学生;(2)节省304元;(3)应购51张票.【解析】【分析】(1)设(1)班有x 个学生,则(2)班有(104-x )个学生,根据购票总费用=(1)班购票费用+(2)班购票费用即可得出关于x 的一元一次方程,解之即可得出结论; (2)求出购买104张票的总钱数,将其与1240做差即可得出结论;(3)分别求出购买48张门票以及购买51张门票的总钱数,比较后即可得出结论.【详解】解解:(1)设(1)班有x 个学生,则(2)班有(104-x )个学生,根据题意得:13x+11(104-x )=1240,解得:x=48,∴104-x=56.答:七年级(1)班有48个学生,七年级(2)班有56个学生.(2)1240-9×104=304(元).答:如果两班联合起来,作为一个团体购票,可省304元钱.(3)51×11=561(元),48×13=624(元),∴561<624,∴如果七年级(1)班单独组织去游园,购买51张门票最省钱.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据购票总费用=(1)班购票费用+(2)班购票费用列出关于x 的一元一次方程;(2)根据总价=单价×数量求出购买104张门票的总钱数;(3)根据总价=单价×数量分别求出购买48张门票以及购买51张门票的总钱数.25.(1)5;(2)-14. 【解析】【分析】(1)根据有理数运算的运算法则求值即可得出结论;(2)利用乘法分配律及有理数运算的运算法则,即可求出结论.【详解】 (1)原式=-1+2+16×12⎛⎫ ⎪⎝⎭×12=-1+2+4=5.(2)原式=6×13-6×12+9×112⎛⎫⎪⎝⎭ =2-3+34 =-14. 【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.。
七年级上册数学期中模拟试卷一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了﹣30米,此时小明的位置()A.在书店 B.在花店 C.在学校D.不在上述地方2.下列各数中,既是分数又是正数的是()A.﹣3.8 B.﹣9 C.0 D.3.在下列各数中:0,3.1415926,,π,15%,﹣2.363636…,正分数的个数是()A.2个 B.3个C.4个D.5个4. a,b两数在数轴上的位置如图所示,下列结论中,正确的是()A.a<0,b>0 B.a>0,b<0 C.ab>0 D.|a|>|b|5.下列说法错误的是()A.平移不改变图形的形状B.图形经过平移,新图形与原图形中的对应线段,对应角分别相等C.图形平移后,连接各组对应点的线段平行(或在一条直线上)且相等D.平移可能改变图形的大小6.下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣(+1)=1 D.﹣|+3|=﹣37.下列判断正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=﹣bC.若a=b,则|a|=|b| D.若a=﹣b,则|a|=﹣|b|8.负数a减去它的相反数的差的绝对值是()A.0 B.2a C.﹣2a D.以上都有可能9.已知有理数a、b在数轴上表示如图,现比较a、b、﹣a、﹣b的大小,正确的是()A.b<a<﹣a<﹣b B.b<a<﹣b<﹣aC.﹣b<a<﹣a<b D.a<b<﹣b<﹣a10.如图,图中平行四边形共有的个数是()A.40 B.38 C.36 D.30二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.﹣4.5的倒数等于.12.如果﹣10t表示运出10t,那么+20t表示.13.若|a﹣3|+|b﹣2|+|c|=0,则ab+c= .14.若a>0,b<0,且|a|<|b|则a+b 0;已知b<0,则a,a﹣b,a+b从大到小排列.15.绝对值不小于2但小于5的所有整数之和为.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.(8分)把下列各数填入它所在的数集中.﹣5,101,﹣,0,0.24,7,﹣2正数集:﹛﹜负数集:﹛﹜整数集:﹛﹜分数集:﹛﹜17.(5分)在数轴上表示下列各数,并把下列各数用“<”号连接起来﹣,﹣2,,﹣|﹣3|,﹣(﹣5)18.(18分)计算:5+(﹣11)﹣(﹣9)﹣(+22).19.(6分)已知x=﹣3,y=﹣,求3xy+﹣|x﹣y|的值.20.(6分)某市第5路公交车从起点到终点共有8个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如下表:二三四五六七八站次人数下车(人) 2 4 3 7 5 8 16上车(人)7 8 6 4 3 5 0(1)求起点站上车人数;(2)若公交车收费标准为上车每人2元,计算此趟公交车从起点到终点的总收入;(3)公交车在哪两个站之间运行时车上乘客最多?是几人?21.(12分)某邮递员骑车从邮局出发,先向东骑3km到达A村,再向东骑了5km到达B村,然后向西骑了14km到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用0.5cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)求C村与A村之间的距离;(3)这位邮递员一共骑了多少千米?参考答案一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.(3分)花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了﹣30米,此时小明的位置()A.在书店B.在花店C.在学校D.不在上述地方【分析】由题意知,可看作书店为原点,花店位于书店西边100米处,即﹣100米,学校位于书店东边50米处,即+50米,解答出即可.【解答】解:根据题意:小明从书店沿街向东走了20米,接着又向东走了﹣30米,即向东走了50米,而学校位于书店东边50米处,故此时小明的位置在学校.故选C.【点评】本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解题的关键在于对正负坐标的理解.2.(3分)下列各数中,既是分数又是正数的是()A.﹣3.8 B.﹣9 C.0 D.【分析】根据大于零的分数是正分数,可得答案.【解答】解:A、是负分数,故A错误;B、是负整数,故B错误;C、既不是正数也不是负数,故C错误;D、是正分数,故D正确;故选:D.【点评】本题考查了有理数,大于零的分数是正分数,注意0既不是正数也不是负数,0是整数.3.(3分)在下列各数中:0,3.1415926,,π,15%,﹣2.363636…,正分数的个数是()A.2个 B.3个 C.4个D.5个【分析】根据大于零的分数是正分数,可得答案.【解答】解:3.1415926,,15%是正分数,故选:B.【点评】本题考查了有理数,熟记分数的定义是解题关键.4.(3分)a,b两数在数轴上的位置如图所示,下列结论中,正确的是()A.a<0,b>0 B.a>0,b<0 C.ab>0 D.|a|>|b|【分析】首先根据数轴得到a,b的正确信息,运用排除法进行正确判断.两个负数,绝对值大的反而小.【解答】解:根据数轴,得b<a<0,|a|<|b|.A,B,D显然错误;C中,∵a<0,b<0,∴ab>0,正确.故选C.【点评】本题借助数轴,考查了有理数的大小比较、绝对值的意义及有理数的乘法法则.注意:数轴上离远点的距离越远,则绝对值越大.5.(3分)下列说法错误的是()A.平移不改变图形的形状B.图形经过平移,新图形与原图形中的对应线段,对应角分别相等C.图形平移后,连接各组对应点的线段平行(或在一条直线上)且相等D.平移可能改变图形的大小【分析】本题考查平移的性质,对选项进行一一分析,排除错误答案.【解答】解:A.平移不改变图形的形状,符合平移的性质,故正确;B.图形经过平移,新图形与原图形中的对应线段,对应角分别相等,符合平移的性质,故正确;C.图形平移后,连接各组对应点的线段平行(或在一条直线上)且相等,符合平移的性质,故正确;D.应该为平移不改变图形的大小,故错误.故选D.【点评】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.6.(3分)下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣3 【分析】根据多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正进行化简可得答案.【解答】解:A.+(﹣5)=﹣5,计算正确,故此选项不合题意;B.﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C.﹣(+1)=﹣1,原计算错误,故此选项符合题意;D.﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.【点评】此题主要考查了相反数,关键是掌握多重符号的化简方法.7.(3分)下列判断正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=﹣bC.若a=b,则|a|=|b| D.若a=﹣b,则|a|=﹣|b|【分析】根据相反数、绝对值的意义判断即可.【解答】解:若|a|=|b|,则a=﹣b或a=b,所以A,B选项错误;若a=b,则|a|=|b|,所以C选项正确;若a=﹣b,则|a|=|b|,所以D选项错误.故选C.【点评】本题主要考查了相反数、绝对值的意义,掌握互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,它们互为相反数是解答此题的关键.8.(3分)负数a减去它的相反数的差的绝对值是()A.0 B.2a C.﹣2a D.以上都有可能【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求出a的相反数是﹣a,再求负数a和它的相反数的差的绝对值.【解答】解:|a﹣(﹣a)|=|2a|=﹣2a.故选C.【点评】本题考查了绝对值,相反数.列代数式的关键是正确理解文字语言中的关键词,比如该题中的“差”、“绝对值”等,从而明确其中的运算关系,正确地列出代数式.9.(3分)已知有理数a、b在数轴上表示如图,现比较a、b、﹣a、﹣b的大小,正确的是()A.b<a<﹣a<﹣b B.b<a<﹣b<﹣a C.﹣b<a<﹣a<b D.a<b<﹣b<﹣a 【分析】首先根据数轴的特征,可得b<a<0,然后根据不等式的性质,可得﹣b>﹣a>0;最后根据有理数大小比较的方法,判断出a、b、﹣a、﹣b的大小关系即可.【解答】解:∵b<a<0,∴﹣b>﹣a>0,∴b<a<﹣a<﹣b.故选:A.【点评】题主要考查了有理数大小比较的方法,以及数轴的特征,要熟练掌握,解答此题的关键是判断出:b<a<0,﹣b>﹣a>0.10.(3分)如图,图中平行四边形共有的个数是()A.40 B.38 C.36 D.30【分析】先数单个的平行四边形的个数,进而找2个,3个,4个,6个,9个小平行四边形组成的平行四边形的个数,相加即可.【解答】解:单个的平行四边形有9个,2个小平行四边形组成的平行四边形有12个,3个小平行四边形组成的平行四边形有6个,4个小平行四边形组成的平行四边形有4个,6个小平行四边形组成的平行四边形有4个,9个小平行四边形组成的平行四边形有1个,所以共有平行四边形36个.故选C.【点评】考查图形的规律性的求法;按照一定规律找平行四边形的个数是解决本题的关键.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.(3分)﹣4.5的倒数等于﹣.【分析】根据倒数的定义可知.若两个数的乘积是1,我们就称这两个数互为倒数求解.【解答】解:﹣4.5的倒数为:1÷(﹣4.5)=﹣.故答案为:﹣.【点评】此题考查的知识点是倒数,关键明确倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.(3分)如果﹣10t表示运出10t,那么+20t表示运进20t .【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵﹣10t表示运出10t,∴+20t表示运进20t.故答案为:运进20t.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.13.(3分)若|a﹣3|+|b﹣2|+|c|=0,则ab+c= 6 .【分析】根据非负数的性质可求出a、b、c的值,再将它们代入ab+c中求解即可.【解答】解:∵|a﹣3|+|b﹣2|+|c|=0,∴a﹣3=0,b﹣2=0,c=0,∴a=3,b=2,c=0,∴ab+c=6.故答案为6.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.(3分)若a>0,b<0,且|a|<|b|则a+b <0;已知b<0,则a,a﹣b,a+b从大到小排列a+b、a、a﹣b .【分析】先根据a>0,b<0,且|a|<|b|去掉绝对值符号,再利用不等式的基本性质1即可判断出a+b的符号;根据b<0及不等式的基本性质判断出a,a﹣b,a+b的大小,并按从大到小排列即可.【解答】解:∵a>0,b<0,且|a|<|b|,∴|a|=a,|b|=﹣b,∴a<﹣b,∴a+b<0;∵b<0,∴﹣b>0,∴a﹣b>a,∴a+b<a,∴a,a﹣b,a+b从大到小排列为a+b、a、a﹣b.故答案为:<;a+b、a、a﹣b.【点评】本题考查的是有理数的大小比较,熟知不等式的基本性质是解答此题的关键.15.(3分)绝对值不小于2但小于5的所有整数之和为0 .【分析】找出绝对值不小于2但小于5的所有整数,求出之和即可.【解答】解:绝对值不小于2但小于5的所有整数为:﹣4,﹣3,﹣2,2,3,4,之和为0.故答案为:0.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.(8分)把下列各数填入它所在的数集中.﹣5,101,﹣,0,0.24,7,﹣2正数集:﹛﹜负数集:﹛﹜整数集:﹛﹜分数集:﹛﹜【分析】按照有理数的分类填写:有理数.【解答】解:正整数集合{101,0.24,7…};负整数集合{﹣5,﹣2…};整数集合{﹣5,101,0,7,﹣2…};正分数集合{0.24…}.【点评】考查了正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意0既不是正整数,也不是负整数.17.(5分)在数轴上表示下列各数,并把下列各数用“<”号连接起来﹣,﹣2,,﹣|﹣3|,﹣(﹣5)【分析】先计算出﹣|﹣3|=﹣3,﹣(﹣5)=5,再用数轴表示各数,然后写出它们的大小关系.【解答】解:﹣|﹣3|=﹣3,﹣(﹣5)=5,用数轴表示为它们的大小关系为﹣|﹣3|<﹣2<﹣<<﹣(﹣5).【点评】本题考查了有理数的大小比较:可以利用数轴比较大小(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.18.(18分)计算:5+(﹣11)﹣(﹣9)﹣(+22).【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=5﹣11+9﹣22=14﹣33=﹣19.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.19.(6分)已知x=﹣3,y=﹣,求3xy+﹣|x﹣y|的值.【分析】直接把x、y的数值代入代数式求得答案即可.【解答】解:把x=﹣3,y=﹣,代入3xy+﹣|x﹣y|得原式=3×(﹣3)×(﹣)+﹣|﹣3﹣(﹣)|=3+9﹣=9.【点评】此题考查代数式求值,掌握运算的方法是解决问题的关键.20.(6分)某市第5路公交车从起点到终点共有8个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如下表:站次二三四五六七八人数下车(人) 2 4 3 7 5 8 16上车(人)7 8 6 4 3 5 0(1)求起点站上车人数;(2)若公交车收费标准为上车每人2元,计算此趟公交车从起点到终点的总收入;(3)公交车在哪两个站之间运行时车上乘客最多?是几人?【分析】(1)根据下车的总人数减去上车的总人数得到起点站上车的人数即可;(2)根据表格计算得出此趟公交车从起点到终点的总收入即可;(3)根据表格得出二站到三站上车的乘客最多,是8人.【解答】解:(1)根据题意得:(2+4+3+7+5+8+16)﹣(7+8+6+4+3+5)=45﹣33=12(人),则起始站上车12人;(2)根据题意得:根据题意得:2(12+7+8+6+4+3+5)=90(元),则此趟公交车从起点到终点的总收入为90元;(3)根据表格得:七站到八站上车的乘客最多,是24人.【点评】此题考查了正数与负数,弄清题意是解本题的关键.21.(12分)某邮递员骑车从邮局出发,先向东骑3km到达A村,再向东骑了5km 到达B村,然后向西骑了14km到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用0.5cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)求C村与A村之间的距离;(3)这位邮递员一共骑了多少千米?【分析】(1)数轴三要素:原点,单位长度,正方向.依此表示出邮局以及A、B、C三个村庄的位置;(2)根据两点之间的距离公式可得;(3)距离相加的和即为所求.【解答】解:(1)如图:(2)C村离A村为:3﹣(﹣6)=9(km).答:C村离A村有4km.(3)邮递员一共骑行了:3+5+14+6=28(km).答:邮递员一共骑行了28km.【点评】本题考查的是数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.。
