人教版八年级数学上册期中试卷1
- 格式:doc
- 大小:65.50 KB
- 文档页数:2
2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。
答案:b2. 若a的绝对值是5,那么a可能是_________。
答案:5或53. 若a的三次方是27,那么a的平方是_________。
答案:94. 若a的平方根是b,那么b的平方根是_________。
答案:a5. 若a的绝对值是5,那么a的平方是_________。
答案:25三、解答题1. 若一个数的平方根是4,求这个数。
解:设这个数为x,根据题意,有√x = 4。
解这个方程,得到x= 4^2 = 16。
所以这个数是16。
2. 若一个数的三次方是8,求这个数。
解:设这个数为y,根据题意,有y^3 = 8。
解这个方程,得到y = 2。
所以这个数是2。
3. 若一个数的绝对值是7,求这个数的平方。
解:设这个数为z,根据题意,有|z| = 7。
由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。
无论z是正数还是负数,其平方都是49。
所以这个数的平方是49。
4. 若一个数的平方根是5,求这个数的立方。
解:设这个数为w,根据题意,有√w = 5。
解这个方程,得到w= 5^2 = 25。
求w的立方,得到w^3 = 25^3 = 15625。
所以这个数的立方是15625。
5. 若一个数的绝对值是3,求这个数的立方根。
解:设这个数为v,根据题意,有|v| = 3。
由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。
2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )2.在平面直角坐标系中,点A(−1,4)关于x轴对称的点的坐标为( )A.(1,4)B.( −1,4)C.(0,−4)D.(−1,−4)3.下列正多边形中,内角和是540°的是( )4.如图,用纸板挡住部分三角形后,能用尺规画出与此三角形全等的三角形,其全等的依据是( )A.ASAB.AASC.SASD.HL5.若α为正六边形的一个外角,则α的度数为( )A.45°B.50°C.60°D.72°4题图A5题图B E F C6.如图,△ABF ≌△ACE ,点B 和点C 是对应顶点,则下列结论中不一定...成立的是() A.∠B=∠C B.BE=CF C.∠BAE=∠CAF D.AE=EF7.如图,物业公司计划在小区内修建一个电动车充电桩,要求到A ,B ,C 三个出口的距离都相等,则充电桩应建在( )A.△ABC 的三条高的交点处B.△ABC 的三条角平分线的交点处C.△ABC 的三条中线的交点处D.△ABC 的三条边的垂直平分线的交点处 8.如图,E 是△ABC 的边AC 的中点,CF ∥AB ,连接FE 并延长交AB 于点D ,若AB=9,CF=6,则BD 的长为( )A.1.5B.2C.3D.3.59.如图,在△ABC 中,CD 是边AB 上的高,BE 平分∠ABC ,交CD 于点E ,若BC=10,DE=3,则△BCE 的面积为( )A.14B.15C.18D.30 10.具备下列条件的△ABC ,不是..直角三角形的是( ) A.∠A ︰∠B ︰∠C=5︰2︰3 B.∠A −∠C=∠B C.∠A=∠B=2∠C D.∠A=12∠B=13∠C11.如图,△ABC 与△A 1B 1C ,关于直线MN 对称,P 为MN 上任一点(P 不与AA 1共线),下列结论不正确...的是( ) A.AP=A 1P B.△ABC 与△A 1B 1C 1的面积相等 C.MN 垂直平分线段AA 1 D.直线AB ,A 1B 1的交点不一定在MN 上 12.如图所示,已知在△ABC 中,∠C=90°,AD=AC ,DE ⊥AB 交BC 于点E ,若∠B=28°,A8题图BCEFD 7题图ABC9题图则∠AEC=( )A.28°B.59°C.60°D.62°13.如图,将三角形纸片ABC 翻折,点A 落在点A ´的位置,折痕为DE.若∠A=30°,∠BDA ´=80°,则∠CEA ´的度数为( )A.15°B.20°C.30°D.40°14.如图,小亮和小明分别用尺规作∠APB 的平分线PQ ,则关于两人的作图方法,下列判断正确的是( )A.小亮、小明均正确B.只有小明正确C.只有小亮正确D.小亮、小明均不正确15.如图,AD 为△ABC 的中线,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,下列结论正确的有( )①∠EDF=90°;②∠BAD=∠CAD ;③△BDE ≌△DCF ;④EF ∥BC. A.4个 B.3个 C.2个 D.1个16.有一道题目:“如图,∠AOB=60°,点M ,N 分别在OA ,OB 上运动(不与点O 重合),13题图A CBDE A ´A14题图APP B BQQ小明小亮11题图A MN CBP A 1B 1C 112题图ME 平分∠AMN ,ME 的反向延长线与∠MNO 的平分线交于点F ,在点M ,N 的运动过程中,求∠F 的度数.”甲的解答:∠F 的度数不能确定,它随着点M ,N 的运动而变化,且随∠OMN 的增大而减小;乙的解答:∠F 始终等于45°,下列判断正确的是( )A.甲说的对B.乙说的对C.乙求的结果不对,∠F 始终等于30°D.两人说的都不对,凭已知条件无法确定∠F 的值或变化趋势二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.如图,AB=AC ,点D ,E 分别在AB ,AC 上,连接BE ,CD ,要使△ABE ≌△ACD ,则添加的条件是_______.(只需填一个即可)18.如图,在△ABC 中,AB 的垂直平分线交AC 于点D ,若△BCD 的周长为5,BC=2,则AC 的长为_______,边AB 长的取值范围是_______.19.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E.17题图ACEDB18题图19题图ABCD E16题图A EBFMON 15题图(1)若∠C=50°,∠BAC=60°,则∠ADB的度数为_______.(2)若∠BED=45°,则∠C的度数为_______.