2020高考数学刷题首秧第七章平面解析几何考点测试48椭圆文含解析
- 格式:rtf
- 大小:2.92 MB
- 文档页数:13
考点测试椭圆高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为分或分,中、高等难度考纲研读.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).了解椭圆的简单应用.理解数形结合的思想一、基础小题.已知中心在原点的椭圆的右焦点为(,),离心率等于,则的方程是( ).+=.+=.+=.+=答案解析依题意,所求椭圆的焦点位于轴上,且=,=⇒=,=-=,因此其方程是+=,故选..到点(-,)与点(,)的距离之和为的点的轨迹方程为( ).+=.-=.+=.-=答案解析由椭圆的定义可知该点的轨迹为焦点在轴上的椭圆,而=,=,故=-=.故选..已知△的顶点,在椭圆+=上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则△的周长是( )....答案解析依题意,记椭圆的另一个焦点为,则△的周长等于++=+++=(+)+(+)=,故选..椭圆+=的焦点在轴上,长轴长是短轴长的倍,则等于( )....答案解析由+=及题意知,=××,=,故选..已知动点(,)满足+=,则动点的轨迹是( ).椭圆.直线.圆.线段答案解析设点(-,),(,),由题意知动点满足+==,故动点的轨迹是线段.故选..设,为椭圆+=的两个焦点,点在椭圆上,若线段的中点在轴上,则的值为( ) ....答案解析由题意知=,=.由椭圆定义知+=.在△中,因为的中点在轴上,为的中点,由三角形中位线的性质可推得⊥轴,所以由=时可得==,所以=-=,所以=,故选..已知圆(+)+=的圆心为,设为圆上任一点,且点(,),线段的垂直平分线交于点,则动点的轨迹是( ).圆.椭圆.双曲线.抛物线答案解析点在线段的垂直平分线上,故=,又是圆的半径,所以+=+==>,由椭圆定义知,动点的轨迹是椭圆.故选..若椭圆的方程为+=,且此椭圆的焦距为,则实数=.答案或解析对椭圆的焦点位置进行讨论.由椭圆的焦距为得=,当<<时,椭圆的焦点在轴上,则--(-)=,解得=;当<<时,椭圆的焦点在轴上,则--(-)=,解得=.故=或=.二、高考小题.(·全国卷Ⅰ)已知椭圆:+=的一个焦点为(,),则的离心率为( )....答案解析根据题意,可知=,因为=,所以=+=,即=,所以椭圆的离心率为==.故选..(·全国卷Ⅱ)已知,是椭圆的两个焦点,是上的一点,若⊥,且∠=°,则的离心率为( ).-.-..-答案解析在△中,∠=°,∠=°,设=,则==,=,又由椭圆定义可知=+=(+),则离心率====-.故选..(·全国卷Ⅱ)已知,是椭圆:+=(>>)的左,右焦点,是的左顶点,点在过且斜率为的直线上,△为等腰三角形,∠=°,则的离心率为( )....答案解析依题意易知==,且在第一象限内,由∠=°可得点的坐标为(,).又因为=,即=,所以=,=,故选..(·全国卷Ⅲ)已知椭圆:+=(>>)的左、右顶点分别为,,且以线段为直径的圆与直线-+=相切,则的离心率为( )....答案解析由题意知以为直径的圆的圆心为(,),半径为.又直线-+=与圆相切,∴圆心到直线的距离==,解得=,∴=,∴=====.故选..(·江苏高考)如图,在平面直角坐标系中,是椭圆+=(>>)的右焦点,直线=与椭圆交于,两点,且∠=°,则该椭圆的离心率是.答案解析由已知条件易得,,(,),∴=+,-,=-,-,由∠=°,可得·=,所以+=,-+=,即-+(-)=,亦即=,所以=,则==.三、模拟小题.(·山东济南一模)已知椭圆:+=(>>),若长轴长为,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( ).+=.+=.+=.+=答案解析椭圆长轴长为,即=,得=,∵两焦点恰好将长轴三等分,∴=·=,得=,因此,=-=-=,∴此椭圆的标准方程为+=.故选..(·河南六市一模)已知点(-,)和(,),动点(,)在直线:=+上移动,椭圆以,为焦点且经过点,则椭圆的离心率的最大值为( )....答案解析(-,)关于直线:=+的对称点为′(-,),连接′交直线于点,则此时椭圆的长轴长最短,为′=,所以椭圆的离心率的最大值为=.故选..(·四川德阳模拟)设为椭圆:+=上一点,,分别是椭圆的左、右焦点,且△的重心为,若∶=∶,那么△的面积为( )....答案解析∵为椭圆:+=上一点,∶=∶,+==,∴=,=,又∵===,∴易知△是直角三角形,△=·=,∵△的重心为点,∴△=△,∴△的面积为,故选..(·安徽宣城二模)已知椭圆+=(>>)的左顶点为,上顶点为,右焦点为,若·=,则椭圆的离心率为( )....答案解析由题意知,(-,),(,),(,),∴=(-,-),=(,-).∵·=,∴-+=,即=.又=-,∴-=.∴+-=,解得=或=(舍去).∴椭圆的离心率为,故选..(·湖南湘东五校联考)已知椭圆+=(>>)的左、右焦点分别为,,是椭圆上一点,△是以为底边的等腰三角形,且°<∠<°,则该椭圆的离心率的取值范围是( ).,.,.,.,答案解析由题意可得,=+-·∠=+-···∠,即=·,所以==+·,又°<∠<°,∴-<∠<,所以<<(+),则<<,即<<.故选.一、高考大题.(·全国卷Ⅲ)已知斜率为的直线与椭圆:+=交于,两点.线段的中点为(,)(>).()证明:<-;()设为的右焦点,为上一点,且++=.证明:,,成等差数列,并求该数列的公差.解()证明:设(,),(,),则+=,+=.两式相减,并由=得+·=.由题设知=,=,于是=-.①由题设得<=,且>,即<<,故<-.()由题意得(,).设(,),则由()及题设得(-,)+(-,)+(-,)=(,),=-(+)=,=-(+)=-<.又点在上,所以=,从而,-,=.于是===-.同理=-.所以+=-(+)=.故=+,即,,成等差数列.设该数列的公差为,则=-=-=.②将=代入①得=-.所以的方程为=-+,代入的方程,并整理得-+=.故+=,=,代入②解得=.所以该数列的公差为或-..(·天津高考)设椭圆+=(>>)的右顶点为,上顶点为.已知椭圆的离心率为,=.()求椭圆的方程;()设直线:=(<)与椭圆交于,两点,与直线交于点,且点,均在第四象限.若△的面积是△面积的倍,求的值.解()设椭圆的焦距为,由已知得=,又由=+,可得=.由==,从而=,=.所以,椭圆的方程为+=.()设点的坐标为(,),点的坐标为(,),由题意,>>,点的坐标为(-,-).由△的面积是△面积的倍,可得=,从而-=[-(-)],即=.易知直线的方程为+=,由方程组消去,可得=.由方程组消去,可得=.由=,可得=(+),两边平方,整理得++=,解得=-,或=-.当=-时,=-<,不符合题意,舍去;当=-时,=,=,符合题意.所以,的值为-..(·北京高考)已知椭圆的两个顶点分别为(-,),(,),焦点在轴上,离心率为.()求椭圆的方程;()点为轴上一点,过作轴的垂线交椭圆于不同的两点,,过作的垂线交于点.求证:△与△的面积之比为∶.解()设椭圆的方程为+=(>>),由题意得解得=,所以=-=,所以椭圆的方程为+=.()证明:设(,),则(,),(,-),由题设知≠±,且≠.直线的斜率=,故直线的斜率=-,所以直线的方程为=-(-),直线的方程为=(-).联立解得点的纵坐标=-.由点在椭圆上,得-=,所以=-.又△=·=·,△=·,所以△与△的面积之比为∶.二、模拟大题.(·湖南衡阳一模)已知椭圆:+=(>>)的左、右焦点分别为,,离心率为,直线=与的两个交点间的距离为.()求椭圆的方程;()分别过,作,满足∥,设,与的上半部分分别交于,两点,求四边形面积的最大值.解()易知椭圆过点,,所以+=,①又=,②=+,③所以由①②③得=,=,所以椭圆的方程为+=.()设直线的方程为=-,它与的另一个交点为.将直线与椭圆的方程联立,消去,得(+)--=,Δ=(+)>.=·,又到的距离=,所以△=.令=,≥,则△=,当=时,△取得最大值,为.又四边形=·(+)·=(+)·==△,所以四边形面积的最大值为..(·河南六市三模)已知椭圆+=(>>)的离心率=,原点到过点(,-)和(,)的直线的距离为.()求椭圆的方程;()设,为椭圆的左、右焦点,过作直线交椭圆于,两点,求△内切圆半径的最大值.解()直线的方程为+=,即--=.原点到直线的距离为=,即+=,①由==,得=,②又=+,③所以联立①②③可得=,=,=.故椭圆的方程为+=.()由()得(-,),(,),设(,),(,).易知直线的斜率不为,故设其方程为=+,联立直线与椭圆的方程得消去得(+)+-=.故④而△=△+△=-=· ,⑤将④代入⑤,得△=· =.又△=(++)·=·=,所以=,故==≤,当且仅当=,即=±时取等号.故△内切圆半径的最大值为..(·山东济宁一模)已知椭圆:+=(>),直线:=+(≠)与椭圆相交于,两点,点为的中点.()若直线与直线(为坐标原点)的斜率之积为-,求椭圆的方程;()在()的条件下,轴上是否存在定点,使得当变化时,总有∠=∠(为坐标原点)?若存在,求出定点的坐标;若不存在,请说明理由.解()由得(+)+-=,显然Δ>,设(,),(,),(,),则+=-,=,∴=-,=-+=,∴·=·-=-,∴=.∴椭圆的方程为+=.()假设存在定点符合题意,且设(,),由∠=∠得+=.∴+=.即+-(+)=,∴++-(+)=.由()知+=-,=,∴--+=,∴=,即=,∵≠,∴-+=,∴=.∴存在定点(,),使得∠=∠.。
(考点测试50抛物线高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分或12分,中、高等难度考纲研读1.掌握抛物线的定义、几何图形、标准方程及简单几何性质范围、对称性、顶点、离心率)2.理解数形结合的思想3.了解抛物线的实际背景及抛物线的简单应用一、基础小题11.抛物线y=x2的准线方程是()4A.y=-1B.y=-2C.x=-1D.x=-2答案A解析依题意,抛物线x2=4y的准线方程是y=-1,故选A.2.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线准线的距离为() A.4B.6C.8D.12答案B解析依题意得,抛物线y2=8x的准线方程是x=-2,因此点P到该抛物线准线的距离为4+2=6,故选B.3.到定点A(2,0)与定直线l:x=-2的距离相等的点的轨迹方程为()A.y2=8x B.y2=-8xC.x2=8y D.x2=-8y答案A解析由抛物线的定义可知该轨迹为抛物线且p=4,焦点在x轴正半轴上,故选A.4.若抛物线y2=2px(p>0)上的点A(x,2)到其焦点的距离是A到y轴距离的3倍,则p等于()170 13A.B.1C.D.222答案Dp p p2解析由题意3x=x+,x=,则=2,∵p>0,∴p=2,故选D.002425.过抛物线y2=4x的焦点作直线交抛物线于A(x,y),B(x,y)两点,若x+x=6,112212则|AB|等于()A.4B.6C.8D.10答案C解析由抛物线y2=4x得p=2,由抛物线定义可得|AB|=x+1+x+1=x+x+2,1212又因为x+x=6,所以|AB|=8,故选C.126.若抛物线y=4x2上一点到直线y=4x-5的距离最短,则该点为()1A.(1,2)B.(0,0)C.,1D.(1,4)2答案C解析解法一:根据题意,直线y=4x-5必然与抛物线y=4x2相离,抛物线上到直线1的最短距离的点就是与直线y=4x-5平行的抛物线的切线的切点.由y′=8x=4得x=,21故抛物线的斜率为4的切线的切点坐标是,1,该点到直线y=4x-5的距离最短.故选C.2|4x-y-5||4x-4x2-5|解法二:抛物线上的点(x,y)到直线y=4x-5的距离是d===171714x-2+421,显然当x=时,d取得最小值,此时y=1.故选C.27.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________.答案y2=4x解析设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与其到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x.8.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|=3|MN|,则∠NMF=________.2C 交于 M ,N 两点,则FM ·FN =( )⎧y =2(x +2),以FM =(0,2),FN =(3,4),从而可以求得FM ·FN =0×3+2×4=8,故选 D . 由题意直线 l ,l 的斜率均存在,且不为 0,设 l 的斜率为 k ,则 l 的斜率为- ,故直答案π6解析 过 N 作准线的垂线,垂足是 P ,则有|PN |=|NF |,∴|PN |= 3|MN |,∠NMF2=∠MNP .又 cos ∠MNP = 3 π π,∴∠MNP = ,即∠NMF = .2 6 6二、高考小题29.(2018·全国卷Ⅰ)设抛物线 C :y 2=4x 的焦点为 F ,过点(-2,0)且斜率为 的直线与3→ →A .5B .6C .7D .8答案 D2 2解析 根据题意,过点(-2,0)且斜率为 的直线方程为 y = (x +2),与抛物线方程联立3 3⎨3⎩y 2=4x ,消去 x 并整理,得 y 2-6y +8=0,解得 M (1,2),N (4,4),又 F (1,0),所→ → → →10.(2017·全国卷Ⅰ)已知 F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线l ,l ,直线 l 与 C 交于 A ,B 两点,直线 l 与 C 交于 D ,E 两点,则|AB |+|DE |的最小值1212为()A .16B .14C .12D .10答案 A解析 因为 F 为 y 2=4x 的焦点,所以 F (1,0).11 2 1 2 k线 l ,l 的方程分别为 y =k (x -1),12y =- (x -1).则 x +x == 1+k 2· (x +x )2-4x xk 2 k 2所以|AB |+|DE |= +4(1+k 2)=4+1+1+k 2=8+4k 2+ ≥8+4×2=16, 当且仅当 k 2= ,即 k =±1 时,取得等号.故选 A .⎧y 21=4x 1,⎩y 22=4x 2, 所以 k = 2= .y B B1k⎧y =k (x -1),由⎨⎩ y 2=4x ,得 k 2x 2-(2k 2+4)x +k 2=0.设 A (x ,y ),B (x ,y ),11 2 22k 2+4 12k 2,x x =1,1 2所以|AB |= 1+k 2·|x -x |1 2121 2= 1+k 2·2k 2+44(1+k 2) 2-4= .同理可得|DE |=4(1+k 2).4(1+k 2) 1 1 k 2k 2 k 21 k 211.(2018·全国卷Ⅲ)已知点 M (-1,1)和抛物线 C :y 2=4x ,过 C 的焦点且斜率为 k 的直线与 C 交于 A ,B 两点.若∠AMB =90°,则 k =________.答案 2解析 设 A (x ,y ),B (x ,y ),则⎨ 1122所以 y 2-y 2=4x -4x ,121 2y -y 4 1x -x y +y 1 2 1 2取 AB 的中点 M ′(x , ),分别过点 A , 作准线 x =-1 的垂线,垂足分别为 A ′, ′.1 1 1因为∠AMB =90°,所以|MM ′|= |AB |= (|AF |+|BF |)= (|AA ′|+|BB ′|).2 2 2因为 M ′为 AB 的中点,所以 MM ′平行于 x 轴.因为 M (-1,1),所以 y =1,则 y +y =2,所以 k =2.1 212.(2018·北京高考)已知直线 l 过点(1,0)且垂直于 x 轴.若 l 被抛物线 y 2=4ax 截得的线段长为 4,则抛物线的焦点坐标为________.16a ⎭ 解析 将 y =4ax 2(a ≠0)化为标准方程得 x 2= y (a ≠0),所以焦点坐标为 0, ⎪,故选 C .4a 与抛物线交于 M ,N 两点,若PF =3MF ,则|MN |=()1 ⎫ ⎝0, ⎭ D .⎝ ⎭答案 (1,0)解析 由题意得 a >0,设直线 l 与抛物线的两交点分别为 A ,B ,不妨令 A 在 B 的上方,则 A (1,2 a ),B (1,-2 a ),故|AB |=4 a =4,得 a =1,故抛物线方程为 y 2=4x ,其焦点坐标为(1,0).13.(2017·天津高考)设抛物线 y 2=4x 的焦点为 F ,准线为 l .已知点 C 在 l 上,以 C 为圆 心 的 圆 与 y 轴 的 正 半 轴 相 切 于 点 A . 若 ∠ FAC = 120 ° , 则 圆 的 方 程 为______________________.答案 (x +1)2+(y - 3)2=1解析 由 y 2=4x 可得点 F 的坐标为(1,0),准线 l 的方程为 x =-1.由圆心 C 在 l 上,且圆 C 与 y 轴正半轴相切(如图),可得点 C 的横坐标为-1,圆的半径为 1,∠CAO =90°.又因为∠FAC =120°,所以∠OAF =30°,所以|OA |= 3,所以点 C 的纵坐标为 3.所以圆的方程为(x +1)2+(y - 3)2=1.三、模拟小题14.(2018·沈阳监测)抛物线 y =4ax 2(a ≠0)的焦点坐标是()⎛ ⎛ 1 ⎫A .(0,a )B .(a ,0)C . 16a ⎪ 16a ,0⎪ 答案 C1 ⎛1 ⎫ ⎝15.(2018·太原三模)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,P 是 l 上一点,直线 PF→ →16 8 3A .B .8C .16D .3 3线方程为x=-1,所以得P(-1,-2k).所以PF=(2,2k),MF=(1-x,-y),因为PF=→|△Qp⎧y=kx-p,解法一:设过点A且与抛物线C相切的直线为y=kx-.由⎨⎩x=2py,答案A解析由题意F(1,0),设直线PF的方程为y=k(x-1),M(x,y),N(x,y).因为准1122→→→1113MF,所以2=3(1-x),解得x=.把y=k(x-1)代入y2=4x,得k2x2-(2k2+4)x+k2=0,11316所以x x=1,所以x=3,从而得|MN|=|MF|+|NF|=(x+1)+(x+1)=x+x+2=.故12212123选A.16.(2018·豫南九校联考)已知点P是抛物线x2=4y上的动点,点P在x轴上的射影是点Q,点A的坐标是(8,7),则|PA|+|PQ|的最小值为()A.7B.8C.9D.10答案C解析延长PQ与准线交于M点,抛物线的焦点为F(0,1),准线方程为y=-1,根据抛物线的定义知,PF|=|PM|=|PQ|+1.∴|PA|+|PQ|=|PA|+|PM|-1=|PA|+|PF|-1≥|AF|-1=82+(7-1)2-1=10-1=9.当且仅当A,P,F三点共线时,等号成立,则|PA|+|PQ|的最小值为9.故选C.17.(2018·青岛质检)已知点A是抛物线C:x2=2py(p>0)的对称轴与准线的交点,过点A作抛物线C的两条切线,切点分别为P,,若APQ的面积为4,则实数p的值为()13A.B.1C.D.222答案D解析222得x2-2pkx+p2=0.由pΔ=4p2k2-4p2=0,得k=±1,所以得点P-p,,22 2p p-y = x (x -x ),即 y = x x - x 2,切线 PB 的方程为 y -y = x (x -x ),即 y = x x - x 2,⎧y 12=4x 1,y 2=4x , ⎩ 2x -xk = y 1-y 2=2,从而直线 AB 的方程为 y -1=2(x -1),即 2x -y -1=0.Qp ,△p,所以 APQ 的面积为 S = ×2p ×p =4,解得 p =2.故选 D .12 2解法二:如图,设点 P (x ,y ),11p 1 1 Q (x ,y ).由题意得点 A 0,- .y = x 2,求导得 y ′= x ,所以切线 PA 的方程为 y221 1 1 1 1 1 1 p 1 1 p 1 2p 12 p 2 2 p 2 2p 2p p1代入 A 0,- ,得点 P -p , ,Qp ,△p ,所以 APQ 的面积为 S = ×2p ×p =4,解得 p =2.故2 2 2 2选 D .18.(2018·沈阳质检一)已知抛物线 y 2=4x 的一条弦 AB 恰好以 P (1,1)为中点,则弦AB 所在直线的方程是________.答案 2x -y -1=0解析 设点 A (x ,y ),B (x ,y ),由 A ,B 都在抛物线上,可得⎨11222作差得(y1y -y+y )(y -y )=4(x -x ).因为 AB 中点为 P (1,1),所以 y +y =2,则有 2· 12=4,所以2 1 2 1 2 1 2 12AB x -x12一、高考大题1.(2018·全国卷Ⅰ)设抛物线 C :y 2=2x ,点 A (2,0),B (-2,0),过点 A 的直线 l 与 C交于 M ,N 两点.(1)当 l 与 x 轴垂直时,求直线 BM 的方程;(2)证明:∠ABM =∠ABN .解 (1)当 l 与 x 轴垂直时,l 的方程为 x =2,可得 M 的坐标为(2,2)或(2,-2).7得ky2-2y-4k=0,可知y+y=,y y=-4.+=212.①将x=1+2,x=2+2及y+y,y y的表达式代入①式分子,可得x y+x y+2(y+y)=12==0.所以k+k=0,可知BM,BN的倾斜角互补,所以∠ABM=∠ABN.1111所以直线BM的方程为y=x+1或y=-x-1.22(2)证明:当l与x轴垂直时,AB为线段MN的垂直平分线,所以∠ABM=∠ABN.当直线l与x轴不垂直时,设直线l的方程为y=k(x-2)(k≠0),M(x,y),N(x,y),1122则x>0,x>0.12⎧y=k(x-2),由⎨⎩y2=2x,212k12直线BM,BN的斜率之和为k+k=BM BNy y x y+x y+2(y+y)12121x+2x+2(x+2)(x+2)1212y y1k2k12122y y+4k(y+y)12211212k-8+8k BM BN综上,∠ABM=∠ABN.2.(2018·浙江高考)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;y2(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.411解(1)证明:设P(x,y),A y2,y,B y2,y.004422因为PA,PB的中点在抛物线上,1y2+xy+y40所以y,y为方程02=4·即y2-2y y+8x-y2=0的两个不同的实根.1222000⎧y 1+y 2=2y 0,|y -y |=2 2(y 2-4x ). =3 2(2)设 O 为原点,QM =λQO ,QN =μQO ,求证: + 为定值.→→→→1 2所以 y +y =2y ,12 0因此,PM 垂直于 y 轴.(2)由(1)可知⎨⎩y 1y 2=8x 0-y 20,1 3所以|PM |= (y 2+y 2)-x = y 2-3x ,8 4 0 01 2 0 01因此,△PAB 的面积 = |PM |·|y -y |△SPAB 2123(y 2-4x ) .4 00 2y 2因为 x 2+ 0=1(x <0),0 4所以 y 2-4x =-4x 2-4x +4∈[4,5].因此,△PAB 面积的取值范围是 6 2,15 10.43.(2018·北京高考)已知抛物线 C :y 2=2px 经过点 P (1,2).过点 Q (0,1)的直线 l 与抛物线 C 有两个不同的交点 A ,B ,且直线 PA 交 y 轴于 M ,直线 PB 交 y 轴于 N .(1)求直线 l 的斜率的取值范围;1 1λ μ解 (1)因为抛物线 y 2=2px 过点(1,2),所以 2p =4,即 p =2.故抛物线 C 的方程为 y 2=4x ,由题意知,直线 l 的斜率存在且不为 0.设直线 l 的方程为 y =kx +1(k ≠0).⎧y 2=4x , 由⎨ 得 k 2x 2+(2k -4)x +1=0. ⎩ y =kx +1,依题意Δ=(2k -4)2-4×k 2×1>0,解得 k <0 或 0<k <1.又 PA ,PB 与 y 轴相交,故直线 l 不过点(1,-2).由(1)知 x +x =- ,xx = .直线 PA 的方程为 y -2= y 1-2(x -1).y = +2= +2. 同理得点 N 的纵坐标为 y =-kx 2+1+2.由QM =λQO ,QN =μQO 得λ=1-y ,μ=1-y .k 2 k 2 1 1 1 1 x -1 x -1 1 2x x -(x +x ) 1 所以 + = + = + = · 2= · (k -1)x 1 (k -1)x 2 k -1 x xλ μ从而 k ≠-3.所以直线 l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明:设 A (x ,y ),B (x ,y ),11 2 22k -4 11 2 k 2 1 2 k 2x -11令 x =0,得点 M 的纵坐标为-y +2 -kx +11 1 M x -1 x -111N x -12→ → → →M N2 2k -4+1 2 1 2 1 λ μ 1-y 1-y k -1 1 M N 1 2k 2=2.1 1所以 + 为定值.二、模拟大题4.