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017-3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33< 4.下列各式中,等号不成立的是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab 7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.10.单项式 35ab -8的系数是__,次数是__. 11.若315k y x 与3873x y -是同类项,则k=_____. 12.我国2006年参加高考报名总人数约为950万人,则该人数可用科学记数法表示为_____人. 13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).14.已知单项式3a m b 2与423n a b -和是单项式,那么m=_____,n=_____. 15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48. (3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78. (4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn) (6)13(9a ﹣3)+2(a +1). 四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=ab a b+,试求2*(﹣4)的值. 19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?21.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.答案与解析一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元【答案】B【解析】试题分析:若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B .考点:正数和负数.2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017- 【答案】D【解析】分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是12017-.故选D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33<【答案】C【解析】【分析】(1)根据两个负数,绝对值大的其值反而小作答;(2)根据负数都小于0作答;(3)根据两个负数,绝对值大的其值反而小作答;(4)根据两个正数,绝对值大的数较大作答.【详解】A.∵|−6|<|−8|,∴−6>−8,错误;B.∵11000-−11000是负数,∴11000-<0,错误; C.∵11,57->- ∴1157--<,正确; D.1 3>0.3,错误.故选C.【点睛】考查有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.4.下列各式中,等号不成立是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 【答案】B【解析】试题分析:正数绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值为零.444-==,则本题不成立的是B .5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项【答案】D【解析】试题分析:由同类项的定义可知,D 选项中的两个单项式所含字母m 、n 相同,并且相同字母的指数也相等,因此本题选D.考点:同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab【答案】B【解析】【详解】解:A 选项不是同类项,无法进行加减法计算;B 选项计算正确;C 、原式=2x ;D 选项不是同类项,无法进行加减法计算.故选B .【点睛】本题主要考查的就是合并同类项的计算,属于简单题目.对于同类项的加减法,我们只需要将同类项的系数进行相加减,字母和字母的指数不变即可得出答案,很多同学会将字母的指数也进行相加减,这样就会出错.如果两个单项式不是同类项,我们无法进行加减法计算,这一点很多同学会出错.7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1) 【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A :0.05019精确到0.1是0.1,正确;B :0.05019精确到百分位是0.05,正确;C :0.05019精确到千分位是0.050,错误;D :0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元 【答案】D【解析】 由题意得0.7a 元,所以选D. 点睛:涨价,降价与折扣一个物品价格为a ,涨价b %,现价 为a (1+b %),一个物品价格为a ,降价b %,现价 为a (1-b %),一个物品价格为a ,9折出售,现价为90%a.二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.【答案】(t +15)【解析】(t +15).10.单项式 35ab -8的系数是__,次数是__. 【答案】 (1). 58- (2). 4【解析】 因为单项式的系数是指字母前数字因数,所以358ab -的系数是58-,单项式的次数是指所含字母指数之和,所以358ab -的次数是4,故答案为5 8-,4. 11.若315k y x 与3873x y -是同类项,则k=_____. 【答案】8【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:k=8.12.我国2006年参加高考报名的总人数约为950万人,则该人数可用科学记数法表示为_____人.【答案】9.5×106【解析】试题分析:科学计数法是指将一个数字表示成a 10n ⨯的形式,其中1≤a <10,n 为原数的整数位数减一,则950万人=9500000人=69.510⨯人.13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).【答案】不合格【解析】【分析】根据正负数的意义,求得合格零件的直径的范围,再进一步分析.【详解】解:根据题意,得该零件直径最小是20-0.02=19.98(mm ),最大是20+0.02=20.02(mm ),因为19.9<19.98,所以该零件不合格.故答案为不合格.【点睛】此题考查了正、负数在实际生活中的意义,±0.02表示和标准相比,超过或不足0.02. 14.已知单项式3a m b 2与423n a b -的和是单项式,那么m=_____,n=_____. 【答案】 (1). 4 (2). 2【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=4,n=2.15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.【答案】0或﹣6.【解析】试题分析:在数轴上两点所表示的数的差的绝对值为这两个点之间的距离.设这个点表示的数为x ,则()33x --=,则x 33+=±,解得:x=0或-6,即这个点表示的数为0或-6.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.【答案】5或1.【解析】试题分析:根据绝对值的计算方法可得:a 3=±,b 2=±,根据a b >可得:a=3,b 2=±,则a+b=3+2=5或a+b=3+(-2)=1.点睛:正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的相反数为零;互为相反数的两个数的绝对值相等.本题首先根据绝对值的性质求出a 和b 的值,然后根据有理数的大小比较方法确认a 和b 的值,然后进行计算得出答案.这种题目有的时候还是会出现平方根,根据平方根的性质得出答案.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48.(3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78.(4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m2n﹣5mn)﹣(4m2n﹣5mn)(6)13(9a﹣3)+2(a+1).【答案】(1)﹣1;(2)24;(3)﹣1;(4)19;(5)3m2n;(6)5a+1【解析】试题分析:(1)、首先将同号的进行相加,然后再进行异号的加法计算;(2)、利用乘法分配律进行简便计算;(3)、首先进行绝对值和去括号计算,然后将同分母的放在一起进行计算,最后进行整数之间的计算;(4)、先进行幂的计算,然后进行加减法计算;(5)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案;(6)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案.试题解析:解:(1)、原式=﹣23+22=﹣1;(2)、原式=﹣8+36﹣4=24;(3)、原式=0.75﹣3+0.25+18+78=1﹣3+1=﹣1;(4)、原式=﹣4+3×1+20=﹣4+3+20=19;(5)、原式=7m2n﹣5mn﹣4m2n+5mn=3m2n;(6)、原式=3a﹣1+2a+2=5a+1四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=aba b+,试求2*(﹣4)的值.【答案】4【解析】【分析】根据给出的新定义的计算法则将数字分别代入公式计算即可得出答案.【详解】2*(﹣4)=()()248 244⨯--=+--=4.【点睛】考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.【答案】6.【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项计算,最后将x 和y 的值代入化简后的式子进行计算即可得出答案.试题解析:解:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y)=2x 2y ﹣4xy 2+3xy 2﹣x 2y=x 2y ﹣xy 2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=6.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)34L【解析】【分析】(1)由已知,把所有数据相加,如果得数是正数,则A 处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【详解】解:(1)(+10)+(-8)+( +7)+(-15)+(+6)+(-16)+(+4)+(-2) 1分=-14答:停留时,A 处在岗亭的南方,距离14千米(2)()108715616420.5+++++++++++⨯---- ()108715616420.5=+++++++⨯680.5=⨯34=答:这一天共耗油34升考点:正数和负数.21.已知:m,x,y 满足:(1)23(x -5)2+5|m|=0;(2)-2a 2b y +1与7b 3a 2是同类项. 求:代数式2x 2-6y 2+m(xy -9y 2)-(3x 2-3xy +7y 2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.。
一、选择题1.计算:1252-50×125+252=( )A.100B.150C.10000D.225002.81x>0.8x,所以在乙超市购买合算.故选B.【点睛】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想.3.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.94.有理数 a,b 在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+ b>0C.|a|>|b|D.ab>05.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8676.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2 7.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x=12,y=38.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.9.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为()A.60°B.45°C.65.5°D.52.5°10.如图,从左面看该几何体得到的形状是()A .B .C .D .11.-2的倒数是( ) A .-2B .12-C .12D .212.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 13.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3 14.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣915.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0二、填空题16.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.17.若关于x 的方程2ax =(a+1)x+6的解为正整数,求整数a 的值_____.18.如图,半径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,若点A 对应的数是-1,则点B 对应的数是______.19.在下列方程中 ①x+2y=3,②139x x -=,③2133y y -=+,④2102x =,是一元一次方程的有_______(填序号).20.30万=42.3010⨯ ,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.21.观察下列运算并填空. 1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 7×8×9×10+1=5040+1=5041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2.22.正整数按如图的规律排列,请写出第10行,第10列的数字_____.23.将从1开始的连续自然数按以下规律排列: 第1行1第2行2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行252423222120191817…则2018在第_____行.24.点,A B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:①0b a -<;②0a b +>;③a b <;④0ab >.其中正确的是____________.(填序号)25.已知3x =是关于x 方程810mx -=的解,则m =__________.三、解答题26.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示) (4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 27.解下列方程:(1)x-7=10 - 4(x+0.5) ; (2)132123x x-+-=. 28.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值. 29.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
期中测试卷(一)总分120分一.选择题(共9小题,每题3分)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C (﹣1)n D.1﹣22.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1 B.﹣1和2 C.﹣1和3 D.﹣1和43.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6 B.8 C.一6 D.﹣84.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|5.|﹣2|的相反数是()A.﹣2 B.﹣C.D.26.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0 B.﹣ C ﹣2 D.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1 D.19.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0D.﹣1二.填空题(共6小题,每题3分)10.﹣(﹣)的相反数与﹣的倒数的积为_________.11.若a与b互为倒数,则3﹣5ab=_________.12.若|m+3|+(n﹣2)2=0,则(m+n)2010的值为_________.13.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为_________.14.32×3.14+3×(﹣9.42)=_________.15.(为了解体育测试中篮球项目的得分情况(个人得分都是整数),抽取7位同学的成绩,若用四舍五入取近似值的方法将平均分精确到一位小数,该7位同学的平均分为9.4分,若精确到两位小数,则该7位同学的平均分为_________分.三.解答题(共12小题)16.计算:(6分)2009×82010;(2)﹣32﹣|(﹣5)|×(﹣)2×(﹣18)÷|﹣(﹣3)2|.17.(6分)计算:(1﹣)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)18.(6分)计算:.19.先化简,再求值:(6分)(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.20.(6分)已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.21.(6分)已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.22(6分).若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.23.(6分)在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?24.(6分)如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成_________个细胞;(2)这样的一个细胞经过3小时后可分裂成_________个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成_________个细胞.25.(7分)观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.26.(7分)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r 米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).27.(7分)在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为_________.(2)请你利用下图,再设计一个能求的值的几何图形.新华师版七年级上期中测试卷(一)参考答案与试题解析一.选择题(共9小题)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C.