(3)猜想∠BED与∠C的数量关系为_______.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.已知一个多边形的边数为n.(1)若n=7,求这个多边形的内角和.比一个四边形的外角和多90°,求n的值.(2)若这个多边形的内角和的1421.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,−4),B(3,−3),C(1,−1).(1)画出△ABC关于y轴对称的△A1B1C1.(2)写出(1)中所画的△A1B1C1的各顶点坐标.(3)连接CC1,BB1,则四边形BCC1B1的面积为_______.22.如图,在Rt△ABC中,∠ACB=90°,D为边AB上一点.将△ACB沿CD折叠,使点A恰好落在边BC上的点E处.(1)若AC=6,BC=8,AB=10,求△BDE 的周长. (2)若∠B=37°,求∠CDE 的度数.23.已知:如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点P ,且PE ⊥AB ,PF ⊥AC ,垂足分别为E 、F. (1)求证:PE=PF.(2)若∠BAC=60°,连接AP ,求∠EAP 的度数.24.在△ABC 中,AF 平分∠BAC ,CD ⊥AF ,垂足为F ,与AB 交于点D.(1)如图1,若∠BAC=80°,∠B=40°,求∠BCD 的度数. (2)如图2,在△ABC 内部作∠ACE=∠B ,求证:∠BCD=∠DCE.A图2图1AAD BEC25.如图,AE=AF ,AE ⊥AF ,点E ,F ,B 在同一直线上,AB=AC ,∠BAC=90°.(1)判断△AEB 与△AFC 是否全等?若全等,请给出证明;若不全等,请说明理由. (2)当EF 和BF 满足什么数量关系时,CE=CB?请给出结论并说明理由.26.【问题提出】如图1,△ABC 是直角三角形,∠BAC=90°,AB=AC ,直线l 经过点A ,分别过点B ,C 向直线l 作垂线,垂足分别为D ,E.求证:△ABD ≌△CAE.【变式探究】若图1中的点B ,C 在直线l 的两侧,其他条件不变(如图2所示),判断△ABD 与△CAE 是否依然全等,并说明理由.【深入思考】如图3,在△ABC 中,AB=AC ,直线l 经过点A ,且点B ,C 位于直线l 的两侧,若∠BDA+∠BAC=180°,∠BDA=∠AEC ,判断线段BD ,CE ,DE 之间的数量关系,并加以说明.图1l图2图3ACD E BlF2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )1.解:D 是轴对称图形,关于对称轴两侧对称且能完全重合,故选D 。
2021-2022学年八年级上学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )A .B .C .D .2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm3.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB4.如图,AB =DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A .BC =BEB .AC =DEC .∠A =∠DD .∠ACB =∠DEB5.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .56.如图,在△ABC 中,AB =AC ,分别以点A 、点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若∠A =40°,则∠DBC =( )A .40°B .30°C .20°D .10°7.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于( ) A .15或17B .16C .14D .14或168.如图,在平面直角坐标系中,AB =2OB ,在坐标轴上取一点P ,使得△ABP 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个9.如图,将长方形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,AB =10,AD =5,下列结论中正确的有( )个. ①△AFC 是等腰三角形 ②△ADF 的面积是758③点B 与点E 关于AC 对称④若直线AD 与直线CE 交于点G ,那么直线FG 垂直平分ACA .1 个B .2 个C .3 个D .4 个10.如图,等腰Rt△ABC中,BC=8√5,以边AC为斜边向右做等腰Rt△ACD,点E是线段CD的中点,连接AE,作线段CE关于直线AC的对称线段CF,连接BF,并延长BF 交线段AE于点G,则线段BG长为()A.16√5B.16√2C.12√5D.12√2二.填空题(共6小题,满分18分,每小题3分)11.在平面直角坐标系xOy中,点P(1,2)关于y轴的对称点Q的坐标是.12.一个多边形的每一个外角为30°,那么这个多边形的边数为.13.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=.14.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD 最小时,∠PCD=°.15.如图,△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB,AC于点E,F,BE=OE,OF=3cm,点O到BC的距离为4cm,则△OFC的面积为cm2.16.下列说法中正确的是(只填番号)①一个多边形的内角和小于其外角和,则这个多边形是四边形;②方程2x+y=7在正整数范围内的解有3组;③关于x的不等式abx>1的解集为x<1ab,则a、b中至少有一个是负数;④直角三角形两锐角平分线相交,所成的钝角的度数是135°三.解答题(共8小题,满分72分)17.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).18.(8分)已知等腰三角形的一边长为18,腰长是底边长的34,试求此三角形的周长.19.