惠州市第二中学2015-2016学年九年级(上)《圆》测试题
- 格式:doc
- 大小:369.50 KB
- 文档页数:4
九年级数学《圆》单元测试学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4 D.2+4.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上5.已知⊙O和⊙O′的半径分别为5cm和7cm,且⊙O和⊙O′相切,则圆心距OO′为()A.2 cm B.7 cm C.12 cmD.2 cm或12 cm6.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.27.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=度时,△OBC和△ABD的面积相等;②当∠BAD=度时,四边形OBCD是正方形.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为时,四边形ABCD是菱形.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.参考答案与试题解析一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l=计算即可求出n.【解答】解:设圆锥的展开图扇形的圆心角的度数为n.∵圆锥的底面圆的周长=2π•10=20π,∴圆锥的展开图扇形的弧长=20π,∴20π=,∴n=120.故选C.2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A .B .C .4D .2+【分析】根据题目的条件和图形可以判断点B 分别以C 和A 为圆心CB 和AB 为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B 点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选B .4.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥R ,则P 点( )A .在⊙O 内或⊙O 上B .在⊙O 外C .在⊙O 上D .在⊙O 外或⊙O 上【分析】根据点与圆的位置关系进行判断.【解答】解:∵d ≥R ,∴点P 在⊙O 上或点P 在⊙O 外.故选D .5.已知⊙O 和⊙O′的半径分别为5cm 和7cm ,且⊙O 和⊙O′相切,则圆心距OO′为( ) A .2 cm B .7 cm C .12 cmD .2 cm 或12 cm【分析】此题考虑两种情况:两圆外切或两圆内切.再进一步根据位置关系得到数量关系.设两圆的半径分别为R 和r ,且R ≥r ,圆心距为d :外离,则d >R +r ;外切,则d=R +r ;相交,则R ﹣r <d <R +r ;内切,则d=R ﹣r ;内含,则d <R ﹣r .【解答】解:当两圆外切时,则圆心距等于两圆半径之和,即7+5=12;当两圆内切时,则圆心距等于两圆半径之差,即7﹣5=2.故选D .6.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC=2,则OF 的长为( )A.B.C.1 D.2【分析】根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.7.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°【分析】由AB是⊙O的直径,可得知∠ACB=90°,根据三角形内角和为180°可求出∠BAC 的度数,再由同弦的圆周角相等得出结论.【解答】解:∵线段AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=180°﹣∠ACB﹣∠ABC=58°.∵∠CDB与∠BAC均为弦BC的圆周角,∴∠CDB=∠BAC=58°.故选A.8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°【分析】由A,B,C是⊙O上的三点,已知∠AOC=110°,根据圆周角定理,即可求得答案.【解答】解:∵A,B,C是⊙O上的三点,∠AOC=110°,∴∠ABC=∠AOC=55°.故B.9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故选C.10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π【分析】首先证明OE=OC=OB,则可以证得△OEC≌△BED,则S阴影=半圆﹣S扇形OCB,利用扇形的面积公式即可求解.【解答】解:连结BC.∵∠COB=2∠CDB=60°,又∵OB=OC,∴△OBC是等边三角形.∵E为OB的中点,∴CD⊥AB,∴∠OCE=30°,CE=DE,∴OE=OC=OB=2,OC=4.S阴影==.故选D.二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=27°.【分析】根据菱形的性质得到∠ACB=∠DCB=(180°﹣∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是﹣π.【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.【解答】解:如图,连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×3﹣(﹣×32)=﹣π.故答案为:﹣π.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长2.【分析】由已知条件可知Rt△POA中,OP=2OA,所以可求出∠P=30°,∠O=60°,再在Rt△AOC中,利用勾股定理求解直角三角形即可得到AB的长.【解答】解:∵PA与⊙O相切于点A,∴OA⊥AP,∴三角形△POA是直角三角形,∵OA=2,OP=4,即OP=2OA,∴∠P=30°,∠O=60°,则在Rt△AOC中,OC=OA=1,则AC=,∴AB=2,故答案为2.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.【分析】(1)根据切线的性质得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,即∠BOC=90°;(2)由勾股定理可求得BC的长,进而由切线长定理即可得到BE+CG的长;(3)最后由三角形面积公式即可求得OF的长.【解答】解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBE+∠OCF=90°,∴∠BOC=90°;(2)由(1)知,∠BOC=90°.∵OB=6cm,OC=8cm,∴由勾股定理得到:BC==10cm,∴BE+CG=BC=10cm.(3)∵OF⊥BC,∴OF==4.8cm.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.【分析】(1)根据切线长定理得到AE=AF,∠EAO=∠FAO,根据等腰三角形的性质得到AD ⊥EF,根据三角形的内角和得到∠B=∠C=(180°﹣∠BAC),∠AEF=(180°﹣∠BAC),等量代换得到∠AEF=∠B,根据平行线的性质即可得到结论.(2)由AG等于⊙O的半径,得到AO=2OE,由AB是⊙O的切线,得到∠AEO=90°,根据直角三角形的性质得到∠EAO=30°,根据三角形的内角和得到∠AOE=60°,由垂径定理得到DM=MN=,根据三角函数的定义得到∠MOD=60°,根据扇形的面积公式即可得到结论.【解答】(1)证明:∵AB、AC相切于E、F两点,∴AE=AF,∠EAO=∠FAO,∴AD⊥EF,∵AB=AC,∴∠B=∠C=(180°﹣∠BAC),∵AE=AF,∴∠AEF=(180°﹣∠BAC),∴∠AEF=∠B,∴EF∥BC,∴AD⊥BC;(2)解:∵AG等于⊙O的半径,∴AO=2OE,∵AB是⊙O的切线,∴∠AEO=90°,∴∠EAO=30°,∴∠AOE=60°,∵AE=2,∴OE=2,∵OD⊥MN,∴DM=MN=,∵OM=2,∴sin∠MOD==,∴∠MOD=60°,∴∠EOM=60°,∴S扇形EOM==π.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD是正方形.【分析】(1)连接OD.只要证明△COD≌△COB,即可推出∠ODC=∠OBC=90°,推出CD是⊙O的切线.(2))①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD 是正方形.【解答】(1)证明:连接OD.∵AD∥CO,∴∠A=∠BOC,∠ADO=∠DOC,∵OA=OD,∴∠A=∠ADO,∴∠BOC=∠DOC,在△COD和△COB中,,∴△COD≌△COB,∴∠ODC=∠OBC=90°,∴CD是⊙O的切线.(2)①当∠BAD=60度时,△OBC和△ABD的面积相等;理由此时AD=OB,AB=OC,△OBC≌△DAB,所以面积相等.②当∠BAD=45度时,四边形OBCD是正方形.此时∠DOB=90°,∵∠ODC=∠OBC=90°,∴四边形OBCD是矩形,∵OB=OD,∴四边形OBCD是正方形.故答案分别为60,45.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E 点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.【分析】(1)连接AD,由CD是⊙O的直径,得到AD⊥AC,推出AD∥OB,根据平行线等分线段定理得到PA=AB;(2)根据相似三角形的性质得到OB=8,求得AD=4,根据勾股定理得到AC==4,根据垂径定理得到AE=CE=2,由勾股定理即可得到结论【解答】解:(1)A是PB的中点,理由:连接AD,∵CD是⊙O的直径,∴AD⊥AC,∵OB⊥AC,∴AD∥OB,∵PD=OD,∴PA=AB,∴A是PB的中点;(2)∵AD∥OB,∴△APD∽△BPO,∴,∵⊙O半径为8,∴OB=8,∴AD=4,∴AC==4,∵OB⊥AC,∴AE=CE=2,∵OE=AD=2,∴BE=6,∴BC==4.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足当AC=AP时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为60时,四边形ABCD是菱形.【分析】(1)作CE⊥AB于E,由于CA=CB,根据等腰三角形的性质得CE为AB的垂直平分线,则点O在CE上,再根据平行四边形的性质得AB∥CD,(2)当AC=AP时,△CPA≌△ABC.由于AC=BC,AC=AP,则∠ABC=∠BAC,∠APC=∠ACP,根据圆周角定理得∠ABC=∠APC,则∠BAC=∠ACP,加上AC=CA,即可得到△CPA≌△ABC;(3)如图2,连接OC,AC,OB,根据平行线的性质得到∠BCD=120°,根据切线的性质得到∠OCD=90°,推出BO垂直平分AC,即可得到结论.【解答】(1)证明:连接CO并延长交AB于E,如图,∵CD与⊙O相切于点C,∴CE⊥CD,∵四边形ABCD为平行四边形,∴AB∥CD,∴CE⊥AB,∴AE=BE,∴BC=AC;(2)解:当AC=AP时,△CPA≌△ABC.证明如下:∵AC=BC,AC=AP,∴∠ABC=∠BAC,∠APC=∠ACP,∵∠ABC=∠APC,∴∠BAC=∠ACP,在△CPA与△ABC中,,∴△CPA≌△ABC;故答案为:AC=AP;(3)解:当∠ABC的度数为60°时,四边形ABCD是菱形,如图2,连接OC,AC,OB,∵∠ABC=60°,∴∠BCD=120°,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠BCO=30°,∵OB=OC,∴∠OBC=30°,∴∠ABO=30°,∴BO垂直平分AC,∴AB=BC,∴四边形ABCD是菱形.故答案为:60°.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.【分析】(1)由垂直定义得∠E=∠CFD=90°,根据中线知BD=CD,利用“AAS”证△BED≌△CFD 可得答案;(2)根据AB是圆的直径,则△ABC是直角三角形,根据∠BAC=2∠B即可求得∠BAC的度数,证得△OAC是等边三角形.再根据PA是圆的切线,可以证得∠P=30°,则可求得OP的长,在直角△OAP中,利用勾股定理即可求得PA的长.【解答】解:(1)∵分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F,∴∠E=∠CFD=90°,∵AD是中线,∵BD=CD,在△BED和△CFD中,∵,∴△BED≌△CFD(AAS),∴BE=CF;(2)∵AB为⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°又∵∠BAC=2∠B∴∠B=30°,∠BAC=60°∵OA=OC∴△OAC是等边三角形.∴OA=AC=6,∠AOC=60°∵AP是⊙O的切线.∴∠OAP=90°∴在直角△OAP中,∠P=90°﹣∠AOC=90°﹣60°=30°∴OP=2OA=2×6=12,∴PA===6.。
圆测试题(B )时间:120分钟 分数:120分一、选择题(每小题3分,共30分)1.已知⊙O 的半径为4cm ,A 为线段OP 的中点,当OP=7cm 时,点A 与⊙O 的位置关系是( )A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定2.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( )A .9cmB .6cmC .3cmD .cm 413.在△ABC 中,I 是内心,∠ BIC=130°,则∠A 的度数为( )A .40°B .50°C .65°D .80°4.如图24—B —1,⊙O 的直径AB 与AC 的夹角为30°,切线CD 与AB 的延长线交于点D ,若⊙O 的半径为3,则CD 的长为( )A .6B .3C .3D .335.如图24—B —2,若等边△A 1B 1C 1内接于等边△ABC 的内切圆,则ABB A 11的值为( )A .21B .22C .31 D .33 6.如图24—B —3,⊙M 与x 轴相切于原点,平行于y 轴的直线交圆于P 、Q 两点,P 点在Q 点的下方,若P 点的坐标是(2,1),则圆心M 的坐标是( )A .(0,3)B .(0,25)C .(0,2)D .(0,23)7.已知圆锥的侧面展开图的面积是15πcm 2,母线长是5cm ,则圆锥的底面半径为( )A .cm 23 B .3cm C .4cm D .6cm8.如图24—B —4,⊙O 1和⊙O 2内切,它们的半径分别为3和1,过O 1作⊙O 2 的切线,切点为A ,则O 1A 的长是( )A .2B .4C .3D .59.如图24—B —5,⊙O 的直径为AB ,周长为P 1,在⊙O 内的n 个圆心在AB 上且依次相外切的等圆,且其中左、右两侧的等圆分别与⊙O 内切于A 、B ,若这n 个等圆的周长之和为P 2,则P 1和P 2的大小关系是( )A .P 1< P 2B .P 1= P 2C .P 1> P 2D .不能确定10.若正三角形、正方形、正六边形的周长相等,它们的面积分别是S 1、S 2、S 3,则下列关系成立的是( )A .S 1=S 2=S 3B .S 1>S 2>S 3C .S 1<S 2<S 3D .S 2>S 3>S 1二、填空题(每小题3分,共30分)⌒ ⌒11.如图24—B—6,AB是⊙O的直径,BC=BD,∠A=25°,则∠BOD= 。
初中九年级数学圆测试题及答案与圆有关的位置关系圆与点的位置关系有三种:点在圆外、点在圆上、点在圆内。
对应的点到圆心的距离d和半径r之间的数量关系分别为:d。
r、d = r、d < r。
直线与圆的位置关系有三种:相交、相切、相离。