(﹣1)n D.1﹣2考点:正数和负数;有理数的乘方;负整数指数幂.专题:常规题型.分析:将各选项化简得:﹣(1﹣2)=1;(﹣1)﹣1=﹣1;当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1;1﹣2=1,再根据正数与负数的概念即可判断.解答:解:A、﹣(1﹣2)=1,为正数,故本选项错误;B、(﹣1)﹣1=﹣1,为负数,故本选项正确;C、当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1,故本选项错误;D、1﹣2=1,为正数,故本选项错误.故选B.点评:本题考查了正数与负数的知识,属于基础题,判断一个数是正数还是负数,要把它化简成最后形式再判断.2.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1 B.﹣1和2 C.﹣1和3 D.﹣1和4考点:数轴.专题:探究型.分析:根据两点间距离的定义进行解答即可.解答:解:A、﹣1和1之间的距离为:|﹣1﹣1|=2,故本选项错误;B、﹣1和2之间的距离为:|﹣1﹣2|=3,故本选项正确;C、﹣1和3之间的距离为:|﹣1﹣3|=4,故本选项错误;D、﹣1和4之间的距离为:|﹣1﹣4|=5,故本选项错误.故选B.点评:本题考查的是数轴上两点之间的距离,即数轴上两点之间的距离等于两点所表示数的差的绝对值.3.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6 B.8 C.一6 D.﹣8考点:数轴.专题:计算题.分析:根据数轴上的点与实数的对应关系利用数形结合的思想,用较大的数减去较小的数即可求解.解答:解:∵7>﹣1,∴在数轴上表示实数﹣1和7这两点间的距离为=7﹣(﹣1)=8.故选B.点评:本题考查的知识点为:求数轴上两点间的距离就让两点中对应的较大的数减去较小的数.4.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|考点:数轴;绝对值.分析:本题通过观察数轴,判断出A点表示的数的正负性,再根据距离等于坐标的绝对值,化简,即可得出答案.解答:解:依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.点评:本题考查了数轴的性质及绝对值的定义,能够根据数轴判断出数的符号,再进一步确定距离.5.|﹣2|的相反数是()A.﹣2 B.﹣C.D.2考点:绝对值;相反数.分析:相反数的意义:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.解答:解:∵|﹣2|=2,∴2的相反数是﹣2.故选A.点评:本题考查了相反数的意义及绝对值的性质:学生易把相反数的意义与倒数的意义混淆.6.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0 B.﹣C.﹣2 D.考点:有理数大小比较.专题:数形结合.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=0、B=﹣、C=﹣2、D=,E=1标于数轴之上,可得:∵C点位于数轴最左侧,是最小的数故选:C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃考点:有理数的加法.专题:计算题.分析:原来的温度为﹣5℃,调高4℃,实际就是转换成有理数的加法运算.解答:解:﹣5+4=﹣1故选C.点评:本题主要考查从实际问题抽象出有理数的加法运算.8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1 D.1考点:有理数的减法;绝对值.专题:计算题.分析:根据绝对值的性质去掉绝对值符号,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:|﹣|﹣=﹣=﹣.故选A.点评:本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.9.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0 D.﹣1考点:有理数的加减混合运算.专题:规律型.分析:由题意,这从1到2010一共可分为1005组,每组的结果都是1,由此不难得出答案.解答:解:这从1到2010一共2010个数,相邻两个数之差都为﹣1,所以1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是﹣1005.故选A.点评:此题主要考查有理数的加减混合运算,认真审题,找出规律,是解决此类问题的关键所在.二.填空题(共6小题)10.﹣(﹣)的相反数与﹣的倒数的积为.考点:有理数的乘法;相反数;倒数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数,根据有理数的乘法,可得答案.解答:解:﹣(﹣)的相反数是﹣,﹣的倒数是﹣,﹣(﹣)的相反数与﹣的倒数的积是﹣×(﹣)=,故答案为:.点评:本题考查了有理数的乘法,同号得正,异号得负,并把绝对值相乘.11.若a与b互为倒数,则3﹣5ab=﹣2.考点:倒数.专题:计算题.分析:根据互为倒数的两个数的积为1,直接求出ab的值,从而得到3﹣5ab的值.解答:解:∵ab=1,∴3﹣5ab=3﹣5×1=﹣2.故答案为﹣2.点评:本题考查了利用倒数求代数式的值,明确互为倒数的两个数的积为1是解题的关键.12.若|m+3|+(n﹣2)2=0,则(m+n)2010的值为1.考点:非负数的性质:偶次方;非负数的性质:绝对值;有理数的乘方.专题:计算题.分析:根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.解答:解:∵|m+3|+(n﹣2)2=0,∴m=﹣3,y=2;∴原式=(﹣3+2)2010=1故答案为1.点评:本题考查了非负数的性质以及有理数的乘方,几个非负数的何为0,这几个数都为0.13.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为9.39×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:9390000用科学记数法表示为9.39×106,故答案为:9.39×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.32×3.14+3×(﹣9.42)=0.考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)即可求解.解答:解:原式=3×9.42+3×(﹣9.42)=3×=3×0=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.15.为了解体育测试中篮球项目的得分情况(个人得分都是整数),抽取7位同学的成绩,若用四舍五入取近似值的方法将平均分精确到一位小数,该7位同学的平均分为9.4分,若精确到两位小数,则该7位同学的平均分为分.考点:近似数和有效数字.分析:应根据得9.4分得到7位裁判的准确打分和,除以7,再保留2位小数即可.解答:解:用四舍五入取近似值的方法精确到一位小数能得到9.4的数值X围是:(大于等于9.35和小于9.45之间)∴9个裁判去掉最高和最低得分后,实际取值就是7个人的分数.∴该运动员的有效总得分在大于或等于9.35×7=65.45分和小于9.45×7=66.15之间.∵每个裁判给的分数都是整数,∴得分总和也是整数,在65.45和66.15之间只有66是整数,∴该运动员的有效总得分是66分.∴得分为:66÷7≈9.4286,精确到两位小数就是9.43.点评:本题考查了近似数和有效数字,得到得分为一位小数的准确分值的X围,及得到7位裁判的准确打分和是难点.三.解答题(共12小题)16.计算:2009×82010;(2)﹣32﹣|(﹣5)|×(﹣)2×(﹣18)÷|﹣(﹣3)2|.考点:有理数的混合运算.专题:计算题.分析:(1)原式变形后,利用积的乘方逆运算法则计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣(0.125×8)2009×8=﹣8;(2)原式=﹣32﹣5××(﹣18)÷9=﹣32+=﹣30.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.计算:(1﹣)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)考点:有理数的混合运算.分析:先算减法,再算乘法,分子与分母错位约分得出答案即可.解答:解:原式=××××…××=.点评:此题考查有理数的混合运算,掌握运算顺序与计算的方法是解决问题的关键.18.计算:.考点:有理数的混合运算.分析:利用乘法分配律计算即可.解答:解:原式=10×(﹣18)﹣×(﹣18)=﹣180+=﹣179.点评:此题考查有理数的混合运算,掌握运算方法和运算定律,正确判定运算符号计算即可.19.先化简,再求值:(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.考点:整式的加减—化简求值.分析:(1)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案.解答:解:(1)(6a﹣1)﹣(2﹣5a)﹣=6a﹣1﹣2+5a+(1﹣a)=6a﹣1﹣2+5a+1﹣a=10a﹣2,把a=2代入原式,得10a﹣2=10×2﹣2=18;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7)=3a2﹣ab+7﹣5ab+4a2﹣7=7a2﹣6ab,把a=2,b=代入原式,得7a2﹣6ab=7×2﹣6×2×=14﹣4=10.,点评:本题考查了整式的化简求值,注意去括号的法则:括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.20.已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.考点:整式的加减—化简求值.分析:首先利用整式的混合运算法则整理进而将已知代入求出即可.解答:解:∵a﹣b=6,ab=﹣2,∴3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)=3ab+3a﹣6b﹣5b+10a+2ab﹣2a=5ab+11a﹣11b=5ab+11(a﹣b)=﹣10+11×6=56.点评:此题主要考查了整式的加减运算,正确把握运算法则是解题关键.21.已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.考点:整式的加减—化简求值;非负数的性质:绝对值.分析:由|a+1|与|2a+b|互为相反数,可得|a+1|+|2a+b|=0,因为|a+1|≥0,|2a+b|≥0,所以a+1=0,2a+b=0,进而求出a=﹣1,b=2,然后计算a﹣b=﹣3,a+b=1,然后代入即可.解答解:∵|a+1|与|2a+b|互为相反数,∴|a+1|+|2a+b|=0,∵|a+1|≥0,|2a+b|≥0,∴a+1=0,2a+b=0,∴a=﹣1,b=2,∴a﹣b=﹣3,a+b=1,∴3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)=3(a﹣b)﹣4(a﹣b)2﹣7(a+b)2=3×(﹣3)﹣4×(﹣3)2﹣7×12=﹣9﹣4×9﹣7=﹣9﹣36﹣7=﹣52.点评:此题考查了整式的加减化简求值,解题的关键是求出a、b的值.22.若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.考点:整式的加减—化简求值;多项式.专题:计算题.分析:由题意求出m与n的值,原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.解答:解:∵多项式2x n﹣1﹣x n+3x m+1是六次二项式,∴n﹣1=m+1,n=6,解得:m=4,n=6,原式=2m﹣2n2﹣3n+3m2﹣2m+n+8m﹣4n=3m2﹣2n2+8m﹣6n,当m=4,n=6时,原式=48﹣72+32﹣36=﹣28.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?考点:正数和负数.分析:(1)根据有理数的加法运算,可得答案;(2)根据有理数的加法,可得每次距离,根据有理数比较大小,可得答案;(3)根据有理数的加法,可的路程,根据路程与时间的关系,可得答案.解答:解:(1)﹣0.7+2.7+(﹣1.3)+0.3+(﹣1.4)+2.6=2.2(km),答:工作组最后到达的地方在出发点的北方,距出发点;(2)第一次的距离是|﹣0.7|=0.7(km),第二次的距离是|﹣0.7+2.7|=2(km),第三次的距离是|2+(﹣1.3)|=0.7(km),第四次的距离是|0.7+0.3|=1(km),第五次的距离是|1+(﹣1.4)|=0.4,第六次的距离是|﹣0.4+2.6|=2.2(km),∵2.2>2>1>0.7>0.4,答:在一天的工作中,最远处离出发点有;(3)(|﹣0.7|+2.7+|﹣1.3|+0.3+|﹣1.4|+2.6)÷2=4(h),9+4+6=19(点),即下午7点,答:工作组早上九点出发,做完工作时是下午7点.点评:本题考查了正数和负数,利用了有理数的加法运算.24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成16个细胞;(2)这样的一个细胞经过3小时后可分裂成64个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成22n个细胞.考点:有理数的乘方.专题:规律型.分析:根据图形可知其规律为n小时是22n.解答:解:(1)第四个30分钟后可分裂成24=16;(2)经过3小时后可分裂成22×3=26=64;(3)经过n(n为正整数)小时后可分裂成22n.点评:主要考查从图示或数据中寻找规律的能力.25.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=;(2)证明你猜想的结论;(3)求和:+++…+.考点:规律型:数字的变化类.专题:规律型;探究型.分析:(1)根据所给的等式,进行推而广之即可;(2)根据分式的加减运算法则进行证明;(3)根据(2)中证明的结论,进行计算.解答:(1)解:;(2)证明:右边=﹣=﹣===左边,所以猜想成立.(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了异分母的分式相减的运算法则.26.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).考点:列代数式;代数式求值.分析:(1)草地面积=4×四分之一圆形面积;空地的面积=长方形面积﹣草地面积;(2)把长=300米,宽=200米,圆形的半径=10米代入(1)中式子即可.解答:解:(1)草地面积为:4×πr2=πr2米2,空地面积为:(ab﹣πr2)米2;(2)当a=300,b=200,r=10时,ab﹣πr2=300×200﹣100π≈59686(米2),∴广场空地的面积约为59686米2.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.要熟练运用长方形面积和圆面积公式.27.在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为(1﹣).(2)请你利用下图,再设计一个能求的值的几何图形.考点:规律型:图形的变化类.分析:此题要结合图形分析计算其面积和的方法是总面积减去剩下的面积.解答:解:(1)设总面积为:1,最后余下的面积为:,故几何图形的值为:.故答案为:.(2)如图等.点评:(1)此题结合图形观察发现,计算面积和的时候,运用总面积减去剩下的面积非常简便.(2)只要是按照图形的对称轴进行折叠均可.word 21 / 21。
七年级上学期期中考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.有理数的相反数是()A.﹣B.﹣3C.D.32.单项式﹣3xy2的系数和次数分别为()A.3,1B.﹣3,1C.3,3D.﹣3,33.下列计算正确的是()A.﹣(+3)=3B.﹣|﹣2|=2C.(﹣3)2=﹣9D.﹣(﹣5)=54.下面计算正确的是()A.6a﹣5a=1B.a+2a2=3a2C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b5.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.6.长方形的一边长等于3a+2b,另一边比它大a﹣b,那么这个长方形的周长是()A.14a+6b B.7a+3b C.10a+10b D.12a+8b7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b>0D.<08.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)9.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a10.把几个不同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2};{1,4,7};…我们称之为集合,其中的每一个数称为该集合的元素.规定:当整数x是集合的一个元素时,100﹣x也必是这个集合的元素,这样的集合又称为黄金集合,例如{﹣1,101}就是一个黄金集合.若一个黄金集合所有元素之和为整数m,且1180<m<1260,则该黄金集的元素的个数是()A.23B.24C.24或25D.26二、填空题(本大题共6个小题,每小题3分,共18分)11.用四舍五入法把数2.685精确到0.01约等于.12.中国的陆地面积约为9600000km2,用科学记数法将9600000表示为.13.若单项式﹣5x2y a与﹣2x b y5的和仍为单项式,则这两个单项式的和为.14.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为.15.若a+b+c=0,abc<0,则的值为16.对于一个大于1的正整数n进行如下操作:①将n拆分为两个正整数a、b的和,并计算乘积a×b②对于正整数a、b分别重复此操作,得到另外两个乘积③重复上述过程,直至不能再拆分为止(即拆分到正整数1)当n=6时,所有的乘积的和为,当n=100时,所有的乘积的和为三、解答题(共8题,共72分)17.(8分)计算:(1)(﹣8)+10+(﹣3)+2(2)(3)(4)18.(8分)先化简下式,再求值:,其中19.(8分)甲、乙两船从同一个港口同时出发反向而行,甲船顺水航行了6小时,乙船逆水行了3小时,两船在静水中的速度都是50km/h,水流速度是akm/h(1)两船一共航行了多少千米;(2)甲船比乙船多航行多少千米?20.