(8分)如图,AC ⊥BC ,DC ⊥EC ,AC =BC ,DC =EC ,AE 与BD 交于点F . (1)求证:AE =BD ; (2)求∠AFD 的度数.20.(8分)在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为;(3)在直线l上画出点Q,使得QA+QC的值最小.21.(8分)如图,四边形ABCD中,AD∥BC,DE=EC,连接AE并延长交BC的延长线于点F,连接BE.(1)求证:AE=EF;(2)若BE⊥AF,求证:BC=AB﹣AD.22.(10分)如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;(3)连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.23.(10分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.24.(12分)如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).2021-2022学年八年级上学期期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【解答】解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.3.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.4.如图,AB =DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB【解答】解:A 、添加BC =BE ,可根据SAS 判定△ABC ≌△DBE ,故正确;B 、添加AC =DE ,SSA 不能判定△ABC ≌△DBE ,故错误;C 、添加∠A =∠D ,可根据ASA 判定△ABC ≌△DBE ,故正确;D 、添加∠ACB =∠DEB ,可根据ASA 判定△ABC ≌△DBE ,故正确.故选:B .5.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【解答】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,∴28=12×8×4+12×AC ×4, ∴AC =6.故选:C .6.如图,在△ABC 中,AB =AC ,分别以点A 、点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若∠A =40°,则∠DBC =( )A.40°B.30°C.20°D.10°【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=12(180°﹣40°)=70°,∵AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=30°,故选:B.7.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或16【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.8.如图,在平面直角坐标系中,AB=2OB,在坐标轴上取一点P,使得△ABP为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个【解答】解:如图,在Rt△AOB中,∵AB=2OB,∴∠BAO=30°,当P 在x 轴上时,AB =AP 时,P 点有两个,BP =AP 时,P 点有一个,AB =BP 时,P 点有一个当P 在y 轴上时,AB =BP 时,P 点有两个,BP =AP 时或AB =AP 时,和前面重合, 综上所述:符合条件的P 点有6个,故选:C .9.如图,将长方形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,AB =10,AD =5,下列结论中正确的有( )个.①△AFC 是等腰三角形②△ADF 的面积是758③点B 与点E 关于AC 对称④若直线AD 与直线CE 交于点G ,那么直线FG 垂直平分ACA .1 个B .2 个C .3 个D .4 个【解答】解:如图所示:①∵四边形ABCD 为矩形∴DC ∥AB ,∴∠FCA =∠CAB ,由折叠可知:∠F AC =∠CAB ,∴∠FCA =∠F AC ,∴F A =FC ,∴△AFC 是等腰三角形.∴①正确;②设DF =x ,则FC =F A =10﹣x ,AD =5,∴在Rt △ADF 中,x 2+52=(10﹣x )2,解得x =154, ∴S △ADF =12DF •AD =12×154×5=758.∴△ADF 的面积为758.∴②正确;③∵AB =AE ,CB =CE ,∴AC 是BE 的垂直平分线,∴点B 与点E 关于AC 对称.∴③正确;④如图:延长AD 和CE 交于点G ,连接GF ,∵FD=FE,FG=FG,∴Rt△GDF≌Rt△GEF(HL),∴GD=GE,又AD=CE,∴GA=GC,FD=FE,∴FG是AC的垂直平分线,∴④正确.故选:D.10.如图,等腰Rt△ABC中,BC=8√5,以边AC为斜边向右做等腰Rt△ACD,点E是线段CD的中点,连接AE,作线段CE关于直线AC的对称线段CF,连接BF,并延长BF 交线段AE于点G,则线段BG长为()A.16√5B.16√2C.12√5D.12√2【解答】解:如图,设AC交BG于O.∵∠BCA=∠FCE=90°,∴∠BCF=∠ACE,∵CB=CA,CF=CE,∴△BCF≌△ACE(SAS),∴∠CBF=∠CAE,∵∠BOC=∠AOG,∴∠AGO=∠BCO=90°,∵△ABC,△ACD都是等腰直角三角形,∴∠BAC=∠CAD=45°,∴∠BAD=90°,∴∠ABG+∠BAG=90°,∠BAG+∠EAD=90°,∴∠ABG=∠EAD,∴tan∠ABG=tan∠EAD=DEAD=12,∴AGBG =12,设AG=x,BG=2x,∵AC=BC=8√5,∠ACB=90°,∴AB=√2BC=8√10在Rt△ABG中,则有x2+(2x)2=(8√10)2,∴x=8√2,∴BG=16√2,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.