(2018·湖北八市联考)如图,已知抛物线 x 2=2py (p >0),其焦点到准线的距离为 2,p圆 S :x 2+y 2-py =0,直线 l :y =kx + 与圆和抛物线自左至右顺次交于 A ,B ,C ,D 四点.2(1)若线段 AB ,BC ,CD 的长按此顺序构成一个等差数列,求正数 k 的值;(2)若直线 l 过抛物线焦点且垂直于直线 l ,l 与抛物线交于点 M ,N ,设 MN ,AD 的中11点分别为 P ,Q ,求证:直线 PQ 过定点.⎩ y =kx +1,当 k ≠0 时,用- 替换 k 可得 P - , +1,所以 k = ,所以 PQ 的直线方程为 y -(2k 2+1)= (x -2k ),化简得 y = x +3,过定点(0,3).足OM ⊥ON ?若存在,求出直线的方程;若不存在,请说明理由. (解 (1)由题意可得 p =2,所以抛物线 x 2=4y ,圆 S 的方程可化为 x 2+(y -1)2=1,其圆心 S (0,1),圆的半径为 1,设点 A (x ,y ),D (x ,y ).11 2 2⎧x 2=4y , 由⎨ 得 x 2-4kx -4=0,所以 x +x =4k ,1 2所以 y +y =k (x +x )+2=4k 2+2,12 1 2所以|AB |+|CD |=|AS |+|DS |-|BC |=y +1+y +1-212=y +y =4k 2+2=2|BC |=4,12所以 k = 2(负值舍去).2(2)证明:因为 x +x =4k ,y +y =k (x +x )+2=4k 2+2,12 1 2 1 2所以 Q (2k ,2k 2+1).1 2 2k k k 2k 2-1PQ kk 2-1kk 2-1k当 k =0 时,直线 l 与抛物线只有一个交点,不符合题意,舍去.15.(2018·珠海摸底)已知椭圆 C ,抛物线 C 的焦点均在 x 轴上,C 的中心和 C 的顶点1212均为原点 O ,从每条曲线上各取两个点,其坐标分别是(3,-2 3), -2,0),(4,-4), 2,2. 2(1)求 C ,C 的标准方程;12(2)是否存在直线 l 满足条件:①过 C 的焦点 F ;②与 C 交于不同的两点 M ,N ,且满21→ →解 (1)设抛物线 C :y 2=2px (p ≠0),2则有 =2p (x ≠0),设椭圆 C : + =1(a >b >0),OM ·ON ≠0,不满足题意. 1+4k 2 x x = , ① 1+4k 2 1+4k 2 1+4k 2 由OM ⊥ON 得 x x +y y =0. ③1+4k 2 1+4k 2 1+4k 2y 2 x据此验证四个点知(3,-2 3),(4,-4)在抛物线上,易得,抛物线 C 的标准方程为 y 2=4x .2x 2 y 2 1 a 2 b 2把点(-2,0), 2,2代入可得 a 2=4,b 2=1,2x 2所以椭圆 C 的标准方程为 +y 2=1.1 4(2)由抛物线的标准方程可得 C 的焦点 F (1,0),2当直线 l 的斜率不存在时,直线 l 的方程为 x =1.3 3直线 l 交椭圆 C 于点 M 1, , N 1,- ,1 2 2→ →当直线 l 的斜率存在时,设直线 l 的方程为 y =k (x -1),并设点 M (x ,y ),N (x ,y ).1122⎧y =k (x -1),由⎨⎩ x 2+4y 2=4,消去 y ,得(1+4k 2)x 2-8k 2x +4(k 2-1)=0,于是 x +x = 1 28k 2 ,4(k 2-1)1 2 1+4k 24(k 2-1) 8k 2 -3k 2 则 y y =k (x -1)·k (x -1)=k 2[x x -(x +x )+1]=k 2 - +1= . ②1 2 1 2 1 2 1 2→ →1 2 1 2 4(k 2-1) -3k 2 k 2-4 将①②代入③式,得 + = =0,解得 k =±2,所以存在直线 l 满足条件,且 l 的方程为 2x -y -2=0 或 2x +y -2=0.96.(2018·石家庄质检二)已知圆 C :(x -a )2+(y -b )2= 的圆心 C 在抛物线 x 2=2py (p >40)上,圆 C 过原点且与抛物线的准线相切.(1)求该抛物线的方程;(2)过抛物线焦点 F 的直线 l 交抛物线于 A ,B 两点,分别在 A ,B 处作抛物线的两条切线交于点 △P ,求 PAB 面积的最小值及此时直线 l 的方程.⎩x 2=4y , 得 x 2-4kx -4=0,Δ>0, ⎧⎪x=x +x =2k ,解得⎨2 ⎪⎩y =x x =-1, 点 P 到直线 AB 的距离 d =|2k 2+2|3 p p解 (1)由已知可得圆心 C (a ,b ),半径 r = ,焦点 F 0, ,准线 y =- ,因为圆 C 与抛2 2 23 p物线 F 的准线相切,所以 b = - .2 2又因为圆 C 过原点,且圆 C 过焦点 F ,所以圆心 C 必在线段 OF 的垂直平分线上,即 bp 3 p p= ,所以 - = ,解得 p =2,4 2 2 4所以抛物线的方程为 x 2=4y .(2)易得焦点 F (0,1),直线 l 的斜率必存在,设为 k ,即直线 l 的方程为 y =kx +1,设 A (x ,y ),B (x ,y ).11 2 2⎧y =kx +1,由⎨所以 x +x =4k ,x x =-4,12 1 2x 2 x x对 y = 求导得 y ′= ,即 k = 1.4 2AP 2x直线 AP 的方程为 y -y = 1(x -x ),1 21x 1即 y = 1x - x 2,2 4 1x 1同理得直线 BP 的方程为 y = 2x - x 2.2 4 2设点 P (x ,y ),联立直线 AP 与 BP 的方程,121 2 0 4即 P (2k ,-1),所以|AB |= 1+k 2|x -x |=4(1+k 2),121+k 2 =2 1+k 2,1 3所以△PAB 的面积 S = ·4(1+k 2)·2 1+k 2=4(1+k 2) ≥4,2 2当且仅当 k =0 时取等号.综上,△PAB面积的最小值为4,此时直线l的方程为y=1.。
10 平面解析几何1.(2020•北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A . 4 B . 5C . 6D . 7【答案】A【解析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号,故选:A. 【点睛】本题考查了圆的标准方程,属于基础题.2.(2020•北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP【答案】B【解析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.3.(2020•北京卷)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x=±,即0x ±=,所以,双曲线C=故答案为:()3,0【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.4.(2020•北京卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Qy y <,且:P Q PB yPQ y =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+, 故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.(2020•全国1卷)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A . 2 B . 3 C . 6 D . 9【答案】C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.6.(2020•全国1卷)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A. 210x y --= B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7.(2020•全国1卷)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.故答案为:2.【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.8.(2020•全国1卷)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析. 【解析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,即可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y += (2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+ 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭故直线CD 过定点3,02⎛⎫⎪⎝⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020•全国2卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.D.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.10.(2020•全国2卷)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8C. 16D. 32【答案】B【解析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =值不等式,即可求得答案.【详解】2222:1(0,0)x y C a b a b -=>>∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x yC a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限.联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b = ∴ODE 面积为:1282ODES a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>∴其焦距为28c =≥==,当且仅当a b ==∴C 的焦距的最小值:8,故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.11.(2020•全国2卷)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=, 43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=, 01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【点睛】本题考查椭圆离心率求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.12.(2020•全国3卷)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.13.(2020•全国3卷)设双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A. 1B. 2C. 4D. 8【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 的12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥,()22212||2PF PF c ∴+=, ()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.14.(2020•全国3卷)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:5d ===,根据两点间距离公式可得:AQ ==,∴APQ面积为:15252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.15.(2020•江苏卷)在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y x ,则该双曲线的离心率是____. 【答案】32【解析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215xy a -=,故b =由于双曲线的一条渐近线方程为2yx =,即22b a a=⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 16.(2020•江苏卷)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________. 【答案】【解析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形P AB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.17.(2020•江苏卷)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长; (2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标. 【详解】(1)∵椭圆E 的方程为22143x y +=,∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭,∵准线方程为4x =,∴()4,Q Q y , ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+,∵点O 到直线AB 的距离为35,213S S = ∴2113133252S S AB AB d ==⨯⨯⨯=⋅,∴95d =,∴113439x y -+=① ∵2211143x y +=②,∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 18.(2020•新全国1山东)已知曲线22:1C mx ny +=.( )A . 若m >n >0,则C 是椭圆,其焦点在y 轴上B . 若m =n >0,则CC . 若mn <0,则C是双曲线,其渐近线方程为y = D . 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C表示平行于x 轴的两条直线,故D 正确;故选:AC D. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.19.(2020•新全国1山东).C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F∴直线AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.20.(2020•新全国1山东)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)22163x y +=;(2)详见解析. 【解析】(1)由题意得到关于a ,b ,c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到m,k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.的【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,①当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫- ⎪⎝⎭,,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 3=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.21.(2020•天津卷)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -=B. 2214y x -=C. 2214x y -=D. 221x y -=【答案】D【解析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.22.(2020•天津卷)已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.【答案】5【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =6==5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.23.(2020•天津卷)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解.【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,的所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-, 所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0, 所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.24.(2020•浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y=|OP |=( )A.2B.C.D.【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==D . 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.25.(2020•浙江卷)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).3 (2). 3-【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可. 【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.故答案为:33-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.26.(2020•浙江卷)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【答案】(Ⅰ)1(,0)32;(Ⅱ【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y m λλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,所以24218p p +≥,21160p ≤,10p ≤, 所以,p 的最大值为10,此时2105(,)A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+. 将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=, 所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当102,5m t ==时,p 取到最大值为1040. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.27.(2020•上海卷)椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【答案】10x y +-=28.(2020•上海卷)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x ⎧-=>⎪Γ⎨⎪+=+>⎩。
课时跟踪检测(四十四) 椭圆一抓基础,多练小题做到眼疾手快1.已知椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且PF 1,F 1F 2,PF 2成等差数列,则椭圆的方程为______________.解析:∵椭圆的中心在原点,焦点F 1,F 2在x 轴上,∴设椭圆方程为错误!+错误!=1(a >b >0),∵P (2,3)是椭圆上一点,且PF 1,F 1F 2,PF 2成等差数列, ∴错误!且a 2=b 2+c 2,解得a =2错误!,b =错误!,∴椭圆的方程为错误!+错误!=1。
答案:x 28+错误!=1 2.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为错误!,则该椭圆方程为________________.解析:设椭圆的方程为错误!+错误!=1(a >b >0),因为2a =12,错误!=12, 所以a =6,c =3,b 2=27。
所以椭圆的方程为x236+错误!=1。
答案:错误!+错误!=13.椭圆错误!+y2=1的左、右两焦点分别为F1,F2,椭圆上一点P 满足∠F1PF2=60°,则△F1PF2的面积为________.解析:由题意,椭圆错误!+y2=1的左、右两焦点分别为F1,F2,则PF1+PF2=22,F1F2=2。
由余弦定理,得F1F错误!=PF错误!+PF错误!-2PF1·PF2·cos 60°=(PF1+PF2)2-3PF1·PF2,解得PF1·PF2=错误!.故△F1PF2的面积S=错误!PF1·PF2·sin 60°=错误!。
答案:错误!4.(2019·南京名校联考)若n是2和8的等比中项,则圆锥曲线x2+错误!=1的离心率是________.解析:由n2=2×8,得n=±4,当n=4时,曲线为椭圆,其离心率为e=错误!=错误!;当n=-4时,曲线为双曲线,其离心率为e=错误!= 5.答案:错误!或错误!5.(2018·北京东城模拟)已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶错误!,则椭圆C 的方程是____________________.解析:设椭圆C 的方程为x 2a2+错误!=1(a >b >0). 由题意知错误!解得a 2=16,b 2=12.所以椭圆C 的方程为错误!+错误!=1。
