最新-2018年普通高等学校招生全国统一考试理数试题及答案-辽宁卷 精品
- 格式:doc
- 大小:469.71 KB
- 文档页数:9
绝密*启用前2018年普通高等学校招生全国统一考试理科数学试题及答案考前须知:1.答卷前,考生务必将自己的、考生号等填写在答题卡和试卷指定位置上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试完毕后,将本试卷和答题卡一并交回。
一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.设1i2i 1iz -=++,则||z =A .0B .12C .1D2.集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.*地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:建立前经济收入构成比例建立后经济收入构成比例则下面结论中不正确的选项是 A .新农村建立后,种植收入减少B .新农村建立后,其他收入增加了一倍以上C .新农村建立后,养殖收入增加了一倍D .新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,假设3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,假设()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.*圆柱的高为2,底面周长为16,其三视图如图.圆柱外表上的点M 在正视图上的对应点为A ,圆柱外表上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172B .52C .3D .28.设抛物线C :y 2=4*的焦点为F ,过点〔–2,0〕且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5 B .6 C .7D .89.函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.假设g 〔*〕存在2个零点,则a 的取值围是 A .[–1,0〕B .[0,+∞〕C .[–1,+∞〕D .[1,+∞〕10.下列图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色局部记为II ,其余局部记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则 A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .假设△OMN 为直角三角形,则|MN |=A .32B .3 C. D .412.正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:此题共4小题,每题5分,共20分。
2018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2•回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑•如需改动,用橡 皮擦干净后,再选涂其它答案标号•回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3 •考试结束后,将本试卷和答题卡一并交回.题目要求的.)3•某地区经过一年的新农村建设,农村的经济收入增加了一倍•实现翻番•为更好地了解该地区农村则下面结论中不正确的是( ) A •新农村建设后,种植收入减少B •新农村建设后,其他收入增加了一倍以上C ・新农村建设后,养殖收入增加了一倍、选择题(本题共 12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合1•设 z12i ,2•已知集合x|x 2 xC . x | x U x|xx|x w 1 U x|x >2的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例•得到如下饼图:D •新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半10. 下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边BC ,直角边AB , AC , △ ABC 的三边所 围成的区域记为I, 黑色部分记为H,其余部分记为川,在整个图形中 随机取一点,此点取自I, n,川的概率分别记为 小,p 2, p 3,则( )A . P 1 P 2B . 口 P 3C . P 2 P 3D .211. 已知双曲线C : — y 2 1 , O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交3 点分别为M , N .若△ OMN 为直角三角形,则 MN | ( )A . 3B . 3C . 2 3D . 44 •记S n 为等差数列的前n 项和. 若3S 3S2S4, a 2,A . 12 10C . 10D . 125.设函数x 3 1 x 2ax .为奇函数,则曲线在点0, 0处的切线方程为2xC . y 2x6 .在△ ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则 uurEB3 uuu A . - AB4 3 uu u C .二 AB4 1 uiir -AC 4 1 uuu AC 41 uuu B . - AB 4 1 uuu D . - AB 43UULT 3AC 43UHT-AC 47.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 则在此圆柱侧面上, 从 M 到N 的路径中,最短路径的长度为(A . 2 17C .8.设抛物线 C : 4x 的焦点为F ,过点luuu iuur FM FNC .9.已知函数fe x , x w 0 ln x , x 00,2且斜率为 的直线与C 交于M , N 两点,3x a ,若g x 存在2个零点,则a 的取值范围是(C .1D . 1,)12 •已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()32A. 12B.二C.434二、填空题(本题共4小题,每小题5分,共20分)x 2y 2w 013 .若x , y满足约束条件x y 1> 0 ,则z 3x2y的最大值为y w 014 •记S n为数列a n的前n项和•若S n 2a. 1,则15•从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 _____________ 种.(用数字填写答案)16 .已知函数f x 2sin x sin 2x ,贝U f x的最小值是_____________17~21题为必考题,每个试题三、解答题(共70分。