在平面直角坐标系xOy中,点P(1,2)关于y轴的对称点Q的坐标是(﹣1,2).【解答】解:点P(1,2)关于y轴的对称点Q的坐标是:(﹣1,2).故答案为:(﹣1,2).12.一个多边形的每一个外角为30°,那么这个多边形的边数为12.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.13.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=100°.【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故答案为:100°.14.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD 最小时,∠PCD=45°.【解答】解:∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°,∴∠PCD=45°.故答案为:45°.15.如图,△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB,AC于点E,F,BE=OE,OF=3cm,点O到BC的距离为4cm,则△OFC的面积为6 cm2.【解答】解:∵BE =OE ,∴∠EBO =∠EOB ,∵BO 平分∠ABC ,∴∠EBO =∠CBO ,∴∠EOB =∠CBO ,∴EF ∥BC ,∵点O 到BC 的距离为4cm ,∴△COF 中OF 边上的高为4cm ,又∵OF =3cm ,∴△OFC 的面积为12×3×4=6cm 2. 故答案为:6.16.下列说法中正确的是 ②④ (只填番号)①一个多边形的内角和小于其外角和,则这个多边形是四边形;②方程2x +y =7在正整数范围内的解有3组;③关于x 的不等式abx >1的解集为x <1ab,则a 、b 中至少有一个是负数; ④直角三角形两锐角平分线相交,所成的钝角的度数是135°【解答】解:①一个多边形的内角和小于其外角和,则这个多边形是三角形,故这个说法错误;②方程2x +y =7,解得:y =﹣2x +7,当x =1时,y =5;当x =2时,y =3;当x =3时,y =1,则方程的正整数解有3组,故这个说法正确;③关于x 的不等式abx >1的解集为x <1ab ,则a 、b 中只能有一个是负数,故这个说法错误;④如图:∵AE 、BD 是直角三角形中两锐角平分线,∴∠OAB +∠OBA =90°÷2=45°,两角平分线组成的角有两个:∠BOE 与∠EOD 这两个交互补,根据三角形外角和定理,∠BOE =∠OAB +∠OBA =45°,∴∠EOD =180°﹣45°=135°,直角三角形两锐角平分线相交,所成的钝角的度数是135°是正确的.故答案为:②④.三.解答题(共8小题,满分72分)17.(8分)如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,{AB =CB ∠ABE =∠CBD BE =BD,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD ,∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴12•AE •BK =12•CD •BJ , ∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△ABM ≌△DBM ,则AB =BD ,显然不可能,故①错误.故答案为②.18.(8分)已知等腰三角形的一边长为18,腰长是底边长的34,试求此三角形的周长. 【解答】解:∵等腰三角形一边长为18cm ,且腰长是底边长的34, ①如果腰长为18cm ,则底边为24cm ,等腰三角形的三边为18、18、24,能构成三角形,∴C △=18+18+24=60cm ;②如果底长为18cm ,则腰长为13.5cm ,等腰三角形的三边为18、13.5、13.5,能构成三角形,∴C △=13.5+13.5+18=45cm .19.(8分)如图,AC ⊥BC ,DC ⊥EC ,AC =BC ,DC =EC ,AE 与BD 交于点F .(1)求证:AE =BD ;(2)求∠AFD 的度数.【解答】解:(1)∵AC ⊥BC ,DC ⊥EC ,∴∠ACB =∠DCE =90°,∴∠ACE =∠BCD ,在△ACE 和△BCD 中,{AC =BC ∠ACE =∠BCD CE =CD,∴△ACE ≌△BCD (SAS ),∴AE =BD ;(2)设BC 与AE 交于点N ,∵∠ACB =90°,∴∠A +∠ANC =90°,∵△ACE ≌△BCD ,∴∠A =∠B ,∵∠ANC =∠BNF ,∴∠B +∠BNF =∠A +∠ANC =90°,∴∠AFD =∠B +∠BNF =90°.20.(8分)在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n);(3)在直线l上画出点Q,使得QA+QC的值最小.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n),故答案为:(m,2﹣n);(3)如图所示,点Q即为所求.21.(8分)如图,四边形ABCD中,AD∥BC,DE=EC,连接AE并延长交BC的延长线于点F,连接BE.(1)求证:AE=EF;(2)若BE⊥AF,求证:BC=AB﹣AD.【解答】证明:(1)∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE,又∵DE=CE,∴△ADE≌△FCE(AAS),∴AE=EF;(2)∵AE=EF,BE⊥AF,∴AB=BF,∵△ADE≌△FCE,∴AD=CF,∴AB=BC+CF=BC+AD,∴BC=AB﹣AD.22.(10分)如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;(3)连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.