2020高考真题数学分类汇编—平面解析几何一、选择题(共15小题)1.(2020•天津)设双曲线C的方程为﹣=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.﹣=1 B.x2=1C.﹣y2=1 D.x2﹣y2=12.(2020•北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4 B.5 C.6 D.73.(2020•浙江)已知点O(0,0),A(﹣2,0),B(2,0).设点P满足|PA|﹣|PB|=2,且P为函数y=3图象上的点,则|OP|=()A.B.C.D.4.(2020•北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线()A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP5.(2020•新课标Ⅲ)点(0,﹣1)到直线y=k(x+1)距离的最大值为()A.1 B.C.D.26.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)7.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4 B.8 C.16 D.328.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.9.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1 B.2 C.3 D.410.(2020•新课标Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3 C.6 D.911.(2020•新课标Ⅲ)在平面内,A,B是两个定点,C是动点.若•=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线12.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3 C.D.213.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P 是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1 B.2 C.4 D.814.(2020•新课标Ⅰ)已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线l:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|•|AB|最小时,直线AB的方程为()A.2x﹣y﹣1=0 B.2x+y﹣1=0 C.2x﹣y+1=0 D.2x+y+1=015.(2020•上海)已知椭圆+y2=1,作垂直于x轴的垂线交椭圆于A、B两点,作垂直于y轴的垂线交椭圆于C、D两点,且AB=CD,两垂线相交于点P,则点P的轨迹是()A.椭圆B.双曲线C.圆D.抛物线二.多选题(共1小题)16.(2020•山东)已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线方程为y=±xD.若m=0,n>0,则C是两条直线三.填空题(共9小题)17.(2020•天津)已知直线x﹣y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为.18.(2020•北京)已知双曲线C:﹣=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.19.(2020•上海)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l的方程是.20.(2020•浙江)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x﹣4)2+y2=1均相切,则k=,b =.21.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的一条渐近线为y=x,则C的离心率为.22.(2020•江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0)的一条渐近线方程为y=x,则该双曲线的离心率是.23.(2020•新课标Ⅰ)已知F为双曲线C:﹣=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为.24.(2020•山东)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.25.(2020•上海)已知直线l1:x+ay=1,l2:ax+y=1,若l1∥l2,则11与l2的距离为.四.解答题(共12小题)26.(2020•天津)已知椭圆+=1(a>b>0)的一个顶点为A(0,﹣3),右焦点为F,且|OA|=|OF|,其中O为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C满足3=,点B在椭圆上(B异于椭圆的顶点),直线AB与以C为圆心的圆相切于点P,且P为线段AB的中点.求直线AB的方程.27.(2020•北京)已知椭圆C:+=1过点A(﹣2,﹣1),且a=2b.(Ⅰ)求椭圆C的方程;(Ⅱ)过点B(﹣4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=﹣4于点P,Q.求的值.28.(2020•上海)已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=,求b的值;(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示•,并求•的取值范围.29.(2020•江苏)在平面直角坐标系xOy中,已知椭圆E:+=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求•的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.30.(2020•浙江)如图,已知椭圆C1:+y2=1,抛物线C2:y2=2px(p>0),点A是椭圆C1与抛物线C2的交点,过点A的直线l交椭圆C1于点B,交抛物线C2于点M(B,M不同于A).(Ⅰ)若p=,求抛物线C2的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.31.(2020•山东)已知椭圆C:+=1(a>b>0)的离心率为,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.32.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.33.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.34.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.35.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.36.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.37.(2020•上海)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.2020高考真题数学分类汇编—平面解析几何参考答案一、选择题(共15小题)1.(2020•天津)设双曲线C的方程为﹣=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.﹣=1 B.x2=1C.﹣y2=1 D.x2﹣y2=1【解答】解:抛物线y2=4x的焦点坐标为(1,0),则直线l的方程为y=﹣b(x﹣1),∵双曲线C的方程为﹣=1(a>0,b>0)的渐近线方程为y=±x,∵C的一条渐近线与l平行,另一条渐近线与l垂直,∴﹣=﹣b,•(﹣b)=﹣1,∴a=1,b=1,∴双曲线C的方程为x2﹣y2=1,故选:D.2.(2020•北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4 B.5 C.6 D.7【解答】解:如图示:,半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆,故当圆心到原点的距离的最小时,连结OB,A在OB上且AB=1,此时距离最小,由OB=5,得OA=4,即圆心到原点的距离的最小值是4,故选:A.3.(2020•浙江)已知点O(0,0),A(﹣2,0),B(2,0).设点P满足|PA|﹣|PB|=2,且P为函数y=3图象上的点,则|OP|=()A.B.C.D.【解答】解:点O(0,0),A(﹣2,0),B(2,0).设点P满足|PA|﹣|PB|=2,可知P的轨迹是双曲线的右支上的点,P为函数y=3图象上的点,即在第一象限的点,联立两个方程,解得P(,),所以|OP|==.故选:D.4.(2020•北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线()A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP【解答】解:(本题属于选择题)不妨设抛物线的方程为y2=4x,则F(1,0),准线为l为x=﹣1,不妨设P(1,2),∴Q(﹣1,2),设准线为l与x轴交点为A,则A(﹣1,0),可得四边形QAFP为正方形,根据正方形的对角线互相垂直,故可得线段FQ的垂直平分线,经过点P,故选:B.5.(2020•新课标Ⅲ)点(0,﹣1)到直线y=k(x+1)距离的最大值为()A.1 B.C.D.2【解答】解:因为点(0,﹣1)到直线y=k(x+1)距离d===;∵要求距离的最大值,故需k>0;可得d≤=;当k=1时等号成立;故选:B.6.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)【解答】解:将x=2代入抛物线y2=2px,可得y=±2,OD⊥OE,可得k OD•k OE=﹣1,即,解得p=1,所以抛物线方程为:y2=2x,它的焦点坐标(,0).故选:B.7.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4 B.8 C.16 D.32【解答】解:由题意可得双曲线的渐近线方程为y=±x,分别将x=a,代入可得y=±b,即D(a,b),E(a,﹣b),则S△ODE=a×2b=ab=8,∴c2=a2+b2≥2ab=16,当且仅当a=b=2时取等号,∴C的焦距的最小值为2×4=8,故选:B.8.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.【解答】解:由题意可得所求的圆在第一象限,设圆心为(a,a),则半径为a,a>0.故圆的方程为(x﹣a)2+(y﹣a)2=a2,再把点(2,1)代入,求得a=5或1,故要求的圆的方程为(x﹣5)2+(y﹣5)2=25或(x﹣1)2+(y﹣1)2=1.故所求圆的圆心为(5,5)或(1,1);故圆心到直线2x﹣y﹣3=0的距离d==或d==;故选:B.9.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1 B.2 C.3 D.4【解答】解:由圆的方程可得圆心坐标C(3,0),半径r=3;设圆心到直线的距离为d,则过D(1,2)的直线与圆的相交弦长|AB|=2,当d最大时弦长|AB|最小,当直线与CD所在的直线垂直时d最大,这时d=|CD|==2,所以最小的弦长|AB|=2=2,故选:B.10.(2020•新课标Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3 C.6 D.9【解答】解:A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等,故有:9+=12⇒p=6;故选:C.11.(2020•新课标Ⅲ)在平面内,A,B是两个定点,C是动点.若•=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线【解答】解:在平面内,A,B是两个定点,C是动点,不妨设A(﹣a,0),B(a,0),设C(x,y),因为=1,所以(x+a,y)•(x﹣a,y)=1,解得x2+y2=a2+1,所以点C的轨迹为圆.故选:A.12.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3 C.D.2【解答】解:由题意可得a=1,b=,c=2,∴|F1F2|=2c=4,∵|OP|=2,∴|OP|=|F1F2|,∴△PF1F2为直角三角形,∴PF1⊥PF2,∴|PF1|2+|PF2|2=4c2=16,∵||PF1|﹣|PF2||=2a=2,∴|PF1|2+|PF2|2﹣2|PF1|•|PF2|=4,∴|PF1|•|PF2|=6,∴△PF1F2的面积为S=|PF1|•|PF2|=3,故选:B.13.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P 是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1 B.2 C.4 D.8【解答】解:由题意,设PF2=m,PF1=n,可得m﹣n=2a,,m2+n2=4c2,e=,可得4c2=16+4a2,可得5a2=4+a2,解得a=1.故选:A.14.(2020•新课标Ⅰ)已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线l:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|•|AB|最小时,直线AB的方程为()A.2x﹣y﹣1=0 B.2x+y﹣1=0 C.2x﹣y+1=0 D.2x+y+1=0【解答】解:化圆M为(x﹣1)2+(y﹣1)2=4,圆心M(1,1),半径r=2.∵=2S△PAM=|PA|•|AM|=2|PA|=.∴要使|PM|•|AB|最小,则需|PM|最小,此时PM与直线l垂直.直线PM的方程为y﹣1=(x﹣1),即y=,联立,解得P(﹣1,0).则以PM为直径的圆的方程为.联立,可得直线AB的方程为2x+y+1=0.故选:D.15.(2020•上海)已知椭圆+y2=1,作垂直于x轴的垂线交椭圆于A、B两点,作垂直于y轴的垂线交椭圆于C、D两点,且AB=CD,两垂线相交于点P,则点P的轨迹是()A.椭圆B.双曲线C.圆D.抛物线【解答】解:∵AB≤2,∴CD≤2,判断轨迹为上下两支,即选双曲线,设A(m,t),D(t,n),所以P(m,n),因为,,消去t可得:2n2﹣,故选:B.二.多选题(共1小题)16.(2020•山东)已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线方程为y=±xD.若m=0,n>0,则C是两条直线【解答】解:A.若m>n>0,则,则根据椭圆定义,知=1表示焦点在y轴上的椭圆,故A正确;B.若m=n>0,则方程为x2+y2=,表示半径为的圆,故B错误;C.若m<0,n>0,则方程为=1,表示焦点在y轴的双曲线,故此时渐近线方程为y=±x,若m>0,n<0,则方程为=1,表示焦点在x轴的双曲线,故此时渐近线方程为y=±x,故C正确;D.当m=0,n>0时,则方程为y=±表示两条直线,故D正确;故选:ACD.三.填空题(共9小题)17.(2020•天津)已知直线x﹣y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为5.【解答】解:根据题意,圆x2+y2=r2的圆心为(0,0),半径为r;则圆心到直线x﹣y+8=0的距离d==4,若|AB|=6,则有r2=d2+()2=16+9=25,故r=5;故答案为:518.(2020•北京)已知双曲线C:﹣=1,则C的右焦点的坐标为(3,0);C的焦点到其渐近线的距离是.【解答】解:双曲线C:﹣=1,则c2=a2+b2=6+3=9,则c=3,则C的右焦点的坐标为(3,0),其渐近线方程为y=±x,即x±y=0,则点(3,0)到渐近线的距离d==,故答案为:(3,0),.19.(2020•上海)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l的方程是x+y﹣1=0.【解答】解:椭圆C:+=1的右焦点为F(1,0),直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,可知直线l的斜率为﹣1,所以直线l的方程是:y=﹣(x﹣1),即x+y﹣1=0.故答案为:x+y﹣1=0.20.(2020•浙江)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x﹣4)2+y2=1均相切,则k=,b=﹣.【解答】解:由条件得C1(0,0),r1=1,C2(4,0),r2=1,因为直线l与C1,C2都相切,故有d1==1,d2==1,则有=,故可得b2=(4k+b)2,整理得k(2k+b)=0,因为k>0,所以2k+b=0,即b=﹣2k,代入d1==1,解得k=,则b=﹣,故答案为:;﹣.21.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的一条渐近线为y=x,则C的离心率为.【解答】解:由双曲线的方程可得渐近线的方程为:y=±x,由题意可得=,所以离心率e===,故答案为:.22.(2020•江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0)的一条渐近线方程为y=x,则该双曲线的离心率是.【解答】解:双曲线﹣=1(a>0)的一条渐近线方程为y=x,可得,所以a=2,所以双曲线的离心率为:e==,故答案为:.23.(2020•新课标Ⅰ)已知F为双曲线C:﹣=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为2.【解答】解:F为双曲线C:﹣=1(a>0,b>0)的右焦点(c,0),A为C的右顶点(a,0),B为C上的点,且BF垂直于x轴.所以B(c,),若AB的斜率为3,可得:,b2=c2﹣a2,代入上式化简可得c2=3ac﹣2a2,e=,可得e2﹣3e+2=0,e>1,解得e=2.故答案为:2.24.(2020•山东)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.【解答】解:由题意可得抛物线焦点F(1,0),直线l的方程为y=(x﹣1),代入y2=4x并化简得3x2﹣10x+3=0,设A(x1,y1),B(x2,y2),则x1+x2=;x1x2=1,∴由抛物线的定义可得|AB|=x1+x2+p=+2=.故答案为:.25.(2020•上海)已知直线l1:x+ay=1,l2:ax+y=1,若l1∥l2,则11与l2的距离为.【解答】解:直线l1:x+ay=1,l2:ax+y=1,当l1∥l2时,a2﹣1=0,解得a=±1;当a=1时l1与l2重合,不满足题意;当a=﹣1时l1∥l2,此时l1:x﹣y﹣1=0,l2:x﹣y+1=0;则11与l2的距离为d==.故答案为:.四.解答题(共12小题)26.(2020•天津)已知椭圆+=1(a>b>0)的一个顶点为A(0,﹣3),右焦点为F,且|OA|=|OF|,其中O为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C满足3=,点B在椭圆上(B异于椭圆的顶点),直线AB与以C为圆心的圆相切于点P,且P为线段AB的中点.求直线AB的方程.【解答】解:(Ⅰ)由已知可得b=3,记半焦距为c,由|OF|=|OA|可得c=b=3,由a2=b2+c2,可得a2=18,∴椭圆的方程为+=1,(Ⅱ):∵直线AB与C为圆心的圆相切于点P,∴AB⊥CP,根据题意可得直线AB和直线CP的斜率均存在,设直线AB的方程为y=kx﹣3,由方程组,消去y可得(2k2+1)x2﹣12kx=0,解得x=0,或x=,依题意可得点B的坐标为(,),∵P为线段AB的中点,点A的坐标为(0,﹣3),∴点P的坐标为(,),由3=,可得点C的坐标为(1,0),故直线CP的斜率为=,∵AB⊥CP,∴k•=﹣1,整理可得2k2﹣3k+1=0,解得k=或k=1,∴直线AB的方程为y=x﹣3或y=x﹣3.27.(2020•北京)已知椭圆C:+=1过点A(﹣2,﹣1),且a=2b.(Ⅰ)求椭圆C的方程;(Ⅱ)过点B(﹣4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=﹣4于点P,Q.求的值.【解答】解:(Ⅰ)椭圆C:+=1过点A(﹣2,﹣1),且a=2b,则,解得b2=2,a2=8,∴椭圆方程为+=1,(Ⅱ)由题意可得直线l的斜率存在,设直线方程为y=k(x+4),由,消y整理可得(1+4k2)x2+32k2x+64k2﹣8=0,∴△=﹣32(4k2﹣1)>0,解得﹣<k<,设M(x1,y1),N(x2,y2),∴x1+x2=﹣,x1x2=,则直线AM的方程为y+1=(x+2),直线AN的方程为y+1=(x+2),分别令x=﹣4,可得y P=﹣1=﹣,y Q=﹣∴|PB|=|y P|=||,QB|=|y Q|=||,∴=||=|| ∵(2k+1)x1x2+(4k+2)(x1+x2)+8(2k+1)=,∴||=||=||=1,故=1.28.(2020•上海)已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=,求b的值;(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示•,并求•的取值范围.【解答】解:(1)由x A=,点A为曲线Γ1与曲线Γ2的交点,联立,解得y A=,b=2;(2)由题意可得F1,F2为曲线Γ1的两个焦点,由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=8,2a=4,所以|PF2|=8﹣4=4,因为b=,则c==3,所以|F1F2|=6,在△PF1F2中,由余弦定理可得cos∠F1PF2===,由0<∠F1PF2<π,可得∠F1PF2=arccos;(3)设直线l:y=﹣x+,可得原点O到直线l的距离d==,所以直线l是圆的切线,设切点为M,所以k OM=,并设OM:y=x与圆x2+y2=4+b2联立,可得x2+x2=4+b2,可得x=b,y=2,即M(b,2),注意直线l与双曲线的斜率为负的渐近线平行,所以只有当y A>2时,直线l才能与曲线Γ有两个交点,由,可得y A2=,所以有4<,解得b2>2+2或b2<2﹣2(舍去),因为为在上的投影可得,•=4+b2,所以•=4+b2>6+2,则•∈(6+2,+∞).29.(2020•江苏)在平面直角坐标系xOy中,已知椭圆E:+=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求•的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.【解答】解:(1)由椭圆的标准方程可知,a2=4,b2=3,c2=a2﹣b2=1,所以△AF1F2的周长=2a+2c=6.(2)由椭圆方程得A(1,),设P(t,0),则直线AP方程为y=,椭圆的右准线为:x==4,所以直线AP与右准线的交点为Q(4,•),•=(t,0)•(t﹣4,0﹣•)=t2﹣4t=(t﹣2)2﹣4≥﹣4,当t=2时,()min=﹣4.(3)若S2=3S1,设O到直线AB距离d1,M到直线AB距离d2,则×|AB|×d2=×|AB|×d1,即d2=3d1,A(1,),F1(﹣1,0),可得直线AB方程为y=(x+1),即3x﹣4y+3=0,所以d1=,d2=,由题意得,M点应为与直线AB平行且距离为的直线与椭圆的交点,设平行于AB的直线l为3x﹣4y+m=0,与直线AB的距离为,所以=,即m=﹣6或12,当m=﹣6时,直线l为3x﹣4y﹣6=0,即y=(x﹣2),联立,可得(x﹣2)(7x+2)=0,即或,所以M(2,0)或(﹣,﹣).当m=12时,直线l为3x﹣4y+12=0,即y=(x+4),联立,可得+18x+24=0,△=9×(36﹣56)<0,所以无解,综上所述,M点坐标为(2,0)或(﹣,﹣).30.(2020•浙江)如图,已知椭圆C1:+y2=1,抛物线C2:y2=2px(p>0),点A是椭圆C1与抛物线C2的交点,过点A的直线l交椭圆C1于点B,交抛物线C2于点M(B,M不同于A).(Ⅰ)若p=,求抛物线C2的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.【解答】解:(Ⅰ)p=,则=,则抛物线C2的焦点坐标(,0),(Ⅱ)直线l与x轴垂直时,此时点M与点A或点B重合,不满足题意,设直线l的方程为y=kx+t,A(x1,y1),B(x2,y2),M(x0,y0),由,消y可得(2k2+1)x2+4kty+2t2﹣2=0,∴△=16k2t2﹣4(2k2+1)(2t2﹣2)≥0,即t2<1+2k2,∴x1+x2=﹣,∴x0=(x1+x2)=﹣,∴y0=kx0+t=,∴M(﹣,),∵点M在抛物线C2上,∴y2=2px,∴p===,联立,解得x1=,y1=,代入椭圆方程可得+=1,解得t2=∴p2===≤=,∴p≤,当且仅当1=2k2,即k2=,t2=时等号成立,故p的最大值为.31.(2020•山东)已知椭圆C:+=1(a>b>0)的离心率为,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.【解答】解:(1)∵离心率,∴a=c,又a2=b2+c2,∴b=c,a=b,把点A(2,1)代入椭圆方程得,,解得b2=3,故椭圆C的方程为.(2)①当直线MN的斜率存在时,设其方程为y=kx+m,联立,得(2k2+1)x2+4kmx+2m2﹣6=0,由△=(4km)2﹣4(2k2+1)(2m2﹣6)>0,知m2<6k2+3,设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,∵AM⊥AN,∴=(x1﹣2,y1﹣1)•(x2﹣2,y2﹣1)=0,即(k2+1)x1x2+(km﹣k﹣2)(x1+x2)+m2﹣2m+5=0,∴(k2+1)•+(km﹣k﹣2)()+m2﹣2m+5=0,化简整理得,4k2+8km+3m2﹣2m﹣1=(2k+m﹣1)(2k+3m+1)=0,∴m=1﹣2k或m=,当m=1﹣2k时,y=kx﹣2k+1,过定点A(2,1),不符合题意,舍去;当m=时,y=kx,过定点.设D(x0,y0),则y0=kx0+m,(i)若k≠0,∵AD⊥MN,∴,解得,,∴=+==,∴点D在以(,)为圆心,为半径的圆上,故存在Q(,),使得|DQ|=,为定值.(ii)若k=0,则直线MN的方程为y=,∵AD⊥MN,∴D(2,),∴|DQ|=,为定值.②当直线MN的斜率不存在时,设其方程为x=t,M(t,s),N(t,﹣s),且,∵AM⊥AN,∴=(t﹣2,s﹣1)•(t﹣2,﹣s﹣1)=t2﹣4t﹣s2+5==0,解得t=或2(舍2),∴D(,1),此时|DQ|=,为定值.综上所述,存在定点Q(,),使得|DQ|为定值,且该定值为.32.