2018年普通高等学校招生全国统一考试数学理(辽宁卷,含答案)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x<5} (B) {x|-3<x<5}(C) {x|-5<x ≤5} (D) {x|-3<x ≤5}(2)已知复数12z i =-,那么1z= (A)55+ (B)55- (C )1255i + (D )1255i -(3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A(B) (C) 4 (D)12 (4) 已知圆C 与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种 (6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69S S = (A ) 2 (B ) 73(C ) 83 (D )3(7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x-2 (B) y=-3x+2 (C)y=2x-3 (D)y=-2x+1 (8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23- (B) - 12 (C) 23 (D) 12(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是(A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
2018年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,学科 网已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .247.某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A .12B .23C .34D .43。
2018年辽宁省高考数学试卷第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()( 球的表面积公式24R S π=,其中R 表示球的半径球的体积公式V R =433π,其中R 表示球的半径一. 选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 复数111-++-=iiz ,在复平面内,z 所对应的点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 极限)(lim 0x f x x →存在是函数)(x f 在点0x x =处连续的( )A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件3. 设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A. 10100610480C C C ⋅B. 10100410680C C C ⋅C. 10100620480C C C ⋅D. 10100420680C C C ⋅ 4. 已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂ 其中真命题是( ) A. ①和② B. ①和③ C. ③和④ D. ①和④ 5. 函数1ln(2++=x x y 的反函数是( )A. 2x x e e y -+= B. 2x x e e y -+-=C. 2x x e e y --= D. 2xx e e y ---=6. 若011log 22<++a a a,则a 的取值范围是( ) A. ),21(+∞ B. ),1(+∞ C. )1,21( D. )21,0(7. 在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( )A. 11<<-aB. 20<<aC. 2321<<-a D. 2123<<-a 8. 若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范围是( ) A. (1,2) B. (2,+∞) C. [3,+∞) D. (3,+∞)9. 若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为( ) A. 8或-2 B. 6或-4 C. 4或-6 D. 2或-810. 已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,1-≠λ,λλα++=121x x ,λλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则( )A. 0<λB. 0=λC. 10<<λD. 1≥λ11. 已知双曲线的中心在原点,离心率为3。
理科数学试题 第1页(共9页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半理科数学试题 第2页(共9页)4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+理科数学试题 第3页(共9页)11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、 【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1 【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x2}【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A、新农村建设后,种植收入减少。
B、新农村建设后,其他收入增加了一倍以上。
C、新农村建设后,养殖收入增加了一倍。
D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C 、-+D 、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018年普通高等学校招生全国统一考试(辽宁)真题理科试题全套及答案汇总目录2018年普通高等学校招生全国统一考试辽宁语文试题................ 2018年普通高等学校招生全国统一考试辽宁语文试题答案............ 2018年普通高等学校招生全国统一考试辽宁理科数学................ 2018年普通高等学校招生全国统一考试辽宁理科数学答案............ 2018年普通高等学校招生全国统一考试辽宁英语试题................ 2018年普通高等学校招生全国统一考试辽宁英语试题答案............ 2018年普通高等学校招生全国统一考试辽宁理科综合试题............ 2018年普通高等学校招生全国统一考试辽宁理科综合试题答案........绝密★启用前2018年普通高等学校招生全国统一考试(全国二卷)语文本试卷共22题,共150分,共10页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)所谓“被遗忘权”,即数据主体有权要求数据控制者永久删除有关数据主体的个人数据,有权被互联网遗忘,除非数据的保留有合法的理由,在大数据时代,数字化,廉价的存储器,易于提取、全球覆盖作为数字化记忆发展的四大驱动力,改变了记忆的经济学,使得海量的数字化记忆不仅唾手可得,甚至比选择性删除所耗费的成本更低,记忆和遗忘的平衡反转,往事正像刺青一样刻在我们的数字肌肤上;遗忘变得困难,而记忆却成了常态,“被遗忘权”的出现,意在改变数据主体难以“被遗忘”的格局,对于数据主体对信息进行自决控制的权利,并且有着更深的调节、修复大数据时代数字化记忆伦理的意义。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b -=>>A .y =B .y =C .y =D .y =6.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.B C D .7.