(8分)某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级1班2班3班4班实际购买量(本)a33c21实际购买量与计划购数量的差值(本)+12b﹣8﹣9(1)直接写出a=,b=,c=(2)根据记录的数据可知4个班实际购书共本(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书售价为30元,请计算这4个班整体购书的最低总花费是多少元?21.(8分)某市居民使用自来水按如下标准收费(水费按月缴纳)户月用水量单价不超过12m3的部分2元/m3超过12m3但不超过20m3的部分3元/m3超过20m3的部分4元/m3(1)某用户一个月用了14m3水,求该用户这个月应缴纳的水费(2)某户月用水量为n立方米(12<n≤20),该用户缴纳的水费是39元,列方程求n的值(3)甲、乙两用户一个月共用水40m3,设甲用户用水量为xm3,且12<x≤28①当12<x≤20时,甲、乙两用户一个月共缴纳的水费为元(用含x的整式表示)②当20<x≤28时,甲、乙两用户一个月共缴纳的水费为元(用含x的整式表示)22.(10分)将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.(1)数表中从小到大排列的第9个数是17,第40个数是,第100个数是,第n个数是.(2)数71排在数表的第行,从左往右的第个数.(3)设T字框内处于中间且靠上方的数是整个数表中从小到大排列的第n个数,请你用含n的代数式表示T 字框中的四个数的和.(4)若将T字框上下左右移动,框住的四个数的和能等于406吗?如能,求出这四个数,如不能,说明理由.23.(10分)已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c (1)填空:abc0,a+b ac,ab﹣ac0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等①当b2=16时,求c的值②求b、c之间的数量关系③P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值24.(12分)数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y﹣2xy+5的二次项系数为a,常数项为b(1)直接写出:a=,b=(2)数轴上点P对应的数为x,若P A+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度参考答案与试题解析1.【解答】解:的相反数是﹣,故选:A.2.【解答】解:单项式﹣3xy2的系数和次数分别为:﹣3,3.故选:D.3.【解答】解:(A)原式=﹣3,故选项A错误;(B)原式=﹣2,故选项B错误;(C)原式=9,故选项C错误;故选:D.4.【解答】解:A、6a﹣5a=a,故此选项错误;B、a+2a2无法计算,故此选项错误;C、﹣(a﹣b)=﹣a+b,正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.5.【解答】解:阴影部分的面积为:S△﹣S圆=ab﹣πr2,故选:D.6.【解答】解:由题意知,长方形的另一边长等于(3a+2b)+(a﹣b)=3a+2b+a﹣b=4a+b,所以这个长方形的周长是2(3a+2b+4a+b)=2(7a+3b)=14a+6b.故选:A.7.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.8.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.9.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.10.【解答】解:在黄金集合中一个整数是x,则必有另一个整数是100﹣x,∴两个整数的和为x+100﹣x=100,由题意可知,1180<m<1260时,100×12=1200,100×13=1300,∴这个黄金集合的个数是24或25个;故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:用四舍五入法把数2.685精确到0.01约等于2.69,故答案为:2.69.12.【解答】解:将960 0000用科学记数法表示为9.6×106.故答案为:9.6×10613.【解答】解:∵单项式﹣5x2y a与﹣2x b y5的和仍为单项式,∴b=2,a=5,∴﹣5x2y a+(﹣2x b y5)=﹣5x2y5+(﹣2x2y5)=﹣7x2y5.故答案是:﹣7x2y5.14.【解答】解:第①个图形中五角星的个数为2=2×12;第②个图形中五角星的个数为2+4+2=8=2×4=2×22;第③个图形中五角星的个数为2+4+6+4+2=18=2×32;第④个图形中五角星的个数为2×42;所以第⑥个图形中五角星的个数为2×62=2×36=72.故答案为72.15.【解答】解:已知a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以=+﹣,当a<0或者b<0时,原式=1﹣1+1=1;当c<0时,原式=﹣1﹣1﹣1=﹣3;故原式=﹣3或1.故答案为:﹣3或1.16.【解答】解:根据题意,可进行如图操作,得2×4+1×1+2×2+1×1+1×1=15.所以得到当n=6时,所有乘积的和为15=×6×5;当n=100时,所有乘积的和为×100×99=4950.故答案为15、4950.三、解答题(共8题,共72分)17.【解答】解:(1)原式=﹣11+12=1;(2)原式=6﹣20+9=﹣5;(3)原式=﹣8﹣5=﹣13;(4)原式=﹣1+16﹣1=14.18.【解答】原式=﹣x﹣2x+y2+x﹣y2=﹣3x﹣y2,当x=﹣2,y=﹣时,原式=6﹣=5.19.【解答】解:(1)∵甲船顺水航行了6小时,乙船逆水行了3小时,两船在静水中的速度都是50km/h,水流速度是akm/h,∴甲船顺水的速度是:(50+a)akm/h,乙船逆水的速度是:(50﹣a)akm/h,∴两船一共航行了:6(50+a)+3(50﹣a)=300+6a+150﹣3a=(450+3a)km,答:两船一共航行了(450+3a)千米;(2)由两船的速度可得:6(50+a)﹣3(50﹣a)=300+6a﹣150+3a=(150+9a)km,答:甲船比乙船多航行了(150+9a)千米.20.【解答】解:(1)a=21+9+12=42,b=33﹣30=3,c=30﹣8=22,故答案为:42,+3,22;(2)4个班一共购买数量=42+33+22+21=118本;故答案为:118;(3)如果每次购买15本,则可以购买7次,且最后还剩13本书单独购买,即最低总花费=30×(15﹣2)×7+30×13=3120元.21.【解答】解:(1)由题意可得:2×12+3×(14﹣12)=30元,答:该用户这个月应缴纳30元水费.(2)由题意可得,2×12+3(n﹣12)=39,解得n=17;(3)①∵12<x≤20,∴乙用户用水量20≤40﹣x<28,∴12×2+3(x﹣12)+12×2+3×8+4(40﹣x﹣20)=(116﹣x)元;②∵20<x≤28,∴乙用户用水量12≤40﹣x<20,∴12×2+3×8+4(x﹣20)+12×2+3(40﹣x﹣12)=(x+76)元;故答案为(116﹣x)元,(x+76)元.22.【解答】解:(1)∵连续的奇数1、3、5、7、…、,∴第40个数是40×2﹣1=79,第100个数是100×2﹣1=199,第n个数是2n﹣1;故答案为:79,199,2n﹣1;(2)∵2n﹣1=71,∴n=36,∴数71在第36个数,∵每排有5个数,∴数71排在数表的第8行,从左往右的第1个数,故答案为:8,1;(3)由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.(4)由题意,令框住的四个数的和为406,则有:8n+6=406,解得n=50.由于数2n﹣1=99,排在数表的第10行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于406.23.【解答】解:(1)根据数轴上A、B、C三点的位置,可知a<0<b<c,|a|<|b|<|c|所以abc<0,a+b>ac,ab﹣ac>0.故答案为<,>,>.(2)①∵|a|=2且a<0,∴a=﹣2,∵b2=16且b>0,∴b=4.∵点B到点A,C的距离相等,∴c﹣b=b﹣a∴c﹣4=4﹣(﹣2),∴c=10答:c的值为10.②∵c﹣b=b﹣a,a=﹣2,∴c=2b+2,答:b、c之间的数量关系为c=2b+2.③依题意,得x﹣c<0,x+a>0∴|x﹣c|=c﹣x,|x+a|=x+a∴原式=bx+cx+c﹣x﹣10(x+a)=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣11)x+c﹣10a∵c=2b+2∴原式=(b+2b+2﹣11)x+c﹣10×(﹣2)=(3b﹣9)x+c+20∵当P点在运动过程中,原式的值保持不变,即原式的值与x无关∴3b﹣9=0,∴b=3.答:b的值为3.24.【解答】解:(1)∵多项式6x3y﹣2xy+5的二次项系数为a,常数项为b,∴a=﹣2,b=5,故答案为:﹣2,5;(2)①当点P在点A左边,由P A+PB=20得:(﹣2﹣x)+(5﹣x)=20,∴x=﹣8.5②当点P在点A右边,在点B左边,由P A+PB=20得:x﹣(﹣2 )+(5﹣x)=20,∴7=20,不成立;③当点P在点B右边,由P A+PB=20得:x﹣(﹣2 )+(x﹣5),∴x=11.5.∴x=﹣8.5或11.5;(3)设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,(法一)①当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒.Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒.②当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.(法二)当点N到达点A之前时,|(﹣2+t)﹣(5﹣2t)|=1,所以t1=2,t2=当点N到达点A之后时,|(﹣2+t)﹣(﹣2+2t﹣7)|=1,所以t3=6,t4=8即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.。
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
[]61671761192611=+−=−×−−=−×−−=)(2023至2024学年第一学期期中学业质量检测七年级数学参考答案及评分标准 一、选择题:(本大题共12个小题,每小题4分,共48分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C C C D D C A C B CB二、填空题:(本大题共6个小题,每小题4分,共24分.)13.> 14.线动成面 15.9 16.-25 17.4 18. 380三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)解:原式 ············································2分 ························································4分20.(本题4分)解:原式 ····················································2分 ····································································4分21.(本题4分)解:原式 ······························1分·······························2分······························3分·······················································4分22.(本题5分)解:如图所示:·····················4分用“>”连接为:312>3>−(−2.5)>0. ·········································5分23.(本题5分) 解:(1)如图所示:························································4分(2)图中共有9个小正方体. ······· ································5分21942343-=−=−×−×)()(6=5-11=5-4=7)()(+++24.(本题6分)解:(1)分数集合:{5.2,227,−234,…};····································2分(2)非负整数集合:{0,−(−3)…};····································4分(3)有理数集合:{5.2,0,227,+(−4),−234,−(−3)…}.···························6分25.(本题6分)解:(1)最重的一箱比最轻的一箱多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20箱石榴中,最重的一箱比最轻的一箱多重5.5千克;···························2分(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=8(千克),答:20箱石榴总计超过8千克; ·············································4分(3)(25×20+8)×8=508×8=4064(元),答:售出这20箱石榴可赚4064元.·····················································6分26.(本题6分)解:(1)草坪面积为xxxx−2×1=(xxxx−2)平方米;·············································3分(2)(8×5−2)×20=(40−2)×20=38×20=760(元).答:绿化整个庭院的费用为760元。
一、选择题1.有理数 a,b 在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+ b>0C.|a|>|b|D.ab>0 2.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8673.若一个角的两边与另一个角的两边分别平行,则这两个角()A.相等B.互补C.相等或互补D.不能确定4.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°5.下列图形经过折叠不能围成棱柱的是().A.B.C.D.6.若关于x的方程3x+2a=12和方程2x-4=12的解相同,则a的值为()A.6B.8C.-6D.47.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°8.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A .27B .51C .69D .729.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( ) A .﹣1 B .0 C .1 D .210.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型 办卡费用(元) 每次收费(元) A 类 1500 100 B 类 3000 60 C 类400040例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( ) A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡D .不购买会员年卡11.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( ) A .23bB .26bC .29bD .236b12.代数式:216x y x +,25xy x +,215y xy -+,2y ,-3中,不是整式的有( )A .4个B .3个C .2个D .1个 13.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤14.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c 15.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯二、填空题16.数轴上点A 、B 的位置如下图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为___17.若代数式5x -5与2x -9的值互为相反数,则x =________.18.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.19.如图,半径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,若点A 对应的数是-1,则点B 对应的数是______.20.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.21.若方程423x m x +=-与方程1(16)62x -=-的解相同,则m 的值为______.22.2018年2月3日崂山天气预报:多云,-1°C~-9°C ,西北风3级,则当天最高气温比最低气温高_______℃23.用黑白两色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:则第n 个图案中有白色纸片________张.24.若a 与b 互为相反数,c 与d 互为倒数,则a+b+3cd=_____.25.23-的相反数是______.三、解答题26.读句画图:如图所示,A ,B ,C ,D 在同一平面内. (1)过点A 和点D 画直线; (2)画射线CD ; (3)连接AB ; (4)连接BC ,并反向延长BC .(5)已知AB=9,直线AB 上有一点F ,并且BF=3,则AF=_________27.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -; ()2已知x 22a b --与y1ab 3的同类项,求2B A -的值. 28.