对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:d。
r。
圆与圆的位置关系有五种:内含、相内切、相交、相外切、外离。
两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:d。
R+r。
圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线。
从圆外一点可以向圆引两条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
与圆有关的计算圆的周长为2πr,1°的圆心角所对的弧长为πr/180,n°的圆心角所对的弧长为nπr/180,弧长公式为l=nπr。
圆的面积为πr^2,1°的圆心角所在的扇形面积为πr^2/360,n°的圆心角所在的扇形面积为S=nπr^2/360(n为圆心角的度数,R为圆的半径)。
圆锥的侧面积公式:S=πrl(其中r为底面的半径,l为母线的长)。
圆锥的侧面积与底面积之和称为圆锥的全面积。
圆柱的侧面积公式:S=2πrl(其中r为底面圆的半径,l为圆柱的高)。
4.已知∠BOC为130°,O是△XXX的内心,求∠A的度数。
解析:由内心的性质可知,∠BOC=2∠A,所以∠A=65°,选项B。
5.已知∠A=100°,∠C=30°,求∠DFE的度数。
解析:由内切圆的性质可知,∠DFE=90°-1/2(∠A+∠C)=55°,选项A。
6.将羊拴在使草地上活动区域面积最大的位置,即正方形的对角线中点处,选项B。
7.两圆心距离等于半径之差的情况为内含,等于半径之和的情况为外切,大于半径之和小于半径之差的情况为相交,两圆心距离为3,所以为相交,选项C。
2016年秋季九年级上学期数学《圆》单元测试一、选择题 (每小题4分,共40分):1.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图(1)所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是() A .第①块 B .第②块 C .第③块 D .第④块2.下面命题中是真命题的有( )①长度相等的弧是等弧 ②平分弦的直径垂直于弦; ③相等的圆心角所对的弦相等 ④任意三点确定一个圆⑤外心在三角形的一条边上的三角形是直角三角形。
A.0个 B.1个 C.2个 D.3个 3.已知、是同圆的两段弧,且=2,则弦AB 与CD 之间的关系为( )A.AB=2CDB.AB<2CDC.AB>2CDD.不能确定4.如图(2),以点P 为圆心,以25为半径的圆弧与x 轴交于A ,B 两点,点A 的坐标为(2,0),点B 的坐标为(6,0),则圆心P 的坐标为( )A.(4, 14) B .(4,2) C.(4,4) D.(2, 26)5.如图(3),⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB , ∠AOC=84°,则∠E 等于( ) A.42 ° B.28° C.21° D.20°6.如图(4)已知⊙是以数轴的原点为圆心,半径为1的圆,,点在数轴上运动,若过点且与平行的直线与⊙有公共点, 设x OP =,则的取值范围是( ) A .-1≤≤1 B .≤≤C .0≤≤D .>7.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶18.设⊙O 的半径为2,圆心O 到直线l 的距离OP=m ,且m 使得关于x 的方程2x 2-22x+m-1=0有实数根,则直线l 与⊙O 的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定9.如图(5),在边长为20cm 的等边三角形ABC 纸片中,以顶点C 为圆心,以此三角形的高为半径画弧分别交AC BC ,于点D E ,,则扇形CDE 所围的圆锥(不计接缝)的底圆 半径为( )A .533cm B .1033cm C.53cm D .103cm 10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2017秒时,点P 的坐标是() A.(2016,0) B.(2017,-1) C. (2017,1) D. (2018,0)二、填空题(每小题4分,共40分):11.同一平面内两圆的半径是R 和r ,圆心距是d ,若以R 、r 、d 为边长,能围成一个三角形,则这两个圆的位置关系是_______.12.如图(6),四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠DCE 的度数为___50°____. 13.如图(7),AB 是⊙O 的弦,OH ⊥AB 于点H,点P 是优弧上一点,若AB=2,OH=1,则∠APB 的度数是 .14.如图(8),在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为_________.15.如图(9),Rt △ABC 中,∠C=90°,AC=6,BC=8.则△ABC 的内切圆半径r=____.16.如图(10),圆锥的母线长OA 为8,底面圆的半径为4.若一只蚂蚁在底面上点A 处,在相对母线OC 的中点B 处有一只小虫,蚂蚁要捉到小虫,需要爬行的最短距离为_______.17.如图(11),一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是______ m 2.18.如图(12),△ABC 是等腰直角三角形,∠ACB=90°,CB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ’C ’,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是________ (结果保留π). O O 45AOB ∠=︒P P OA O x x 2-x 2x 2x 2_______________班级:(____)班 座号:_____号 姓名:_______________________…………………………………………………………装订线………………………………………………………………………………(2)(3)(6)(7)6m 4m 5m 120° 小羊AO A C B (10) (12) (9) rB AC O ABCD E (5)(8)(11)19.如图(13)分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 ______个平方单位。
圆单元测试题及答案初三一、选择题(每题2分,共10分)1. 圆的周长公式是()A. C = πdB. C = 2πrC. C = πrD. C = 2r2. 圆的面积公式是()A. S = πr²B. S = 2πrC. S = πdD. S = 4r²3. 半径为2的圆的面积是()A. 4πB. 8πC. 12πD. 16π4. 圆的直径是半径的()A. 1倍B. 2倍C. 4倍D. 8倍5. 圆心角为60°的扇形的圆心角所对的弧长是半径的()A. 1/6B. 1/3C. 1/2D. 2/3二、填空题(每题2分,共10分)6. 半径为5的圆的周长是________。
7. 一个圆的直径是10厘米,它的半径是________厘米。
8. 圆的面积是半径平方的________倍。
9. 一个圆的半径是3厘米,它的直径是________厘米。
10. 圆的周长是直径的________倍。
三、计算题(每题10分,共20分)11. 已知圆的半径为7厘米,求该圆的周长和面积。
12. 已知扇形的圆心角为120°,半径为6厘米,求扇形的弧长和面积。
四、解答题(每题15分,共30分)13. 一个圆的周长为44厘米,求这个圆的半径。
14. 一个扇形的半径为8厘米,圆心角为150°,求这个扇形的弧长和面积。
五、结束语通过本单元的测试,同学们应该能够熟练掌握圆的基本性质和公式,能够灵活运用这些知识解决实际问题。
希望同学们在今后的学习中继续努力,不断提高自己的数学素养和解决问题的能力。
答案:一、选择题1. B2. A3. B4. B5. B二、填空题6. 10π7. 58. π9. 610. π三、计算题11. 周长:44π厘米,面积:49π平方厘米。
12. 弧长:4π厘米,面积:12π平方厘米。
四、解答题13. 半径:11厘米。
14. 弧长:10π厘米,面积:20π平方厘米。
九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。
初三圆单元测试题及答案一、选择题(每题2分,共10分)1. 半径为1的圆的周长是多少?A. 2πB. 3πC. 4πD. 6π2. 圆的内接四边形的对角线之间的关系是什么?A. 互相垂直B. 互相平行C. 互相平分D. 长度相等3. 圆的切线与半径在切点处的关系是什么?A. 垂直B. 平行C. 相交D. 重合4. 圆的面积公式是什么?A. πr²B. 2πrC. r²D. r³5. 圆心角、弧长、半径三者之间的关系是什么?A. 弧长 = 半径× 圆心角(弧度制)B. 弧长 = 半径× 圆心角(度制)C. 半径 = 弧长 / 圆心角(弧度制)D. 半径 = 弧长× 圆心角(弧度制)二、填空题(每题2分,共10分)6. 半径为2的圆的直径是________。
7. 圆的周长与直径的比值称为________。
8. 圆的内切角等于________度。
9. 圆的外切角等于________度。
10. 圆的切线与半径在切点处的关系是________。
三、计算题(每题5分,共20分)11. 已知圆的半径为3,求圆的周长和面积。
12. 已知圆心角为60°,半径为4,求对应的弧长。
13. 已知圆的周长为12π,求圆的半径。
14. 已知圆的面积为9π,求圆的半径。
四、解答题(每题10分,共20分)15. 证明:圆的内接四边形的对角线互相平分。
16. 已知点A、B、C是圆上的三点,且AB=AC,求证:点B、C关于圆心对称。
五、综合题(每题15分,共30分)17. 已知圆O的半径为5,点P在圆O上,PA、PB是点P到圆O的两条切线,PA=PB=8。
求切线PA、PB的长度。
18. 已知圆O的半径为6,点A在圆上,PA垂直于OA,PA=4。
求点A 到圆O的切线长。
答案:一、选择题1. C2. C3. A4. A5. A二、填空题6. 47. 圆周率8. 909. 6010. 垂直三、计算题11. 周长:6π,面积:9π12. 弧长:2π13. 半径:614. 半径:3四、解答题15. 略16. 略五、综合题17. 切线PA、PB的长度为:√(8² - 5²) = √(64 - 25) = √3918. 点A到圆O的切线长为:√(6² - 4²) = √(36 - 16) = 2√5结束语:本测试题旨在帮助学生巩固圆的基本概念、性质和计算方法,通过不同类型的题目,检验学生对圆单元知识的掌握程度。
一、选择题1.如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .30°C .36°D .60°C解析:C【分析】 根据圆周角定理求出∠AOB ,根据等腰三角形的性质求出∠ABO=∠BAO ,根据三角形内角和定理求出即可.【详解】解:∵∠ACB =54°,∴圆心角∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°, 故选:C .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB 的度数是解此题的关键.2.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A 22B 2C 2D .224A 解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a , ∴::R r a =2:2a :22 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.3.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C.若∠ACB=30°,AB= 3,则阴影部分的面积()A.32B.33C.3π26-D.3π36-C解析:C【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【详解】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB3∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=1232601360π⋅=3π26-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.4.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个D解析:D【分析】 ①根据作图过程可得AC AD =,根据垂径定理可判断;②连接OC ,根据作图过程可证得△AOC 为等边三角形,由等边三角形的性质即可判断; ③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点,∴AC AD =,根据垂径定理可知,AB ⊥CE ,CE=DE ,∴①正确;②连接OC ,∵AC=OA=OC ,∴△AOC 为直角三角形,∵AB ⊥CE ,∴AE=OE ,∴BE=BO+OE=3AE ,∴②正确;③∵AB 为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE ,∴③正确,故选:D .【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.5.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°B解析:B【分析】 连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.6.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是()A.8.5B.17C.3D.6D解析:D【分析】先根据勾股定理求出斜边长,再根据直角三角形内切圆半径公式求出半径,从而得到直径.【详解】解:根据勾股定理,斜边是2281517+=,直角三角形的内切圆半径8151732+-==,∴直径是6.故选:D.【点睛】本题考查三角形的内切圆,解题的关键是掌握直角三角形内切圆半径的求解方法.7.如图△ABC中,∠C=90°,∠B=28°,以C为圆心,CA为半径的圆交AB于点D,则AD的度数为()A.28°B.56 °C.62°D.112°B解析:B【分析】连接CD,如图,利用互余计算出∠A=62°,则∠A=∠ADC=62°,再根据三角形内角和定理计算出∠ACD=56°,然后根据圆心角的度数等于它所对弧的度数求解.【详解】解:连接CD,如图,∵∠C=90°,∠B=28°,∴∠A=90°-28°=62°,∵CA=CD,∴∠A=∠ADC=62°,∴∠ACD=180°-2×62°=56°∴AD的度数为56°;故选:B.【点睛】本题考查了同圆的半径相等、直角三角形的两锐角互余、等腰三角形的性质,熟练进行逻辑推理是解题关键.8.如图,⊙O的半径为1,点 O到直线a的距离为2,点 P是直线a上的一个动点,PA切⊙O于点 A,则 PA的最小值是()A.1 B3C.2 D5解析:B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA 最小.根据垂线段最短,知OP=2时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=2.根据题意,在Rt△OPA中,22-21=3OP OA-22故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.9.已知AB是经过圆心O的直线,P为O上的任意一点,则点P关于直线AB的对称点P'与O的位置关系是()A.点P'在⊙○内B.点P'在O外C.点P'在O上D.