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试数学理试题(辽宁卷,解析版)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) a 为正实数,i 为虚数单位,2a ii+=,则a=( )(A )2 (B(3)已知F 是抛物线y 2=x 的焦点,A,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为( ) (A)34 (B) 1 (C)54 (D)74答案: C解析:设A 、B 的横坐标分别是m 、n ,由抛物线定义,得AF BF 3+==m+14+n+14= m+n+12=3,故m+n=52,524m n +=,故线段AB 的中点到y 轴的距离为54.(4)△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asin AsinB+bcos 2则ba=( )(A)(6)执行右面的程序框图,如果输入的n 是4,则输出的P 是(A) 8 (B) 5 (C) 3 (D) 2答案:C解析:第一次执行结果:p=1,s=1,t=1,k=2; 第二次执行结果:p=2,s=1,t=2,k=3;第三次执行结果:p=3,s=2,t=3,k=4;结束循环,输出p 的值4.(7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79答案: A解析:217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭(8)如图,四棱锥S-ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是( )(A) AC ⊥SB (B) AB ∥平面SCD(C) SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 (D)AB 与SC 所成的角等于DC 与SA 所成的角 答案: D解析:对于A:因为SD ⊥平面ABCD ,所以DS ⊥AC.因为四边形ABCD 为正方形,所以AC ⊥BD ,故AC ⊥平面ABD,因为SB ⊂平面ABD,所以AC ⊥SB ,正确.对于B :因为AB//CD,所以AB//平面SCD. 对于C:设ACBD O =.因为AC ⊥平面ABD ,所以SA 和SC 在平面SBD 内的射影为SO ,则∠ASO 和∠CSO 就是SA 与平面SBD 所成的角和SC 与平面SBD 所成的角,二者相等,正确.故选D.(9)设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是( )(A )[-1,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞)(11)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ’(x)>2,则f (x )>2x+4的解集为( )(A )(-1,1) (B )(-1,+∞) (C )(-∞,-1) (D )(-∞,+∞) 答案: B解析:设g(x)= f(x)-(2x+4), g ’(x)= f ’(x)-2.因为对任意x R ∈,f ’(x )>2,所以对任意x R ∈,g ’(x)>0,则函数g(x)在R 上单调递增.又因为g(-1)= f(-1)-(-2+4)=0,故g(x)>0,即f(x)>2x+4的解集为(-1,+∞).(12)已知球的直径SC=4,A,B 是该球球面上的两点,AB=3,︒=∠=∠30BSC ASC ,则棱锥S-ABC 的体积为( )(A )33 (B )32 (C )3 (D )1第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)已知点(2,3)在双曲线C :1by -a x 2222=(a >0,b >0)上,C 的焦距为4,则它的离心率为_____________. 答案: 2解析:由题意得,24,2c c ==,22491a b-=,224a b +=,解得a=1,故离心率为2. (14) 调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:^y =0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元.(16)已知函数f (x )=Atan (ωx+ϕ)(ω>0,2π<ω),y=f (x )的部分图像如下图,则f (24π)=____________.解析:函数f(x)的周期是32882πππ⎛⎫-= ⎪⎝⎭,故22πωπ==,由tan 1,3tan 20,8A A ϕπϕ=⎧⎪⎨⎛⎫⋅+= ⎪⎪⎝⎭⎩得,14A πϕ==.所以()tan 24f x x π⎛⎫=+ ⎪⎝⎭,故tan 224244f πππ⎛⎫⎛⎫=⋅+= ⎪ ⎪⎝⎭⎝⎭三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式;(II )求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和.(18)(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA=AB=12PD.(I )证明:平面PQC ⊥平面DCQ(II )求二面角Q-BP-C 的余弦值.即PQ DQ ⊥,PQ DC ⊥.故PQ ⊥平面DCQ , 又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ.(II )依题意得B(1,0,1),(1,1,0),(1,2,1)CB BP ==--,设n =(x,y,z)是平面PBC 的法向量,则0,0.n CB n BP ⎧⋅=⎪⎨⋅=⎪⎩即0,20.x x y z =⎧⎨-+-=⎩因此,取n =(0,-1,-2).设m 是平面PBQ 的法向量,则0,0.m BP m PQ ⎧⋅=⎪⎨⋅=⎪⎩可取m =(1,1,1),所以cos ,m n <>=-,故二面角Q-BP-C 的余弦值为19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x 1,x 2,…,x a 的样本方差()()()2222111n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中x 为样本平均数.解析:(I )X 可能的取值为0,1,2,3,4,且()48110,70P X C === ()13444881,35C C P X C === ()224448182,35C C P X C === ()31444883,35C C P X C ===()48110,70P X C ===即X 的分布列为X 的数学期望是:()1818810123427035353570E X =⨯+⨯+⨯+⨯+⨯=. (II )品种甲的每公顷产量的样本平均数和样本方差分别是:()14033973904043884004124064008x =+++++++=甲, ()()()()22222222213310412012657.258s =+-+-++-+++=甲. 品种乙的每公顷产量的样本平均数和样本方差分别是:()14194034124184084234004134128x =+++++++=乙, ()()()()22222222217906411-121568s =+-+++-+++=乙, 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. (20)(本小题满分12分)如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D.