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【解答】解:(1)由题意设抛物线C2的方程为:y2=4cx,焦点坐标F为(c,0),因为AB⊥x轴,将x=c 代入抛物线的方程可得y2=4c2,所以|y|=2c,所以弦长|CD|=4c,将x=c代入椭圆C1的方程可得y2=b2(1﹣)=,所以|y|=,所以弦长|AB|=,再由|CD|=|AB|,可得4c=,即3ac=2b2=2(a2﹣c2),整理可得2c2+3ac﹣2a2=0,即2e2+3e﹣2=0,e∈(0,1),所以解得e=,所以C1的离心率为;(2)由椭圆的方程可得4个顶点的坐标分别为:(±a,0),(0,±b),而抛物线的准线方程为:x=﹣c,所以由题意可得2c+a+c+a﹣c=12,即a+c=6,而由(1)可得=,所以解得:a=4,c=2,所以b2=a2﹣c2=16﹣4=12,所以C1的标准方程为:+=1,C2的标准方程为:y2=8x.33.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.【解答】解:(1)因为F为C1的焦点且AB⊥x轴,可得F(c,0),|AB|=,设C2的标准方程为y2=2px(p>0),因为F为C2的焦点且CD⊥x轴,所以F(,0),|CD|=2p,因为|CD|=|AB|,C1,C2的焦点重合,所以,消去p,可得4c=,所以3ac=2b2,所以3ac=2a2﹣2c2,设C1的离心率为e,由e=,则2e2+3e﹣2=0,解得e=(﹣2舍去),故C1的离心率为;(2)由(1)可得a=2c,b=c,p=2c,所以C1:+=1,C2:y2=4cx,联立两曲线方程,消去y,可得3x2+16cx﹣12c2=0,所以(3x﹣2c)(x+6c)=0,解得x=c或x=﹣6c(舍去),从而|MF|=x+=c+c=c=5,解得c=3,所以C1和C2的标准方程分别为+=1,y2=12x.34.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:(1)由题设得,A(﹣a,0),B(a,0),G(0,1),则,,由得a2﹣1=8,即a=3,所以E的方程为.(2)设C(x1,y1),D(x2,y2),P(6,t),若t≠0,设直线CD的方程为x=my+n,由题可知,﹣3<n<3,由于直线PA的方程为,所以,同理可得,于是有3y1(x2﹣3)=y2(x1+3)①.由于,所以,将其代入①式,消去x2﹣3,可得27y1y2=﹣(x1+3)(x2+3),即②,联立得,(m2+9)y2+2mny+n2﹣9=0,所以,,代入②式得(27+m2)(n2﹣9)﹣2m(n+3)mn+(n+3)2(m2+9)=0,解得n=或﹣3(因为﹣3<n<3,所以舍﹣3),故直线CD的方程为,即直线CD过定点(,0).若t=0,则直线CD的方程为y=0,也过点(,0).综上所述,直线CD过定点(,0).35.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.【解答】解:(1)由e=得e2=1﹣,即=1﹣,∴m2=,故C的方程是:+=1;(2)由(1)A(﹣5,0),设P(s,t),点Q(6,n),根据对称性,只需考虑n>0的情况,此时﹣5<s<5,0<t≤,∵|BP|=|BQ|,∴有(s﹣5)2+t2=n2+1①,又∵BP⊥BQ,∴s﹣5+nt=0②,又+=1③,联立①②③得或,当时,则P(3,1),Q(6,2),而A(﹣5,0),则=(8,1),=(11,2),∴S△APQ==|8×2﹣11×1|=,同理可得当时,S△APQ=,综上,△APQ的面积是.36.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:如图所示:(1)由题意A(﹣a,0),B(a,0),G(0,1),∴=(a,1),=(a,﹣1),•=a2﹣1=8,解得:a=3,故椭圆E的方程是+y2=1;(2)由(1)知A(﹣3,0),B(3,0),设P(6,m),则直线PA的方程是y=(x+3),联立⇒(9+m2)x2+6m2x+9m2﹣81=0,由韦达定理﹣3x c=⇒x c=,代入直线PA的方程为y=(x+3)得:y c=,即C(,),直线PB的方程是y=(x﹣3),联立方程⇒(1+m2)x2﹣6m2x+9m2﹣9=0,由韦达定理3x D=⇒x D=,代入直线PB的方程为y=(x﹣3)得y D=,即D(,),则①当x c=x D即=时,有m2=3,此时x c=x D=,即CD为直线x=,②当x c≠x D时,直线CD的斜率K CD==,∴直线CD的方程是y﹣=(x﹣),整理得:y=(x﹣),直线CD过定点(,0).综合①②故直线CD过定点(,0).37.(2020•上海)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.【解答】解:(1)解:∵抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.点M纵坐标为,∴点M的横坐标x M=()2=2,∵y2=x,∴p=,∴M与焦点的距离为MF==2+=.(2)证明:设M(),直线PM:y﹣1=(x﹣1),当x=﹣1时,,直线QM:y+1=(x﹣1),x=﹣1时,y B=,∴y A y B=﹣1,∴y A•y B为常数﹣1.(3)解:设M(),A(t,y A),直线MA:y﹣y0=(x﹣y02),联立y2=x,得+=0,∴y0+y p=,即y P=,同理得y Q=,∵y A•y B=1,∴y P y Q=,要使y P y Q为常数,即t=1,此时y P y Q为常数1,∴存在t=1,使得y A•y B=1且y P•y Q为常数1.。
【最新】数学复习题《平面解析几何》专题解析一、选择题1.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+= 【答案】C 【解析】 【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程. 【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==,Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆, ∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C . 【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.2.已知双曲线22x a-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】A 【解析】 【分析】 【详解】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2px =-,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(-2,0),即a=2;点(-2,-1)在双曲线的渐近线上,则其渐近线方程为12y x =±, 由双曲线的性质,可得b=1;则c =故选A .3.已知椭圆22:12y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称,则m 的取值范围是( )A .33⎛- ⎝⎭B .,44⎛- ⎝⎭C .⎛ ⎝⎭D .⎛ ⎝⎭【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可.【详解】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-.又因为A ,B 在椭圆C 上,所以221112y x +=,222212y x +=,两式相减可得121212122y y y y x x x x -+⋅=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =.因为点M 在椭圆C 内部,所以2221m m +<,解得m ⎛∈ ⎝⎭.故选:C 【点睛】本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.4.若双曲线上存在四点,使得以这四点为顶点的四边形是菱形,则该双曲线的离心率的取值范围是( )A. B. C.)+∞ D.)+∞【答案】C 【解析】 【分析】根据题意,双曲线与直线y x =±相交且有四个交点,由此得1ba>.结合双曲线的基本量的平方关系和离心率的定义,化简整理即得该双曲线的离心率的取值范围. 【详解】解:不妨设该双曲线方程为22221(0,0)x y a b a b-=>>,由双曲线的对称性质可知,该四边形为正方形, 所以直线y x =与双曲线有交点, 所以其渐近线与x 轴的夹角大于45︒,即1ba>.离心率e =所以该双曲线的离心率的取值范围是)+∞. 故选:C . 【点睛】本题考查双曲线的离心率取值范围以及双曲线的标准方程和简单几何性质等知识,属于基础题.5.已知点(,)P x y 是直线240x y -+=上一动点,直线,PA PB 是圆22:20C x y y ++=的两条切线,,A B 为切点,C 为圆心,则四边形PACB 面积的最小值是( ) A .2 BC.D .4【答案】A 【解析】圆22:20C x y y ++=即22(y 1)1x ++=,表示以C (0,-1)为圆心,以1为半径的圆。
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.直线20x +-=与圆224x y +=相交于,A B 两点,则弦AB 的长度等于 ( )A .B .CD .1(2012福建文)2.圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(2006江苏)3.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞4.已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(山东卷11)A .106B .206C .306D .406 二、填空题5.圆2221:4440C x y ax a +++-=和圆2222:210C x y by b +-+-=相内切,若,a b R ∈,且0ab ≠,则2211a b +的最小值为 .6.已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为 .7.若方程2224380x y kx y k +++++=表示一个圆,则实数k 的取值范围是 .8. 直线12:(1)3,:22l x a y l x y +-=-=互相垂直,则a 的值为 .9.直线y =x +b 与曲线x =恰有一个交点,则实数的b 的取值范围是____________10.若0x y >>323xy y +-的最小值为 .11.已知线段AB 两个端点A(2,-3),B(-3,-2),直线l 过点P(1,2)且过线段AB 相交,则l 的斜率k 的取值范围为 ▲ .12.圆心是(2,3)-,且经过原点的圆的标准方程为 .13. 圆22:2440C x y x y +--+=的圆心到直线l:3440x y ++=的距离d = 3 。
考点测试48 椭圆高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分或12分,中、高等难度考纲研读1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)2.了解椭圆的简单应用 3.理解数形结合的思想一、基础小题1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1C .x 24+y 23=1 D .x 24+y 2=1 答案 C解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =ca⇒a =2,b 2=a 2-c 2=3,因此其方程是x 24+y 23=1,故选C .2.到点A (-4,0)与点B (4,0)的距离之和为10的点的轨迹方程为( ) A .x 225+y 216=1 B .x 225-y 216=1 C .x 225+y 29=1 D .x 225-y 29=1 答案 C解析 由椭圆的定义可知该点的轨迹为焦点在x 轴上的椭圆,而c =4,a =5,故b 2=a 2-c 2=9.故选C .3.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12答案 C解析 依题意,记椭圆的另一个焦点为F ,则△ABC 的周长等于|AB |+|AC |+|BC |=|AB |+|AC |+|BF |+|CF |=(|AB |+|BF |)+(|AC |+|CF |)=43,故选C .4.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 等于( ) A .12 B .2 C .4 D .14 答案 D解析 由x 2+y 21m=1及题意知,21m =2×2×1,m =14,故选D . 5.已知动点M (x ,y )满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段 答案 D解析 设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|,故动点M 的轨迹是线段F 1F 2.故选D .6.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A .514 B .513 C .49 D .59 答案 B解析 由题意知a =3,b =5.由椭圆定义知|PF 1|+|PF 2|=6.在△PF 1F 2中,因为PF 1的中点在y 轴上,O 为F 1F 2的中点,由三角形中位线的性质可推得PF 2⊥x 轴,所以由x =c时可得|PF 2|=b 2a =53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513,故选B .7.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 点P 在线段AN 的垂直平分线上,故|PA |=|PN |,又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |,由椭圆定义知,动点P 的轨迹是椭圆.故选B .8.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.答案 4或8解析 对椭圆的焦点位置进行讨论.由椭圆的焦距为4得c =2,当2<a <6时,椭圆的焦点在x 轴上,则10-a -(a -2)=4,解得a =4;当6<a <10时,椭圆的焦点在y 轴上,则a -2-(10-a )=4,解得a =8.故a =4或a =8.二、高考小题9.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22D .223 答案 C解析 根据题意,可知c =2,因为b 2=4,所以a 2=b 2+c 2=8,即a =22,所以椭圆C 的离心率为e =222=22.故选C . 10.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32 B .2- 3 C .3-12D .3-1 答案 D解析 在△F 1PF 2中,∠F 1PF 2=90°,∠PF 2F 1=60°, 设|PF 2|=m ,则2c =|F 1F 2|=2m ,|PF 1|=3m , 又由椭圆定义可知2a =|PF 1|+|PF 2|=(3+1)m ,则离心率e =c a =2c 2a =2m(3+1)m=3-1.故选D .11.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,A 是C的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23B .12C .13D .14 答案 D解析 依题意易知|PF 2|=|F 1F 2|=2c ,且P 在第一象限内,由∠F 1F 2P =120°可得P 点的坐标为(2c ,3c ).又因为k AP =36,即3c 2c +a =36,所以a =4c ,e =14,故选D . 12.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A .63 B .33 C .23 D .13答案 A解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b ,∴b a =13,∴e =c a =a 2-b 2a =1-⎝ ⎛⎭⎪⎫b a 2=1-⎝⎛⎭⎪⎫132=63.故选A . 13.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c ,0),∴BF →=c +32a ,-b 2,CF→=c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0, 所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0, c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.三、模拟小题14.(2018·山东济南一模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A .x 236+y 232=1B .x 29+y 28=1 C .x 29+y 25=1 D .x 216+y 212=1答案 B解析 椭圆长轴长为6,即2a =6,得a =3,∵两焦点恰好将长轴三等分,∴2c =13·2a=2,得c =1,因此,b 2=a 2-c 2=9-1=8,∴此椭圆的标准方程为x 29+y 28=1.故选B .15.(2018·河南六市一模)已知点A (-1,0)和B (1,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A .55 B .105 C .255 D .2105答案 A解析 A (-1,0)关于直线l :y =x +3的对称点为A ′(-3,2),连接A ′B 交直线l 于点P ,则此时椭圆C 的长轴长最短,为|A ′B |=25,所以椭圆C 的离心率的最大值为15=55.故选A . 16.(2018·四川德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A .24B .12C .8D .6 答案 C解析 ∵P 为椭圆C :x 249+y 224=1上一点,|PF 1|∶|PF 2|=3∶4,|PF 1|+|PF 2|=2a =14,∴|PF 1|=6,|PF 2|=8,又∵|F 1F 2|=2c =249-24=10,∴易知△PF 1F 2是直角三角形,S △PF 1F 2=12|PF 1|·|PF 2|=24,∵△PF 1F 2的重心为点G ,∴S △PF 1F 2=3S △GPF 1,∴△GPF 1的面积为8,故选C .17.(2018·安徽宣城二模)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM →·NF →=0,则椭圆的离心率为( )A .32 B .2-12 C .3-12 D .5-12答案 D解析 由题意知,M (-a ,0),N (0,b ),F (c ,0),∴NM →=(-a ,-b ),NF →=(c ,-b ).∵NM →·NF →=0,∴-ac +b 2=0,即b 2=ac .又b 2=a 2-c 2,∴a 2-c 2=ac .∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去).∴椭圆的离心率为5-12,故选D .18.(2018·湖南湘东五校联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P 为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是( )A .3-12,1 B .3-12,12C .12,1D .0,12 答案 B解析 由题意可得,|PF 2|2=|F 1F 2|2+|PF 1|2-2|F 1F 2|·|PF 1|cos ∠PF 1F 2=4c 2+4c 2-2·2c ·2c ·cos∠PF 1F 2,即|PF 2|=22c ·1-cos ∠PF 1F 2,所以a =|PF 1|+|PF 2|2=c +2c ·1-cos ∠PF 1F 2,又60°<∠PF 1F 2<120°,∴-12<cos ∠PF 1F 2<12,所以2c <a <(3+1)c ,则13+1<c a <12,即3-12<e <12.故选B .一、高考大题1.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点.线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且F P →+F A →+F B →=0.证明:|FA →|,|FP →|,|FB→|成等差数列,并求该数列的公差.解 (1)证明:设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得m <1-14×3=32,且m >0,即0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则由(1)及题设得(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0),x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P 1,-32,|F P →|=32.于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+31-x 214=2-x 12.同理|F B →|=2-x 22.所以|F A →|+|F B →|=4-12(x 1+x 2)=3.故2|F P →|=|F A →|+|F B →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则 2|d |=||FB →|-|FA →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2. ② 将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.2.(2018·天津高考)设椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.解 (1)设椭圆的焦距为2c ,由已知得c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .由|AB |=a 2+b 2=13,从而a =3,b =2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2),由题意,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1).由△BPM 的面积是△BPQ 面积的2倍, 可得|PM |=2|PQ |,从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1. 易知直线AB 的方程为2x +3y =6,由方程组⎩⎪⎨⎪⎧2x +3y =6,y =kx ,消去y ,可得x 2=63k +2. 由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx消去y ,可得x 1=69k 2+4.由x 2=5x 1,可得9k 2+4=5(3k +2), 两边平方,整理得18k 2+25k +8=0, 解得k =-89,或k =-12.当k =-89时,x 2=-9<0,不符合题意,舍去;当k =-12时,x 2=12,x 1=125,符合题意.所以,k 的值为-12.3.(2017·北京高考)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设M (m ,n ),则D (m ,0),N (m ,-n ), 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n, 所以直线DE 的方程为y =-m +2n(x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n (x -m ),y =n2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n2.由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5. 二、模拟大题4.(2018·湖南衡阳一模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,直线y =1与C 的两个交点间的距离为463.(1)求椭圆C 的方程;(2)分别过F 1,F 2作l 1,l 2满足l 1∥l 2,设l 1,l 2与C 的上半部分分别交于A ,B 两点,求四边形ABF 2F 1面积的最大值.解 (1)易知椭圆过点263,1,所以83a 2+1b2=1,①又c a =12,② a 2=b 2+c 2,③所以由①②③得a 2=4,b 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)设直线l 1的方程为x =my -1,它与C 的另一个交点为D . 