无法确定C解析:C【分析】圆是轴对称图形,直径所在的直线就是对称轴,从而得到圆上的点关于对称轴对称的点都在圆上求解.【详解】解:∵圆是轴对称图形,直径所在的直线就是对称轴,∴点P关于AB的对称点P′与⊙O的位置为:在⊙O上,故选:C.【点睛】本题考查了点与圆的位置关系,利用了圆的对称性求解.10.如图,AB是⊙O的直径,AB=AC且∠BAC=45°,⊙O交BC于点D,交AC于点E,DF 与⊙O相切,OD与BE相交于点H.下列结论错误的是()A.BD=CD B.四边形DHEF为矩形C.2=AE DED.BC=2CE D解析:D【分析】A、利用直径所对的圆周角是直角,以及等腰三角形的三线合一性质即可得出结论;B、根据中位线得出OD//AC,再根据矩形的判定即可得出结论C、根据垂径定理得出BD DE=,再根据等腰直角三角形的性质得出AE=BE,从而得出=,即可得出2BD DE=AE DED、不能得出BC=2CE【详解】解:连接AD∵AB为⊙O的直径,∴∠BDA=∠BEA =90°,即AD⊥BC,又∵AB=AC,∴BD=DC,∠BAD=∠DAE,故A正确;∵OA=OB∴OD是三角形ABC的中位线∴OD//AC∴∠DHE =90°=∠BEF,∵DF与⊙O相切,∴∠ODF =90°∴四边形DHEF为矩形故B正确;∵∠BEA =90°,∠BAC=45°,∴AE=BE∴AE BE=∵∠DHE =90°∴OD⊥BE∴BD DE=∴2=AE DE故C正确;不能得出BC=2CE故选:D【点睛】本题考查了切线的性质、三线合一定理、三角形中位线定理、垂径定理;熟练掌握等腰三角形的性质和圆周角定理,并能进行推理论证是解决问题的关键.二、填空题11.如图,点A ,B ,C 在圆O 上,54ACB ∠=︒,则ABO ∠的度数是______.36°【分析】根据圆周角定理可得再利用等腰三角形的性质即可求解【详解】解:∵∴∵∴故答案为:36°【点睛】本题考查圆周角定理掌握圆周角定理是解题的关键解析:36°【分析】根据圆周角定理可得2108AOB ACB ∠=∠=︒,再利用等腰三角形的性质即可求解.【详解】解:∵54ACB ∠=︒,∴2108AOB ACB ∠=∠=︒,∵OA OB =, ∴()1180362ABO BAO AOB ∠=∠=︒-∠=︒, 故答案为:36°.【点睛】本题考查圆周角定理,掌握圆周角定理是解题的关键.12.如图,PA ,PB 是O 的切线,A ,B 为切点,AC 是O 的直径,35BAC ∠=︒,则P ∠的度数为________.70°【分析】根据题意可以求得∠OAP 和∠OBP 的度数然后根据∠BAC =35°即可求得∠P 的度数【详解】解:连接OB :∵PAPB 是⊙O 的两条切线AB 是切点AC 是⊙O 的直径∴∠OAP =∠OBP =90°解析:70°【分析】根据题意可以求得∠OAP 和∠OBP 的度数,然后根据∠BAC =35°,即可求得∠P 的度数.【详解】解:连接OB :∵PA、PB是⊙O的两条切线,A、B是切点,AC是⊙O的直径,∴∠OAP=∠OBP=90°,∵∠BAC=35°,OA=OB,∴∠BAC=∠OBA=35°,∴∠PAB=∠PBA=55°,∴∠P=180°−∠PAB−∠PBA=70°,即∠P的度数是70°,故答案为:70°.【点睛】本题考查切线的性质,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用切线的性质解答问题.13.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB 、△OBC 为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.14.ABC 是边长为5的等边三角形,点D 在ABC 的外部且30BDC ∠=︒,则AD 的最大值是______.【分析】作A 点关于BC 的对称点A 以A 点为圆心以BC 的长为半径作圆连接AA 交BC 于E 点延长AA 交⊙A 与点D 连接BDCD 则∠BDC =∠BAC =×60°=30°此时AD 为最大值根据等边三角形的性质可求解A 解析:535【分析】作A 点关于BC 的对称点A',以A'点为圆心,以BC 的长为半径作圆,连接AA'交BC 于E 点,延长AA'交⊙A'与点D ,连接BD ,CD ,则∠BDC =12∠BA'C =12×60°=30°,此时AD 为最大值,根据等边三角形的性质可求解A'E =AE 53,A'D =A'B =AB =5,进而可求解.【详解】作A 点关于BC 的对称点A',以A'点为圆心,以BC 的长为半径作圆,连接AA'交BC 于E 点,延长AA'交⊙A'与点D ,连接BD ,CD ,则∠BDC =12∠BA'C =12×60°=30°,此时AD 为最大值,∵△ABC 是边长为5的等边三角形,∴BC =AB =5,∴BE=12BC=52∴A'E =AE 22552⎛⎫- ⎪⎝⎭53A'D =A'B =AB =5,∴AD =AE +A'E +A'D =53+5.故答案为53+5.【点睛】本题主要考查等边三角形的性质,轴对称的性质,圆周角定理等知识的综合运用,解题的关键是根据题意作出示意图进行求解.15.如图,矩形ABCD 和正方形BEFG 中2AB =,3AD =,1BE =,正方形BEFG 绕点B 旋转过程中,线段DF 的最小值为______.【分析】由勾股定理可求BD=BF=由题意可得点F 在以点B 为圆心BF 为半径的圆上则当点F 在线段DB 上时DF 的值最小即可求解【详解】解:连接BDBF ∵矩形∴∠C=90°∴∵正方形∴∴点F 在以点B 为圆心B 132【分析】由勾股定理可求132,由题意可得点F 在以点B 为圆心,BF 为半径的圆上,则当点F 在线段DB 上时,DF 的值最小,即可求解.【详解】解:连接BD 、BF∵矩形ABCD ,2AB =,3AD =,∴∠C=90°∴222313BD =+=∵正方形BEFG ,1BE =∴22112=+=BF∴点F 在以点B 为圆心,BF 为半径的圆上,∴当点F 在线段DB 上时,DF 的值最小,∴DF 的最小值132【点睛】此题主要考查了旋转的性质以及勾股定理的运用,正确的判断出DF 最小时F 点的位置是解答此题的关键.16.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm 底面圆的半径为rcm ∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120 解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案. 【详解】解:设圆锥的母线长为Rcm ,底面圆的半径为rcm ,∵面积为3πcm 2的扇形围成一个圆锥的侧面,扇形的圆心角是120°,∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1.【点睛】此题主要考查了圆锥的计算,正确得出母线长是解题关键.17.如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则图中阴影部分的面积是______.(结果用含π的式子表示)【分析】已知BC 为直径则∠CDB=90°在等腰直角三角形ABC 中CD 垂直平分ABCD=DBD 为半圆的中点阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差【详解】解:由题可知△ACB 为等腰 解析:1π-【分析】已知BC 为直径,则∠CDB=90°,在等腰直角三角形ABC 中,CD 垂直平分AB ,CD=DB ,D 为半圆的中点,阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差.【详解】解:由题可知△ACB 为等腰Rt △ACB ,在Rt △ACB 中,22222+=∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,则△ADC 和△BDC 都为等腰直角三角形,CD=BD=AD ,令 CD=BD=AD=x ,则2222x x +=,2xS 阴影部分=S 扇形ACB -S △ADC =229021213602ππ⨯-⨯=- .故答案为:1π-.【点睛】 本题考查了扇形面积的计算公式及不规则图形面积的求法,掌握扇形的面积公式是解题的关键.18.如图,已知正方形ABCD 的边长为2,点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM ,BN 交于点P ,则PC 长的最小值为____________.【分析】根据题意和正方形的性质可利用SAS证明△ABM≌△BCN得出∠BAM=∠CBN进而可证出∠APB=90°于是可得点P在以AB为直径的圆上运动运动路径是弧BG连接OC交圆O于P如图则此时PC最解析:5-1【分析】根据题意和正方形的性质可利用SAS证明△ABM≌△BCN,得出∠BAM=∠CBN,进而可证出∠APB=90°,于是可得点P在以AB为直径的圆上运动,运动路径是弧BG,连接OC交圆O于P,如图,则此时PC最小,进一步即可求解.【详解】解:由题意得:BM=CN,∵四边形ABCD是正方形,∴∠ABM=∠BCN=90°,AB=BC=2,在△ABM和△BCN中,∵AB=BC,∠ABM=∠BCN,MB=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠ABP+∠CBN=90°,∴∠ABP+∠BAM=90°,∴∠APB=90°,∴点P在以AB为直径的圆上运动,设圆心为O,运动路径是弧BG,是这个圆的1,如4图所示:连接OC交圆O于P,此时PC最小,∵AB=2,∴OP=OB=1,由勾股定理得:OC22+=,215∴PC=OC﹣OP51;51.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理和圆的有关性质等知识;熟练掌握上述知识,证出点P 在以AB 为直径的圆上运动是解题关键.19.在矩形ABCD 中,43AB =,6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.或4或8【分析】取CD 中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B 是等边三角形可得∠AP1B =60°过点A 点P1点B 作圆与ADBC 各有一个交点即这样的P 点一共3个再运用勾 解析:43或4或8.【分析】取CD 中点P 1,连接AP 1,BP 1,由勾股定理可求AP 1=BP 1=43,即可证△AP 1B 是等边三角形,可得∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =3AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=3∴AP 1221AD DP +3, BP 1221BC CP +=3∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形, ∴43,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A = 在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -= ∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP =∴8,AP =综上所述,AP 的长为:43或4或8.故答案为:43或4或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.20.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.【分析】(1)根据直径所对的圆周角是可得到再根据弧的中点定义同弧所对的圆周角相等角平分线定义可推导出最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上结合已知条件添加辅助线连接从而构造出等解析:13542【分析】(1)根据直径所对的圆周角是90︒可得到90CAB CBA ∠+∠=︒,再根据弧的中点定义、同弧所对的圆周角相等、角平分线定义可推导出45DAB DBA ∠+∠=︒,最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上,结合已知条件添加辅助线“连接AM ”,从而构造出等腰Rt ADM △,利用勾股定理解Rt ABM 即可求得答案.【详解】解:(1)∵AB 是直径∴90ACB ∠=︒∴90CAB CBA ∠+∠=︒∵点M 是弧AC 的中点∴AM CM =∴CBM ABM ∠=∠∵AD 平分CAB ∠∴CAD BAD ∠=∠∴()1452DAB DBA CAB CBA ∠+∠=∠+∠=︒ ∴()180135ADB DAB DBA ∠=︒-∠+∠=︒.(2)连接AM ,如图:∵AB 是直径∴90AMB ∠=︒∵18045ADM ADB ∠=︒-∠=︒∴AM DM =∵点D 为BM 的中点∴DM DB =∴2BM AM =∴设AM x =,则2BM x =∵半圆的半径为10 ∴210AB =∵在Rt ABM 中,222AM BM AB +=∴22440x x +=∴122x =,222x =-(不合题意舍去)∴22AM =∴42BM =.【点睛】本题考查了直径所对的圆周角是90︒、弧的中点定义、同弧所对的圆周角相等、角平分线定义、三角形的内角和定理、线段的中点定义、利用勾股定理解直角三角形、解一元二次方程等知识点,通过添加辅助线构造直角三角形解决问题的关键,难度中等,属于中考常考题型.三、解答题21.如图,四边形ABCD 为菱形,且120BAD ∠=,以AD 为直径作O ,与CD 交于点P .请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点O 作AB 边的平行线OE ;(2)在图2中,过点C 作AB 边上的高CF .解析:(1)见解析;(2)见解析【分析】(1)连接BD 、AC 交于点E ,连接OE ;(2)连接BD ,则点P 和BD 与O 的交点的延长线与AB 的交点即为F 点.【详解】(1)如图所示,∵四边形ABCD 是菱形,∴E 是BD 中点,∵O 是DA 中点,∴//OE AB ;(2)如图所示,∵120BAD ∠=,∴60ADC ∠=︒,∵AD CD =,∴ACD △是等边三角形,∵AD 是直径,∴90APD ∠=︒,即AP DC ⊥,∴P 是CD 中点,通过如图所示找到的点F 是AB 的中点,∵ABC 也是等边三角形,∴CF AB ⊥.【点睛】本题考查作图,解题的关键是要熟悉各种几何的性质,比如:等边三角形的性质,中位线的性质,菱形的性质,圆的性质.22.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点.求证:AP=BP .解析:见解析【分析】根据切线的性质得出OP ⊥AB ,根据垂径定理得出即可.【详解】证明:如图,连接OP ,∵大圆的弦AB 是小圆的切线,点P 为切点,∴OP ⊥AB ,∵OP 过O ,∴AP=BP .【点睛】本题考查了切线的性质和垂径定理的应用,主要考查学生的推理能力,题目比较好,难度适中.23.如图,BC 是圆O 的直径,AD 垂直BC 于D ,弧AB=弧AF ,BF 与AD 交于E ,求证:(1)AE BE =(2)若A ,F 把半圆三等分,12BC =,求AD 的长.解析:(1)见解析;(2)33【分析】 (1)连接AC ,则∠BAC=90°,进而证得∠C=∠BAE ,由弧AB=弧AF 证得∠C=∠ABF ,则∠ABE=∠BAE ,根据等腰三角形的等角对等边证得结论;(2)由A ,F 把半圆三等分可得∠ACB=30°,再由BC=12和直角三角形中30°角所对的直角边等于斜边的一半可得AB=6,由勾股定理求得AC=63=AC AD 的长.【详解】(1)证明:连AC ,如图,∵BC 为直径,则90BAC ∠=︒,90C ABC ∴∠+∠=︒,又∵AD ⊥BC90BAE ABC ∴∠+∠=︒,C BAE ∴∠=∠,由弧AB=弧AF ,可得C ABF ∠=∠,ABE BAE ∴∠=∠,AE BE ∴=;(2)∵A ,F 把半圆三等分,30ACB ∴∠=︒,在直角三角形ABC 中,12BC =,则162AB BC ==,363AC AB ==, 在直角三角形ADC 中,1332AD AC ==, 所以33AD =.