(I )设12e =,求BC 与AD 的比值;(II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由解析:(I )因为C 1,C 2的离心率相同,故依题意可设()22222122242:1,:1,0x y b y x C C a b a b a a+=+=>>. 设直线:(||)l x t t a =<分别和C 1,C 2联立,求得,A t B t ⎛⎛ ⎝⎝. 当12e =时,b =,分别用y A ,y B 表示A 、B 的纵坐标,可知 |BC|:AD|=222||3.2||4B A y b y a == (II )t=0时的l 不符合题意,t ≠0时,BO//AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即a b t t a=-, 解得222221ab e t a a b e-=-=-⋅-. 因为||t a <,又01e <<,所以2211e e -<,解得12e <<.所以当0e <≤时,不存在直线l ,使得BO//AN ;1e <<时,存在直线l 使得BO//AN. (21)(本小题满分12分)已知函数f (x )=lnx-ax 2+(2-a )x.(I)讨论f (x )的单调性;(II )设a >0,证明:当0<x <1a 时,f (1a +x )>f (1a-x ); (III )若函数y=f (x )的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f ’( x 0)<0.解析:(I)f(x)的定义域为(0,+∞),()()()()2111'22x ax f x ax a x x+-=-+-=-, ①若a ≤0,()'0f x >,所以f(x)在(0,+∞)单调增加;②若a>0,则由()'0f x =得1x a =,且当10,x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >,当1x a >时,()'0f x <,所以f(x)在10,a ⎛⎫ ⎪⎝⎭单调增加,在1,a ⎛⎫+∞ ⎪⎝⎭单调减少. (II )设()11g x f x f x a a ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭,则()()()ln 1ln 12g x ax ax ax =+---, ()32222'2111a a a x g x a ax ax a x=+-=+--, 当10x a<<时,()'0,g x >而()00g =,所以()0g x >. 故当10x a <<时, 11f x f x a a ⎛⎫⎛⎫+>- ⎪ ⎪⎝⎭⎝⎭请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.(22)(本小题满分10分)选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC=ED.(I)证明:CD//AB;(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.(23)(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy中,曲线C1的参数方程为cos,sin,xyϕϕ=⎧⎨=⎩(ϕ为参数)曲线C2的参数方程为cos,sin,x ay bϕϕ=⎧⎨=⎩(0a b>>,ϕ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=2π时,这两个交点重合.(I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (II)设当α=4π时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-4π时,l 与C 1, C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积. 解析:(I )C 1为圆,C 2为椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别是(1,0),(a,0),因为这两点间的距离为2,所以a=3. 当2πα=时,射线l 与C 1,C 2交点的直角坐标分别是(0,1),(0,b),因为这两点重合,所以b=1.(II )C 1,C 2的普通方程分别为22221,19x x y y +=+=,当4πα=时,射线l 与C 1交点A 1的横坐标是x =,与C 2交点B 1的横坐标是'x = 当4πα=-时,射线l 与C 1 、C 2的两个交点A 2 、B 2的分别与A 1、B 1 关于x 轴对称,因此,四边形与A 1 A 2B 2B 1 为梯形.故四边形与A 1 A 2B 2B 1 的面积为()()2'2'325x x x x +-=. (24)(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x-2|-|x-5|.(I )证明:-3≤f (x )≤3;(II )求不等式f(x )≥x 2-8x+15的解集.。
2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)一、选择题1.设,则()A.0 B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5 B.6 C.7 D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3 C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案2018年普通高等学校招生全国统一考试理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则AB =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos2α=( ) A .89B .79C .79- D .89- 5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,此卷只装订不密封班级 姓名 准考证号 考场号 座位号7.函数422y xx =-++的图像大致为( )8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC∆为等边三角形且其面积为93则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设12F F ,是双曲线22221xy C ab-=:(00a b >>,)的左,右焦点,O是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若16PFOP=,则C 的离心率为( )A 5B .2C 3D 212.设0.2log0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1xy ax e =+在点()01,处的切线的斜率为2-,则a =________.第二种生产方式⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc Ka b c d a c b d -=++++,()20.0500.0100.0013.8416.63510.828P K k k ≥.19.(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.⑴证明:平面AMD ⊥平面BMC ;⑵当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.⑴证明:12k <-; ⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA,FP ,FB 成等差数列,并求该数列的公差.21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.⑴若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;⑵若0x =是()f x 的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答。