问题情境:在平面直角坐标系xOy 中有不重合的两点()11,A x y 和点()22,B x y ,小明在学习中发现,若12x x =,则//AB y 轴,且线段AB 的长度为12y y -;若12y y =,则//AB x 轴,且线段AB 的长度为12x x -; (应用):(1)若点()1,1A -、()2,1B ,则//AB x 轴,AB 的长度为__________. (2)若点()1,0C ,且//CD y 轴,且2CD =,则点D 的坐标为__________. (拓展):我们规定:平面直角坐标系中任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212,d M N x x y y =-+-;例如:图1中,点()1,1M -与点()1,2N -之间的折线距离为()(),1112235d M N =--+--=+=. 解决下列问题:(1)如图1,已知()2,0E ,若()1,2F --,则(),d E F __________; (2)如图2,已知()2,0E ,()1H t ,,若(),3d E H =,则t =__________. (3)如图3,已知()3,3P 的,点Q 在x 轴上,且三角形OPQ 的面积为3,则(),d P Q =__________.29.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.30.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题题1 2 3 4 5 6 7 8 9 10 11 12 13 14 15号答C C C C B C CD A C C C D C B案二、填空题16.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B关于点A的对称点为C所以点C到点A的距离|AC|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的17.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0解此方程即可求得答案【详解】由题意可得:5x-5+2x-9=0移项得7x=14系数化为1得x=2【点睛】本题考查了18.-29A【解析】【分析】由题意可知:每个峰排列5个数求出5个峰排列的数的个数再求出峰6中C位置的数的序数然后根据排列的奇数为负数偶数为正数解答根据题目中图中的特点可知每连续的五个数为一个循环A到E从19.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣120.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星∴第10个图形有11221.【解析】【分析】首先求出方程的解然后进一步将解代入方程由此即可求出答案【详解】由可得:∴根据题意将代入方程可得:∴故答案为:【点睛】本题主要考查了一元一次方程的解与解一元一次方程的综合运用熟练掌握相22.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答23.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第24.【解析】【分析】【详解】解:∵ab互为相反数∴a+b=0∵cd互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值25.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数三、解答题26.27.28.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B关于点A的对称点为C所以点C到点A的距离|AC|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的解析:-5【解析】分析:点A表示的数是-1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,-1-x=4,解出即可解答;解答:解:如图,点A表示的数是-1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,-1-x=4,故答案为-5.17.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0解此方程即可求得答案【详解】由题意可得:5x-5+2x-9=0移项得7x=14系数化为1得x=2【点睛】本题考查了解析:2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.18.-29A【解析】【分析】由题意可知:每个峰排列5个数求出5个峰排列的数的个数再求出峰6中C位置的数的序数然后根据排列的奇数为负数偶数为正数解答根据题目中图中的特点可知每连续的五个数为一个循环A到E从解析:-29,A.【解析】【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答,根据题目中图中的特点可知,每连续的五个数为一个循环A到E,从而可以解答本题.【详解】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中C位置的数的是-29,(2017-1)÷5=2016÷5=403…1,∴2017应排在A、B、C、D、E中A的位置,故答案为:-29;A【点睛】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.19.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣1解析:-1+2π【解析】试题解析:由圆的周长计算公式得:AB 的长度为:C=2πd=2π,点B 对应的数是2π﹣1.20.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星∴第10个图形有112解析:【解析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星. ∴第10个图形有112-1=120个小五角星.21.【解析】【分析】首先求出方程的解然后进一步将解代入方程由此即可求出答案【详解】由可得:∴根据题意将代入方程可得:∴故答案为:【点睛】本题主要考查了一元一次方程的解与解一元一次方程的综合运用熟练掌握相 解析:6-【解析】 【分析】 首先求出方程1(16)62x -=-的解,然后进一步将解代入方程423x m x +=-,由此即可求出答案. 【详解】由1(16)62x -=-可得:1612x -=-, ∴4x =,根据题意,将4x =代入方程423x m x +=-可得:203m+=,∴6m =-, 故答案为:6-. 【点睛】本题主要考查了一元一次方程的解与解一元一次方程的综合运用,熟练掌握相关概念是解题关键.22.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答解析:8 【解析】 【分析】根据有理数的减法解答即可. 【详解】 -1-(-9)=8,所以当天最高气温是比最低气温高8℃,故答案为:8【点睛】此题考查有理数的减法,关键是根据有理数的减法解答.23.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第解析:3n+1【解析】【分析】试题分析:观察图形,发现:白色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,…第n个图案中有白色纸片=3n+1张.故答案为3n+1.【点睛】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.24.【解析】【分析】【详解】解:∵ab互为相反数∴a+b=0∵cd互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值解析:【解析】【分析】【详解】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3.故答案为3.【点睛】本题考查代数式求值.25.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数【解析】【分析】直接根据相反数的定义进行解答即可.【详解】解:由相反数的定义可知,23-的相反数是()23--,即32-. 故答案为:32-.【点睛】 本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.三、解答题26.(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)6或9【解析】【分析】(1)根据直线向两方无限延伸得出即可;(2)根据射线向一方无限延伸画出图形;(3)根据线段有两个端点画出图形;(4)利用反向延长线段的作法得出即可;(5)利用得出即可.【详解】(1)如图所示,直线AD 为所求;(2)如图所示,射线CD 为所求;(3)如图所示,线段AB 为所求;(4)如图所示,射线CB 为所求;(5)①若点F 在线段AB 上,则AF=AB-BF=9-3=6;②若点F 在线段AB 的延长线上,则AF=AB+BF=9+3=12,故答案为:6或9.【点睛】本题考查的是直线、射线、线段的定义及性质等知识,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可. 27.(1)225x 9xy 9y +-(2)63或-13【解析】【分析】(1)把A 与B 代入2B-A 中,去括号合并即可得到结果;(2)利用同类项的定义求出x 与y 的值,代入原式计算即可得到结果.【详解】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-; ()2∵x 22a b --与y 1ab 3的同类项, ∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.28.【应用】:(1)3;(2)(1,2)或(1,−2);【拓展】:(1)=5;(2)2或−2;(3)4或8【解析】【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1−x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD =2即可得出|0−m|=2,解之即可得出结论;(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB 的长度为|−1−2|=3.故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ),∵CD =2,∴|0−m|=2,解得:m =±2, ∴点D 的坐标为(1,2)或(1,−2).故答案为:(1,2)或(1,−2).【拓展】:(1)d (E ,F )=|2−(−1)|+|0−(−2)|=5.故答案为:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2−1|+|0−t|=3,解得:t=±2.故答案为:2或−2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴1||332x⨯=,解得:x=±2.当点Q的坐标为(2,0)时,d(P,Q)=|3−2|+|3−0|=4;当点Q的坐标为(−2,0)时,d(P,Q)=|3−(−2)|+|3−0|=8.故答案为:4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.29.-x2+y2,3.【解析】【分析】先将原式去括号,合并同类项化简成2x2﹣2y2﹣3x+3y,再将x,y的值代入计算即可.【详解】原式=2x2﹣2y2﹣3x2y2﹣3x+3x2y2+3y=2x2﹣2y2﹣3x+3y,当x=﹣1,y=2时,原式=2﹣8+3+6=3.30.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.。
人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 33. 与原点距离是2.5个单位长度的点所表示的有理数是( )A 2.5 B. -2.5 C. ±2.5 D. 这个数无法确定4.计算(2)--的值是()A. -2B. 2C. 2±D. 45.﹣3的绝对值是( )A ﹣3 B. 3 C. -13D.136.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 77.下列各组中的两个单项式中,是同类项的是()A. a2和-2aB. 2m2n和3nm2C. -5ab和-5abcD. x3和238.化简5(2x-3)+4(3-2x)结果为( )A 2x-3 B. 2x+9 C. 8x-3 D. 18x-39.加上3m -等于2535m m --的式子是( ) A. 25(1)m -B. 2565m m --C. 25(1)m +D. 2(565)m m -+-10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克B. 50×109千克C. 5×109千克D. 5×1010千克二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 12.30+(﹣20)=_____.13.计算:2(3)-=__________;23-=__________. 14.当2x =-时,代数式221x x -+-=__________.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 16.3xy 2﹣7xy 2=_____.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他的记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣4519.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷bc的值. 23.根据下面给出数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示). (3)数轴上,线段AB 的中点表示的数是多少?五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人, (1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题: (1)请直接写出、、的值.a = ,b = ,c = .(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:|1||1|2|5|x x x +---+(请写出化简过程)(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)n n >个单位长度的速度向左运动,同时,点和点分别以每秒2n 个单位长度和5n 个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表示为BC ,点与点之间的距离表示为AB .请问:BC AB -的值是否随着时间的变化而改变?若变化,请说明理由:若不变,请求其值.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 3【答案】A【解析】【分析】根据题意,在选项中寻找负有理数或零即可.【详解】解:不是正有理数,则为负有理数或零,而A中的﹣3.14是负数故选A.【点睛】本题考查有理数;能够理解题意,掌握有理数的分类是解题的关键.3. 与原点距离是2.5个单位长度的点所表示的有理数是( )A. 2.5B. -2.5C. ±2.5D. 这个数无法确定【答案】C【解析】试题分析:根据数轴上的点表示的数即可判断.与原点距离是2.5个单位长度的点所表示的有理数是±2.5,故选C.考点:数轴点评:分类思想是初中数学学习中一个非常重要的思想,是学生对所学知识是否熟练掌握的很重要的一个体现,因而此类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需特别注意.4.计算(2)--的值是()A. -2B. 2C. 2±D. 4【答案】B【解析】【分析】根据去括号法则求解即可.【详解】(2)2--=故选:B.【点睛】本题考查了去括号法则,熟记法则是解题关键.5.﹣3的绝对值是( )A. ﹣3B. 3C. -13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】利用单项式次数求解即可. 【详解】单项式7πa 2b 3的次数是5. 故选B .【点睛】本题主要考查了单项式,解题的关键是熟记单项式的定义,注意π是常数. 7.下列各组中的两个单项式中,是同类项的是( ) A. a 2和-2a B. 2m 2n 和3nm 2 C. -5ab 和-5abc D. x 3和23【答案】B 【解析】试题分析:同类项是指:单项式中所含的字母相同,且相同字母的指数也完全相同.ACD 都不属于同类项. 考点:同类项的定义.8.化简5(2x-3)+4(3-2x)的结果为( ) A. 2x-3 B. 2x+9 C. 8x-3 D. 18x-3【答案】A 【解析】试题分析:根据整式的混合运算,结合合并同类项法则可求解:5(2x-3)+4(3-2x)=5(2x-3)-4(2x-3)=2x-3. 故选A考点:合并同类项9.加上3m -等于2535m m --的式子是( ) A. 25(1)m - B. 2565m m --C. 25(1)m +D. 2(565)m m -+-【答案】A 【解析】 【分析】根据整式的加减法则即可得.【详解】由题意得:所求的式子为2535(3)m m m ----25353m m m =--+ 255m =-25(1)m =-故选:A .【点睛】本题考查了整式的加减运算,理解题意,正确列出所求的式子是解题关键.10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克 B. 50×109千克C. 5×109千克D. 5×1010千克【答案】D 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1. 【详解】解:50 000 000 000一共11位,从而50 000 000 000=5×1010. 故选D .二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 【答案】0. 【解析】 【分析】根据数轴上数字的表示可得答案.【详解】数轴上以原点为界限,右边的数都大于0,左边的数都小于0,原点表示0. 故答案为0.【点睛】本题考查了数轴上点所表示的数,非常简单. 12.30+(﹣20)=_____. 【答案】10. 【解析】 【分析】根据有理数加法法则计算即可. 【详解】30+(﹣20)=30﹣20=10. 故答案为10【点睛】本题主要考查了有理数的加法,熟记有理数的加法法则是解答本题的关键.13.计算:2(3)-=__________;23-=__________.【答案】 (1). 9 (2). -9 【解析】 【分析】根据有理数的幂运算法则即可得. 【详解】2(3)(3)(3)9-=-⨯-=23339-=-⨯=-故答案为:;9-.