【点睛】本题考查了同弧或等弧所对的圆周角相等、直径所对的圆周角是直角、含30°角的直角三角形的性质,熟练掌握圆的基本知识和直角三角形中30°角所对的直角边等于斜边的一半是解答的关键.24.如图,已知AB 是O 的直径,四边形AODE 是平行四边形,请用无刻度直尺按下列要求作图.(1)如图1,当点D 在圆上时,作BAC ∠的平分线;(2)如图2,当点D 不在圆上时,作BAC ∠的平分线.解析:(1)见解析;(2)见解析.【分析】(1)由四边形AODE 是平行四边形,结合圆的 半径相等,可知四边形AODE 是菱形,利用菱形的性质即可做出BAC ∠的平分线;(2)延长OD 交于圆一点,连接该点与点A ,由此即可作出C BA ∠的平分线.【详解】解:(1)如图①:AD 即为所求.∵四边形AODE 是平行四边形点D 在圆上∴四边形AODE 是菱形∴AD 平分BAC ∠;(2)如图②:延长OD交于圆一点P,连接AP,同理可证AP即为所求.【点睛】此题考查尺规作图,关键是掌握圆的相关知识及角平分线的判定方法.25.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O与座板A的距离为2m(此时OA垂直于地面),现一人荡秋千时,座板到达点B(OA不弯曲).(1)当BOA30∠=时,求AB弧的长度(保留π);(2)当从点C荡至点B,且BC与地面平行,3mBC=时,若点A离地面0.4m,求点B到地面的距离(保号根号).解析:(1)3mπ;(2)127(5m-.【分析】(1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD,根据勾股定理求出OD,结合图形计算即可.【详解】解:(1)AB弧线的长度=302() 1803mππ⨯=;(2)如图,∵OB=OC ,OD ⊥BC , ∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2,∴2222372()22OD OB BD =-=-=, ∴点B 到地面的距离=712720.4252-+=-, 答:点B 到地面的距离为127()52m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.26.如图,已知,MON ∠点A 在射线OM 上.根据下列方法画图(用尺规作图). ①以O 为圆心,OA 长为半径画圆,交ON 于点B ,交射线OM 的反向延长线于点C ,连接BC ;②以OA 为边,在MON ∠的内部,画AOP OCB ∠=∠;③连接AB ,交OP 于点E ;④过点A 作O 的切线,交OP 于点F .()1依题意补全图形;()2求证MOP PON ∠=∠;()3若60,10MON OF ∠=︒=,求AE 的长.解析:(1)见解析;(2)见解析;(3)32AE =【分析】(1)根据题意画出图形即可;(2)根据圆周角定理解答即可;(3)根据切线的性质和含30°的直角三角形的性质解答.【详解】解:(1)如图所示:(2)2,MON OCB ∠=∠,AOP OCB ∠=∠,BOP OCB AOP ∴∠=∠=∠即MOP PON ∠=∠;(3)60MON ∠=︒,30,AOP ∴∠=︒ FA 是O 的切线,,FA OA ∴⊥10,OF =53OA ∴=,,OA OB =OAB ∴∆是等边三角形,,MOP PON ∠=∠,OE AB ∴⊥53∴=AE . 【点睛】本题主要考查了作图−复杂作图,关键是根据切线的性质,圆周角定理,等腰三角形、等边三角形的性质等知识解答.27.如图,ABC 内接于O ,60BAC ∠=︒,点D 是BC 的中点.BC ,AB 边上的高AE ,CF 相交于点H .试证明:(1)FAH CAO ∠=∠;(2)四边形AHDO 是菱形.解析:(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM ,∵CF ⊥AB ,∠BAC=60°,∴AC=2AF ,∴AF=AM ,∵∠AFH=∠AMO=90°,∠FAH=∠OAM ,∴△AFH ≌△AMO (ASA ),∴AH=AO ,∵OA=OD ,∴AH //CD ,∴四边形AHDO 是平行四边形,∵OA=OD ,∴四边形AHDO 是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.28.如图,AB ,AC 是⊙O 的弦,过点C 作CE AB ⊥于点D ,交⊙O 于点E ,过点B 作BF AC ⊥于点F ,交CE 于点G ,连接BE .(1)求证:BE BG =;(2)过点B 作BH AB ⊥交⊙O 于点H ,若BE 的长等于半径,4BH =,43AC =求CD 的长.参考答案解析:(1)见解析;(2)6.【分析】(1)根据圆周角定理得到BAC BEC ∠=∠,根据直角三角形的性质、对顶角相等得到BEC BGE ∠=∠,根据等腰三角形的判定定理证明结论;(2)连接OB 、OE 、AE 、CH ,根据平行四边形的判定和性质得到4CG BH ==,根据等边三角形的性质得到60BOE ∠=︒,根据直角三角形的性质、勾股定理计算,得到答案.【详解】(1)证明:由圆周角定理得,BAC BEC ∠=∠,CE AB ⊥,BF AC ⊥,90ADC GFC ∴∠=∠=︒,CGF BAC ∴∠=∠,BEC CGF ∴∠=∠,BGE CGF ∠=∠,BEC BGE ∴∠=∠,BE BG ∴=;(2)解:连接OB 、OE 、AE 、CH ,BH AB ⊥,CE AB ⊥//BH CE ∴,四边形ABHC 是O 的内接四边形,90ACH ABH ∴∠=∠=︒,//BF CH ∴,∴四边形CGBH 为平行四边形,4CG BH ∴==,OE OB BE ==,BOE ∴∆为等边三角形,60BOE ∴∠=︒,1302BAE BOE ∴∠=∠=︒, 12DE AE ∴=, 设DE x =,则2AE x =, 由勾股定理得,223AD AE DE x =-=,BE BG =,AB CD ⊥,DG DE x ∴==,4CD x ∴=+,在Rt ADC ∆中,222AD CD AC +=,即)()(2223434x x ++=, 化简得:2280x x +-=解得,12x =,240x =-<(舍去)则24=6CD =+.【点睛】本题考查的是圆周角定理、勾股定理、等边三角形的判定和性质,灵活运用圆周角定理是解题的关键.。
2015-2016学年广东省惠州市惠城区九年级(上)期末数学试卷一.选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列图案是几种名车标志,其中属于中心对称图形地是()A.1个 B.2个 C.3个 D.4个2.(3分)方程x(x﹣1)=0地根是()A.0 B.1 C.0或1 D.无解3.(3分)抛物线y=﹣(x+2)2﹣1顶点坐标是()A.(2,﹣1)B.(2,1) C.(﹣2,﹣1)D.(﹣2,1)4.(3分)有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面地数字为偶数地概率是()A.B.C.D.5.(3分)某果园第1年水果产量为100吨,第3年水果产量为144吨,求该果园水果产量地年平均增长率.设该果园水果产量地年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1446.(3分)已知二次函数y=ax2+bx+c(a≠0)地图象如图所示,则下列结论:①ac<0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1地实数根.其中正确地是()A.①②③B.①③④C.②③④D.①②④7.(3分)已知如图,一次函数y=ax+b和反比例函数y=地图象相交于A、B两点,使不等式ax+b>成立地自变量x地取值范围是()A.x<﹣1或x>4 B.﹣1<x<4 C.x<﹣1或0<x<4 D.﹣1<x<0或x >48.(3分)如图,△ABC地边AC与⊙O相交于C、D两点,且经过圆心O,边AB 与⊙O相切,切点为B.已知∠A=30°,则∠C地大小是()A.30°B.45°C.60°D.40°9.(3分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B地对应点D恰好落在BC边上.若AC=,∠B=60°,则CD地长为()A.0.5 B.1.5 C.D.110.(3分)一个圆锥地侧面展开图是半径为6地半圆,则这个圆锥地底面半径为()A.1.5 B.2 C.2.5 D.3二.填空题(本大题共6个小题,每小题4分,共24分)11.(4分)已知反比例函数y=地图象经过点(2,﹣3),则此函数地关系式是.12.(4分)把抛物线y=﹣x2先向上平移2个单位,再向左平移3个单位,所得地抛物线是.13.(4分)一次聚会中每两人都握了一次手,所有人共握手15次,共有人参加聚会.14.(4分)在拼图游戏中,从图(1)地四张纸片中,任取两张纸片,能拼成“房子”如图(2)地概率为.15.(4分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.16.(4分)如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC地内切圆半径r=.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.(6分)已知关于x地一元二次方程x2+kx﹣1=0一个根为﹣2,求另一个根和k地值.18.(6分)如图,方格纸中地每个小方格都是边长为1个单位地正方形.Rt△ABC地顶点均在格点上,建立平面直角坐标系后,点A地坐标为(﹣4,1),点B地坐标为(﹣1,1).(1)将Rt△ABC绕点O顺时针旋转90°后得到Rt△A′B′C′,试在图中画出图形Rt △Rt△A′B′C′,并写出C′地坐标;(2)求弧地长.19.(6分)如图,一座抛物线型拱桥,当水面宽AB为12m时,桥洞顶部离水面4m.若桥洞顶部离水面1m是警戒水位.求警戒水位时地水面宽度.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.(7分)把大小和形状完全相同地6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出地两张卡片数字之和为奇数地概率;(2)若取出地两张卡片数字之和为奇数,则甲胜;取出地两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.21.(7分)如图,AB是⊙O地直径,C是地中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O地半径.22.(7分)景泰特产专卖店销售杏脯,其进价为每千克40元,按每千克60元销售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天地销售可增加20千克.若该专卖店销售这种杏脯要想平均每天获利2240元,请回答:(1)每千克杏脯应降价多少元?(2)在平均每天获利不变地情况下,为尽可能让利于顾客,赢得市场,该店应按原售价地几折出售?三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.(9分)已知反比例函数y=地图象地一支位于第二象限.(1)判断该函数图象地另一支所在地象限,并求m地取值范围;(2)如图,O为坐标原点,点M在该反比例函数位于第二象限地图象上,点N 与点M关于x轴对称,若△OMN地面积为6,求m地值;(3)在(2)地条件下,当2<MN<4时,求线段OA地取值范围(直接写出结果)24.(9分)如图,点D在⊙O地直径AB地延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O地切线;(2)若⊙O地半径为2,求图中阴影部分地面积.25.(9分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线地解析式;(2)当点E(x,y)运动时,试求三角形OEB地面积S与x之间地函数关系式,并求出面积S地最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M地坐标.2015-2016学年广东省惠州市惠城区九年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列图案是几种名车标志,其中属于中心对称图形地是()A.1个 B.2个 C.3个 D.4个【解答】解:第二、三个图形是中心对称图形地图案,故选B.2.(3分)方程x(x﹣1)=0地根是()A.0 B.1 C.0或1 D.无解【解答】解:∵x(x﹣1)=0∴x=0或x﹣1=0∴x1=0,x2=1.故选C.3.(3分)抛物线y=﹣(x+2)2﹣1顶点坐标是()A.(2,﹣1)B.(2,1) C.(﹣2,﹣1)D.(﹣2,1)【解答】解:∵抛物线地解析式为y=﹣(x+2)2﹣1,∴抛物线地顶点为(﹣2,﹣1).故选C.4.(3分)有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面地数字为偶数地概率是()A.B.C.D.【解答】解:根据概率公式:P(出现向上一面地数字为偶数)=.故选C.5.(3分)某果园第1年水果产量为100吨,第3年水果产量为144吨,求该果园水果产量地年平均增长率.设该果园水果产量地年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【解答】解:第2年地产量为100(1+x),第3年地产量为100(1+x)(1+x)=100(1+x)2,即所列地方程为100(1+x)2=144,故选:D.6.(3分)已知二次函数y=ax2+bx+c(a≠0)地图象如图所示,则下列结论:①ac<0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1地实数根.其中正确地是()A.①②③B.①③④C.②③④D.①②④【解答】解:∵图象开口向下,∴a<0,∵图象与y轴交于正半轴,则c>0,∴ac<0,故选项①正确;∵当x=﹣1时,对应y值小于0,即a﹣b+c<0,故选项②正确;③当x<0时,y<c,故选项③错误;④利用图象与x轴交点都大于﹣1,故方程ax2+bx+c=0(a≠0)有两个大于﹣1地实数根,故选项④正确;故选;D.7.(3分)已知如图,一次函数y=ax+b和反比例函数y=地图象相交于A、B两点,使不等式ax+b>成立地自变量x地取值范围是()A.x<﹣1或x>4 B.﹣1<x<4 C.x<﹣1或0<x<4 D.﹣1<x<0或x >4【解答】解:由图象得出,一次函数y=ax+b和反比例函数y=地图象地交点A、B两点地横坐标分别为﹣1,4,∵等式ax+b>地解集为一次函数地值>反比例函数地值x地取值范围,∴不等式ax+b>kx地解集为x<﹣1或0<x<4,故选C.8.(3分)如图,△ABC地边AC与⊙O相交于C、D两点,且经过圆心O,边AB 与⊙O相切,切点为B.已知∠A=30°,则∠C地大小是()A.30°B.45°C.60°D.40°【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选:A.9.(3分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B地对应点D恰好落在BC边上.若AC=,∠B=60°,则CD地长为()A.0.5 B.1.5 C.D.1【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转地性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选:D.10.(3分)一个圆锥地侧面展开图是半径为6地半圆,则这个圆锥地底面半径为()A.1.5 B.2 C.2.5 D.3【解答】解:设圆锥地底面半径是r,半径为6地半圆地弧长是6π,则得到2πr=6π,解得:r=3,这个圆锥地底面半径是3.