2018年普通高等学校招生全国统一考试(辽宁卷)数学(理工农医类)一、选择题(1)设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是() (A)1 (B)3 (C)4 (D)8【解析】{1,2}A =,{1,2,3}A B ⋃=,则集合B 中必含有元素3,即此题可转化为求集合{1,2}A =的子集个数问题,所以满足题目条件的集合B 共有224=个。
故选择答案C 。
【点评】本题考查了并集运算以及集合的子集个数问题,同时考查了等价转化思想。
(2)设()f x 是R 上的任意函数,则下列叙述正确的是 (A)()()f x f x -是奇函数 (B)()()f x f x -是奇函数 (C)()()f x f x --是偶函数 (D)()()f x f x +-是偶函数【解析】A 中()()()F x f x f x =-则()()()()F x f x f x F x -=-=,即函数()()()F x f x f x =-为偶函数,B 中()()()F x f x f x =-,()()()F x f x f x -=-此时()F x 与()F x -的关系不能确定,即函数()()()F x f x f x =-的奇偶性不确定,C 中()()()F x f x f x =--,()()()()F x f x f x F x -=--=-,即函数()()()F x f x f x =--为奇函数,D 中()()()F x f x f x =+-,()()()()F x f x f x F x -=-+=,即函数()()()F x f x f x =+-为偶函数,故选择答案D 。
【点评】本题考查了函数的定义和函数的奇偶性的判断,同时考查了函数的运算。
(3)给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线.其中假.命题的个数是 (A)1 (B)2 (C)3 (D)4【解析】利用特殊图形正方体我们不难发现①、②、③、④均不正确,故选择答案D 。
2018辽宁省高考理科数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}3|0|31x M x x N x x x +⎧⎫==<=-⎨⎬-⎩⎭,≤,则集合{}|1x x ≥=( ) A .M N B .M NC .()M M N ðD .()M M N ð2.135(21)lim(21)x n n n →∞++++-=+ ( )A .14B .12C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( ) A .(22)k ∈-, B .(2)(2)k ∈--+ ∞,,∞ C .(33)k ∈-,D .(3)(3)k ∈--+ ∞,,∞4.复数11212i i+-+-的虚部是( ) A .15i B .15 C .15i -D .15-5.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB += ,则OC =( )A .2OA OB -B .2OA OB -+C .2133OA OB -D .1233OA OB -+6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .348.将函数21xy =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,a B .(11)=-,aC .(11)=,aD .(11)=-,a9.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A .24种B .36种C .48种D .72种 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )A .172B .3C .5D .9211.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线( )A .不存在B .有且只有两条C .有且只有三条D .有无数条 12.设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫= ⎪+⎝⎭的所有x 之和为( ) A .3- B .3 C .8- D .8二、填空题:本大题共4小题,每小题4分,共16分.13.函数100x x x y e x +<⎧=⎨⎩,,,≥的反函数是__________.14.在体积为43π的球的表面上有A ,B ,C 三点,AB =1,BC =2,A ,C 两点的球面距离为33π,则球心到平面ABC 的距离为_________. 15.已知231(1)nx x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*N ,且2≤n ≤8,则n =______. 16.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,则ω=__________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △的面积等于3,求a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.18.(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4 频数205030(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望. 19.(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值, 并求出这个值;(Ⅲ)若D E '与平面PQEF 所成的角为45,求D E '与平面PQGH 所成角的正弦值. 20.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(03)-,,(03),的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点. (Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB|.21.(本小题满分12分)在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N )(Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++…. 22.