将直线l 1与椭圆C 的方程联立,消去x , 得(3m 2+4)y 2-6my -9=0, Δ=144(m 2+1)>0. |AD |=1+m 2·121+m23m 2+4, 又F 2到l 1的距离d =21+m2,所以S △ADF 2=121+m23m 2+4. 令t =1+m 2,t ≥1,则S △ADF 2=123t +1t, 当t =1时,S △ADF 2取得最大值,为3. 又S 四边形ABF 2F 1=12·(|BF 2|+|AF 1|)·d=12(|AF 1|+|DF 1|)·d =12|AD |d =S △ADF 2, 所以四边形ABF 2F 1面积的最大值为3.5.(2018·河南六市三模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,原点到过点A (0,-b )和B (a ,0)的直线的距离为32. (1)求椭圆的方程;(2)设F 1,F 2为椭圆的左、右焦点,过F 2作直线交椭圆于P ,Q 两点,求△PQF 1内切圆半径r 的最大值.解 (1)直线AB 的方程为x a +y -b=1, 即bx -ay -ab =0.原点到直线AB 的距离为|-ab |(-a )2+b 2=32, 即3a 2+3b 2=4a 2b 2,①由e =c a =63,得c 2=23a 2,② 又a 2=b 2+c 2,③所以联立①②③可得a 2=3,b 2=1,c 2=2.故椭圆的方程为x 23+y 2=1. (2)由(1)得F 1(-2,0),F 2(2,0),设P (x 1,y 1),Q (x 2,y 2).易知直线PQ 的斜率不为0,故设其方程为x =ky +2,联立直线与椭圆的方程得 ⎩⎪⎨⎪⎧x =ky +2,x 23+y 2=1,消去x 得(k 2+3)y 2+22ky -1=0. 故⎩⎪⎨⎪⎧ y 1+y 2=-22k k 2+3,y 1y 2=-1k 2+3.④而S △PQF 1=S △F 1F 2P +S △F 1F 2Q =12|F 1F 2||y 1-y 2| =2(y 1+y 2)2-4y 1y 2,⑤将④代入⑤,得 S △PQF 1=2-22k k 2+32+4k 2+3=2 6 k 2+1k 2+3. 又S △PQF 1=12(|PF 1|+|F 1Q |+|PQ |)·r =2a ·r =23r ,所以2 6 k 2+1k 2+3=23r , 故r = 2 k 2+1k 2+3=2k 2+1+2k 2+1≤12, 当且仅当k 2+1=2k 2+1,即k =±1时取等号.故△PQF 1内切圆半径r 的最大值为12. 6.(2018·山东济宁一模)已知椭圆C :x 2a 2+y 24=1(a >2),直线l :y =kx +1(k ≠0)与椭圆C 相交于A ,B 两点,点D 为AB 的中点.(1)若直线l 与直线OD (O 为坐标原点)的斜率之积为-12,求椭圆C 的方程; (2)在(1)的条件下,y 轴上是否存在定点M ,使得当k 变化时,总有∠AMO =∠BMO (O 为坐标原点)?若存在,求出定点M 的坐标;若不存在,请说明理由.解 (1)由⎩⎪⎨⎪⎧ x 2a 2+y 24=1,y =kx +1(k ≠0),得(4+a 2k 2)x 2+2a 2kx -3a 2=0,显然Δ>0, 设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0),则x 1+x 2=-2a 2k 4+a 2k 2,x 1x 2=-3a 24+a 2k 2, ∴x 0=-a 2k 4+a 2k 2,y 0=-a 2k 24+a 2k 2+1=44+a 2k 2, ∴k ·y 0x 0=k ·-4a 2k =-12, ∴a 2=8.∴椭圆C 的方程为x 28+y 24=1. (2)假设存在定点M 符合题意,且设M (0,m ),由∠AMO =∠BMO 得k AM +k BM =0.∴y 1-m x 1+y 2-m x 2=0. 即y 1x 2+y 2x 1-m (x 1+x 2)=0,∴2kx 1x 2+x 1+x 2-m (x 1+x 2)=0.由(1)知x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2, ∴-12k 1+2k 2-4k 1+2k 2+4mk 1+2k 2=0, ∴-16k +4mk 1+2k 2=0,即4k (-4+m )1+2k 2=0, ∵k ≠0,∴-4+m =0,∴m =4.∴存在定点M (0,4),使得∠AMO =∠BMO .精美句子1、善思则能“从无字句处读书”。
07 平面解析几何(选择题、填空题)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1 C .x 23+y 22=1 D .x 22+y 2=1【答案】B 【解析】 【分析】根据离心率及BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1,解得关于a 2,b 2的等量关系式,即可得解.【详解】解:因为离心率e =c a=√1−b 2a 2=13,解得b 2a 2=89,b 2=89a 2, A 1,A 2分别为C 的左右顶点,则A 1(−a,0),A 2(a,0),B 为上顶点,所以B(0,b).所以BA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−b),BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−b),因为BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1 所以−a 2+b 2=−1,将b 2=89a 2代入,解得a 2=9,b 2=8, 故椭圆的方程为x 29+y 28=1.故选:B.2.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .13【答案】A 【解析】 【分析】设P (x 1,y 1),则Q (−x 1,y 1),根据斜率公式结合题意可得y 12−x 12+a 2=14,再根据x 12a 2+y 12b 2=1,将y 1用x 1表示,整理,再结合离心率公式即可得解. 【详解】 解:A (−a,0),设P (x 1,y 1),则Q (−x 1,y 1),则k AP =y 1x 1+a ,k AQ =y1−x 1+a ,故k AP ⋅k AQ =y 1x 1+a ⋅y1−x 1+a=y 12−x12+a 2=14,又x 12a 2+y 12b 2=1,则y 12=b 2(a 2−x 12)a 2,所以b2(a2−x12)a2−x12+a2=14,即b2a2=14,所以椭圆C的离心率e=ca =√1−b2a2=√32.故选:A.3.【2022年全国乙卷】设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2 B.2√2C.3 D.3√2【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A的横坐标,进而求得点A坐标,即可得到答案.【详解】由题意得,F(1,0),则|AF|=|BF|=2,即点A到准线x=−1的距离为2,所以点A的横坐标为−1+2=1,不妨设点A在x轴上方,代入得,A(1,2),所以|AB|=√(3−1)2+(0−2)2=2√2.故选:B4.【2022年全国乙卷】双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.√52B.32C.√132D.√172【答案】C【解析】【分析】依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,可判断N在双曲线的右支,设∠F1NF2=α,∠F2F1N=β,即可求出sinα,sinβ,cosβ,在△F2F1N中由sin∠F1F2N=sin (α+β)求出sin∠F1F2N,再由正弦定理求出|NF1|,|NF2|,最后根据双曲线的定义得到2b= 3a,即可得解;【详解】解:依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,所以OG⊥NF1,因为cos∠F1NF2=35>0,所以N在双曲线的右支,所以|OG|=a,|OF1|=c,|GF1|=b,设∠F1NF2=α,∠F2F1N=β,由cos∠F1NF2=35,即cosα=35,则sinα=45,sinβ=ac,cosβ=bc,在△F 2F 1N 中,sin ∠F 1F 2N =sin (π−α−β)=sin (α+β) =sinαcosβ+cosαsinβ=45×bc +35×ac =3a+4b 5c,由正弦定理得2csinα=|NF 2|sinβ=|NF 1|sin ∠F 1F 2N =5c 2,所以|NF 1|=5c 2sin ∠F 1F 2N =5c 2×3a+4b 5c =3a+4b 2,|NF 2|=5c 2sinβ=5c 2×a c=5a 2又|NF 1|−|NF 2|=3a+4b 2−5a 2=4b−2a2=2a ,所以2b =3a ,即ba =32,所以双曲线的离心率e =c a =√1+b 2a 2=√132故选:C5.【2021年甲卷文科】点()3,0到双曲线221169x y -=的一条渐近线的距离为( ) A .95B .85C .65D .45【答案】A 【解析】 【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可. 【详解】由题意可知,双曲线的渐近线方程为:220169x y -=,即340x y ±=, 结合对称性,不妨考虑点()3,0到直线340x y +=的距离:95d ==. 故选:A.6.【2021年乙卷文科】设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则PB 的最大值为( )A .52B C D .2【答案】A 【解析】 【分析】设点()00,P x y ,由依题意可知,()0,1B ,220015x y +=,再根据两点间的距离公式得到2PB ,然后消元,即可利用二次函数的性质求出最大值. 【详解】设点()00,P x y ,因为()0,1B ,220015x y +=,所以()()()222222200000001251511426444PB x y y y y y y ⎛⎫=+-=-+-=--+=-++ ⎪⎝⎭,而011y -≤≤,所以当014y =-时,PB 的最大值为52.故选:A . 【点睛】本题解题关键是熟悉椭圆的简单几何性质,由两点间的距离公式,并利用消元思想以及二次函数的性质即可解出.易错点是容易误认为短轴的相对端点是椭圆上到上定点B 最远的点,或者认为是椭圆的长轴的端点到短轴的端点距离最大,这些认识是错误的,要注意将距离的平方表示为二次函数后,自变量的取值范围是一个闭区间,而不是全体实数上求最值..7.【2021年乙卷理科】设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可. 【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即 0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得, ()2220c b -≤,显然该不等式不成立. 故选:C . 【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.8.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6【答案】C 【解析】 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .9.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+p =( )A .1B .2C .D .4【答案】B 【解析】【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:d = 解得:2p =(6p =-舍去). 故选:B.10.【2020年新课标1卷理科】已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】 【分析】利用抛物线的定义建立方程即可得到答案. 【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C. 【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 11.【2020年新课标1卷理科】已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-= C .210x y -+= D .210x y ++=【答案】D 【解析】 【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程. 【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l的距离为2d ==>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA当直线MP l ⊥时,min MP =, min 1PA =,此时PM AB ⋅最小. ∴()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得, 10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D. 【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.12.【2020年新课标1卷文科】已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论. 【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP ==根据弦长公式得最小值为2==. 故选:B. 【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题. 13.【2020年新课标1卷文科】设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( )A .72B .3C .52D .2【答案】B 【解析】 【分析】由12F F P 是以P 为直角直角三角形得到2212||||16PF PF +=,再利用双曲线的定义得到12||||2PF PF -=,联立即可得到12||||PF PF ,代入12F F P S =△121||||2PF PF 中计算即可. 【详解】由已知,不妨设12(2,0),(2,0)F F -, 则1,2a c ==,因为12122OP F F ==, 所以点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形, 故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,所以2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,所以12F F P S =△121||||32PF PF = 故选:B 【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.14.【2020年新课标2卷理科】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B 【解析】 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a , 圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5, 圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==所以,圆心到直线230x y --=. 故选:B. 【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.15.【2020年新课标2卷理科】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B 【解析】 【分析】 因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2c =结合均值不等式,即可求得答案. 【详解】2222:1(0,0)x y C a b a b-=>>∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b - ∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c ===当且仅当a b == ∴C 的焦距的最小值:8故选:B. 【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.16.【2020年新课标3卷理科】设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B. 【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.17.【2020年新课标3卷理科】设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A .1B .2C .4D .8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca =,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A. 【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.18.【2020年新课标3卷文科】在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( )A .圆B .椭圆C .抛物线D .直线【答案】A 【解析】 【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可. 【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-, 从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB . 故选:A. 【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.19.【2020年新课标3卷文科】点(0,﹣1)到直线()1y k x =+距离的最大值为( )A .1 BC D .2【答案】B 【解析】 【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果. 【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B. 【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.20.【2022年新高考1卷】已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1 B .直线AB 与C 相切 C .|OP|⋅|OQ|>|OA |2 D .|BP|⋅|BQ|>|BA|2【答案】BCD 【解析】 【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D. 【详解】将点A 的代入抛物线方程得1=2p ,所以抛物线方程为x 2=y ,故准线方程为y =−14,A 错误; k AB =1−(−1)1−0=2,所以直线AB 的方程为y =2x −1,联立{y =2x −1x 2=y ,可得x 2−2x +1=0,解得x =1,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点, 所以,直线l 的斜率存在,设其方程为y =kx −1,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx −1x 2=y,得x 2−kx +1=0,所以{Δ=k 2−4>0x 1+x 2=k x 1x 2=1,所以k >2或k <−2,y 1y 2=(x 1x 2)2=1,又|OP|=√x 12+y 12=√y 1+y 12,|OQ|=√x 22+y 22=√y 2+y 22, 所以|OP|⋅|OQ|=√y 1y 2(1+y 1)(1+y 2)=√kx 1×kx 2=|k|>2=|OA|2,故C 正确; 因为|BP|=√1+k 2|x 1|,|BQ|=√1+k 2|x 2|,所以|BP|⋅|BQ|=(1+k 2)|x 1x 2|=1+k 2>5,而|BA|2=5,故D 正确. 故选:BCD21.【2022年新高考2卷】已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°【答案】ACD 【解析】【分析】由|AF |=|AM |及抛物线方程求得A(3p 4,√6p2),再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得B(p 3,−√6p3),即可求出|OB |判断B 选项;由抛物线的定义求出|AB |=25p 12即可判断C 选项;由OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ <0,MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ <0求得∠AOB ,∠AMB 为钝角即可判断D 选项. 【详解】对于A ,易得F(p2,0),由|AF |=|AM |可得点A 在FM 的垂直平分线上,则A 点横坐标为p2+p 2=3p 4,代入抛物线可得y 2=2p ⋅3p 4=32p2,则A(3p 4,√6p2),则直线AB 的斜率为√6p23p 4−p2=2√6,A 正确; 对于B ,由斜率为2√6可得直线AB 的方程为x =2 √6+p2,联立抛物线方程得y 2−√6−p 2=0,设B(x 1,y 1),则√62p +y 1=√66p ,则y 1=−√6p3,代入抛物线得(−√6p 3)2=2p ⋅x 1,解得x 1=p3,则B(p 3,−√6p3),则|OB |=√(p 3)2+(−√6p 3)2=√7p 3≠|OF |=p 2,B 错误;对于C ,由抛物线定义知:|AB |=3p 4+p 3+p =25p 12>2p =4|OF |,C 正确;对于D ,OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =(3p 4,√6p 2)⋅(p 3,−√6p 3)=3p 4⋅p 3+√6p 2⋅(−√6p 3)=−3p 24<0,则∠AOB 为钝角, 又MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ =(−p 4,√6p 2)⋅(−2p 3,−√6p 3)=−p 4⋅(−2p 3)+√6p 2⋅(−√6p3)=−5p 26<0,则∠AMB 为钝角,又∠AOB +∠AMB +∠OAM +∠OBM =360∘,则∠OAM +∠OBM <180∘,D 正确. 故选:ACD.22.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【解析】 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误. 【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB4==>,所以,点P 到直线AB 42<,410<,A 选项正确,B 选项错误; 如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM =4MP =,由勾股定理可得BP =CD 选项正确. 故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.23.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【答案】ABD 【解析】 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【详解】圆心()0,0C 到直线l 的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r ,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r ,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r ,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +, 所以2d r ,直线l 与圆C 相切,故D 正确.