【解答】解:(1)如图1所示,(2)OA +AC =OD ,如图1,过B 作BE ⊥x 轴于E ,则四边形AOEB 是矩形,∴BE =AO ,∠ABE =90°,∵AB =AO ,∴AB =BE ,∵BD ⊥BC ,∴∠CBD =90°,∴∠ABC =∠DBE ,在△ABC 与△BDE 中,{∠BAC =∠BED AB =BE ∠ABC =∠DBE,∴△ABC ≌△EBD (ASA ),∴AC =DE ,∵OE =AB =OA ,∴AO +AC =OD ;(3)如图2,由(1)知:△ABC ≌△EBD ,∴BC=BD,∵BD⊥BC,∴△BCD是等腰直角三角形,∴∠BCD=45°,∵BH平分∠CBD,∴∠BHC=90°,∵∠BAO=90°,过H作HN⊥OA,HM⊥AB,∴四边形ANMH是矩形,∴∠NHM=90°,∴∠NHC=∠MHB,∴△CNH≌△BHM(AAS),∴HN=HM,∴AH平分∠CAB,∴∠BAH=45°.23.(10分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.【解答】解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,{AB=AD∠ABE=∠D BE=DN,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,{AE=AN∠EAM=∠NAM AM=AM,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,{AB=AD∠ABM=∠D BM=DF,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠F AN=45°,在△MAN和△F AN中,{AM=AF∠MAN=∠FAN AN=AN,∴△MAN≌△F AN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN=√AD2+DN2=√62+122=6√5,∵AB∥CD,∴△ABQ∽△NDQ,∴BQDQ =AQNQ=ABDN=612=12,∴AQAN =13,∴AQ=13AN=2√5;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM=√AB2+BM2=√62+22=2√10,∵BC ∥AD ,∴△PBM ∽△PDA ,∴PM PA =BM DA =26=13, ∴PM =12AM =√10,∴AP =AM +PM =3√10.24.(12分)如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 DG =BE ;②直线DG 与直线BE 之间的位置关系是 DG ⊥BE ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).【解答】解:(1)①如图②中,∵四边形ABCD 和四边形AEFG 是正方形,∴AE =AG ,AB =AD ,∠BAD =∠EAG =90°,∴∠BAE =∠DAG ,在△ABE 和△DAG 中,{AB =AD ∠BAE =∠DAG AE =AG,∴△ABE ≌△ADG (SAS ),∴BE =DG ;②如图2,延长BE 交AD 于T ,交DG 于H .由①知,△ABE ≌△DAG ,∴∠ABE =∠ADG ,∵∠ATB +∠ABE =90°,∴∠ATB +∠ADG =90°,∵∠ATB =∠DTH ,∴∠DTH +∠ADG =90°,∴∠DHB =90°,∴BE ⊥DG ,故答案为:BE =DG ,BE ⊥DG ;(2)数量关系不成立,DG =2BE ,位置关系成立.如图③中,延长BE 交AD 于T ,交DG 于H .∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴ABAD =AEAG=12,∴△ABE∽△ADG,∴∠ABE=∠ADG,BEDG =1 2,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,第 31 页 共 31 页∴GH ET =AH AT =AG AE =2,∴GH =2x ,AH =2y ,∴4x 2+4y 2=4,∴x 2+y 2=1,∴BG 2+DE 2=(2x )2+(2y +2)2+x 2+(4﹣y )2=5x 2+5y 2+20=25.。
人教版八年级上册数学期中考试试题一、选择题:每小题4分,共40分1.(4 分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.(4 分)在下列长度的四根木棒中,能与4cm、9cm 长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.(4 分)△ABC 中BC 边上的高作法正确的是()A.B.D.C.4.(4 分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形5.(4 分)若一个多边形的内角和是外角和的3 倍,则这个正多边形的边数是()A.10 B.9 C.8 D.66.(4 分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F 的度数为()A.30° B.50° C.80° D.100°7.(4 分)在△ABC 中,∠A 与∠B 互余,则∠C 的大小为()A.60° B.90° C.120° D.150°8.(4 分)下列条件中,不能判定△ABC 是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:29.(4 分)画∠AOB 的平分线的方法步骤是:①以O 为圆心,适当长为半径作弧,交OA 于M 点,交OB 于N 点;②分别以M、N 为圆心,大于MN 的长为半径作弧,两弧在∠AOB 的内部相交于点C;③过点C 作射线OC.射线OC 就是∠AOB 的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS10.(4 分)如图,△ABC 中,AB=AC,∠A=36°,AB 的垂直平分线DE 交AC 于D,交AB 于E,下述结论:(1)BD 平分∠ABC;(2)AD=BD=BC;(3)△BDC 的周长等于AB+BC;(4)D 是AC 的中点.其中正确结论的个数有()A.4 个B.3 个C.2 个D.1 个二、填空题(本大题共6小题,每小题4分,共24分)11.