(本小题满分14分) 设函数ln ()ln ln(1)1xf x x x x=-+++. (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.2018年(辽宁卷)数学理科试题参考答案和评分参考1.D 2.B 3.C 4.B 5.A 6.A 7.C8.A9.B10.A11.D12.C13.11ln 1.x x y x x -<⎧=⎨⎩,,, ≥14.3215.516.143三、解答题17.本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, 又因为ABC △的面积等于3,所以1sin 32ab C =,得4ab =. ························ 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ·············································· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ········································································· 8分 当cos 0A =时,2A π=,6B π=,433a =,233b =, 当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得233a =,433b =.所以ABC △的面积123sin 23S ab C ==. ················· 12分 18.本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ······················ 3分 (Ⅱ)ξ的可能值为8,10,12,14,16,且 P (ξ=8)=0.22=0.04, P (ξ=10)=2×0.2×0.5=0.2, P (ξ=12)=0.52+2×0.2×0.3=0.37, P (ξ=14)=2×0.5×0.3=0.3, P (ξ=16)=0.32=0.18.ξ的分布列为ξ8 10 12 14 16 P0.040.20.370.30.18··················································································· 9分E ξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.18=12.4(千元) ···························· 12分 19.本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。
2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.8.(5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.39.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。
精心整理2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
)1、设z=,则∣z∣=()2345 A.y=-2xB.y=-xC.y=2xD.y=x6、在?ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=()→EB A.- B.- C.+ D.+ 34→AB 14→AC 14→AB 34→AC 34→AB 14→AC 14→AB 34→AC7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为()A.217B.25C.3D.28.设抛物线C :y2=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,则·23→FM=()→FN9.是()A.[-110.p 1,p 211.A.B.3C.3212.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件则z=3x+2y 的最大值为.14.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.三.解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(,求18.(点C19.(设椭圆交于A,B两点,点M的坐标为(2,0).(1(220、(结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为P(0<P<1),且各件产品是否为不合格品相互独立。
2018年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分) 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A ·B)=P(A)·P(B) 球的体和只公式 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 V =243R π()(1)(0,1,2,k k n kn nP k C P p k n -=-= 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合3||0|,||3|1x M x x N x x x +==<=≤--,则集合||1|x x ≥= (A )M N ⋂ (B )M N ⋃ (C )R (M N ⋂) (D ) R (M N ⋃)(2)135(21)lim(21)x n n n →∞++++-=+(A )14 (B )12(C )1 (D )2 (3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是()2)A k ∈ ()(,)B k ∈-∞⋃+∞()3)C k ∈ ()(,)D k ∈-∞⋃+∞ (4)复数11212i i +-+-的虚部是 1()5A i 1()5B 1()5C i - 1()5D -(5)已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC - ()2A O A O B - ()2B O A O B -+ 21()33C OA OB - 12()33D OA OB --(6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,4π],则点P 横坐标的取值范围为1()[1,]2A -- ()[1,0]B - ()[0,1]C 1()[,1]2D (7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为奇数的概率为 1()3A 1()2B 2()3C 3()4D (8)将函数21212a y a y +=+=的图象按向量平移得到函数的图象,则()(1,1)A a =-- ()(1,1)B a =- ()(1,1)C a = ()(1,1)D a =- (9)一生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有(A )24种 (B )36种 (C )48种 (D )72种(10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为()2A ()3B (C 9()2D(11)在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线 ()A 不存在 (B )有且只有两条 (C )有且只有三条 (D )有无数条 (12)设f(x)是连续的偶函数,且当x >0时f(x)是单调函数,则满足f(x)=f 3()4x x ++的所有x 之和为(A )-3 (B )3 (C )-8 (D )8第Ⅰ卷(选择题共60分)二、填空题:本大题共4小题,每小题4分,共16分. (13)函数1,0,,0xx x y e x +<⎧=⎨≥⎩的反函数是__________.