故选:ABD.24.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线【答案】ACD 【解析】 【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线. 【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y =,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.25.【2022年全国甲卷】设点M 在直线2x +y −1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为______________. 【答案】(x −1)2+(y +1)2=5 【解析】 【分析】设出点M 的坐标,利用(3,0)和(0,1)均在⊙M 上,求得圆心及半径,即可得圆的方程. 【详解】解:∵点M在直线2x+y−1=0上,∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴√(a−3)2+(1−2a)2=√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=√5,⊙M的方程为(x−1)2+(y+1)2=5.故答案为:(x−1)2+(y+1)2=526.【2022年全国甲卷】记双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值______________.【答案】2(满足1<e≤√5皆可)【解析】【分析】根据题干信息,只需双曲线渐近线y=±ba x中0<ba≤2即可求得满足要求的e值.【详解】解:C:x2a2−y2b2=1(a>0,b>0),所以C的渐近线方程为y=±bax,结合渐近线的特点,只需0<ba ≤2,即b2a2≤4,可满足条件“直线y=2x与C无公共点”所以e=ca =√1+b2a2≤√1+4=√5,又因为e>1,所以1<e≤√5,故答案为:2(满足1<e≤√5皆可)27.【2022年全国甲卷】若双曲线y2−x2m2=1(m>0)的渐近线与圆x2+y2−4y+3=0相切,则m=_________.【答案】√33【解析】【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线y2−x2m2=1(m>0)的渐近线为y=±xm,即x±my=0,不妨取x+my=0,圆x2+y2−4y+3=0,即x2+(y−2)2=1,所以圆心为(0,2),半径r =1,依题意圆心(0,2)到渐近线x +my =0的距离d =√1+m 2=1,解得m =√33或m =−√33(舍去).故答案为:√33.28.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.【答案】(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x−85)2+(y −1)2=16925;【解析】 【分析】设圆的方程为x 2+y 2+Dx +Ey +F =0,根据所选点的坐标,得到方程组,解得即可; 【详解】解:依题意设圆的方程为x 2+y 2+Dx +Ey +F =0,若过(0,0),(4,0),(−1,1),则{F =016+4D +F =01+1−D +E +F =0 ,解得{F =0D =−4E =−6 ,所以圆的方程为x 2+y 2−4x −6y =0,即(x −2)2+(y −3)2=13; 若过(0,0),(4,0),(4,2),则{F =016+4D +F =016+4+4D +2E +F =0 ,解得{F =0D =−4E =−2 , 所以圆的方程为x 2+y 2−4x −2y =0,即(x −2)2+(y −1)2=5; 若过(0,0),(4,2),(−1,1),则{F =01+1−D +E +F =016+4+4D +2E +F =0 ,解得{F =0D =−83E =−143 ,所以圆的方程为x 2+y 2−83x −143y =0,即(x −43)2+(y −73)2=659;若过(−1,1),(4,0),(4,2),则{1+1−D +E +F =016+4D +F =016+4+4D +2E +F =0,解得{F =−165D =−165E =−2 , 所以圆的方程为x 2+y 2−165x −2y −165=0,即(x −85)2+(y −1)2=16925;故答案为:(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x −85)2+(y −1)2=16925;29.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________.【答案】y =−34x +54或y =724x −2524或x =−1 【解析】 【分析】先判断两圆位置关系,分情况讨论即可. 【详解】圆x 2+y 2=1的圆心为O (0,0),半径为1,圆(x −3)2+(y −4)2=16的圆心O 1为(3,4),半径为4,两圆圆心距为√32+42=5,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为k OO 1=43,所以k l =−34,设方程为y =−34x +t(t >0)O 到l 的距离d =√1+916=1,解得t =54,所以l 的方程为y =−34x +54,当切线为m 时,设直线方程为kx +y +p =0,其中p >0,k <0, 由题意{√1+k 2=1√1+k 2=4 ,解得{k =−724p =2524 ,y =724x −2524 当切线为n 时,易知切线方程为x =−1, 故答案为:y =−34x +54或y =724x −2524或x =−1.30.【2022年新高考1卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________. 【答案】13 【解析】【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13. 【详解】∵椭圆的离心率为e =ca =12,∴a =2c ,∴b 2=a 2−c 2=3c 2,∴椭圆的方程为x 24c2+y 23c 2=1,即3x 2+4y 2−12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,O F 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为√33,斜率倒数为√3, 直线DE的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,判别式∆=(6√3c)2+4×13×9c 2=62×16×c 2, ∴|CD |=√1+(√3)2|y 1−y 2|=2×√∆13=2×6×4×c 13=6,∴ c =138, 得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为|DF 2|+|EF 2|+|DE|=|DF 2|+|EF 2|+|DF 1|+|EF 1|=|DF 1|+|DF 2|+|EF 1|+|EF 2|=2a +2a =4a =13. 故答案为:13.31.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 【答案】[13,32] 【解析】 【分析】首先求出点A 关于y =a 对称点A ′的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可; 【详解】解:A (−2,3)关于y =a 对称的点的坐标为A ′(−2,2a −3),B (0,a )在直线y =a 上, 所以A ′B 所在直线即为直线l ,所以直线l 为y =a−3−2x +a ,即(a −3)x +2y −2a =0;圆C:(x +3)2+(y +2)2=1,圆心C (−3,−2),半径r =1, 依题意圆心到直线l 的距离d =√(a−3)2+22≤1,即(5−5a )2≤(a −3)2+22,解得13≤a ≤32,即a ∈[13,32]; 故答案为:[13,32]32.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 【答案】x +√2y −2√2=0 【解析】 【分析】令AB 的中点为E ,设A (x 1,y 1),B (x 2,y 2),利用点差法得到k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据|MN |求出k 、m ,即可得解; 【详解】解:令AB 的中点为E ,因为|MA |=|NB |,所以|ME |=|NE |, 设A (x 1,y 1),B (x 2,y 2),则x 126+y 123=1,x 226+y 223=1,所以x 126−x 226+y 123−y 223=0,即(x 1−x 2)(x 1+x 2)6+(y 1+y 2)(y 1−y 2)3=0所以(y 1+y 2)(y 1−y 2)(x1−x 2)(x 1+x 2)=−12,即k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =−mk ,即M (−mk ,0),N (0,m ),所以E (−m 2k ,m2), 即k ×m 2−m 2k=−12,解得k =−√22或k =√22(舍去),又|MN |=2√3,即|MN |=√m 2+(√2m)2=2√3,解得m =2或m =−2(舍去), 所以直线AB:y =−√22x +2,即x +√2y −2√2=0;故答案为:x +√2y −2√2=033.【2021年甲卷文科】已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________. 【答案】8 【解析】 【分析】根据已知可得12PF PF ⊥,设12||,||PF m PF n ==,利用勾股定理结合8m n +=,求出mn ,四边形12PFQF 面积等于mn ,即可求解. 【详解】因为,P Q 为C 上关于坐标原点对称的两点, 且12||||PQ F F =,所以四边形12PFQF 为矩形, 设12||,||PF m PF n ==,则228,48m n m n +=+=, 所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.34.【2021年乙卷文科】双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【解析】 【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c =,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===35.【2021年乙卷理科】已知双曲线22:1(0)x C y m m-=>0my +=,则C 的焦距为_________.【答案】4 【解析】 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解. 【详解】0my +=化简得y =,即b a 2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4. 【点睛】本题为基础题,考查由渐近线求解双曲线中参数,焦距,正确计算并联立关系式求解是关键. 36.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【解析】 【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.37.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y = 【解析】 【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程. 【详解】解:由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.38.【2020年新课标1卷理科】已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2 【解析】 【分析】根据双曲线的几何性质可知,2b BF a =,AFc a =-,即可根据斜率列出等式求解即可.【详解】联立2222222{1x cx y a b c b a=-==+,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2. 【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.39.【2020年新课标3卷文科】设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为yx ,则C 的离心率为_________.【解析】 【分析】根据已知可得ba=,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b -=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ==【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.40.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【解析】 【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x - 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =--=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.。
第七章平面解析几何考点测试45直线的方程高考概览高考在本考点的常考题型为选择题,分值5分,中、低等难度考纲研读1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式2.能根据两条直线的斜率判断这两条直线平行或垂直3.掌握确定直线位置的几何要素4.掌握直线方程的几种形式(点斜式、两点式及一般式等),了解斜截式与一次函数的关系一、基础小题1.若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则参数m满足的条件是()3A.m≠-B.m≠02C.m≠0且m≠1D.m≠1答案 D解析由Error!解得m=1,故m≠1时方程表示一条直线.ππ2.直线x sin +y cos =0的倾斜角α是()7 7ππ5π6πA.-B.C.D.7 7 7 7答案 Dπsin7 π6π6π解析∵tanα=-=-tan =tan ,α∈[0,π),∴α=.π7 7 7cos73.过点(-1,2)且倾斜角为30°的直线方程为()A.3x-3y+6+3=0 B.3x-3y-6+3=0C.3x+3y+6+3=0 D.3x+3y-6+3=0答案 A3 3解析∵k=tan30°=,∴直线方程为y-2=(x+1).即3x-3y+6+3=3 30.故选A.4.已知直线l1:(k-3)x+(5-k)y+1=0与l2:2(k-3)x-2y+3=0垂直,则k的值为()A.1或3 B.1或5 C.1或4 D.1或2答案 C解析由题意可得,(k-3)×2(k-3)+(5-k)×(-2)=0,整理得k2-5k+4=0,解得k=1或k=4.故选C.5.如图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2答案 D解析直线l1的倾斜角α1是钝角,故k1<0,直线l2与l3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k3<k2,因此k1<k3<k2,故选D.6.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案 CC C解析由已知得直线Ax+By+C=0在x轴上的截距->0,在y轴上的截距->0,故A B直线经过一、二、四象限,不经过第三象限.故选C.7.在平面直角坐标系中,直线l与直线3x+y-3=0关于x轴对称,则直线l的倾斜角为()ππ5π2πA.B.C.D.6 3 6 3答案 B解析直线的斜截式方程为y=-3x+3,即直线的斜率k=tanα=-3,即α=2π π,所以直线 l 的倾斜角为 ,故选 B .338.在下列四个命题中,正确的有( )①坐标平面内的任何一条直线均有倾斜角与斜率; ②直线的倾斜角的取值范围为[0°,180°]; ③若一直线的斜率为 tan α,则此直线的倾斜角为 α; ④若一直线的倾斜角为 α,则此直线的斜率为 tan α. A .0个 B .1个 C .2个 D .3个 答案 A解析 当倾斜角 α=90°时,其斜率不存在,故①④不正确;直线的倾斜角 α 的取值范围为[0°,180°),故②不正确;直线的斜率 k =tan210°这是可以的,此时倾斜角 α= 30°而不是 210°,故③不正确.故选 A .9.直线 x +(a 2+1)y +1=0的倾斜角的取值范围是( ) π 3π A .0,B . ,π4 4π π π π 3πC .0, ∪ ,πD . , ∪ ,π4 2424答案 B13π解析 ∵直线的斜率 k =- ,∴-1≤k <0,则倾斜角的取值范围是,π.a 2+14 10.直线 2x -my +1-3m =0,当 m 变动时,所有直线都通过定点( )1 1 A .(- ,3) B .(,3 )22 1 1 C .(,-3) D .(- ,-3)22答案 D解析 ∵当 m 变动时,(2x +1)-m (y +3)=0恒成立,∴2x +1=0,y +3=0,∴x =- 1 12(- ,-3)2,y =-3,定点为.故选 D .11.设点 A (-2,3),B (3,2),若直线 ax +y +2=0与线段 AB 没有交点,则 a 的取值范围是( )54A.(-∞,-2]∪[,+∞)34 5B.(-2),35 4C.[-3],2Earlybird4 5D.(-∞,-3]∪[,+∞)2答案 B3--2 5 解析直线ax+y+2=0恒过点M(0,-2),且斜率为-a,∵k MA==-,k MB-2-0 22--24==,3-0 35 4 4 52 33 (-2) 画图可知-a>-且-a< ,∴a∈,.12.已知直线l:ax+y-2-a=0 在x轴和y轴上的截距相等,则实数a=________.答案1或-2解析显然a=0不符合题意,当a≠0时,令x=0,则直线l在y轴上的截距为2+a;2 2令y=0,得直线l在x轴上的截距为1+.依题意2+a=1+,解得a=1或a=-2.a a二、高考小题13.(2013·四川高考)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.答案(2,4)6-2 5--1解析由已知得k AC==2,k BD==-1,所以直线AC的方程为y-2=2(x-3-1 1-71),即2x-y=0,①直线BD的方程为y-5=-(x-1),即x+y-6=0,②联立①②解得Error!所以直线AC与直线BD的交点为P(2,4),此点即为所求点.因为|PA|+|PB|+|PC|+|PD|=|AC|+|BD|,取异于P点的任一点P′.则|P′A|+|P′B|+|P′C|+|P′D|=(|P′A|+|P′C|)+(|P′B|+|P′D|)>|AC|+|BD|=|PA|+|PB|+|PC|+|PD|.故P点就是到点A,B,C,D的距离之和最小的点.故应填(2,4).14.(2014·四川高考)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是________.答案 5解析易知A(0,0),B(1,3),且PA⊥PB,∴|PA|2+|PB|2=|AB|2=10,∴|PA|·|PB|≤|PA|2+|PB|2=5(当且仅当|PA|=|PB|=5时取“=”).2三、模拟小题15.(2018·重庆一诊)若过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围是()A.(-2,1) B.(-1,2)C.(-∞,0) D.(-∞,-2)∪(1,+∞)答案 A解析∵过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,∴直线的斜率小于0,2a-a-1 a-1即<0,即<0,解得-2<a<1,故选A.3-1+a2+a16.(2018·佛山质检)在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx +y+a=0有可能是()答案 B解析当a,b≠0时,两直线在x轴上的截距符号相同,故选B.17.(2019·石家庄调研)已知直线l的斜率为k(k≠0),它在x轴,y轴上的截距分别为k,2k,则直线l的方程为()A.2x-y-4=0 B.2x-y+4=0C.2x+y-4=0 D.2x+y+4=0答案 D2k-0解析依题意得直线l过点(k,0)和(0,2k),所以其斜率k==-2,由点斜式得0-k直线l的方程为y=-2(x+2),化为一般式是2x+y+4=0.故选D.218.(2018·广西南宁三中月考)设点P是曲线y=x3-3x+上的任意一点,P点处切3线的倾斜角α的取值范围是()π5π2πA.0,∪,πB.,π2 6 3π2ππ5πC.0,∪,πD.,2 3 2 6答案 C解析因为y′=3x2-3≥-3,即切线斜率k≥-3,所以切线倾斜角α的取值π2π范围是0,∪,π.2 319.(2018·江西宜春丰城九中月考)直线l过点A(1,2),且不经过第四象限,则直线l 的斜率的取值范围为()1 1A.0,B.[0,1] C.[0,2] D.0,2 2答案 C解析因为直线l过点A(1,2),且不经过第四象限,作出图象,如图所示,当直线位于如图所示的阴影区域内时满足条件,由图可知,当直线l过A且平行于x轴时,斜率取得最小值,k min=0;当直线l过A(1,2),O(0,0)时,斜率取得最大值,k max=2,所以直线l 的斜率的取值范围是[0,2].故选C.5 20.(2018·豫南九校联考)若θ是直线l的倾斜角,且sinθ+cosθ=,则l的5斜率为()1 1A.-B.-或-22 21C.或2 D.-22答案 D5 解析∵sinθ+cosθ=,①51∴(sinθ+cosθ)2=1+sin2θ=,54 9∴2sinθcosθ=-,∴(sinθ-cosθ)2=,5 5易知sinθ>0,cosθ<0,3 5∴sinθ-cosθ=,②5由①②解得Error!∴tanθ=-2,即l的斜率为-2,故选D.21.(2018·江苏调研)已知经过点P(3,2),且在两坐标轴上截距相等的直线l的方程为________.答案2x-3y=0或x+y-5=0解析设直线l在x,y轴上的截距均为a,若a=0,即l过点(0,0)和(3,2),Earlybird2∴l 的方程为 y = x ,即 2x -3y =0.3 x y 若 a ≠0,则设 l 的方程为 + =1,a a3 2∵l 过点(3,2),∴ + =1,∴a =5,a a∴l 的方程为 x +y -5=0,综上可知,直线 l 的方程为 2x -3y =0或 x +y -5=0.122.(2019·沧州月考)已知直线 y = x +k 与两坐标轴围成的三角形的面积不小于 1,2 则实数 k 的取值范围是________.答案 (-∞,-1]∪[1,+∞)解析 令 y =0,则 x =-2k .令 x =0,则 y =k .故直线与两坐标轴围成的三角形的面 1积为 S = |k |·|-2k |=k 2.由题意知,三角形的面积不小于 1,可得 k 2≥1,所以实数 k 的2 取值范围是 k ≥1 或 k ≤-1.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2018·山西长治月考)在△ABC 中,已知 A (5,-2),B (7,3),且 AC 边的中点 M 在y 轴上,BC 边的中点 N 在 x 轴上,求:(1)顶点 C 的坐标; (2)直线 MN 的方程.解 (1)设点 C 的坐标为(x ,y ),则有x +53+y=0,=0. 22∴x =-5,y =-3, 即点 C 的坐标为(-5,-3).5(2)由题意知,M (0,-2),N (1,0),y ∴直线 MN 的方程为 x - =1,5 2 即 5x -2y -5=0.2.(2018·四川达州月考)直线l过点P(1,4),分别交x轴的正方向和y轴的正方向于A ,B 两点.(1)当|PA |·|PB |最小时,求 l 的方程;(2)当|OA |+|OB |最小时,求 l 的方程.解 依题意,l 的斜率存在,且斜率为负.设 l :y -4=k (x -1)(k <0).4令 y =0,可得 A (1- ,0); k令 x =0,可得 B (0,4-k ).4(1)|PA |·|PB |= (k )· 2+16 1+k 2 41 =-k (1+k 2)=-4(+k )≥8.(注意 k <0)k1 ∴当且仅当=k 且 k <0, k即 k =-1时,|PA |·|PB |取最小值.这时 l 的方程为 x +y -5=0.44 (2)|OA |+|OB |=(1-k )+(4-k )=5-(k +k )≥9. 4∴当且仅当 k = 且 k <0,即 k =-2时,|OA |+|OB |取最小值.这时 l 的方程为 2x +y - k6=0.3.(2018·福建华安月考)设直线 l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线 l 在两坐标轴上的截距相等,求直线 l 的方程;(2)若 a >-1,直线 l 与 x ,y 轴分别交于 M ,N 两点,O 为坐标原点,求△OMN 面积取最 小值时直线 l 的方程.解 (1)当直线 l 经过坐标原点时,该直线在两坐标轴上的截距都为 0,此时 a +2=0, 解得 a =-2,此时直线 l 的方程为-x +y =0,即 x -y =0;当直线 l 不经过坐标原点,即2+aa ≠-2且 a ≠-1时,由直线在两坐标轴上的截距相等可得 =2+a ,解得 a =0,此时直 a +1线 l 的方程为 x +y -2=0.所以直线 l 的方程为 x -y =0或 x +y -2=0.2+a (2)由直线方程可得 M ( ,0),N (0,2+a ),a +1 因为 a >-1,1 2+a所以 S △OMN = · ·(2+a ) 2 a +11 11 [a +1+1]22[a +1+ +2] = × = 2a +1 a +1 1 12 [2 a +1· +2] ≥ × =2,a +1 1 当且仅当 a +1= ,即 a =0时等号成立. a +1此时直线 l 的方程为 x +y -2=0.4.(2018·福建漳州月考)在等腰直角三角形 ABC 中,AB =AC =4,点 P 是边 AB 上异于 A ,B 的一点.光线从点 P 出发,经 BC ,CA 反射后又回到点 P (如图).若光线 QR 经过△ABC 的重心,求 AP 的长?解 以 AB 所在直线为 x 轴,AC 所在直线为 y 轴建立如图所示的坐标系,由题意可知 B (4,0),C (0,4),A (0,0),则直线 BC 的方程为 x +y -4=0,设 P (t,0)(0<t <4),由对称知识可得点 P 关于 BC 所在直线的对称点 P 1的坐标为(4,4- t ),点 P 关于 y 轴的对称点 P 2的坐标为(-t,0),根据反射定律可知 P 1P 2所在直线就是光线 RQ 所在直线.4-t由 P 1,P 2两点坐标可得 P 1P 2所在直线的方程为 y = ·(x +t ),设△ABC 的重心为 G , 4+t4 4易知 G ( 3 )., 34 4因为重心 G Error! , Error!在光线 RQ 上, 3 34 4-t 4所以有 = · ,即 3t 2-4t =0,4+t(+t) 334所以t=0或t=,因为0<t<4,3Earlybird4 4所以t=,即AP=.3 3。