故选:D.二.填空题(本大题共6个小题,每小题4分,共24分)11.(4分)已知反比例函数y=地图象经过点(2,﹣3),则此函数地关系式是y=﹣.【解答】解:∵反比例函数y=地图象经过点(2,﹣3),∴﹣3=,解得k=﹣6,∴反比例函数解析式为y=﹣.故答案为:y=﹣.12.(4分)把抛物线y=﹣x2先向上平移2个单位,再向左平移3个单位,所得地抛物线是y=﹣(x+3)2+2..【解答】解:把抛物线y=﹣x2先向上平移2个单位,再向左平移3个单位,所得地抛物线解析式为y=﹣(x+3)2+2.故答案为y=﹣(x+3)2+2.13.(4分)一次聚会中每两人都握了一次手,所有人共握手15次,共有6人参加聚会.【解答】解:设有x人参加聚会,根据题意列方程得,x(x﹣1)=15,解得x1=6,x2=﹣5(不合题意,舍去);故答案为:6;14.(4分)在拼图游戏中,从图(1)地四张纸片中,任取两张纸片,能拼成“房子”如图(2)地概率为.【解答】解:画树状图为:共有12种等可能地结果数,其中能拼成“房子”地结果数为8,所以能拼成“房子”地概率==.故答案为.15.(4分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.16.(4分)如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC地内切圆半径r=1.【解答】解:如图,设△ABC地内切圆与各边相切于D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC,设半径为r,CD=r,∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3﹣r,AF=AD=4﹣r,∴4﹣r+3﹣r=5,∴r=1.∴△ABC地内切圆地半径为1.故答案为;1.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.(6分)已知关于x地一元二次方程x2+kx﹣1=0一个根为﹣2,求另一个根和k地值.【解答】解:设方程地另一根为t,根据题意得﹣2+t=﹣k,﹣2t=﹣1,所以t=,k=,即另一个根和k地值分别为,.18.(6分)如图,方格纸中地每个小方格都是边长为1个单位地正方形.Rt△ABC地顶点均在格点上,建立平面直角坐标系后,点A地坐标为(﹣4,1),点B地坐标为(﹣1,1).(1)将Rt△ABC绕点O顺时针旋转90°后得到Rt△A′B′C′,试在图中画出图形Rt △Rt△A′B′C′,并写出C′地坐标;(2)求弧地长.【解答】解:(1)如图所示,C′(3,1).(2)弧地长==π.19.(6分)如图,一座抛物线型拱桥,当水面宽AB为12m时,桥洞顶部离水面4m.若桥洞顶部离水面1m是警戒水位.求警戒水位时地水面宽度.【解答】解:如图,以线段AB所在直线为x轴,AB地中垂线为y轴建立坐标系,抛物线顶点(0,4)且经过(6,0),设y=ax2+4,将点B(6,0)代入,得:36a+4=0,∴,∴当y=3时,,解得:x=±3故警戒水位时地水面宽度3﹣(﹣3)=6m.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.(7分)把大小和形状完全相同地6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出地两张卡片数字之和为奇数地概率;(2)若取出地两张卡片数字之和为奇数,则甲胜;取出地两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.【解答】解:(1)画树状图得:,由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为奇数地结果有4种.∴P=.(2)不公平;理由:由(1)可得出:取出地两张卡片数字之和为偶数地概率为:.∵<,∴这个游戏不公平.21.(7分)如图,AB是⊙O地直径,C是地中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O地半径.【解答】(1)证明:延长CE交⊙O于点P,∵CE⊥AB,∴=,∴∠BCP=∠BDC,∵C是地中点,∴CD=CB,∴∠BDC=∠CBD,∴∠CBD=∠BCP,∴CF=BF;(2)解:∵AB是⊙O地直径,∴∠ACB=90°,∵CD=6,AC=8,∴BC=6,在Rt△ABC中,AB==10,∴⊙O地半径为5.22.(7分)景泰特产专卖店销售杏脯,其进价为每千克40元,按每千克60元销售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天地销售可增加20千克.若该专卖店销售这种杏脯要想平均每天获利2240元,请回答:(1)每千克杏脯应降价多少元?(2)在平均每天获利不变地情况下,为尽可能让利于顾客,赢得市场,该店应按原售价地几折出售?【解答】解:(1)设每千克杏脯应降价x元,则每天销售可增加10x千克,由题意得,(60﹣x﹣40)(100+10x)═2240,解得:x1=4,x2=6.答:每千克杏脯应降价4元或6元;(2)每千克杏脯降价6元,此时每千克54元,54÷60=0.9.答:该店应按原售价地9折出售.三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.(9分)已知反比例函数y=地图象地一支位于第二象限.(1)判断该函数图象地另一支所在地象限,并求m地取值范围;(2)如图,O为坐标原点,点M在该反比例函数位于第二象限地图象上,点N 与点M关于x轴对称,若△OMN地面积为6,求m地值;(3)在(2)地条件下,当2<MN<4时,求线段OA地取值范围(直接写出结果)【解答】解:(1)∵反比例函数地图象地一支位于第二象限,∴该函数图象地另一支位于第四象限.∴m﹣5<0,解得m<5.∴m地取值范围为m<5.(2)设M,∵点N与点M关于x轴对称,∴N.∴MN=﹣(﹣)=,OA=|a|=﹣a,∴×(﹣a)×=6,解得:m=﹣1;(3)当MN=2时,×MN×AO=6,则AO=6,当MN=4时,×MN×AO=6,则AO=3,∴当2<MN<4时,则3<OA<6.24.(9分)如图,点D在⊙O地直径AB地延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O地切线;(2)若⊙O地半径为2,求图中阴影部分地面积.【解答】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,∴CD是⊙O地切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.=.∴S扇形BOC在Rt△OCD中,∵,∴.∴.∴图中阴影部分地面积为:.25.(9分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线地解析式;(2)当点E(x,y)运动时,试求三角形OEB地面积S与x之间地函数关系式,并求出面积S地最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M地坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,则,解得:.故抛物线解析式为y=x2﹣4x+.(2)过点E作EF⊥x轴,垂足为点F,如图1所示.E点坐标为(x,x2﹣4x+),F点地坐标为(x,0),∴EF=0﹣(x2﹣4x+)=﹣x2+4x﹣.∵点E(x,y)是抛物线上一动点,且在x轴下方,∴1≤x≤5.三角形OEB地面积S=OB•EF=×5×(﹣x2+4x﹣)=﹣(x﹣3)2+(1≤x≤5).当x=3时,S有最大值.(3)作点D关于y轴地对称点D′,连接BD′,如图2所示.∵抛物线解析式为y=x2﹣4x+=(x﹣3)2﹣,∴D点地坐标为(3,﹣),∴D′点地坐标为(﹣3,﹣).由对称地特性可知,MD=MD′,∴MB+MD=MB+MD′,当B、M、D′三点共线时,MB+MD′最小.设直线BD′地解析式为y=kx+b,则,解得:,∴直线BD′地解析式为y=x﹣.当x=0时,y=﹣,∴点M地坐标为(0,﹣).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P AB运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
《第24章圆》一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.124.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.56.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°二、填空题(共6小题,每小题3分,共18分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= .12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为cm.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.三、解答题(共8题,共72分)17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O 又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O 的位置关系并说明理由.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.《第24章圆》参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【考点】圆的认识.【分析】根据确定圆的条件对A、B进行判断;根据切线的判定定理对C进行判断;根据三角形内心的性质对D进行判断.【解答】解:A、不共线的三点确定一个圆,所以A选项错误;B、一个三角形只有一个外接圆,所以B选项正确;C、过半径的外端与半径垂直的直线是圆的切线,所以C选项错误;D、三角形的内心到三角形三边的距离相等,所以D选项错误.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了确定圆的条件和切线的判定.2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°【考点】圆的认识;等腰三角形的性质.【专题】计算题.【分析】利用半径相等得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.12【考点】垂径定理;勾股定理.【分析】连接OC,根据题意OE=OC﹣1,CE=3,结合勾股定理,可求出OC的长度,即可求出直径的长度.【解答】解:连接OC,∵弦CD⊥AB于E,CD=6,AE=1,∴OE=OC﹣1,CE=3,∴OC2=(OC﹣1)2+32,∴OC=5,∴AB=10.故选C.【点评】本题主要考查了垂径定理、勾股定理,解题的关键在于连接OC,构建直角三角形,根据勾股定理求半径OC的长度.4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48【考点】垂径定理;勾股定理;梯形中位线定理.【分析】过圆心O作OE⊥CD于点E,则OE平分CD,在直角△ODE中利用勾股定理即可求得OE的长,即梯形DMNC的中位线,根据梯形的面积等于OE•CD即可求得.【解答】解:过圆心O作OE⊥CD于点E,连接OD.则DE=CD=×6=3.在直角△ODE中,OD=AB=×10=5,OE===4.则S四边形DMNC=OE•CD=4×6=24.故选A.【点评】本题考查了梯形的中位线以及垂径定理,正确作出辅助线是关键.5.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5【考点】垂径定理;勾股定理.【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选C.【点评】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.6.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm【考点】垂径定理的应用;勾股定理.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO==3(cm),∴水的最大深度CD为:2cm.故选:C.【点评】本题考查的是垂径定理的应用及勾股定理,根据构造出直角三角形是解答此题的关键.7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定【考点】圆的认识.【专题】应用题.【分析】甲虫走的路线应该是4段半圆的弧长,那么应该是π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.【解答】解:π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.故选C.【点评】本题考查了圆的认识,主要掌握弧长的计算公式.8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【考点】垂径定理的应用;勾股定理.【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.【分析】如图,连接OD、OC.根据圆心角、弧、弦的关系证得△AOD是等边三角形,则⊙O的半径长为BC=4cm;然后由圆的周长公式进行计算.【解答】解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.【点评】本题考查了圆心角、弧、弦的关系,等边三角形的判定.该题利用“有一内角是60度的等腰三角形为等边三角形”证得△AOD是等边三角形.10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°【考点】圆周角定理.【分析】首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.【解答】解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.【点评】本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.二、填空题(共6小题,每小题3分,共18分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= 80°.【考点】圆周角定理;平行线的性质.【分析】根据平行线的性质由AB∥CD得到∠C=∠ABC=40°,然后根据圆周角定理求解.【解答】解:∵AB∥CD,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了平行线的性质.12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5 .【考点】点与圆的位置关系.【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d >r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.【点评】此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是相离.【考点】直线与圆的位置关系.【专题】常规题型.【分析】作MH⊥OA于H,如图,根据含30度的直角三角形三边的关系得到MH=OM=,则MH 大于⊙M的半径,然后根据直线与圆的位置关系的判定方法求解.【解答】解:作MH⊥OA于H,如图,在Rt△OMH中,∵∠HOM=30°,∴MH=OM=,∵⊙M的半径为2,∴MH>2,∴⊙M与直线OA的位置关系是相离.故答案为相离.