(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BC A 、C 两点的球而距离为3,则球心到平面ABC 的距离为_________. (15)已知21(1)()n y x x x x+++的展开式中没有..常数项,*n N ∈,且2≤n ≤8,则n =______.(16)已知()sin()(0),()()363f x x f f πππωω=+>=,且()f x 在区间(,)63ππ有最小值,无最大值,则ω=__________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 在ABC ∆中,内角A ,B,C 对边的边长分别是a,b,c ,已知c =2,C =3π. (Ⅰ)若ABC ∆a,b ;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC ∆的面积.(18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.(19)(本小题满分12分)如图,在棱长为1的正方体ABCD AB C D ''''-中,AP=BP=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥A D '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(Ⅲ)若D E '与平面PQEF 所成的角为45°,求D E '与平面PQGH 所成角的正弦值.(20)本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分. 解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0,为焦长,长半轴为2的椭圆.它的短半轴1,b ==故曲线C 的方程为224; 1.yx - ……3分(Ⅱ)设1122(,),(,)A x y B x y ,其坐标满足221,41.y x y kx ⎧⎪+=⎨⎪=+⎩消去y 并整理得22(4)2k x kx ++ 3.0, 故12122223,.44k x x x x k k +==-++ ……5分 若,OA OB ⊥即12120.x x y y +=面22121222233210,444k k x x y y k k k +----+=+++ 化简得2410,k -+=所以1.2k =± ……8分 (Ⅲ)2222221122;()OA OB x y x y -=++=22221222()4(11)x x x x -+--+=12123()()x x x x --+ =1226().4k x x k -+ 因为A 在第一象限,故x 1>0.由12234x x k =+知20,x 从而120.x x -又0,k故220,OA OB-即在题设条件下,恒有.OAOB ……12分(21)本小题主要考查等差数列,等比数例,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.满分12分. 解:(Ⅰ)由条件得21112,.n n n a n n b a a a b b +++=+-由此可得2223446,9,12,16,20,25.a b a b a b ====== ……2分猜测2(1),(1).n n a n n b n =+=+ ……4分 用数学归纳法证明:①当n =1时,由上可得结论成立. ②假设当n =k 时,结论成立,即2(1),(1),k k a k k b k =+=+那么当n =k +1时,22221122(1)(1)(1)(2),(2)bk k k k ka ab a k k k k k b k b +++=-=+-+=++==+所以当n =k +1时,结论也成立.由①②,可知2(1),(1)n n a n n b n =++对一切正整数都成立. ……7分 (Ⅱ)12115.612a b =+ n ≥2时,由(Ⅰ)知(1)(21)2(1).n n a b n n n n +=+++ ……9分故112211111111()622334(1)n na b a b a b n n ++++++++++⨯⨯+ =11111111()6223341n n +-+-++-+ =1111115().62216412n +-+=+ 综上,原不等式成立.……12分(20)(本小题满分12分) 在直角坐标系xoy 中,点P 到两点(0,-)、(0,4,设点P 的轨迹为l 、直线y=kx+1与C 交于A 、B 两点. (Ⅰ)写出C 的方程; (Ⅱ)若OA ⊥OB ,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |. (21)(本小题满分12分)在数列|a n |,|b n |中,a 1=2, b 2=4,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列(*n N ∈) (Ⅰ)求a 2, a 3, a 4及b 2, b 3, b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++.(22)(本小题满分14分) 设函数f (x )=ln ln ln(1).1xx x x-+++ (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式f (x )≥a 的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.2018年普通高等学校招生全国统一考试(辽宁卷) 数学(供理科考生使用)试题参考答案和评分参考说明:一、 解答指出了每题要考查的主要知识和能力,并给出了一种或几种解决供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算,每小题5分,共60分. (1)D (2)B (3)C (4)B (5)A (6)A (7)C (8)A (9)B (10)A (11)D (12)C 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分(13) x-1,x<1 (14)23 (15) 5 (16) 314lnx, x ≥1 三.解答题:(17)本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力,满分12分 解:(I )由余弦定理及已知条件得a 2+b 2-ab=4 又因为△ABC 的面积等于3,所以3sin 21=C ab ,得ab=4 ……………………4分 联方方程组 a 2+b 2-ab=4 ,解得a=2, b=2 ……………………6分 ab=4(II)由题意得sin(B+A)+sin(B-A)=4sinAcosA 即sinBcosA=2sinAcosA 当cosA=0时,A=332,334,6,2===b a B ππ……………………8分 当cosA ≠0时,得sinB=2sinA,由正弦定理得b=2a联立方程组 a 2+b 2-ab=4 解得a=334,332=b b=2a 所以△ABC 的面积S=332sin 21=C ab …………………12分 (18)本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分。