(4 分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是12.(4 分)已知A(2,a)关于x 轴对称点B(b,﹣4),则a+b=13.(4 分)如图,某登山运动员从营地A 沿坡角为30°的斜坡AB 到达山顶B,如果AB=2000 米,则他实际上升了米..14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′((3)计算△ABC的面积.),B′(),C′()18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;(2)添加了条件后,证明△ABC≌△EFD.21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:条条条条条.(2)一个正n边形有条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)25.(12分)如图1,△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D 点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?参考答案与试题解析一、选择题:每小题4分,共40分1.(4 分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(4 分)在下列长度的四根木棒中,能与4cm、9cm 长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9 符合要求.故选:C.3.(4 分)△ABC 中BC 边上的高作法正确的是()A.B.C.D.【解答】解:为△ABC 中BC 边上的高的是D 选项.故选:D.4.(4 分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形【解答】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D 说法错误;故选:D.5.(4 分)若一个多边形的内角和是外角和的3 倍,则这个正多边形的边数是()A.10 B.9 C.8 D.6【解答】解:设多边形有n 条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.6.(4 分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F 的度数为()A.30° B.50° C.80° D.100°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选:B.7.(4 分)在△ABC 中,∠A 与∠B 互余,则∠C 的大小为()A.60° B.90° C.120° D.150°【解答】解:∵∠A 与∠B 互余,∴∠A+∠B=90°,在△ABC中,∠C=180°﹣(∠A+∠B)=180°﹣90°=90°.故选:B.8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.9.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS 可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC 就是∠AOB 的角平分线.故选:A.10.(4 分)如图,△ABC 中,AB=AC,∠A=36°,AB 的垂直平分线DE 交AC 于D,交AB 于E,下述结论:(1)BD 平分∠ABC;(2)AD=BD=BC;(3)△BDC 的周长等于AB+BC;(4)D 是AC 的中点.其中正确结论的个数有()A.4 个B.3 个C.2 个D.1 个【解答】解:∵△ABC 中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB 的垂直平分线DE 交AC 于D,交AB 于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC﹣∠ABD=36°=∠ABD,∴BD 平分∠ABC;故(1)正确;∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故(2)正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故(3)正确;∵AD=BD>CD,∴D不是AC的中点,故(4)错误.故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=6.【解答】解:∵点A(2,a)关于x轴的对称点是B(b,﹣4),∴a=4,b=2,∴a+b=6.故答案为6.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:K62897.【解答】解:实际车牌号是K62897.故答案为:K62897.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为70°或40°.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故填70°或40°.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′((3)计算△ABC的面积.),B′(),C′()【解答】解:(1)(2)A′(1,5),B′(1,0),C′(4,3);(3)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB=5,AB边上的高为3,∴S=.ABC△18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.【解答】解:∵AB∥CD,∴∠1=∠A,∵∠A+∠1=74°,∴∠1=×74°=37°,∴∠ECD=∠1=37°,∵DE⊥AE,∴∠DEC=90°,∴∠D=90°﹣37°=53°.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.【解答】证明:在△ACB与△DCE中,∵∴△ACB≌△DCE(SAS),∴AB=DE,即DE的长就是A、B的距离.