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l 和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为2.【考点】正多边形和圆.【分析】连接AC、OE、OF,作OM⊥EF于M,先求出圆的半径,在RT△OEM中利用30度角的性质即可解决问题.【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90°,∴AC是直径,AC=4,∴OE=OF=2,∵OM⊥EF,∴EM=MF,∵△EFG是等边三角形,∴∠GEF=60°,在RT△OME中,∵OE=2,∠OEM=∠GEF=30°,∴OM=,EM=OM=,∴EF=2.故答案为2.【点评】本题考查正多边形与圆、等腰直角三角形的性质、等边三角形的性质等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为4πcm.【考点】弧长的计算.【分析】在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=nπR÷180.【解答】解:∵扇形的半径为6cm,圆心角的度数为120°,∴扇形的弧长为:=4πcm;故答案为:4π.【点评】本题考查了弧长的计算.解答该题需熟记弧长的公式l=.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】由CD∥AB可知,点A、O到直线CD的距离相等,结合同底等高的三角形面积相等即可得出S△ACD=S△OCD,进而得出S阴影=S扇形COD,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=•π•=×π×=.故答案为:.【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S阴影=S扇形COD.本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.三、解答题(共8题,共72分)17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.【考点】圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×3,解得x=6.故圆锥的母线长为6m.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.【考点】圆柱的计算.【专题】计算题.【分析】设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据水的体积不变和圆柱的条件公式得到π•()2•x=π•()2•18,解得x=12.5,然后把12.5与10进行大小比较即可判断能否完全装下.【解答】解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π•()2•x=π•()2•18,解得x=12.5,∵12.5>10,∴不能完全装下.【点评】本题考查了圆柱:圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长;圆柱的侧面积=底面圆的周长×高;圆柱的表面积=上下底面面积+侧面积;圆柱的体积=底面积×高.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.【考点】垂径定理;全等三角形的判定与性质.【专题】证明题.【分析】设圆的半径是r,ON=x,则AB=2x,在直角△CON中利用勾股定理即可求得CN的长,然后根据垂径定理求得CD的长,然后在直角△OAM中,利用勾股定理求得OM的长,即可证得.【解答】证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O 又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.【考点】垂径定理的应用;矩形的性质.【分析】先根据垂径定理求出DF的长,再由勾股定理即可得出结论.【解答】解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.【点评】本题考查的是垂径定理的应用,此类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O 的位置关系并说明理由.【考点】直线与圆的位置关系.【分析】作OF⊥l于F,CE⊥l于E,设AD=a,则AB=2AD=2a,只要证明OF是梯形ADEC的中位线即可解决问题.【解答】解:图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵l⊥BD,∴∠BDE=90°,∵OF⊥l,CE⊥l,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA=2a,∴直线l是⊙O切线.【点评】本题考查直线与圆的位置关系、图形中位线的性质等知识,解题的关键是添加辅助线,要证明切线的方法有两种,一是连半径,证垂直,二是作垂直,正半径,此题则是运用第二种方法.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.【考点】直线与圆的位置关系;坐标与图形性质.【分析】(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;(2)求出过点A、B的一次函数关系式是y=x+6,设M(a,﹣a),把x=a,y=﹣a代入y=x+6得出关于a的方程,求出即可.【解答】解:(1)直线OB与⊙M相切,理由:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,所以MD∥AO,MD=4.∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连接ME,MF,如图2,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a+6,得a=﹣,∴点M的坐标为(﹣,).【点评】本题考查了直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O到直线l的距离是,当d=r时,直线l和⊙O相切.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.【考点】直线与圆的位置关系;等边三角形的性质;勾股定理;垂径定理.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=A Fsin60°=.【点评】本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.【考点】点与圆的位置关系;等边三角形的性质;平行四边形的判定;菱形的判定.【专题】探究型.【分析】(1)由平行易得△BFE是等边三角形,那么各边是相等的;(2)当点E是BC的中点时,△PEC为等边三角形,可得到PC=EC=BE=EF,也就得到了四边形EFPC 是平行四边形,再有EF=EC可证为菱形;(3)根据各点到圆心的距离作答即可.【解答】解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.【点评】本题综合考查了等边三角形的性质和判定,菱形的判定及点和圆的位置关系等知识点.注意圆和线段有交点,应根据半径作答.实际问题与反比例函数一、填空题 1.已知函数y=(k+1)x12-+k k (k 为整数),当k 为_________时,y 是x 的反比例函数.2.函数y=-x 65的图象位于_________象限,且在每个象限内y 随x 的增大而_________.3.已知y 与 2x 成反比例,且当x=3时,y=61,那么当x=2时,y=_________,当y=2时,x=_________.4.如果函数y=(m+1)x 32-+m m 表示反比例函数,且这个函数的图象与直线y=-x 有两个交点,则m 的值为_________.5.如图1为反比例函数的图象,则它的解析式为_________.图16.已知双曲线经过直线y=3x -2与y=23x+1的交点,则它的解析式为_________.7.下列函数中_________是反比例函数.①y=x+x 1 ②y=x x 132+ ③y=21x - ④y=x 238.对于函数y=x 2,当x >0时,y_________0,这部分图象在第_________象限. 对于函数y=-x 2,当x <0时,y_________0,这部分图象在第_________象限. 9.当m_________时,函数y=x m 1-的图象所在的象限内,y 随x 的增大而增大.10.如图2,反比例函数图象上一点A ,过A 作AB ⊥x 轴于B ,若S △AOB=3,则反比例函数解析式为_________.图2 二、选择题11.对于反比例函数y=x 5,下列结论中正确的是( )A.y 取正值B.y 随x 的增大而增大C.y 随x 的增大而减小D.y 取负值12.若点(1,2)同时在函数y=ax+b 和y=a bx -的图象上,则点(a ,b)为( )A.(-3,-1)B.(-3,1)C.(1,3)D.(-1,3)13.已知y 与x 成正比例,z 与y 成反比例,则z 与x 之间的关系为( ) A.成正比例B.成反比例C.既成正比例又成反比例D.既不成正比例也不成反比例14.矩形面积为3 cm2,则它的宽y(cm)与x(cm)长之间的函数图象位于( ) A.第一、三象限 B.第二象限 C.第三象限D.第一象限15.已知函数y=k(x+1)和y=x k,那么它们在同一坐标系中的图象大致位置是( )16.函数y=mx 922--m m 的图象是双曲线,且在每个象限内函数值y 随x 的增大而减小,则m 的值是( ) A.-2B.4C.4或-2D.-117.如图3,过反比例函数y=x 2(x >0)图象上任意两点A.B 分别作x 轴的垂线,垂足分别为C.D ,连结OA.OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S1、S2,比较它们的大小,可得( )图3 A.S1>S2 B.S1<S2C.S1=S2D.S1、S2的大小关系不能确定18.已知一次函数y=kx+b 的图象经过第一、二、四象限,则函数y=x kb的图象在( )A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限19.函数y=kx -k ,与函数y=x k在同一坐标系中的图象大致如图4,则有( )图4 A.k <0B.k >0C.-1<k <0D.k <-120.若在同一坐标系中,直线y=k1x 与双曲线y=x k 2无交点,则有( )A.k1+k2>0B.k1+k2<0C.k1k2>0D.k1k2<0三、解答题21.已知函数y=-4x2-2mx+m2与反比例函数y=x m 42 的图象在第二象限内的一个交点的横坐标是-2,求此两个函数的解析式.22.如图5,Rt △AOB 的顶点A 是一次函数y=-x+m+3的图象与反比例函数y=x m的图象在第二象限的交点,且S △AOB=1,求点A 的坐标.图523.若反比例函数y=x m与一次函数y=kx+b 的图象都经过点(-2,-1),且当x=3时,这两个函数值相等,求反比例函数解析式.24.已知一个三角形的面积是12 cm2,(1)写出一边y(cm)与该边上的高x(cm)间的函数关系式;(2)画出函数图象.25.某厂要制造能装250mL(1mL=1 cm3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02 cm ,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y 与x 间的函数关系式.*26.已知直线y=-x+6和反比例函数y=x k(k ≠0)(1)k 满足什么条件时,这两个函数在同一坐标系xOy 中的图象有两个公共点?(2)设(1)的两个公共点分别为A.B ,∠AOB 是锐角还是钝角?答案一、1.0 2.二、四 增大 3.41 41 4.-2 5.y=-x 32 6.y=x 87.④ 8.>一 > 二 9.<1 10.y=x 6二、11.C 12.D 13.B 14.D 15.B 16.B 17.C 18.C 19.A 20.D三、21.y=-4x2+14x+49 y=x 10- 22.(-1,2) 23.y=x 224.(1)y=x 24(2)略 25.y=252πx2+02.010-x26.(1)0<k <9或k <0 (2)k <0时,∠AOB 为钝角 0<k <9时,∠AOB 为锐角6.2.2反比例函数的图像和性质(2)【教学目标】知识与技能进一步理解和掌握反比例函数及其图象与性质,能灵活运用函数图象和性质解决一些较综合的问题过程与方法深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法,经历观察、分析,交流的过程,逐步提高从函数图象中感受其规律的能力。
一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135°2.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 3.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A .4337B .327C .2337D .1674.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .3B 3C .2D .225.如图,ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC 绕点B 顺时针旋转到A B C '''的位置,且点A '、C '仍落在格点上,则线段AB 扫过的图形的面积是( )平方单位(结果保留)A .254πB .134πC .132πD .136π 6.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π 7.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .5B .15C .16D .88.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .439.如图,半径为1cm 的P 在边长为9πcm ,12πcm ,15πcm 的三角形外沿三遍滚动(没有滑动)一周,则圆P 所扫过的面积为( )cm 2A .73πB .75πC .76πD .77π10.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60° 11.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( ) A .18cm 2 B .218cm π C .27cm 2 D .227cm π 12.如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B 5C .2.5D .23二、填空题13.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.14.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)15.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .16.如图,已知AB 是O 的直径,点C ,D 在O 上,2BC =,30CDB ∠=︒,则O 的半径为_____.17.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.18.如图,O 是正方形ABCD 的外接圆,2,AB =点E 是劣弧AD 上的任意一点,连接BE ,作CF BE ⊥于点F ,连接,AF 则当点E 从点A 出发按顺时针方向运动到点D 时,AF 长的取值范围为________________.19.