【点睛】本题考查了有理数的幂运算,熟记运算法则是解题关键. 14.当2x =-时,代数式221x x -+-=__________. 【答案】-9 【解析】 【分析】将2x =-代入求解即可得.【详解】22221(21)(1)x x x x x -+-=--+=-- 将2x =-代入得:原式()()222219=--+⨯--=- 故答案为:9-.【点睛】本题考查了代数式的化简求值,掌握有理数的混合运算方法是解题关键.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 【答案】﹣2. 【解析】 【分析】根据单项式系数、次数的定义来求解,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,然后求出m和n的值,相乘即可,m=-23,n=3,mn=-2.【详解】∵单项式﹣223x y的系数是m,次数是n,∴m=﹣23,n=3,mn=﹣2.故答案为-2【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.3xy2﹣7xy2=_____.【答案】﹣4xy2.【解析】【分析】根据合并同类项的法则计算即可.【详解】3xy2﹣7xy2=(3﹣7)xy2=﹣4xy2.故答案为﹣4xy2【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.【答案】54.【解析】【分析】求出所有数的绝对值的和即可.【详解】由题意可得:|+5|+|﹣3|+|+10|+|﹣8|+|+4|+|﹣6|+|+8|+|﹣10|=5+3+10+8+4+6+8+10=54(米),答:守门员全部练习结束后,他共跑了54米.故答案为54.【点睛】本题考查了正数和负数,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣45【答案】﹣15. 【解析】 【分析】根据有理数的乘法和加减法即可解答. 【详解】﹣2×4﹣6+(﹣15)﹣45=﹣8﹣6+(﹣15)+(﹣45)=﹣15.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 【答案】6.5. 【解析】 【分析】根据有理数的乘法和加减法可即可求解. 【详解】|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| =3.75+5.25﹣2.5 =6.5.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5 【答案】6x 2﹣9x ﹣5. 【解析】 【分析】根据合并同类项法则计算即可. 【详解】原式=(2x 2+4x 2)+(﹣3x ﹣6x )﹣5 =6x 2﹣9x ﹣5.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 【答案】244x -;5.【解析】【分析】先根据整式的加减:合并同类项进行化简,再将x 的值代入求解即可. 【详解】22211(21)()(33)33x x x x x -----+- 22211021333x x x x x =---+++- 244x =-当32x =时,原式2394()44429445=⨯-=⨯-=-=. 【点睛】本题考查了整式的加减及化简求值,熟记整式的运算法则是解题关键. 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷b c 的值. 【答案】5.【解析】【分析】根据绝对值的非负性可得a+5=0,b-3=0,c+2=0,再解可得a 、b 、c 的值,然后再代入代数式可得答案.【详解】∵|a +5|+|b ﹣2|+|c +4|=0,∴a +5=0,b ﹣2=0,c +4=0,解得a =﹣5,b =2,c =﹣4,∴a b ÷b c =a b ×c b=52-×42- =5,故答案为5.【点睛】此题主要考查了绝对值,以及有理数的乘法,关键是掌握有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.23.根据下面给出的数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示).(3)数轴上,线段AB 的中点表示的数是多少?【答案】(1)A 、B 两点之间的距离是5;(2)如图所示,见解析;(3)数轴上,线段AB 的中点表示的数是0.5.【解析】【分析】(1)从数轴上可以看出A 点是-2,B 点是3,所以距离为5;(2)与点A 的距离为2的点有两个,即一个向左,一个向右.(3)从数轴上找出线段AB 的中点,即距A ,B 两点的距离都是2.5的点,然后读出这个数即可.【详解】(1)A 、B 两点之间的距离是2+3=5.(2)如图所示:.(3)(﹣2+3)÷2=0.5.【点睛】本题主要考查了在数轴上解决实际问题的能力,学生要会利用数轴来解决这些问题.五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人,(1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?【答案】(1)中途上车的共有(132m ﹣92n )人;(2)中途上车的乘客有29人. 【解析】分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)将m 与n 的值代入(1)中的关系式,计算即可得到结果.【详解】(1)根据题意得:(8m ﹣5n )﹣12(3m ﹣n )=8m ﹣5n ﹣12m +12n =132m ﹣92n , 则中途上车的共有(132m ﹣92n )人; (2)当m =10,n =8时,原式=132×10﹣92×8=65﹣36=29, 则中途上车的乘客有29人.【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题:(1)请直接写出、、的值.a=,b=,c=.(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:+---+(请写出化简过程)|1||1|2|5|x x xn n>个单位长度的速度向左运动,同时,点和(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)点分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表-的值是否随着时间的变化而改变?若变化,请说明示为BC,点与点之间的距离表示为AB.请问:BC AB理由:若不变,请求其值.【答案】(1)-1,1,6;(2)-10;(3)不变,值为3.【解析】【分析】(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC−AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【详解】解:∵b是最小的正整数,∴b=1,∵(c−6)2+|a+b|=0,(c−6)2⩾0,|a+b|⩾0,∴c=6,a=−1,b=1,故答案为−1,1,6;(2).由题意−1<x<1,∴|x+1|−|x−1|−2|x+5|=x+1+x−1−2x−10=−10.(3)不变,由题意BC=5+5nt−2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC−AB=(5+3nt)−(2+3nt)=3,∴BC−AB的值不变,BC−AB=3.【点睛】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长.。
2023-2024学年吉林省吉林市第九中学七年级上学期期中数学试题1.的倒数是()A.6B.C.D.2.下列各式是一元一次方程的是()A.B.C.D.3.下列各整式中是三次单项式的是()A.B.C.D.4.下列运用等式的性质,变形不正确的是().A.若,则B.若,则C.若,则D.若,则5.多项式是关于的二次三项式,则取值为()A.3B.C.3或D.或16.买两种布料共138米,花了540元,其中蓝布料每米5元,黑布料每米3元,两种布料各买了多少米?设买黑布料米,列方程正确的是()A.B.C.D.7.单项式的系数是______.8.浙教版初中数学教科书共6册,总字数是978000,则978000用科学记数法可表示为______.9.精确到的近似数是_____.10.一支钢笔的价钱是元,一个笔筒的价钱是元,买3支钢笔和6个笔筒应付_____元11.若是关于的方程的解,则____.12.已知与互为相反数,则_________.13.若与是同类项,则________.14.小王同学在解方程时,发现“”处的数字模糊不清,但察看答案可知该方程的解为,则“”处的数字为___________.15.合并同类项:.16.计算:.17.解方程:.18.先化简,再求值:,其中,.19.计算:(﹣+)÷(﹣)20.若关于x的方程和的解的和为5,求m的值.21.小聪做作业时解方程的步骤如下:解:去分母得:①去括号得:②移项得:③合并同类项得:④系数化为1得:⑤(1)小聪的解答过程在第__________________步出现错误.(2)请写出正确的解答过程.22.如图是两种长方形铝合金窗框,已知窗框的长都是米,宽都是米,若一用户需①型的窗框2个,②型的窗框2个.(1)该用户共需铝合金的长度为________________米(用含的式子表示);(2)若1米铝合金的平均费用为元,求当时,该用户所需铝合金的总费用为多少元.23.20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个部件和两个部件组成的.在规定时间内,每人可以组装好10个部件或20个部件.那么,在规定时间内,最多可以组装出实验仪器的套数为多少?24.“”是规定的一种运算法则,如下:.(1)求的值;(2)若,求的值.25.今年春季,三元土特产喜获丰收,某土特产公司组织10辆汽车装运甲、乙两种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,设装运甲种土特产的汽车有辆,根据下表提供的信息,解答以下问题:土特产种类甲乙每辆汽车运载量(吨)43每吨土特产利润(元)140160(1)求这10辆汽车共装运土特产的数量(用含有的式子表示);(2)求销售完装运的这批土特产后所获得的总利润(用含有的式子表示);(3)当销售完装运的这批土特产后所获得的总利润为5120元时,求的值.26.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.。
初中七年级数学上册期中质量检测试题(含答案)一、 选择题(每题3分,共30分)1.多项式32--x x 的一次项的系数是 ( ) A .1 B. 0 C. 1- D. 3- 2.下列运算正确的是 ( )A . 66x x x =• B. ()33263a a = C. 327x x x ÷ D. 222532x x x =+3. 互为余角的两个角之比为2:1,则这两个角分别为 ( ) A . 002040和 B. 002550和 C. 003060和 D. 003555和4.下列作图语句正确的是 ( )A. 作射线AB,使AB=aB. 以点O 为圆心作弧C. 延长直线AB 到C,使AC=BCD. 作∠AOB=∠α 5.如图,若∠2=070,∠C=070,∠1=0110,则∠B 等于 ( ) A .070 B. 060 C. 050 D. 01106.一支蝴蝶在空中飞行,然后随意落在某个方格中(每个方格除颜色外完全一样),则蝴蝶停在白色方格中的概率为 ( ) A .83B. 85 C. 81 D . 217.某资料显示:一个水分子的质量大约是26103-⨯千克,那么8个水分6题子的质量用科学计算法表示为 ( ) A .千克241024.0-⨯ B. 千克25104.2-⨯ C. 千克26104.2-⨯ D. 千克24104.2-⨯8.若等于是同类项,则与b a b a y x y x -3243 ( ) A .8 B. 81 C. 8- D . 81-9.甲、乙两人玩掷骰子游戏,若掷得奇数,则甲获胜;若掷得偶数,则乙获胜,你觉得这个游戏 ( ) A .对甲有利,对乙不公平 B. 是公平的 C .对乙有利,对甲不公平 D. 以上都不正确 10.如图,AB ∥CD ,EF ⊥CD ,FG 平分∠EFC ,则 ( ) A .∠1>∠2 B. ∠1<∠2 C. ∠1=∠2 D .不能确定二、 填空题:(每题3分,共30分)11.多项式33112325a b ab b -+--有 项,分别是 12.已知2221,()2,αβαβαβ+=+=则的值为13.如图,直线1l ∥2l ,且AB ⊥1l ,若∠ABC=132,则α∠= 14.如图,在△ABC 中,∠ABC=90,∠ACB 与∠CBD 互余,∠ABD 与∠ACB 的关系是15.用小数表示43.01210--⨯为16.中国互联网的上网用户居世界第二位,已超过7800万,用科学计数法表示为 万。
数学试题卷注意事项:考试时间120分钟,满分120分。
所有答案均答在答题卷上的相应位置。
一.选择题(每小题3分,共30分)1.|﹣8|的相反数是()A.﹣8 B.8 C.D.﹣2.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化3.《庄子•天下篇》讲到:“一尺之棰,日取其半,万世不竭”,意思是说一尺长的木棍,每天截去它的一半,千秋万代也截不完.那么3天之后,这个“一尺之棰”还剩()A.尺B.尺C.尺D.尺4.下列式子:x2+1,+4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.35.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0 B.﹣1 C.﹣3 D.36.如图所示,则下列选项中代表数值最小的是()A.a B.b C.﹣a D.﹣b7.如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是()A.B.C.D.8.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的表面包括下底面共有多少朵花朵.A.60 B.61 C.62个D.63个9. 按图示的程序计算,若开始输入的x 为正整数,最后输出的结果为40,则满足条件的x 的不同值最多有( )A .2个B .3个C .4个D .5个10.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( ) A . B . C . D .二.填空题(每小题3分,共18分)11.多项式xy y x -+-31024是 次 项式.二次项系数是 。
12.钓鱼岛是中国领土一部分.钓鱼诸岛总面积约5平方千米,岛屿周围的海域面积约170 000平方千米.170000用科学记数法表示为 . 13.如果3231y x a +与1233--b y x 是同类项,那么|3a ﹣2b|的值是 .14.我们平常的数都是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只要两个数码0和1.如二进制数101=1×22+0×21+1=5,故二进制的101等于十进制的数5;10111=1×24+0×23+1×22+1×2+1=23,故二进制的10111等于十进制的数23,那么二进制的110111等于十进制的数 .15.王老师为了帮助班级里家庭困难的x 个孩子(x <10),购买了一批课外书,如果给每个家庭困难的孩子发5本,那么剩下4本;如果给每个家庭困难的孩子发6本,那么最后一个孩子只能得到 本. 16.若有理数在数轴上的位置如图所示,化简:|a+c|+|a ﹣b|﹣|c+b|= .三.解答题17.计算:(每小题4分,共8分) (1)(﹣+)×(﹣72) (2)18.(6分)先化简再求值:)](223[)2(322y xy y x xy x ++---,其中3,21-=-=y x .19.(8分)a 与b 互为相反数,c 与d 互为倒数,x 的倒数是它本身,求200820072)()()(cd b a x cd b a x -+++++-的值.20.(8分)由7个相同的小立方块搭成的几何体如图所示, (1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)21.(8分)某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负): 星期一 二 三 四 五 六 日 与计划量的差值+4﹣3﹣5+14﹣8+21﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车 辆; (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 辆; (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?22. (8分)已知多项式822-+-=my xy x A ,72+++-=y xy nx B ,B A 2-中不含有2x 项和y 项,求mn n m +的值.23.(8分)王明在计算一个多项式减去2b 2﹣b ﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b 2+3b ﹣1.据此你能求出这个多项式并算出正确的结果吗?24.(8分)阅读材料:求2017432222221++++++Λ的值.解:设S=2017432222221++++++Λ,等式两边同时乘以2得: 2S=20185432222222+++++Λ将下式减去上式得:2S ﹣S=22018﹣1 ,解得 : S=22018﹣1,即1+2+22+23+24+…+22017=22018﹣1请你仿照此法计算:(1)10432222221++++++Λ(2)n333331432++++++Λ(其中n 为正整数).25.(10分)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b .若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b ﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.数学答案题号 1 2 3 4 5 6 7 8 9 10 答案ACCCADBDBB二.填空题(每小题3分,共18分)11. 三、三、-1 12. 5101.7 13. 1 14. 5515. (10-x ) 16. -2a-2c 17、解下列方程(共8分,每小题4分) (1)-41(2) 211018、(6分)解:解:原式=3x 2﹣6xy ﹣[3x 2﹣2y +2xy +2y ]=3x 2﹣6xy ﹣(3x 2+2xy )=3x 2﹣6xy ﹣3x 2﹣2xy=﹣8xy (4分) 当时,原式=﹣8×(﹣)×(﹣3)=﹣12.(6分)19.(8分)解:∵a 与b 互为相反数,c 与d 互为倒数,x 的倒数是它本身∴a +b=0,cd=1,x=±1∵原式=x 2﹣(a +b +cd )x +(a +b )2007+(﹣cd )2008=x 2﹣x +1 ∴当x=1时,原式=1;当x=﹣1时,原式=3.20. (8分)(每小题4分)解:(1)如图所示:(2)从正面看,有5个面,从后面看有5个面,从上面看,有5个面,从下面看,有5个面,从左面看,有3个面,从右面看,有3个面,中间空处的两边两个正方形有2个面, ∴表面积为(5+5+3)×2+2=26+2=28.21. (8分)(每小题2分)解:(1)296.(2)29.(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(﹣3﹣5﹣8﹣6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.22.(8分)解:∵A=2x 2﹣xy +my ﹣8,B=﹣nx 2+xy +y +7,∴A ﹣2B=2x 2﹣xy +my ﹣8+2nx 2﹣2xy ﹣2y ﹣14=(2+2n )x 2﹣3xy +(m ﹣2)y ﹣22,(4分)由结果不含有x2项和y项,得到2+2n=0,m﹣2=0,解得:m=2,n=﹣1,则原式=1﹣2=﹣1.23.(8分)解:根据题意得:(b2+3b﹣1)+(2b2+b+5)=b2+3b﹣1+2b2+b+5=3b2+4b+4.即原多项式是3b2+4b+4.(4分)∴(3b2+4b+4)﹣(2b2﹣b﹣5)=3b2+4b+4﹣2b2+b+5=b2+5b+9.即算出正确的结果是b2+5b+9.(8分)24.(8分)解:(1)设S=1+2+22+...+210,两边乘以2得:2S=2+22+ (211)两式相减得:2S﹣S=S=211﹣1,则原式=211﹣1;(4分)(2)设S=1+3+32+33+…+3n,两边乘以3得:3S=3+32+33+…+3n+1,两式相减得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则原式=(3n+1﹣1).(8分)25.(10分)(1)∵|a+8|与(b﹣16)2互为相反数,∴|a+8|+(b﹣16)2=0,∴a+8=0,b﹣16=0,解得a=﹣8,b=16.∴此时刻快车头A与慢车头C之间相距16﹣(﹣8)=24单位长度;(3分)(2)(24﹣8)÷(6+2)=16÷8=2(秒).或(24+8)÷(6+2)=4(秒)答:再行驶2秒或4秒两列火车行驶到车头AC相距8个单位长度;(6分)(3)∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.(10分)。