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.圆222460x y x y ++--=的圆心和半径分别是( )A、(1,-B、 C、(1,2),-- D、(1,-二、填空题2.圆心是(2,3)-,且经过原点的圆的标准方程为 .3.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是_________________.4.若直线l 的斜率小于0,则直线l 的倾斜角α的取值范围为___________5.若过点(2,)A m -和(,4)B m 的直线与直线210x y +-=平行,则m =____6.已知两圆01422:,10:222221=-+++=+y x y x C y x C .求经过两圆交点的公共弦所在的直 线方程_______ ____.7.过点M (0,4)、被圆4)1(22=+-y x 截得的线段长为32的直线方程为.8.若圆224x y +=和圆224440x y x y ++-+=关于直线l 对称,则直线l 的方程为_______9.设圆上的点(2,3)A 关于直线20x y +=的对称点仍在这个圆上,且直线10x y -+=截圆的弦长为10.过点(1,0)且倾斜角是直线013=--y x 的倾斜角的两倍的直线方程是 ▲ .11.平面上三条直线210,10,0x y x x ky -+=-=+=,如果这三条直线将平面划分为六部分,则实数k 的取值集合为 .{}0,1,2--12.过定点(1,2)一定可作两条直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是__________.13.若直线y =x +m 与曲线x m 的取值范围是 ▲ .14.直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是____ __.15.若直线的倾斜角的余弦值为45,则与此直线垂直的直线的斜率为____ __. 16.直线250x y -+=与直线260x my +-=平行互相平行,则实数m = .17.已知点(0,2)A 和圆2236:(6)(4)5C x y -+-=,一条光线从A 点出发,射到x 轴后沿圆的切线方向反射,则这条光线从A 点到切点所经过的路程18.与直线210x y --=相切于点(5,2),且圆心在直线90x y --=上的圆的方程为 .19.已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,向量),(b a =,)2,2(--=a b p ,若p m ⊥,边长c =2,角C =3π,则△ABC20.直线x =1的倾斜角为________.三、解答题21.已知⊙O :221x y +=和定点(2,1)A ,由⊙O 外一点(,)P a b 向⊙O 引切线PQ ,切点为Q ,且满足PA PQ =.(1) 求实数a b 、间满足的等量关系;(2) 求线段PQ 长的最小值;(3) 若以P 为圆心所作的⊙P 与⊙O 有公共点,试求半径取最小值时的⊙P 方程.22.已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程;(2)从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有PM =PO ,求使得PM 取得最小值时点P 的坐标.23.如图,已知圆O 的直径AB=4,定直线L 到圆心的距离为4,且直线L ⊥直线AB 。
单元质量测试(七)时间:120分钟满分:150分第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线3x +3y -1=0的倾斜角大小为( ) A .30° B.60° C.120° D.150° 答案 C 解析 ∵k =-33=-3,∴α=120°.故选C .2.“a =2”是“直线y =-ax +2与y =a4x -1垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由a =2得两直线斜率满足(-2)×24=-1,即两直线垂直;由两直线垂直得(-a )×a4=-1,解得a =±2.故选A .3.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±22x B .y =±2x C .y =±2x D .y =±12x答案 A解析 由题意得,双曲线的离心率e =c a =3,故b a=2,故双曲线的渐近线方程为y =±a b x =±22x . 4.(2018·邯郸摸底)已知F 1,F 2分别是双曲线C :x 29-y 27=1的左、右焦点,P 为双曲线C 右支上一点,且|PF 1|=8,则|F 1F 2||PF 2|=( )A .4B .3C .2 2D .2 答案 A解析 由x 29-y 27=1知c 2=a 2+b 2=16,所以|F 1F 2|=2c =8,由双曲线定义知||PF 1|-|PF 2||=2a =6,所以|PF 2|=2或|PF 2|=14(P 在右支上,舍去),所以|F 1F 2||PF 2|=4.5.(2018·福州模拟)已知双曲线C 的两个焦点F 1,F 2都在x 轴上,对称中心为原点,离心率为3.若点M 在C 上,且MF 1⊥MF 2,M 到原点的距离为3,则C 的方程为( )A .x 24-y 28=1 B .y 24-x 28=1C .x 2-y 22=1 D .y 2-x 22=1答案 C解析 显然OM 为Rt △MF 1F 2的中线,则|OM |=12|F 1F 2|=c =3.又e =c a =3a=3,得a =1.进而b 2=c 2-a 2=2.故C 的方程为x 2-y 22=1,故选C .6.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45 答案 C解析 令c =a 2-b 2.如图,据题意,|F 2P |=|F 1F 2|,∠F 1PF 2=30°,∴∠F 1F 2P =120°,∴∠PF 2x =60°,∴|F 2P |=2⎝ ⎛⎭⎪⎫3a 2-c =3a -2c .∵|F 1F 2|=2c ,∴3a -2c =2c ,∴3a =4c ,∴c a =34,即椭圆的离心率为34.故选C .7.(2018·大庆质检一)已知等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=-12x 的准线交于A ,B 两点,|AB |=25,则C 的实轴长为( )A . 2B .2C .2 2D .4 答案 D解析 因为抛物线y 2=-12x 的准线为x =3,而等轴双曲线C 的焦点在x 轴上,所以A ,B 两点关于x 轴对称,且|AB |=25,所以点(3,±5)在双曲线上,代入双曲线的方程x 2-y 2=a 2中得9-5=a 2=4,所以a =2,即2a =4,故双曲线C 的实轴长为4.故选D .8.(2018·乌鲁木齐一诊)已知抛物线y 2=4x 与圆F :x 2+y 2-2x =0,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D ,则下列关于|AB |·|CD |的值的说法中,正确的是( )A .等于1B .等于16C .最小值为4D .最大值为4 答案 A解析 圆F 的方程为(x -1)2+y 2=1.设直线l 的方程为x =my +1.代入y 2=4x 得y2-4my -4=0,y 1y 2=-4.设点A (x 1,y 1),D (x 2,y 2).则|AF |=x 1+1,|DF |=x 2+1,所以|AB |=|AF |-|BF |=x 1,|CD |=|DF |-|CF |=x 2,所以|AB |·|CD |=x 1x 2=116(y 1y 2)2=1.故选A .9.(2018·沈阳质检一)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),O 为坐标原点,F 为双曲线的右焦点,以OF 为直径的圆与双曲线的渐近线交于一点A ,若∠AFO =π6,则双曲线C的离心率为( )A .2B . 3C . 2D .233答案 A解析 如图所示,在△AOF 中,∠OAF =90°,又∠AFO =30°,所以∠AOF =60°,故b a=tan60°=3,所以e =1+b 2a2=2,故选A .10.(2019·唐山模拟)已知F 1,F 2为双曲线Γ:x 2a 2-y 220=1(a >0)的左、右焦点,P 为双曲线Γ左支上一点,直线PF 1与双曲线Γ的一条渐近线平行,PF 1⊥PF 2,则a =( )A . 5B . 2C .4 5D .5 答案 A解析 如图,记PF 2与双曲线的渐近线l 的交点为M .与PF 1平行的双曲线的渐近线为y=25a x ,由PF 1⊥PF 2,得PF 2⊥l ,则F 2(c ,0)到直线l :25ax -y =0的距离为d =25a c25a2+12=25ca 2+20=25.而△OMF 2为直角三角形,所以|OM |=|OF 2|2-|MF 2|2=c 2-20=a .又OM ∥F 1P ,O 是F 1F 2的中点,所以|F 1P |=2|OM |=2a ,|PF 2|=2|MF 2|=45.而由双曲线的定义,有|PF 2|-|PF 1|=2a ,即45-2a =2a ,所以a =5.故选A .11.(2019·衡阳模拟)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,y 轴上的点P在椭圆以外,且线段PF 1与椭圆E 交于点M .若|OM |=|MF 1|=33|OP |,则椭圆E 的离心率为( )A .12B .32C .3-1D .3+12 答案 C解析 过M 作MH ⊥x 轴于点H ,由|OM |=|MF 1|,知H 为OF 1的中点,进而MH 为△PF 1O 的中位线,则M 为F 1P 的中点.从而依题意,有12|F 1P |=33|OP |,即32=|OP ||F 1P |=sin ∠OF 1P ,则∠OF 1P =π3.则△MF 1O 是边长为c 的等边三角形.连接MF 2(F 2为椭圆E 的右焦点),则由OM =OF 1=OF 2可知∠F 1MF 2=π2.故e =2c 2a =|F 1F 2||MF 1|+|MF 2|=2c (1+3)c =21+3=3-1.故选C .12.(2018·合肥质检一)如图,已知椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN 的周长为( )A .20B .10C .2 5D .4 5 答案 D解析 解法一:设点H (0,t ),0<t <2,则由F 1,H 是线段MN 的三等分点,可知点N (c ,2t ),M (-2c ,-t ).则有⎩⎪⎨⎪⎧c 2a 2+4t 24=1,4c 2a 2+t24=1,消去t 2得15e 2=3,则e 2=15.又b =2,则1-e 2=b 2a 2,即1-15=4a2,解得a 2=5,从而由椭圆的定义可知△F 2MN 的周长为4a =45,故选D .解法二:由F 1,H 是线段MN 的三等分点,知H 是线段F 1N 的中点,又O 是F 1F 2的中点,则OH ∥F 2N ,从而F 2N ⊥F 1F 2,故Nc ,b 2a ,H 0,b 22a .又F 1是线段MH 的中点,则M -2c ,-b 22a.由点M 在椭圆上,可得4c 2a 2+b 44a 2×4=1.又b 2=4=a 2-c 2,从而有4(a 2-4)a 2+1a 2=1,解得a 2=5,从而由椭圆的定义可知△F 2MN 的周长为4a =45,故选D .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若k ∈R ,直线y =kx +1与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值范围是________.答案 [-1,3]解析 因为直线y =kx +1恒过定点(0,1),题设条件等价于点(0,1)在圆内或圆上,则02+12-2a ·0+a 2-2a -4≤0且2a +4>0,解得-1≤a ≤3.14.(2018·浙江宁波质检)与圆(x -2)2+y 2=1外切,且与直线x +1=0相切的动圆圆心的轨迹方程是________.答案 y 2=8x解析 设动圆圆心为P (x ,y ),则(x -2)2+y 2=|x +1|+1,依据抛物线的定义结合题意可知动圆圆心P (x ,y )的轨迹是以(2,0)为焦点,x =-2为准线的抛物线,故方程为y 2=8x .15.(2018·贵阳模拟)已知过抛物线y 2=2px (p >0)的焦点F ,且倾斜角为60°的直线与抛物线交于A ,B 两点,若|AF |>|BF |,且|AF |=2,则p =________.答案 1解析 过点A 作AM ⊥x 轴交x 轴于点M ,由∠AFM =60°,|AF |=2得|FM |=1,且点A 到抛物线的准线l :x =-p2的距离为2,而|FM |=1,所以抛物线的焦点F 到准线的距离为1,即p =1.16.已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.答案 12解析 解法一:由椭圆方程知椭圆C 的左焦点为F 1(-5,0),右焦点为F 2(5,0).则M (m ,n )关于F 1的对称点为A (-25-m ,-n ),关于F 2的对称点为B (25-m ,-n ),设MN 中点为(x ,y ),所以N (2x -m ,2y -n ).所以|AN |+|BN |=(2x +25)2+(2y )2+ (2x -25)2+(2y )2=2[](x +5)2+y 2+(x -5)2+y2,故由椭圆定义可知|AN |+|BN |=2×6=12.解法二:根据已知条件画出图形,如图.设MN 的中点为P ,F 1,F 2为椭圆C 的焦点,连接PF 1,PF 2.显然PF 1是△MAN 的中位线,PF 2是△MBN 的中位线,∴|AN |+|BN |=2|PF 1|+2|PF 2|=2(|PF 1|+|PF 2|)=2×6=12.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(2018·河南郑州检测)(本小题满分10分)已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解 (1)由题意,得|MP ||MQ |=5,即(x -26)2+(y -1)2(x -2)2+(y -1)2=5,化简,得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25. 轨迹是以(1,1)为圆心,5为半径的圆. (2)当直线l 的斜率不存在时,l :x =-2, 此时所截得的线段长度为252-32=8, 所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0,圆心(1,1)到直线l 的距离d =|3k +2|k 2+1.由题意,得|3k +2|k 2+12+42=52,解得k =512.所以直线l 的方程为512x -y +236=0,即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.18.(2018·佛山质检一)(本小题满分12分)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的右顶点与抛物线C 2:y 2=2px (p >0)的焦点重合,椭圆C 1的离心率为12,过椭圆C 1的右焦点F 且垂直于x 轴的直线被抛物线C 2截得的弦长为42.(1)求椭圆C 1和抛物线C 2的方程;(2)过点A (-2,0)的直线l 与C 2交于M ,N 两点,点M 关于x 轴的对称点为M ′,证明:直线M ′N 恒过一定点.解 (1)设椭圆C 1的半焦距为c ,依题意,可得a =p2,则C 2:y 2=4ax .代入x =c ,得y 2=4ac ,即y =±2ac ,则有⎩⎪⎨⎪⎧4ac =42,c a =12,a 2=b 2+c 2,解得a =2,b =3,c =1.所以椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=8x .(2)证明:依题意,可知直线l 的斜率不为0, 可设l :x =my -2.联立⎩⎪⎨⎪⎧x =my -2,y 2=8x ,消去x ,整理得y 2-8my +16=0.设点M (x 1,y 1),N (x 2,y 2),则点M ′(x 1,-y 1), 由Δ=(-8m )2-4×16>0,解得m <-1或m >1. 且有y 1+y 2=8m ,y 1y 2=16,m =y 1+y 28,所以直线M ′N 的斜率k M ′N =y 2+y 1x 2-x 1=8mm (y 2-y 1)=8y 2-y 1. 可得直线M ′N 的方程为y -y 2=8y 2-y 1(x -x 2), 即y =8y 2-y 1x +y 2-8(my 2-2)y 2-y 1=8y 2-y 1x +y 2(y 2-y 1)-y 2(y 1+y 2)+16y 2-y 1 =8y 2-y 1x -16y 2-y 1 =8y 2-y 1(x -2). 所以当m <-1或m >1时,直线M ′N 恒过定点(2,0).19.(2019·深圳调研)(本小题满分12分)已知直线l 经过抛物线C :x 2=4y 的焦点F ,且与抛物线C 交于A ,B 两点,抛物线C 在A ,B 两点处的切线分别与x 轴交于点M ,N .(1)求证:AM ⊥MF ;(2)记△AFM 和△BFN 的面积分别为S 1和S 2,求S 1·S 2的最小值. 解 (1)证明:不妨设A (x 1,y 1),B (x 2,y 2), 其中y 1=x 214,y 2=x 224.由导数知识可知,抛物线C 在点A 处的切线l 1的斜率k 1=x 12,则切线l 1的方程y -y 1=x 12(x -x 1),令y =0,可得M x 12,0.因为F (0,1),所以直线MF 的斜率k MF =1-00-x 12=-2x 1.所以k 1·k MF =-1,所以AM ⊥MF . (2)由(1)可知S 1=12|AM |·|MF |,其中|AM |=x 1-x 122+y 21=x 214+y 21=y 1+y 21=y 1·1+y 1,|MF |=x 122+1=y 1+1,所以S 1=12|AM |·|MF |=12(y 1+1)·y 1.同理可得S 2=12(y 2+1)y 2.所以S 1·S 2=14(y 1+1)(y 2+1)y 1y 2=14(y 1y 2+y 1+y 2+1)y 1y 2. 设直线l 的方程为y =kx +1,联立方程组⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,可得x 2-4kx -4=0,所以x 1x 2=-4,所以y 1y 2=(x 1x 2)216=1.所以S 1·S 2=14(y 1+y 2+2)≥14(2y 1y 2+2)=1,当且仅当y 1=y 2时,等号成立. 所以S 1·S 2的最小值为1.20.(2018·太原三模)(本小题满分12分)已知抛物线C 1:y 2=8x 的焦点F 也是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,点P (0,2)在椭圆短轴CD 上,且P C →·P D →=-1. (1)求椭圆C 2的方程;(2)设Q 为椭圆C 2上的一个不在x 轴上的动点,O 为坐标原点,过椭圆C 2的右焦点F 作OQ 的平行线,交椭圆C 2于M ,N 两点,求△QMN 面积的最大值.解 (1)由C 1:y 2=8x ,知焦点F 坐标为(2,0), 所以a 2-b 2=4.由已知得点C ,D 的坐标分别为(0,-b ),(0,b ), 又P C →·P D →=-1,于是4-b 2=-1,解得b 2=5,a 2=9, 所以椭圆C 2的方程为x 29+y 25=1.(2)设点M (x 1,y 1),N (x 2,y 2),Q (x 3,y 3), 直线MN 的方程为x =my +2.由⎩⎪⎨⎪⎧x =my +2,x 29+y25=1,可得(5m 2+9)y 2+20my -25=0.则y 1+y 2=-20m 5m 2+9,y 1y 2=-255m 2+9, 所以|MN |=(1+m 2)[(y 1+y 2)2-4y 1y 2] =(1+m 2)-20m 5m 2+92+1005m 2+9=30(1+m 2)5m 2+9. 因为MN ∥OQ ,所以△QMN 的面积等于△OMN 的面积. 又点O 到直线x =my +2的距离d =21+m2,所以△QMN 的面积S =12|MN |·d=12×30(m 2+1)5m 2+9×2m 2+1=30m 2+15m 2+9. 令 m 2+1=t ,则m 2=t 2-1(t ≥1),S =30t 5(t 2-1)+9=30t 5t 2+4=305t +4t.因为f (t )=5t +4t在[1,+∞)上单调递增,所以当t =1时,f (t )取得最小值9. 所以△QMN 的面积的最大值为103.21.(2018·重庆一模)(本小题满分12分)已知F 1,F 2分别为椭圆C :x 23+y 22=1的左、右焦点,点P (x 0,y 0)在椭圆C 上.(1)求PF 1→·PF 2→的最小值;(2)若y 0>0且PF 1→·F 1F 2→=0,已知直线l :y =k (x +1)与椭圆C 交于两点A ,B ,过点P且平行于直线l 的直线交椭圆C 于另一点Q ,问:四边形PABQ 能否成为平行四边形?若能,请求出直线l 的方程;若不能,请说明理由.解 (1)由题意可知,F 1(-1,0),F 2(1,0),∴PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0),∴PF 1→·PF 2→=x 20+y 20-1=13x 20+1. ∵-3≤x 0≤3,∴PF 1→·PF 2→的最小值为1.(2)∵PF 1→·F 1F 2→=0,∴x 0=-1.∵y 0>0,∴P -1,233. 设A (x 1,y 1),B (x 2,y 2).联立直线与椭圆方程,得(2+3k 2)x 2+6k 2x +3k 2-6=0,由根与系数的关系可知x 1+x 2=-6k 22+3k 2,x 1·x 2=3k 2-62+3k2. ∴由弦长公式可知|AB |=1+k 2|x 1-x 2|=43(1+k 2)2+3k 2. ∵P -1,233,PQ ∥AB , ∴直线PQ 的方程为y -233=k (x +1). 设Q (x 3,y 3).将PQ 的方程代入椭圆方程可知(2+3k 2)x 2+6kk +233x +3k +2332-6=0,∵x 0=-1,∴x 3=2-3k 2-43k 2+3k2, ∴|PQ |=1+k 2·|x 0-x 3|=1+k 2·|4-43k |2+3k2. 若四边形PABQ 为平行四边形,则|AB |=|PQ |,∴43·1+k 2=|4-43k |,解得k =-33. 故符合条件的直线l 的方程为y =-33(x +1), 即x +3y +1=0. 22.(2018·衡阳三模)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a ≥3>b >0)的离心率为63,且椭圆C 上的动点P 到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)椭圆C 上是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A ,B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.解 (1)依题意e =c a =63, 则c 2=23a 2, 所以b 2=a 2-c 2=13a 2. 因为a ≥3,所以b ≥1. 设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b2=1, 所以x 2=a 21-y 2b 2=a 2-3y 2, 所以|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6(y ∈[-b ,b ]).因为b ≥1,当y =-1时,|PQ |有最大值a 2+6=3,可得a =3,所以b =1,c =2.故椭圆C 的方程为x 23+y 2=1. (2)假设存在点M (m ,n )在椭圆C 上,满足题意,所以m 23+n 2=1,m 2=3-3n 2, 设点A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧ mx +ny =1,x 2+y 2=1,得(m 2+n 2)x 2-2mx +1-n 2=0. 所以Δ=4m 2-4(m 2+n 2)(1-n 2)=4n 2(m 2+n 2-1)=8n 2(1-n 2)>0,可得n 2<1.由根与系数的关系得x 1+x 2=2m m 2+n 2, x 1x 2=1-n 2m 2+n 2, 所以y 1y 2=1-mx 1n ·1-mx 2n=1-m (x 1+x 2)+m 2x 1x 2n 2 =1-m 2m 2+n 2, 所以|AB |=(x 1-x 2)2+(y 1-y 2)2 =x 21+y 21+x 22+y 22-2(x 1x 2+y 1y 2) =2-21-n 2m 2+n 2+1-m 2m 2+n 2 =21-1m 2+n 2. 设原点O 到直线AB 的距离为h ,则h =1m 2+n 2,所以S △OAB =12|AB |·h =1m 2+n 21-1m 2+n 2. 设t =1m 2+n 2, 由0≤n 2<1,得m 2+n 2=3-2n 2∈(1,3],所以t ∈13,1, S △OAB =t (1-t )=-t -122+14,t ∈13,1, 所以,当t =12时,S △OAB 面积最大,为12. 此时,点M 的坐标为62,22或62,-22或-62,22或-62,-22.。