如图,把边长为12的正三角形ABC纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK,则剪去的小正三角形的边长为__________________.20.在△ABC中,已知∠ACB=90°,BC=3,AC=4,以点C为圆心,2.5为半径作圆,那么直线AB与这个圆的位置关系分别是_________.三、解答题21.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,OD交⊙O于点D,点E在⊙O上,若∠AOD=50°.(1)求∠DEB的度数;(2)若OC=3,OA=5,①求弦AB的长;②求劣弧AB的长.22.如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.(1)求量角器在点G处的读数α(0°<α<90°);(2)若AB=12cm,求阴影部分面积.23.如图,已知直线l 与⊙O 相离,过圆心O 画OA ⊥l 于点A ,交⊙O 于点P 且OA =5,点B 为⊙O 上一点BP 的延长线交直线l 于点C 且AB=AC .(1)判断AB 与⊙O 有怎样的位置关系,并说明理由;(2)若25PC =,求⊙O 的半径.24.如图,四边形ABCD 为菱形,且120BAD ∠=,以AD 为直径作O ,与CD 交于点P .请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点O 作AB 边的平行线OE ;(2)在图2中,过点C 作AB 边上的高CF .25.如图,O 中,AB CD =,A C ∠=∠,AB 与CD 交于点P .求证=DP BP .26.如图,已知,MON ∠点A 在射线OM 上.根据下列方法画图(用尺规作图). ①以O 为圆心,OA 长为半径画圆,交ON 于点B ,交射线OM 的反向延长线于点C ,连接BC ;②以OA 为边,在MON ∠的内部,画AOP OCB ∠=∠;③连接AB ,交OP 于点E ;④过点A 作O 的切线,交OP 于点F .()1依题意补全图形;()2求证MOP PON∠=∠;()3若60,10MON OF∠=︒=,求AE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接OB,根据平行四边形的性质可得∠OAB=∠C=45°,再根据等腰三角形的等边对等角得∠OBA=∠OAB=45°,则∠AOB=90°,由DA=DB得∠AOD=∠BOD,进而可求得∠AOD的度数.【详解】解:连接OB,∵四边形ABCO是平行四边形,∴∠OAB=∠C=45°,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠AOB=90°,∵DA=DA,∴∠AOD=∠BOD=1(360°﹣90°)=135°,2故选:D.【点睛】本题考查平行四边形的性质,等腰三角形的性质,圆心角、弧、弦的关系等知识,熟练掌握平行四边形的性质和等腰三角形的性质,熟知等弦所对的圆心角相等是解答的关键.2.C解析:C【分析】根据切线的性质得到OB⊥AB,OC⊥AC,求出∠BOC,分点P在优弧BC上、点P在劣弧BC上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB、AC是⊙O的切线,∴OB⊥AB,OC⊥AC,∴∠OBA=90°,∠OCA=90°∵∠A=50°,∴∠BOC=360°﹣90°﹣90°﹣50°=130°,如图,当点P在优弧BPC上时,∠BPC=12∠BOC=65°,当点P′在劣弧BC上时,∠BP′C=180°﹣65°=115°,故选:C.【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.3.B解析:B【分析】过C作CF⊥AB于F,根据垂径定理得出AD=2AF,根据勾股定理求BC,根据三角形面积公式求出CF,根据勾股定理求出AF即可.【详解】过C作CF⊥AB于F,∵CF⊥AB,CF过圆心C,∴AD=2AF.∵△ABC中,∠ACB是直角,AC=4,AB=7,∴由勾股定理得:BC=22227433AB AC-=-=,由三角形的面积公式得:AC×BC=AB×CF,即4×33=7CF,∴CF=4337,在△AFC中,由勾股定理得:AF=222243316477 AC CF⎛⎫-=-=⎪⎪⎝⎭,∴AD=2AF=327.故选:B.【点睛】本题考查了勾股定理,垂径定理,三角形的面积等知识点的应用,关键是求出AF的长.4.A解析:A【分析】如图,连接OB、OC.首先证明△OBC是等边三角形,求出BC、BM,根据勾股定理即可求出OM.【详解】解:如图,连接OB、OC.∵ABCDEF是正六边形,∴∠BOC=60°,OB=OC=4,∴△OBC是等边三角形,∴BC=OB=OC=4,∵OM⊥BC,∴BM=CM=2,在Rt△OBM中,22224223OM OB BM-=-=,故选:A.【点睛】本题考查正多边形与圆、等边三角形的性质、勾股定理、弧长公式等知识,解题的关键是记住等边三角形的性质,弧长公式,属于基础题,中考常考题型.5.B解析:B【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得AB=22223213AC BC+=+=,由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=()229013n13= 3603604AB⨯=πππ.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.6.C解析:C【分析】首先证明△OCD是等边三角形,求出OC=OD=CO=3cm,再根据S阴影=S扇形OAB-S扇形OCD,求解即可.【详解】解:如图,连结CD.∵OC=OD,∠O=60°,∴△OCD是等边三角形,∴OC=OD=CO=3cm,∴OA=OC+AC=15cm,∴OB=OA=15cm,∴S阴影=S扇形OAB-S扇形OCD=226015603360360ππ⋅⋅⋅⋅-=236cmπ.故选C.【点睛】本题考查了扇形的面积,等边三角形的性质与判定等知识.扇形的面积=2 360n rπ︒.7.A解析:A【分析】连接OA,先根据⊙O的直径CD=12,CP:PO=1:2求出CO及OP的长,再根据勾股定理可求出AP的长,进而得出结论.【详解】连接OA,∵⊙O的直径CD=12,CP:PO=1:2,∴CO=6,PO=4,∵AB⊥CD,∴22OA OP-2264-5,∴AB=2AP=22545⨯=故选:A.【点睛】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式2222ar d⎛⎫=+⎪⎝⎭成立,知道这三个量中的任意两个,就可以求出另外一个.8.C解析:C【分析】连接PC,PA,过点P作PD⊥AB于点D,根据切线的性质可知PC⊥y轴,故可得出四边形PDOC是矩形,所以PD=OC=3,再求出AB的长,由垂径定理可得出AD的长,故可得出OD 的长,进而得出P点坐标,再把P点坐标代入直线y=kx-1即可得出结论.【详解】解:连接PC,PA,过点P作PD⊥AB于点D,∵⊙P与y轴相切于点C(0,3),∴PC⊥y轴,∴四边形PDOC是矩形,∴PD=OC=3,∵A(1,0),B(7,0),∴AB=7-1=6,∴AD=12AB=12×6=3,∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx-1恰好平分⊙P的面积,∴3=4k-1,解得k=1.故选:C.【点睛】本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.9.A解析:A【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形∴圆P所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.10.B解析:B【分析】由线段AB 是⊙O 的直径,弦CD 丄AB ,根据垂径定理的即可求得=BC BD ,然后由圆周角定理,即可求得答案.【详解】解:∵线段AB 是⊙O 的直径,弦CD 丄AB ,∴=BC BD ,∵∠CAB =20°,∴∠BOD=2∠CAB=2×20°=40°.故选:B .【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用. 11.B解析:B【分析】已知底面半径即可求得底面周长,即展开图中,扇形的弧长,然后根据扇形的面积公式即可求解.【详解】解:底面周长是2×3π=6π, 则圆锥的侧面积是:12×6π×6=18π(cm 2). 故选:B .【点睛】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解. 12.C解析:C【分析】如图:延长CP 交O 于N ,连接DN ,易证12PM DN =,所以当DN 为直径时,PM 的值最大.【详解】解:如图:延长CP 交O 于N ,连接DN .AB CN ⊥,CP PN ∴=,CM DM =,12PM DN ∴=, ∴当DN 为直径时,PM 的值最大,最大值为52. 故选:C .【点睛】本题考查是圆的综合题,垂径定理,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.二、填空题13.120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.14.【分析】连接OAODOM 则OA=OD=OM 由矩形的性质得出OA=BC=aOD=EF=bOM=NH=c 即可得出a=b=c 【详解】解:连接OMODOA 根据矩形的对角线相等得BC=OAEF=ODNH=OM解析:a b c ==【分析】连接OA 、OD 、OM ,则OA=OD=OM ,由矩形的性质得出OA=BC=a ,OD=EF=b ,OM=NH=c ,即可得出a=b=c .【详解】解:连接OM 、OD 、OA 、根据矩形的对角线相等,得BC=OA ,EF=OD ,NH=OM .再根据同圆的半径相等,得a=b=c .故答案是:a=b=c .【点睛】此题主要能够根据矩形的对角线相等把线段进行转换,根据同圆的半径相等即本题考查了矩形的性质、同圆的半径相等的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.15.1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm 底面圆的半径为rcm ∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案.【详解】解:设圆锥的母线长为Rcm ,底面圆的半径为rcm ,∵面积为3πcm 2的扇形围成一个圆锥的侧面,扇形的圆心角是120°, ∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1.【点睛】此题主要考查了圆锥的计算,正确得出母线长是解题关键.16.2【分析】根据圆周角定理得出∠A=∠CDB∠ACB=90°根据含30°角的直角三角形的性质得出AB=2BC求出AB再求出半径即可【详解】解:∵∴∠A=∠CDB∵∠CDB=30°∴∠A=30°∵AB为解析:2【分析】根据圆周角定理得出∠A=∠CDB,∠ACB=90°,根据含30°角的直角三角形的性质得出AB=2BC,求出AB,再求出半径即可.【详解】解:∵=BC BC∴∠A=∠CDB,∵∠CDB=30°,∴∠A=30°,∵AB为⊙O的直径,∴∠ACB=90°,∵BC=2,∴AB=2BC=4,∴⊙O的半径是1422⨯=,故答案为:2.【点睛】本题考查了圆周角定理,含30°角的直角三角形的性质等知识点,能根据圆周角定理得出∠A=∠CDB和∠ACB=90°是解此题的关键.17.【分析】连接OC由点CD是半圆O的三等分点得到根据垂径定理得到OD⊥AC∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC∵点CD是半圆O的三等分点∴∴OD解析:33 22π-【分析】连接OC,由点C,D是半圆O的三等分点,得到AD CD CB==,根据垂径定理得到OD⊥AC,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC,∵点C ,D 是半圆O 的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°, ∵AB =∴∴CE=3,∴S阴影=S 扇形COD -S △OCE 122π-⨯=-.故答案为:2π-【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 18.【分析】首先根据题意可知当点与点重合时最长的最大值为;再证明点的运动轨迹为以为直径的通过添加辅助线连接交于点连接由线段公理可知当点与点重合时最短的最小值为即可得解【详解】解:∵由题意可知当点与点重合12AF ≤≤【分析】首先根据题意可知,当点F 与点B 重合时AF 最长,AF 的最大值为2;再证明点F 的运动轨迹为以BC 为直径的'O ,通过添加辅助线连接'AO 交'O 于点M ,连接'O F ,由线段公理可知,当点F 与点M 重合时AF 最短,AF 1.即可得解.【详解】解:∵由题意可知,当点F 与点B 重合时AF 最长∴此时2AF AB ==,即AF 的最大值为2∵CF BE ⊥∴90CFB ∠=︒∴点F 的运动轨迹为以BC 为直径的'O ,连接'AO 交'O 于点M ,连接'O F ,如图:∵2AB = ∴11'122BO BC AB === ∴在'Rt ABO 中,22''5AO AB BO =+=∴''51AM AO O M =-=∴由两点之间,线段最短可知,当点F 与点M 重合时AF 最短∴AF 51 ∴512AF ≤≤.【点睛】本题考查了正多边形和圆的动点问题、90︒的圆周角所对的弦为直径、勾股定理、线段公理等知识点,解题的关键是确定AF 取最大值和最小值时点F 的位置,属于中考常考题型,难度中等.19.4【分析】由题意可知剪去的三个三角形是全等的等边三角形可知得到剪去的小正三角的边长为4【详解】解:∵剪去三个三角形∴AD=AE=DEBK=BH=HKCG=CF=GF ∵六边形DEFGHK 是正六边形∴D解析:4【分析】由题意可知剪去的三个三角形是全等的等边三角形,可知得到剪去的小正三角的边长为4.【详解】解:∵剪去三个三角形∴AD=AE=DE ,BK=BH=HK ,CG=CF=GF ,∵六边形DEFGHK 是正六边形,∴DE=DK=HK=GH=GF=EF ,∴剪去的三个三角形是全等的等边三角形;∴AD=DK=BK=123=4, ∴剪去的小正三角形的边长4.故答案为:4.【点睛】本题考查了等边三角形以及正六边形的定义,熟练掌握定义是解题的关键.20.相交【分析】根据勾股定理作于点则的长即为圆心到的距离利用等积法求出的长与半径比较大小再作判断【详解】解:如图作于点∵的两条直角边斜边即半径是直线与圆相交【点睛】此题考查的是勾股定理直线与圆的位置关系 解析:相交【分析】根据勾股定理,5AB =.作CD AB ⊥于点D ,则CD 的长即为圆心C 到AB 的距离.利用等积法求出CD 的长,与半径比较大小,再作判断.【详解】解: 如图, 作CD AB ⊥于点D .∵Rt ABC 的两条直角边3BC =,4AC =,∴斜边5AB =. 1122ABC S AC BC AB CD ∆==,即 512CD , 2.4CD .半径是2.5 2.4>,∴直线与圆C 相交 .【点睛】此题考查的是勾股定理,直线与圆的位置关系,熟悉相关性质是解题的关键.三、解答题21.(1)25°;(2)①8;②259π 【分析】(1)由垂径定理,可知AD BD =,再由圆周角定理求得∠DEB 的度数.(2)①由勾股定理可得AC=4,由垂径定理可知,AC =BC =12AB =4,即可求解; ②根据弧长公式即可求得答案.【详解】解:(1)∵OD ⊥AB ,∴AD BD =,∴∠AOD =∠BOD∴∠DEB =12∠AOD =12×50°=25°. (2)①∵OC =3,OA =5,∴AC =4,∵OD ⊥AB ,∴12AD BD AB ==, ∴AC =BC =12AB =4, ∴AB =8;②∵∠AOD =50°,AD BD =,∴∠AOB =100°,∵OA =5,∴AB 的长=1005251801809n r πππ⨯==. 