人教版七年级数学上册 期中测试卷(附答案)(时间90分钟 满分120分)一、选择题(共10小题,3*10=30) 1.下列各数中,是负数的是( ) A .-(-3) B .-32 C .(-3)2 D .|-3|2.咸宁冬季里某一天的气温为-3 ℃~2 ℃,则这一天的温差是( ) A .1 ℃ B .-1 ℃ C .5 ℃ D .-5 ℃3.张明同学的身高是1.60米,则张明同学身高的精确值x(米)的取值范围是( ) A .1.595≤x<1.605 B .1.50≤x<1.70 C .1.595<x≤1.605D .1.600<x≤1.6054.如图,数轴上A 、B 、C 三点表示的数分别为a 、b 、c ,下列说法正确的是( )A .a >0B .b >cC .b >aD .a >c5.下列计算错误..的是( ) A .(-5)+5=0 B .⎝⎛⎭⎫-16×(-2)3=43 C .(-1)3+(-1)2=0D .4÷2×12÷2=26. 已知|a|=3,|b|=2,且a·b <0,则a +b 的值为( B ) A .5或-5 B .1或-1 C .3或-2 D .5或17.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 28.如果单项式12x a +b y 3与5x 2y b 的和仍是单项式,则|a -b|的值为( )A .4B .3C .2D .19.用正三角形、正方形和正六边形按如图所示的规律拼图案,即从第2个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4.则第7个图案中正三角形的个数为( )A .26B .28C .30D .3210.已知某三角形的周长为3m -n ,其中两边的和为m +n -4,则此三角形第三边的长为( ) A .2m -4 B .2m -2n -4C .2m -2n +4D .4m -2n +4二.填空题(共8小题,3*8=24)11.-(+5)的绝对值是__________;-4的倒数是__________. 12. 计算-|-5|2÷(-5)2=__________.13.用式子表示“比a 大的25大2的数”是____________.14.若多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________. 15.数轴上点A 表示的数是最大的负整数,则与点A 相距3个单位长度的点表示的数是________.16.长方形的长是3a ,宽是2a -b ,则长方形的周长是__ __.17.王老师为了帮助班级里家庭困难的x 个孩子(x <10),购买了一批课外书,如果给每个家庭困难的孩子发5本,那么剩下4本;如果给每个家庭困难的孩子发6本,那么最后一个孩子只能得到______________本.18.已知P =3xy -8x +1,Q =x -2xy -2,当x≠0时,3P -2Q =7恒成立,则y =__ __. 三.解答题(共7小题, 66分) 19.(8分) 计算:(1)(16-34+112)×(-48);(2)-14-(1-12)+4×[3+(-2)3].20.(8分) 在如图所示的数轴上表示3.5和它的相反数、-14和它的倒数、绝对值等于1的数、-2和它的立方,并用“<”号把它们连起来.21.(8分) 已知A =x 2-2xy +y 2,B =x 2+2xy +y 2. (1)求A +B ;(2)如果2A -3B +C =0,那么C 的表达式是什么?22.(10分) 甲、乙两人同时从某地出发,如果甲向东走250 m 记作+250 m ,那么乙向西走150 m 怎样表示?这时甲、乙两人相距多远?23.(10分) 有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点、表示数b 的点与原点的距离相等.(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;(2)|b-1|+|a-1|=________;(3)化简:|a+b|+|a-c|-|b|+|b-c|.24.(10分) 有三个有理数x,y,z,若x=2(-1)n-1,且x与y互为相反数,y是z的倒数.25.(12分) 如今,网上购物已成为一种新的消费时尚,新星饰品店想购买一种贺年卡在元旦时销售,在互联网上搜索了甲、乙两家网店(如图所示),已知两家网店的这种贺年卡的质量相同,请看图回答下列问题:(1)假若新星饰品店想购买x张贺年卡,那么在甲、乙两家网店分别需要花多少钱(用含有x的式子表示)?(提示:如需付运费时,运费只需付一次,即8元) (2)新星饰品店打算购买300张贺年卡,选择哪家网店更省钱?参考答案1-5BCACD 6-10BDACC11. 5;-1412.-1 13. 25a +214.-6 15.-4或2 16.10a -2b 17.(10-x) 18. 219解:(1)原式=-8+36-4=24 (2)原式=-1-12-20=-211220.解:图略.-8<-4<-3.5<-2<-1<-14<1<3.5.21. 解:(1)A +B =(x 2-2xy +y 2)+(x 2+2xy +y 2)=x 2-2xy +y 2+x 2+2xy +y 2=2x 2+2y 2 (2)因为2A -3B +C =0,所以C =3B -2A =3(x 2+2xy +y 2)-2(x 2-2xy +y 2)=3x 2+6xy +3y 2-2x 2+4xy -2y 2=x 2+10xy +y 222.解:乙向西走150 m 表示为-150 m. 这时甲、乙两人相距250+150=400(m). 23.解:(1)<;=;>;< (2)a -b(3)原式=|0|+(a -c)+b -(b -c)=0+a -c +b -b +c =a. 24. 解:(1)当n 为奇数时,x =2(-1)n -1=2-1-1=-1,因为x 与y 互为相反数,所以y =-x =1, 因为y ,z 互为倒数,所以z =1y =1,所以x =-1,y =1,z =1;当n 为偶数时,(-1)n -1=1-1=0,因为分母不能为零,所以不能求出x ,y ,z 这三个数(2)当x =-1,y =1,z =1时,xy -y n -(y -z)2020=(-1)×1-1n -(1-1)2020=-225.解:(1)当x≤30时,在甲网店需要花(x+8)元,在乙网店需要花(0.8x+8)元;当x>30时,在甲网店需要花(0.6x+8)元,在乙网店需要花0.8x元.(2)当x=300时,甲网店:0.6×300+8=188(元);乙网店:0.8×300=240(元).因为188<240,所以选择甲网店更省钱.2020年秋绵阳外国语学校人教版初中七年级数学上册期中试题(附答案)一、选择题(每小题3分,共30分)1.-2 020的相反数的倒数是 ()A.-2 020B.2 0202.(2019安徽中考)在-2,-1,0,1这四个数中,最小的数是 ()A.-2B.-1C.0D.13.(2019内蒙古呼和浩特中考)检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是 ()4.(2019吉林长春中考)如图1,数轴上表示-2的点A到原点的距离是 ()A.-2B.25.下列各式:-(-5)、-|-5|、-52、(-5)2、1-5 ,计算结果为负数的有 ()A.4个B.3个C.2个D.1个6.(2020独家原创试题)疫情期间,在例行体温测量中,检查人员将高出37 ℃的部分记作正数,将低于37 ℃的部分记作负数,体温正好是37 ℃时记作“0”.某人员在一周内的体温测量结果分别为+0.1,-0.3,-0.5,+0.1,+0.2,-0.6,-0.4,那么该人员一周中测量体温的平均值为 ()A.37.1 ℃B.37.31 ℃C.36.69 ℃D.36.8 ℃7.下列说法正确的是 ()A.5不是单项式B.多项式-2x2+5x中,第一项-2x2的系数是2C.单项式- 的系数是- ,次数是4D.多项式3x2y-xy2+2xy的各项分别是3x2y、xy2、2xy8.下列计算中,正确的是 ()A.6a+4b=10abB.7x2y-3x2y=4C.7a2b-7ba2=0D.8x2+8x2=16x49.已知有理数a,b在数轴上的位置如图所示,下列结论错误的是 ()A.|a|<1<|b|B.1<-a<bC.1<|a|<bD.-b<a<-110.如图所示的图形都是由面积为1的正方形按一定的规律组成的,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,第(4)个图形中面积为1的正方形有14个,……,按此规律,则第(6)个图形中面积为1的正方形的个数为 ()A.20B.27C.35D.40二、填空题(每小题3分,共30分)11.(2020广西玉林中考模拟)若4a2b2n+1与a m b3是同类项,则m+n= .12.已知多项式-2m3n2-5中,含字母的项的系数为a,多项式的次数为b,常数项为c,则a+b+c= .13.比较大小:-(-0.3)1-3(填“=”“>”或“<”).14.冬季供暖后,乐乐发现室内的温度为20 ℃,此时冰箱冷冻室的温度为-5 ℃,则室内的温度比冰箱冷冻室的温度高℃.15.计算:-18÷(-3)2+5× 1-8⎛⎫⎪⎝⎭-(-15)÷5= .16.若a2+b2=5,则代数式(3a2-2ab-b2)-(a2-2ab-3b2)的值是 .17.图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据,则被淹没的整数点有个,负整数点有个.18.若m2-2m=1,则代数式2m2-4m+3的值为 .19.已知一个三角形三边的长分别为(2x+1)cm,(x2-2)cm,(x2-2x+1)cm,则该三角形的周长为 cm.20.观察下面一组数:-1,2,-3,4,-5,6,-7,…,将这组数排成如图5所示的形式,按照规律排下去,则第11行中从左边数第10个数是 .三、解答题(共60分)21.(12分)计算:(用简便方法计算).22.(6分)(1)化简:x2-(2x2-4y)+2(x2-y);(2)先化简,再求值:3(2a2b-ab2)-2(5a2b-2ab2),其中a=2,b=-1.23.(2020独家原创试题)(6分)书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图①的数学课本,其长为26 cm、宽为18.5 cm、厚为1 cm,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去x cm,封皮展开后如图②所示,求:(1)小海宝所用包书纸的周长是多少?(用含x的代数式表示)(2)当封面和封底各折进去2 cm时,请帮小海宝计算一下他需要的包书纸的面积24.(8分)在元旦晚会上,小邦同学设计了一个游戏,其规则是:在卡片上写有算式,参加游戏的人可随意抽取一张卡片,计算对应的算式,若结果为负数,就为同学们唱歌;若结果为正数,则可以得到一张贺年卡.图是四位同学抽取的四张卡片,请通过计算说明哪些同学为同学们唱歌,哪些同学能得到贺年卡.25.(8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“上个月萝卜的价格是a元/斤,排骨的价格是b元/斤.”爸爸:“今天,报纸上说与上个月相比,萝卜的价格上涨50%,排骨的价格上涨20%.”小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨比上个月买同质量的萝卜和排骨多花多少元.”(1)请你求出今天买的萝卜和排骨比上个月买同质量的萝卜和排骨多花多少元;(2)当a=2,b=15时,今天买的萝卜和排骨比上个月买同质量的萝卜和排骨多花多少元?26.(10分)观察下面三行数:①-3,9,-27,81,-243,…;②-5,7,-29,79,-245,…;③-1,3,-9,27,-81,….(1)用乘方的形式表示第①行数中的第2 016个数;(2)第②、③行数与第①行数分别有什么关系?(3)分别取每行的第10个数,计算这三个数的和.27.(10分)如图,数轴上点A表示数a,点C表示数c,且多项式x3-3xy29-20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母表示,比如,点A与点C之间的距离记作AC.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为 ;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,当AB=BC时,求t的值;②若点A向左运动,点C向右运动,2AB-mBC的值不随时间t 的变化而改变,求m的值.参考答案1.答案 D-2 020的相反数是2 020,2 020的倒数是1 2 020 ,故选D.2答案 A根据有理数比较大小的方法,可得-2<-1<0<1,∴在-2,-1,0,1这四个数中,最小的数是-2.故选A.3.答案 A四个排球质量偏差的绝对值分别为0.6,0.7,2.5,3.5,绝对值最小的为0.6,最接近标准.故选A.4.答案 B数轴上表示-2的点A到原点的距离是2,故选B.5.答案 B-(-5)=5,-|-5|=-5,-52=-25,(-5)2=25, 1-5=-1-5 ,所以计算结果为负数的有3个.6.答案 D[(+0.1)+(-0.3)+(-0.5)+(+0.1)+(+0.2)+(-0.6)+(-0.4)]÷7=-0.2,37+(-0.2)=36.8 ℃,故选D.7.答案 C5是单项式;多项式-2x2+5x中,第一项-2x2的系数是-2;多项式3x2y-xy2+2xy的各项分别是3x2y、-xy2、2xy,只有C正确.8.答案 C6a与4b不是同类项,不能合并,故A错误;7x2y-3x2y=4x2y,故B错误;8x2+8x2=16x2,故D错误.故选C.9.答案 A如图,根据各数在数轴上的位置可知:-b<a<-1<1<-a(或|a|)<b(或|b|),所以1<-a<b,1<|a|<b,-b<a<-1均正确,只有|a|<1<|b|错误.故选A.10.答案 B第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,第(4)个图形中面积为1的正方形有2+3+4+5=14个,……,按此规律,第(n)个图形中面积为1的正方形有2+3+4+…+(n+1)= (3)2n n+个,则第(6)个图形中面积为1的正方形的个数为 6(63)2⨯+=27.故选B.11.答案 3解析∵4a2b2n+1与a m b3是同类项,∴m=2,2n+1=3,解得m=2,n=1,∴m+n=2+1=3.12.答案-2解析∵多项式-2m3n2-5中,含字母的项的系数为a,多项式的次数为b,常数项为c,∴a=-2,b=5,c=-5,∴a+b+c=-2+5-5=-2.13.答案<解析因为-(-0.3)=0.3, 1-3=13 ,0.3<13 ,所以-(-0.3)<1-3 .14.答案25解析20-(-5)=20+5=25(℃).15.答案 3 8解析原式=-18÷9+5×1-8⎛⎫⎪⎝⎭ -(-15)÷5=-2-58 +3=38 .16.答案10解析(3a2-2ab-b2)-(a2-2ab-3b2)=3a2-2ab-b2-a2+2ab+3b2=2a2+2b2=2(a 2+b2).当a2+b2=5时,原式=2×5=10.17.答案69;52解析由题中数轴可知,-72 12 和-4115 之间的整数点有:-72,-71,…,-42,共31个;-21 34和1623 之间的整数点有:-21,-20, (16)共38个.故被淹没的整数点有31+38=69个,负整数点有31+21=52个.18.答案 5解析∵m2-2m=1,∴2m2-4m+3=2(m2-2m)+3=2×1+3=5. 19.答案2x2解析所求周长为(2x+1)+(x2-2)+(x2-2x+1)=2x+1+x2-2+x2-2x+1=2x2(cm).20.答案110解析观察数的排列规律,第n行的第1个数的绝对值为(n-1)2+1,所以第11行的第1个数的绝对值为(11-1)2+1=101,所以第11行中从左边数第10个数的绝对值是101+(10-1)=110,易知奇数的符号为“-”,偶数的符号为“+”,所以第11行中从左边数第10个数是110.21.解析=-35-14+27=-22.=-16-12=-28.=-13-0.34=-13.3422.解析(1)x2-(2x2-4y)+2(x2-y)=x2-2x2+4y+2x2-2y=x2+2y.(2)3(2a2b-ab2)-2(5a2b-2ab2)=6a2b-3ab2-10a2b+4ab2=-4a2b+ab2.当a=2,b=-1时,原式=-4×22×(-1)+2×(-1)2=18.23.解析(1)小海宝所用包书纸的周长:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm.答:小海宝所用包书纸的周长为(8x+128)cm.