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若直线1+=kx y 与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( ) A .⎪⎭⎫ ⎝⎛-72,73B .⎪⎭⎫ ⎝⎛-214,72C .⎪⎭⎫ ⎝⎛-72,73D .⎪⎭⎫ ⎝⎛-214,72(2007重庆文8)2.经过点(2,)M m -、(,4)N m 的直线的斜率等于1,则m 的值为( ) A 、1 B、4 C、1或3 D、1或43.圆O 1:0222=-x y x +和圆O 2: 0422=-y y x +的位置关系是B A .相离B .相交C .外切D .内切(重庆卷3)二、填空题4.方程052422=+-++m y mx y x 表示圆的充要条件是 .5.过两条直线30x y --=和30x y +-=的交点且与直线2370x y -+=平行的直线的方程是____________6.12:0;:(1)0l ax by b l a x y b -+=-++=.若12//l l ,1l 到2l 距离为,a =_______7.经过点(2,3)-且与直线250x y +-=平行的直线方程是 .8.已知04,k <<直线1:2280l kx y k --+=和直线222:2440l x k y k +--=与两坐标轴;围成一个四边形,则使得这个四边形面积最小的k 值为9.平面上三条直线210,10,0x y x x ky -+=-=+=,如果这三条直线将平面划分为六部分,则实数k 的取值集合为 .{}0,1,2--10.无论k 为何实数,直线()2110x k x k ++--=与圆2222240x y ax a a +-+--=恒有公共点,则实数a 的取值范围是 .11.过直线:2l y x =上一点P 作圆22:(8)(1)2C x y -+-=的两条切线1l ,2l .若1l ,2l 关于直线l 对称,则点P 到圆心C 的距离为 .12.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你求OF 的方程: ( )011=⎪⎪⎭⎫⎝⎛-+y a p x13.设A ,B ,C 为单位圆O 上不同的三点,则点集{(,)|,A x y OC xOA yOB ==+02,02}x y <<<<所对应的平面区域的面积为 ▲ .14.若过P (3-a,2+a )和Q (1,3a )的直线的倾斜角为钝角,则实数a 的取值范围为__________.15.过点)2,1(作圆01422=--+x y x 的切线方程为16.若直线y x b =+与曲线x =b 的取值范围是 .17.圆2236x y +=与圆22860x y x y +--=的公共弦所在直线的方程为 .18.已知过两点),4(y A ,)3,2(-B 的直线的倾斜角是0135,则y 等于 。
考点测试48 椭圆高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分或12分,中、高等难度考纲研读1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)2.了解椭圆的简单应用 3.理解数形结合的思想一、基础小题1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1C .x 24+y 23=1 D .x 24+y 2=1 答案 C解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =ca⇒a =2,b 2=a 2-c 2=3,因此其方程是x 24+y 23=1,故选C .2.到点A (-4,0)与点B (4,0)的距离之和为10的点的轨迹方程为( ) A .x 225+y 216=1 B .x 225-y 216=1 C .x 225+y 29=1 D .x 225-y 29=1 答案 C解析 由椭圆的定义可知该点的轨迹为焦点在x 轴上的椭圆,而c =4,a =5,故b 2=a 2-c 2=9.故选C .3.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12答案 C解析 依题意,记椭圆的另一个焦点为F ,则△ABC 的周长等于|AB |+|AC |+|BC |=|AB |+|AC |+|BF |+|CF |=(|AB |+|BF |)+(|AC |+|CF |)=43,故选C .4.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 等于( ) A .12 B .2 C .4 D .14 答案 D解析 由x 2+y 21m=1及题意知,21m =2×2×1,m =14,故选D . 5.已知动点M (x ,y )满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段 答案 D解析 设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|,故动点M 的轨迹是线段F 1F 2.故选D .6.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A .514 B .513 C .49 D .59 答案 B解析 由题意知a =3,b =5.由椭圆定义知|PF 1|+|PF 2|=6.在△PF 1F 2中,因为PF 1的中点在y 轴上,O 为F 1F 2的中点,由三角形中位线的性质可推得PF 2⊥x 轴,所以由x =c时可得|PF 2|=b 2a =53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513,故选B .7.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 点P 在线段AN 的垂直平分线上,故|PA |=|PN |,又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |,由椭圆定义知,动点P 的轨迹是椭圆.故选B .8.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.答案 4或8解析 对椭圆的焦点位置进行讨论.由椭圆的焦距为4得c =2,当2<a <6时,椭圆的焦点在x 轴上,则10-a -(a -2)=4,解得a =4;当6<a <10时,椭圆的焦点在y 轴上,则a -2-(10-a )=4,解得a =8.故a =4或a =8.二、高考小题9.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22D .223 答案 C解析 根据题意,可知c =2,因为b 2=4,所以a 2=b 2+c 2=8,即a =22,所以椭圆C 的离心率为e =222=22.故选C . 10.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32 B .2- 3 C .3-12D .3-1 答案 D解析 在△F 1PF 2中,∠F 1PF 2=90°,∠PF 2F 1=60°, 设|PF 2|=m ,则2c =|F 1F 2|=2m ,|PF 1|=3m , 又由椭圆定义可知2a =|PF 1|+|PF 2|=(3+1)m ,则离心率e =c a =2c 2a =2m(3+1)m=3-1.故选D .11.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,A 是C的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23B .12C .13D .14 答案 D解析 依题意易知|PF 2|=|F 1F 2|=2c ,且P 在第一象限内,由∠F 1F 2P =120°可得P 点的坐标为(2c ,3c ).又因为k AP =36,即3c 2c +a =36,所以a =4c ,e =14,故选D . 12.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A .63 B .33 C .23 D .13答案 A解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b ,∴b a =13,∴e =c a =a 2-b 2a =1-⎝ ⎛⎭⎪⎫b a 2=1-⎝⎛⎭⎪⎫132=63.故选A . 13.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c ,0),∴BF →=c +32a ,-b 2,CF→=c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0, 所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0, c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.三、模拟小题14.(2018·山东济南一模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A .x 236+y 232=1B .x 29+y 28=1 C .x 29+y 25=1 D .x 216+y 212=1答案 B解析 椭圆长轴长为6,即2a =6,得a =3,∵两焦点恰好将长轴三等分,∴2c =13·2a=2,得c =1,因此,b 2=a 2-c 2=9-1=8,∴此椭圆的标准方程为x 29+y 28=1.故选B .15.(2018·河南六市一模)已知点A (-1,0)和B (1,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A .55 B .105 C .255 D .2105答案 A解析 A (-1,0)关于直线l :y =x +3的对称点为A ′(-3,2),连接A ′B 交直线l 于点P ,则此时椭圆C 的长轴长最短,为|A ′B |=25,所以椭圆C 的离心率的最大值为15=55.故选A . 16.(2018·四川德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A .24B .12C .8D .6 答案 C解析 ∵P 为椭圆C :x 249+y 224=1上一点,|PF 1|∶|PF 2|=3∶4,|PF 1|+|PF 2|=2a =14,∴|PF 1|=6,|PF 2|=8,又∵|F 1F 2|=2c =249-24=10,∴易知△PF 1F 2是直角三角形,S △PF 1F 2=12|PF 1|·|PF 2|=24,∵△PF 1F 2的重心为点G ,∴S △PF 1F 2=3S △GPF 1,∴△GPF 1的面积为8,故选C .17.(2018·安徽宣城二模)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM →·NF →=0,则椭圆的离心率为( )A .32 B .2-12 C .3-12 D .5-12答案 D解析 由题意知,M (-a ,0),N (0,b ),F (c ,0),∴NM →=(-a ,-b ),NF →=(c ,-b ).∵NM →·NF →=0,∴-ac +b 2=0,即b 2=ac .又b 2=a 2-c 2,∴a 2-c 2=ac .∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去).∴椭圆的离心率为5-12,故选D .18.(2018·湖南湘东五校联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P 为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是( )A .3-12,1 B .3-12,12C .12,1D .0,12 答案 B解析 由题意可得,|PF 2|2=|F 1F 2|2+|PF 1|2-2|F 1F 2|·|PF 1|cos ∠PF 1F 2=4c 2+4c 2-2·2c ·2c ·cos ∠PF 1F 2,即|PF 2|=22c ·1-cos ∠PF 1F 2,所以a =|PF 1|+|PF 2|2=c +2c ·1-cos ∠PF 1F 2,又60°<∠PF 1F 2<120°,∴-12<cos ∠PF 1F 2<12,所以2c <a <(3+1)c ,则13+1<c a <12,即3-12<e <12.故选B .一、高考大题1.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点.线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且F P →+F A →+F B →=0.证明:|FA →|,|FP →|,|FB→|成等差数列,并求该数列的公差.解 (1)证明:设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得m <1-14×3=32,且m >0,即0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则由(1)及题设得(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0),x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P 1,-32,|F P →|=32.于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+31-x 214=2-x 12.同理|F B →|=2-x 22.所以|F A →|+|F B →|=4-12(x 1+x 2)=3.故2|F P →|=|F A →|+|F B →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则 2|d |=||FB →|-|FA →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2. ② 将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.2.(2018·天津高考)设椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.解 (1)设椭圆的焦距为2c ,由已知得c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .由|AB |=a 2+b 2=13,从而a =3,b =2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2),由题意,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1).由△BPM 的面积是△BPQ 面积的2倍, 可得|PM |=2|PQ |,从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1. 易知直线AB 的方程为2x +3y =6,由方程组⎩⎪⎨⎪⎧2x +3y =6,y =kx ,消去y ,可得x 2=63k +2. 由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx消去y ,可得x 1=69k 2+4.由x 2=5x 1,可得9k 2+4=5(3k +2), 两边平方,整理得18k 2+25k +8=0, 解得k =-89,或k =-12.当k =-89时,x 2=-9<0,不符合题意,舍去;当k =-12时,x 2=12,x 1=125,符合题意.所以,k 的值为-12.3.(2017·北京高考)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设M (m ,n ),则D (m ,0),N (m ,-n ), 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n, 所以直线DE 的方程为y =-m +2n(x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n (x -m ),y =n2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n2.由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5. 二、模拟大题4.(2018·湖南衡阳一模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,直线y =1与C 的两个交点间的距离为463.(1)求椭圆C 的方程;(2)分别过F 1,F 2作l 1,l 2满足l 1∥l 2,设l 1,l 2与C 的上半部分分别交于A ,B 两点,求四边形ABF 2F 1面积的最大值.解 (1)易知椭圆过点263,1,所以83a 2+1b2=1,①又c a =12,② a 2=b 2+c 2,③所以由①②③得a 2=4,b 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)设直线l 1的方程为x =my -1,它与C 的另一个交点为D . 将直线l 1与椭圆C 的方程联立,消去x , 得(3m 2+4)y 2-6my -9=0, Δ=144(m 2+1)>0. |AD |=1+m 2·121+m23m 2+4, 又F 2到l 1的距离d =21+m2,所以S △ADF 2=121+m23m 2+4. 令t =1+m 2,t ≥1,则S △ADF 2=123t +1t, 当t =1时,S △ADF 2取得最大值,为3. 又S 四边形ABF 2F 1=12·(|BF 2|+|AF 1|)·d=12(|AF 1|+|DF 1|)·d =12|AD |d =S △ADF 2, 所以四边形ABF 2F 1面积的最大值为3.5.(2018·河南六市三模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,原点到过点A (0,-b )和B (a ,0)的直线的距离为32. (1)求椭圆的方程;(2)设F 1,F 2为椭圆的左、右焦点,过F 2作直线交椭圆于P ,Q 两点,求△PQF 1内切圆半径r 的最大值.解 (1)直线AB 的方程为x a +y -b=1, 即bx -ay -ab =0.原点到直线AB 的距离为|-ab |(-a )2+b 2=32, 即3a 2+3b 2=4a 2b 2,①由e =c a =63,得c 2=23a 2,② 又a 2=b 2+c 2,③所以联立①②③可得a 2=3,b 2=1,c 2=2.故椭圆的方程为x 23+y 2=1. (2)由(1)得F 1(-2,0),F 2(2,0),设P (x 1,y 1),Q (x 2,y 2).易知直线PQ 的斜率不为0,故设其方程为x =ky +2,联立直线与椭圆的方程得 ⎩⎪⎨⎪⎧x =ky +2,x 23+y 2=1,消去x 得(k 2+3)y 2+22ky -1=0. 故⎩⎪⎨⎪⎧ y 1+y 2=-22k k 2+3,y 1y 2=-1k 2+3.④而S △PQF 1=S △F 1F 2P +S △F 1F 2Q =12|F 1F 2||y 1-y 2| =2(y 1+y 2)2-4y 1y 2,⑤将④代入⑤,得 S △PQF 1=2-22k k 2+32+4k 2+3=2 6 k 2+1k 2+3. 又S △PQF 1=12(|PF 1|+|F 1Q |+|PQ |)·r =2a ·r =23r ,所以2 6 k 2+1k 2+3=23r , 故r = 2 k 2+1k 2+3=2k 2+1+2k 2+1≤12, 当且仅当k 2+1=2k 2+1,即k =±1时取等号.故△PQF 1内切圆半径r 的最大值为12. 6.(2018·山东济宁一模)已知椭圆C :x 2a 2+y 24=1(a >2),直线l :y =kx +1(k ≠0)与椭圆C 相交于A ,B 两点,点D 为AB 的中点.(1)若直线l 与直线OD (O 为坐标原点)的斜率之积为-12,求椭圆C 的方程; (2)在(1)的条件下,y 轴上是否存在定点M ,使得当k 变化时,总有∠AMO =∠BMO (O 为坐标原点)?若存在,求出定点M 的坐标;若不存在,请说明理由.解 (1)由⎩⎪⎨⎪⎧ x 2a 2+y 24=1,y =kx +1(k ≠0),得(4+a 2k 2)x 2+2a 2kx -3a 2=0,显然Δ>0, 设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0),则x 1+x 2=-2a 2k 4+a 2k 2,x 1x 2=-3a 24+a 2k 2, ∴x 0=-a 2k 4+a 2k 2,y 0=-a 2k 24+a 2k 2+1=44+a 2k 2, ∴k ·y 0x 0=k ·-4a 2k =-12, ∴a 2=8.∴椭圆C 的方程为x 28+y 24=1. (2)假设存在定点M 符合题意,且设M (0,m ),由∠AMO =∠BMO 得k AM +k BM =0.∴y 1-m x 1+y 2-m x 2=0. 即y 1x 2+y 2x 1-m (x 1+x 2)=0,∴2kx 1x 2+x 1+x 2-m (x 1+x 2)=0. 由(1)知x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2, ∴-12k 1+2k 2-4k 1+2k 2+4mk 1+2k 2=0, ∴-16k +4mk 1+2k 2=0,即4k (-4+m )1+2k 2=0, ∵k ≠0,∴-4+m =0,∴m =4.∴存在定点M (0,4),使得∠AMO =∠BMO .。