【点睛】本题考查了圆周角定理、垂径定理,勾股定理及弧长公式.解答关键是应用垂径定理求得AC =BC =12AB =4. 22.(1)30°;(2)6π﹣93【分析】(1)如图,连接OE ,OF ,利用切线的性质、等腰直角三角形的性质以及平行线的判定证得OE ∥BC ,则同位角∠ABC=∠AOE=60°,所以由图形中相关角与角间的和差关系即可得到∠ABG=15°;然后由圆周角定理可以求得量角器在点G 处的读数α(0°<α<90°); (2)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)如图,连接OE ,OF .∵CD 切半圆O 于点E ,∴OE ⊥CD ,∵BD 为等腰直角△BCD 的斜边,∴BC ⊥CD ,∠D =∠CBD =45°,∴OE ∥BC ,∴∠ABC =∠AOE =60°,∴∠ABG =∠ABC ﹣∠CBD =60°﹣45°=15°∴弧AG 的度数=2∠ABG =30°,∴量角器在点G 处的读数α=弧AG 的度数=30°;(2)∵AB =12cm ,∴OF =OB =6cm ,∠ABC =60°,∴△OBF 为正三角形,∠BOF =60°,∴S 扇形=2606360π⋅⨯=6π(cm 2),S △OBF =93, ∴S 阴影=S 扇形﹣S △OBF =6π﹣93.【点睛】本题考查了切线的性质,扇形面积的计算,圆周角定理.求(2)题时,利用了“分割法”求得图中阴影部分的面积.23.(1)AB 与⊙O 相切,理由见解析;(2)3【分析】(1)连接OB ,由题意易得∠ACB =∠ABC ,∠OAC =90°,则有∠APC =∠OBP ,进而可证OB ⊥AB ,则问题可证;(2)设⊙O 的半径为x ,由(1)得OP = OB = x ,则有PA = 5-x ,然后根据勾股定理可进行求解.【详解】解:(1)AB 与⊙O 相切,理由:连接OB ,如图所示:∵AB=AC ,∴∠ACB =∠ABC ,又∵OA ⊥l ,∴∠OAC =90°,∴∠ACB +∠APC = 90°,又∵OP=OB ,∴∠O PB =∠OBP ,∵∠OPB =∠APC ,∴∠APC =∠OBP ,∴∠OBP +∠ABC = 90°,即OB ⊥AB ,∵点B 是半径OB 的外端点,∴AB 是⊙O 的切线;(2)设⊙O 的半径为x ,∴OP = OB = x又∵OA = 5,25PC =∴ PA = 5-x在Rt △ACP 中∴ AC 2 =PC 2 -PA 2 =()()222255105x x x --=-+-, 在Rt △OAB 中∴ AB 2 =OA 2 -OB 2 =222525x x -=-又∵AB = AC∴2225105x x x -=-+-,解得:x =3∴⊙O 的半径为3.【点睛】本题主要考查切线的判定定理,熟练掌握切线的判定定理是解题的关键.24.(1)见解析;(2)见解析【分析】(1)连接BD 、AC 交于点E ,连接OE ;(2)连接BD ,则点P 和BD 与O 的交点的延长线与AB 的交点即为F 点.【详解】(1)如图所示,∵四边形ABCD 是菱形,∴E 是BD 中点,∵O 是DA 中点,∴//OE AB ;(2)如图所示,∵120BAD ∠=,∴60ADC ∠=︒,∵AD CD =,∴ACD △是等边三角形,∵AD 是直径,∴90APD ∠=︒,即AP DC ⊥,∴P 是CD 中点,通过如图所示找到的点F是AB的中点,∵ABC也是等边三角形,∴CF AB⊥.【点睛】本题考查作图,解题的关键是要熟悉各种几何的性质,比如:等边三角形的性质,中位线的性质,菱形的性质,圆的性质.25.见解析.【分析】根据已知条件和圆周角定理证明△APD≌△CPB即可得到DP=BP.【详解】证明:∵AB CD=,∴CD = AB,∴ CD- CA= AB - AC,∴ AD = BC.又∵∠A=∠C,∠APD=∠CPB,∴△APD≌△CPB.∴DP=BP.【点睛】本题考查了全等三角形的判定以及圆心角定理:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立.26.(1)见解析;(2)见解析;(3)532 AE=【分析】(1)根据题意画出图形即可;(2)根据圆周角定理解答即可;(3)根据切线的性质和含30°的直角三角形的性质解答.【详解】解:(1)如图所示:(2)2,MON OCB ∠=∠,AOP OCB ∠=∠,BOP OCB AOP ∴∠=∠=∠即MOP PON ∠=∠;(3)60MON ∠=︒,30,AOP ∴∠=︒ FA 是O 的切线,,FA OA ∴⊥10,OF =53OA ∴=,,OA OB =OAB ∴∆是等边三角形,,MOP PON ∠=∠,OE AB ∴⊥53∴=AE . 【点睛】本题主要考查了作图−复杂作图,关键是根据切线的性质,圆周角定理,等腰三角形、等边三角形的性质等知识解答.。
初三圆单元测试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()。
A. 圆的直径是半径的2倍B. 圆的周长与直径的比值是一个常数πC. 圆心到圆上任意一点的距离都相等D. 圆的面积与半径的平方成正比2. 圆的面积公式是()。
A. S = πrB. S = πr²C. S = 2πrD. S = πr/23. 圆的周长公式是()。
A. C = 2πrB. C = πdC. C = 2πRD. C = πr + d4. 如果一个圆的半径是5cm,那么它的直径是()。
A. 10cmB. 5cmC. 2.5cmD. 15cm5. 一个圆的半径增加一倍,它的面积增加()。
A. 2倍B. 4倍C. 8倍D. 16倍6. 圆周率π的近似值是()。
A. 2.14B. 3.14C. 3.14159D. 3.141592657. 圆的内接四边形的对角线()。
A. 相等B. 垂直C. 互相平分D. 互相垂直8. 一个圆的周长是62.8cm,那么它的半径是()。
A. 10cmB. 5cmC. 20cmD. 15cm9. 圆的内接三角形的特点是()。
A. 至少有一个角是直角B. 至少有一个角是钝角C. 至少有一个角是锐角D. 所有角都是直角10. 圆的外切三角形的特点是()。
A. 至少有一个角是直角B. 至少有一个角是钝角C. 至少有一个角是锐角D. 所有角都是直角二、填空题(每题3分,共30分)1. 圆的直径是半径的________倍。
2. 圆的周长公式为C = _________。
3. 圆的面积公式为S = _________。
4. 如果圆的半径是3cm,那么它的周长是_________cm。
5. 圆的周长与直径的比值是圆周率,用符号________表示。
6. 圆的内接三角形的对边是圆的________。
7. 圆的外切三角形的对边是圆的________。
8. 圆的内接四边形的对角线互相________。
2015—2016学年度(上)九年级数学第二十四章圆测试题(中考版A)一、选择题1.在△ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,以2.5cm为半径作圆,则点C和⊙A的位置关系是()。
A.C在⊙A 上B.C在⊙A 外C.C在⊙A 内D.C在⊙A 位置不能确定。
2.AB是⊙O的弦,∠AOB=80°则弦AB所对的圆周角是()。
A.40°B.140°或40° C.20°D.20°或160°3.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是( )A.外离B.相切C.相交D.内含4.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140°7.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<55.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )A.42 °B.28°C.21°D.20°6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )A.2cmB.4cmC.6cmD.8cm7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( )A. B. C. D.8.如图4,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB于E ,交 AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )。
初三上圆的测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为5,那么它的直径是()A. 10B. 15C. 20D. 252. 圆的周长公式为()A. C = πdB. C = 2πrC. C = πrD. C = 2πd3. 圆的面积公式为()A. S = πr^2B. S = πd^2C. S = 2πrD. S = πd4. 圆的直径是半径的()A. 1倍B. 2倍C. 3倍D. 4倍5. 圆的周长是半径的()A. 2π倍B. π倍C. 2倍D. 4π倍6. 圆的面积是半径的()A. π倍B. πr倍C. πr^2倍D. 2πr^2倍7. 圆的直径是周长的()A. 1/π倍B. 2倍C. 4倍D. 1/2π倍8. 圆的半径增加1倍,面积增加()A. 1倍B. 2倍C. 4倍D. 8倍9. 圆的半径增加1倍,周长增加()A. 1倍B. 2倍C. 4倍D. 8倍10. 圆的半径增加1倍,直径增加()A. 1倍B. 2倍C. 4倍D. 8倍二、填空题(每题3分,共30分)1. 圆的半径为3cm,它的直径是_______cm。
2. 圆的周长是18.84cm,它的半径是_______cm。
3. 圆的面积是28.26cm²,它的半径是_______cm。
4. 圆的直径是6cm,它的周长是_______cm。
5. 圆的周长是31.4cm,它的面积是_______cm²。
6. 圆的半径是4cm,它的直径是_______cm。
7. 圆的直径是8cm,它的面积是_______cm²。
8. 圆的半径是2cm,它的周长是_______cm。
9. 圆的面积是50.24cm²,它的半径是_______cm。
10. 圆的周长是25.12cm,它的直径是_______cm。
三、解答题(每题10分,共40分)1. 已知一个圆的半径为7cm,求它的周长和面积。
2. 一个圆的周长是50.24cm,求它的直径和面积。
第7题图
惠州市第二中学2015-2016学年九年级(上)《圆》测试题
命题人:黄小迪 审题人:张碰英 满分:120分 时间:100分钟
一、选择题(本大题共10小题,每小题3分,共30分)
1.已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( ) A.一定在⊙O 的内部 B. 一定在⊙O 的外部 C. 一定在⊙O 的上 D. 不能确定
2. 已知⊙O 的直径为12cm ,圆心到直线L 的距离为6cm ,则直线L 与⊙O 的公共点的个数为( ) A .2
B .1
C .0
D .不确定
3.已知在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的距离为3厘米,则⊙O 的半径是( ) A .3厘米 B .4厘米 C .5厘米 D .8厘米
4.如图,在⊙O 中,∠ABC =50°,则∠AOC 等于( ) A .50°
B .80°
C .90°
D .100°
5
.如图,AB 是⊙O 的直径,∠ABC =30°,则∠BAC
=(
) A .90°
B .60°
C .45°
D .30°
6.如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( ).
A .1
B .
34 C .12 D .1
3
7.如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相于点C , 则AB =( )
A .4cm
B .5cm
C .6cm
D .8cm
8.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( )
(A)3≤OM ≤5; (B)4≤OM ≤5; (C)3<OM <5; (D) 4<OM <5
A B O
C
第4题图
第5题图
第6题图
第8题图
第10题图
9.边长为a 的正六边形的面积等于( ) A .2
43a B .2
a C .2233a
D .2
33a
10.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( ) A
.64π-.1632π-
C.16π-
.16π-
二、填空题(每小题4分,共24分)
11.如图,∠AOB=300
,OM=6,那么以M 为圆心,4为半径的圆与直OA 的位置关系是_________________.
12. 已知扇形的圆心角为1500,弧长为20πcm,则扇形的半径为_______cm,面积_______ cm 2
13. 如图,AC 是⊙O 的直径,∠1=46°,∠2=28°,则∠BCD =______.
14.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且
60=∠AEB ,
则=∠P __ ___度.
15. 如图,AB 、AC 是O ⊙的两条弦,A ∠=30°,过点C 的切线与OB 的延长线交于点D ,则D ∠的度数为 .
16. 已知:如图,⊙O 是,、、于、、的内切圆,分别切F E D AC AB BC ABC ∆ ∆ABC cm BC cm AE 的周长为则2410,,== cm.
三、解答题(共66分)
17.(8分)如图,扇形OAB 的圆心角为120°,半径为6cm. ⑴请用尺规作出扇形的对称轴(不写做法,保留作图痕迹). ⑵若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的底面半径.
B
C
A
第15题图
第11题图
第13题图
第17题图
第16题图
第18题图
18.(7分)如图,AB 、AC 为⊙O 的弦,连接CO 、BO 并延长分别交弦AB 、AC 于点E 、F ,∠B =∠C .求证:CE =BF .
19.(7分)如图,⊙O 的直径AB 垂直于弦CD ,垂足P 是OB 的中点,CD =6 cm ,
求直径AB 的长。
20.(8分)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,∠OAB=30°. (1)求∠APB 的度数;
(2)当OA=3时,求AP 的长.
21.(8分)如图,AB 是⊙O 的直径,BC 是弦,∠B=30°, 延长BA 到D ,使 ∠BDC =30°. (1)求证:DC 是⊙O 的切线; (2)若AB =2,求DC 的长.
O B
A
D
C
· P (第19题)
第20题图
第22题图
第23题图
22.(9分) 如图,在△ABC 中,∠C=90°
, AD 是∠BAC OA 为半径的⊙O 经过点D 。
(1)求证: BC 是⊙O 切线; (2)若BD=5, DC=3, 求AC 的长。
23.(9分)如图:已知⊙O 中,AB =AC 是⊙O 的直径,AC ⊥BD 于F , ∠A =30°。
(1)求圆中阴影部分的面积。
(2)若用阴影部分扇形OBD 围成一个圆锥的侧面,请求出这个圆锥的全面积。
解:
24.(10分)以坐标原点为圆心,1为半径的圆分别交x ,y 轴的正半轴于点A ,B .
(1)如图一,动点P 从点A 处出发,沿x 轴向右匀速运动,与此同时,动点Q 从点B 处出发,沿圆周按顺时针方向匀速运动.若点Q 的运动速度比点P 的运动速度慢,经过1秒后点P 运动到点(2,0),此时PQ 恰好是⊙O 的切线,连接OQ . 求QOP 解:
(2)若点Q 按照(1)中的方向和速度继续运动,点P 停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ 被⊙O 截得的弦长. 解:
A
C
图一。