(2)当x=2时,包书纸长为18.5×2+1+2×2=42(cm),包书纸宽为26+2×2=30(cm),所以面积为42×30=1 260(cm2).答:需要的包书纸的面积为1 260 cm2.24.解析①号卡片:(-4)×(-3)-(-2)3=12-(-8)=20,是正数;②号卡片:(-3)×(-2)2+5=-3×4+5=-12+5=-7,是负数;所以抽到②、③、④号卡片的同学为同学们唱歌,抽到①号卡片的同学能得到一张贺年卡.25.解析(1)今天买的萝卜的价格是(1+50%)a元/斤,排骨的价格是(1+20%)b元/斤,今天买3斤萝卜、2斤排骨花的钱是[3(1+50%)a+2(1+20%)b]元,上个月买3斤萝卜、2斤排骨花的钱是(3a+2b)元,所以今天买的萝卜和排骨比上个月买同质量的萝卜和排骨多花的钱为3(1+50%)a+2(1+20%)b-(3a+2b)=(1.5a+0.4b)元. 答:今天买的萝卜和排骨比上个月买同质量的萝卜和排骨多花(1.5a+0.4b)元.(2)当a=2,b=15时,1.5a+0.4b=1.5×2+0.4×15=9.答:当a=2,b=15时,今天买的萝卜和排骨比上个月买同质量的萝卜和排骨多花9元.26.解析(1)第①行数中的第2 016个数为32 016.(2)第②行每一个数等于第①行相应位置上的数加上-2;第③行每一个数等于第①行相应位置上的数乘13 .(3)第①行的第10个数为310;第②行的第10个数为310-2;第③行的第10个数为39.这三个数的和为310+310-2+39=7×39-2.27.解析(1)a=-20,c=30.(2)分三种情况讨论:当点D在点A的左侧时,∵CD=2AD,∴AD=AC=50.∴点D表示的数为-20-50=-70; 当点D在点A,C之间时,当点D在点C的右侧时,AD>CD,与CD=2AD相矛盾,不符合题意.期中测试题(附答案)一.选择题1.相反数等于它本身的数是()A.1 B.0 C.﹣1 D.0或±1 2.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×1063.下列各数(﹣2)2,﹣(﹣2)2,(﹣3)3,﹣(﹣3)3,中,负数的个数有()A.1 B.2 C.3 D.44.若代数式﹣3xy2m与5x2n﹣3y8是同类项,则常数m﹣n的值为()A.4 B.6 C.2 D.35.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c6.下列说法正确的是()A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大7.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a8.在数轴上与表示2的点距离等于3的点所表示的数是()A.1 B.﹣1或5 C.﹣5 D.﹣5或19.如果一个有理数的绝对值是6,那么这个数一定是()A.6 B.﹣6 C.﹣6或6 D.无法确定10.程序框图的算法思路源于我国古代数学名著《九章算术》,如图所示的程序框图,当输入x的值是10时,根据程序,第一次计算输出的结果是5,第二次计算输出的结果是﹣2,…,这样下去第2019次计算输出的结果是()A.﹣8 B.﹣1 C.2 D.4二.填空题11.如果向东走5m,记作+5m;那么向西走10m,记作m.12.用“>”或“<”填空:﹣3 ﹣4;2009 ﹣(﹣2010).13.单项式﹣的系数是,次数是.14.﹣3﹣(﹣5)=.15.设代数式A=代数式B=,a为常数.观察当x取不同值时,对应A的值,并列表如下(部分):x… 1 2 3 …A… 4 5 6 …当x=1时,B=;若A=B,则x=.16.如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,当n=7时,图形总的点数为.三.解答题17.计算(1)﹣20+(﹣5)﹣(﹣18);(2)﹣9÷3+(﹣)×12+(﹣3)2;(3)﹣14﹣(1﹣0.5)××[2﹣(﹣32)];(4)﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.18.化简求值3a﹣2(3a﹣1)+4a2﹣3(a2﹣2a+1),其中a=﹣219.观察下列等式:①32﹣12=8×1②52﹣32=8×2③72﹣52=8×3④92﹣72=8×4(1)请你紧接着写出两个等式:⑤;⑥;(2)根据以上式子的规律,请你写出第n个式子.(3)利用这个规律计算:20192﹣20172的值.20.小王上周五在股市以收盘价每股20元买进某公司的股票1000股,在接下来的一周交易日内,他记下该股票每日收盘价比前一天的涨跌情况(单位:元):星期一二三四五每股涨跌+2 ﹣0.5 +1.5 ﹣1.8 +0.8(1)星期一收盘时,该股票每股多少元?(2)本周内,该股票收盘时的最高价、最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的0.15%的交易费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?21.①已知﹣5x3y|a|﹣(a﹣5)x﹣6是关于x、y的八次三项式,求a2﹣2a+1的值.②对于有理数a、b定义一种运算:a⊕b=﹣2+b,计算﹣2⊕1+4的值.22.在数轴上表示下列各数,再将其按从大到小的顺序用“>”连接起来|3|,﹣5,0,﹣2.5,﹣22,﹣(﹣1).23.新学期开学,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给的数据信息,解答下列问题.(1)一本数学课本的高度是多少厘米?(2)讲台的高度是多少厘米?(3)请写出整齐叠放在桌面上的x本数学课本距离地面的高度的代数式(用含有x的代数式表示)(4)若桌面上有56本同样的数学课本,整齐叠放成一摞,从中取走18本后,求余下的数学课本距离地面的高度.24.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B 点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案一.选择题1.解:相反数等于它本身的数是0.故选:B.2.解:将21500000用科学记数法表示为2.15×107,故选:B.3.解:﹣(﹣2)2,(﹣3)3为负数,故选:B.4.解:由题意得:2n﹣3=1,2m=8,解得:n=2,m=4,则m﹣n=4﹣2=2,故选:C.5.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.6.解:∵最小的正整数是1,∴选项A正确;∵负数的相反数一定比它本身大,0的相反数等于它本身,∴选项B不正确;∵绝对值等于它本身的数是正数或0,∴选项C不正确;∵一个非零数的绝对值比0大,0的绝对值等于0,∴选项D不正确.故选:A.7.解:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a是两位数,b是一位数,依据题意可得b扩大了100倍,所以这个三位数可表示成100b+a.故选:C.8.解:数轴上与表示2的点距离等于3的点所表示的数是﹣1或5,故选:B.9.解:如果一个有理数的绝对值是6,那么这个数一定是﹣6或6.故选:C.10.解:由题意知,第1次输出的结果为5,第2次输出的结果为﹣2,第3次输出的结果为﹣1,第4次输出的结果为﹣8,第5次输出的结果为﹣4,第6次输出的结果为﹣2,第7次输出的结果为﹣1,第8次输出的结果为﹣8,第9次输出的结果为﹣4,……这列数除前2个数外,每4个数为一个周期,∵(2019﹣2)÷4=504……1,∴第2019次计算输出的结果是﹣1,故选:B.二.填空题11.解:向东走5m记作+5m,那么向西走10m应记作﹣10m;故答案为:﹣10.12.解:∵|﹣3|=3,|﹣4|=4,3<4,∴﹣3>﹣4;∵﹣(﹣2010)=2010,2010>2009,∴2009<﹣(﹣2010).故答案为:>,<.13.解:单项式﹣的系数是:﹣,次数是:3.故答案为:﹣,3.14.解:﹣3﹣(﹣5)=﹣3+5=2.15.解:由表格的值可得当x=1时,A=4,代入A得+1,解得a=4故B的代数式为:当x=1时,代入B得=1若A=B,即,解得x=4 故答案为1;416.解:第一图形中有3×2﹣3=3个点,第二个图形中有3×3﹣3=6个点,第三个图形中有4×3﹣3=9个点,…第n个图形中有3n﹣3个点,当n=7时,3n﹣3=3×7﹣3=18.故答案为:18.三.解答题17.解:(1)﹣20+(﹣5)﹣(﹣18)=﹣20﹣5+18=﹣7(2)=﹣3+6﹣8+9=4(3)=﹣1﹣××(2+9)=﹣1﹣×11=﹣1﹣=﹣(4)﹣72+2×(﹣3)2+(﹣6)÷(﹣)2=﹣49+2×9+(﹣6)×9=﹣49+18﹣54=﹣8518.解:3a﹣2(3a﹣1)+4a2﹣3(a2﹣2a+1)=3a﹣6a+2+4a2﹣3a2+6a﹣3=a2+3a﹣1,把a=﹣2代入得:原式=4﹣6﹣1=﹣3.19.解:(1)观察已知等式可知:112﹣92=8×5;132﹣112=8×6;故答案为:112﹣92=8×5;132﹣112=8×6.(2)根据(1)所得规律:第n个式子为:(2n+1)2﹣(2n﹣1)2=8n(3)根据(2)的规律可知:20192﹣20172是第(2019﹣1)÷2=1009个等式,所以原式=8×1009=8072.答:20192﹣20172的值为8072.20.解:(1)周一:20+2=22(元),答:星期一收盘时,该股票每股22元;(2)周一20+2=22(元),周二22﹣0.5=21.5(元),周三21.5+1.5=23(元),周四23﹣1.8=21.2(元),周五21.2+0.8=22(元),答:该股票收盘时的最高价23元,最低价21.2元;(3)22×1000﹣20×1000﹣22×1000×0.15%﹣20×1000×0.15%=1937(元)答:小王在本周五以收盘价将全部股票卖出,他的收益1937元.21.解:①根据题意,得:,解得:a=﹣5,∴a2﹣2a+1=(﹣5)2﹣2×(﹣5)+1=25+10+1=36;②根据题意,得:﹣2⊕1+4=(﹣2+1)+4=﹣1+4=3.22.解:﹣22=﹣4,﹣(﹣1)=1,在数轴上表示为:故从大到小的顺序用“>”连接起来:|3|>﹣(﹣1)>0>﹣2.5>﹣22>﹣5.23.解:(1)由题意可得,一本数学课本的高度是:(88﹣86.5)÷3=1.5÷3=0.5(厘米),答:一本数学课本的高度是0.5厘米;(2)讲台的高度是:86.5﹣3×0.5=86.5﹣1.5=85(厘米),即讲台的高度是85厘米;(3)整齐叠放在桌面上的x本数学课本距离地面的高度是:(85+0.5x)厘米;(4)余下的数学课本距离地面的高度:85+(56﹣18)×0.5=85+38×0.5=85+19=104(厘米),即余下的数学课本距离地面的高度是104厘米.24.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.。
七年级上学期期中数学试题
(时间:100 分钟满分:100分) 评分——
一、选择题(只有一个正确答案,认真思考啊!每小题3分,共30分)
1、-3的相反数是()
(A)-3 (B)
1
3
-(C)3
(D)3±
2、小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的
(A)(B)(C)(D)
3、如图所示的图形绕虚线旋转一周,所形成的几何体是()
4、若2
|
|=
a,则a=()
(A)2 (B)2
-(C)2 或2
-(D)以上答案都不对
5、下列说法不正确的是( )
(A)0既不是正数,也不是负数(B)1是绝对值最小的数
(C)一个有理数不是整数就是分数(D)0的绝对值是0
6、2
2)3
(
3-
+
-的值是( )
(A)12
-(B)0(C)18
-(D)18
7、一个有理数的倒数是它本身,这个数是()
(A)0 (B) 1 (C)1
-(D)1或1
-
8、比较2
-, 0, ()2-
-,3
-的大小,下列正确的()。
(A)0 >3
-> ()2-
->-2 (B)()2-
- >3
- >-2> 0
(C)()2-
- > 0 > -2 >3
-(D)3
-> ()2-
->-2> 0
9、乘积为1
-的两个数叫做互为负倒数,则2
-的负倒数是()
A.2
- B.
2
1
- C.
2
1
D.2
10、下列各等式中,成立的是()
A、)
(b
a
b
a+
-
=
+
- B、)8
(3
8
3+
=
+x
x C、)2
5(
5
2-
-
=
-x
x D、x
x8
4
12=
-
二、填空题(每小题3分,共15分)
11.2
1
-的相反数是 ,倒数是 ,绝对值是 。
12、下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是 ,
13、有一次小明在做24点游戏时抽到的四张 牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:______________=24. 14、礼堂第一排有a 个座位,后面每排都比前一排多1个座位,第n 排座位有_______ 15.假设有足够多的黑白围棋子,按照一定的规律排成一行:
…… 请问第2007个棋子是黑的还是白的?答:__________.
三、解答下列各题(每小题6分,共24分) 16、-9+5×(-6) -(-4)2÷(-8)
17、 22)2(323-⨯-⨯-
18、 )3(3
1
)2(-⨯÷-
19、先化简,再求值:4x 3 - [ -x 2 + 2( x 3 -3
1x 2
)],其中x= -3
四、解答题(20小题7分,21、22、23各8分,共31分)
20、如图,是由7个正方体组成的图案,画出它的主视图、左视图、俯视图.
21、五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下: +4.5,-4,+2.3,-3.5,+2.5这五袋白糖共超过多少千克?总重量是多少千克?
22、3个球队进行单循环赛(参赛的每一个队都与其它所有各队比赛一场),总的比赛场数是多少?4个球队呢?
23、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第五个叠放的图形中,小正方体木块总数应是,第n个叠放的图形中,小正方体木块总数应是。
(1)
(2)(3)
美文欣赏
1、走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。
秋天,虽没有玫瑰的芳香,却有秋菊的淡雅,没有繁花似锦,却有硕果累累。
秋天,没有夏日的激情,却有浪漫的温情,没有春的奔放,却有收获的喜悦。
清风落叶舞秋韵,枝头硕果醉秋容。
秋天是甘美的酒,秋天是壮丽的诗,秋天是动人的歌。
2、人的一生就是一个储蓄的过程,在奋斗的时候储存了希望;在耕耘的时候储存了一粒种子;在旅行的时候储存了风景;在微笑的时候储存了快乐。
聪明的人善于储蓄,在漫长而短暂的人生旅途中,学会储蓄每一个闪光的瞬间,然后用它们酿成一杯美好的回忆,在四季的变幻与交替之间,散发浓香,珍藏一生!
3、春天来了,我要把心灵放回萦绕柔肠的远方。
让心灵长出北归大雁的翅膀,乘着吹动彩云的熏风,捧着湿润江南的霡霂,唱着荡漾晨舟的渔歌,沾着充盈夜窗的芬芳,回到久别的家乡。
我翻开解冻的泥土,挖出埋藏在这里的梦,让她沐浴灿烂的阳光,期待她慢慢长出枝蔓,结下向往已久的真爱的果实。
4、好好享受生活吧,每个人都是幸福的。
人生山一程,水一程,轻握一份懂得,将牵挂折叠,将幸福尽收,带着明媚,温暖前行,只要心是温润的,再遥远的路也会走的安然,回眸处,愿阳光时时明媚,愿生活处处晴好。
5、漂然月色,时光随风远逝,悄然又到雨季,花,依旧美;心,依旧静。
月的柔情,夜懂;心的清澈,雨懂;你的深情,我懂。
人生没有绝美,曾经习惯漂浮的你我,曾几何时,向往一种平实的安定,风雨共度,淡然在心,凡尘远路,彼此守护着心的旅程。
沧桑不是自然,而是经历;幸福不是状态,而是感受。
6、疏疏篱落,酒意消,惆怅多。
阑珊灯火,映照旧阁。
红粉朱唇,腔板欲与谁歌?画脸粉色,凝眸着世间因果;未央歌舞,轮回着缘起缘落。
舞袖舒广青衣薄,何似院落寂寞。
风起,谁人轻叩我柴扉小门,执我之手,听我戏说?
7、经年,未染流殇漠漠清殇。
流年为祭。
琴瑟曲中倦红妆,霓裳舞中残娇靥。
冗长红尘中,一曲浅吟轻诵描绘半世薄凉寂寞,清殇如水。
寂寞琉璃,荒城繁心。
流逝的痕迹深深印骨。
如烟流年中,一抹曼妙娇羞舞尽半世清冷傲然,花祭唯美。
邂逅的情劫,淡淡刻心。
那些碎时光,用来祭奠流年,可好?
8、缘分不是擦肩而过,而是彼此拥抱。
你踮起脚尖,彼此的心就会贴得更近。
生活总不完美,总有辛酸的泪,总有失足的悔,总有幽深的怨,总有抱憾的恨。
生活亦很完美,总让我们泪中带笑,悔中顿悟,怨中藏喜,恨中生爱。
9、海浪在沙滩上一层一层地漫涌上来,又一层一层地徐徐退去。
我与你一起在海水中尽情的戏嬉,海浪翻滚,碧海蓝天,一同感受海的胸怀,一同去领略海的温情。
这无边的海,就如同我们俩无尽的爱,重重的将我们包裹。
10、寂寞的严冬里,到处是单调的枯黄色。
四处一片萧瑟,连往日明净的小河也失去了光彩,黯然无神地躲在冰面下恹恹欲睡。
有母女俩,在散发着丝丝暖意的阳光下,母亲在为女儿梳头。
她温和的把头发理顺。
又轻柔的一缕缕编织着麻花辫。
她脸上写满笑意,似乎满心的慈爱永远装不下,溢到嘴边。
流到眼角,纺织进长长的。
麻花辫。
阳光亲吻着长发,像散上了金粉,闪着飘忽的光辉。
女儿乖巧地依偎在母亲怀里,不停地说着什么,不时把母亲逗出会心的微笑,甜美的亲情融化了冬的寒冷,使萧索的冬景旋转出春天的美丽。
11、太阳终于伸出纤纤玉指,将青山的柔纱轻轻褪去。
青山那坚实的肌胸,挺拔的脊梁坦露在人们的面前,沉静而坚毅。
不时有云雾从它的怀中涌起,散开,成为最美丽的语言。
那阳光下显得凝重的松柏,那苍茫中显现出的点点殷红,那散落在群山峰顶神秘的吻痕,却又增添了青山另外的神秘。
12、原野里那郁郁葱葱的植物,叫我们丝毫感受不到秋天的萧索,勃勃生机与活力仍在田间高山涌动。
谷子的叶是墨绿的,长而大的谷穗沉甸甸地压弯了昨日挺拔的脊梁;高粱仍旧那么苗条,满头漂亮的红缨挥洒出秋的风韵;那纵横原野的林带,编织着深绿浅黄的锦绣,抒写出比之春夏更加丰富的生命色彩。
13、终于,心痛,心碎,心成灰。
终于选择,在月光下,被遗忘。
百转千回,早已物是人非;欲说还休,终于咫尺天涯;此去经年,你我终成陌路。
爱你,终是一朵花开至荼糜的悲伤,一只娥飞奔扑火的悲哀。
14、世界这么大,能遇见,不容易。
心若向阳,何惧忧伤。
人只要生活在这个世界上,就有很多烦恼,痛苦或是快乐,取决于你的内心。
人不是战胜痛苦的强者,便是屈服于痛苦的弱者。
再重的担子,笑着也是挑,哭着也是挑。
再不顺的生活,微笑着撑过去了,就是胜利。
15、孤独与喧嚣无关,摩肩接踵的人群,演绎着身外的花开花谢,没谁陪你挥别走远的流年。
孤独与忙碌迥异,滚滚红尘湮没了心境,可少了终点的奔波,人生终究一样的苍白。
当一个人成长以后,在他已经了解了世界不是由鲜花和掌声构成之后,还能坚持自己的梦想,多么可贵。
16、生活除却一份过往和爱情外,还是需要几多的遐思。
人生并不是单单的由过往和爱情符号所组成的,过往是人生对所有走过岁月的见证;因为简单,才深悟生命之轻,轻若飞花,轻似落霞,轻如雨丝;因为简单,才洞悉心灵之静,静若夜空,静似幽谷,静如小溪。