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在△BDE和△CFD中,,∴△BDE≌△CDF(AAS),∴DE=DF,∴点D在∠BAC的平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.【解答】证明:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.【解答】解:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AD=AE.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠ABE=∠ACD,∴∠ABC﹣∠ABE=∠ACB﹣∠ACD,∴∠PBC=∠PCB,∴PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的3条4条5条6条7条.(2)一个正n边形有n条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)【解答】解:(1)三角形有3条对称轴;正方形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正七边形有7条对称轴;正八边形有8条对称轴;(2)一个正n边形有n条对称轴;(3)①所作图形如图所示:②所作图形如图所示.故答案为:3,4,5,6,7;n.25.(12分)如图1,△ABC和△DBE中,AB=C B,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;②线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.。
人教版八年级上册数学期中考试试卷一、选择题(每题3分,共30分)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.3,3,6 B.1,5,5 C.1,2,3 D.8,3,43.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.44.已知一个等腰三角形的两边长a、b满足方程组,则此等腰三角形的周长为A.5 B.4 C.3 D.5或45.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OE⊥AC于点E,且OE=2,则AB、CD之间的距离为()A.2 B.4 C.6 D.88.如图,在△ABC中,已知点D,E,F分别为BC,AD,AE的中点,且S△ABC=12cm2,则阴影部分面积S=()cm2.A.1 B.2 C.3 D.49.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=()A.60°B.80°C.70°D.50°10.如图所示,在矩形纸片ABCD中,E,G为AB边上两点,且AE=EG=GB;F,H为CD边上两点,且DF=FH=HC.沿虚线EF折叠,使点A落在点G上,点D落在点H 上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上.叠完后,剪一个直径在EF上的半圆,再展开,则展开后的图形为()A.B.C.D.二、填空题(每题3分,共30分)11.点P(3,2)关于x轴对称的点的坐标为.12.一个多边形的内角和是它的外角和的4倍,这个多边形是边形.13.若等腰三角形的一个角为50°,则它的顶角为.14.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.15.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC 分成三个三角形,则S△ABO:S△BCO:S△CAO等于.16.若直角三角形的一锐角为30°,而斜边与较短边之和为24.那么斜边的长为.17.已知P(m﹣4,3m﹣7)关于y轴的对称点在第一象限,则m的整数解为.18.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是.19.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是.20.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE 经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是(填序号)三.解答题(共50分)21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.22.如图,△ABC和△AED中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD、CE,求证:BD=EC.23.如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.参考答案与试题解析一.选择题(共10小题)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念,可得答案.【解答】解:A、是中心对称图形,故A错误;B、是中心对称图形,故B正确;C、是轴对称图形,故C正确;D、是中心对称图形,故D错误;故选:C.2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.3,3,6 B.1,5,5 C.1,2,3 D.8,3,4【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行判断即可.【解答】解:A、3+3=6,不能构成三角形;B、1+5>5,能够组成三角形;C、1+2=3,不能构成三角形;D、3+4<8,不能构成三角形.故选:B.3.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.4【分析】先求出△ABD的面积,再得出△ADC的面积,最后根据角平分线上的点到角的两边的距离相等可得AC边上的高,从而得解.【解答】解:∵DE=3,AB=6,∴△ABD的面积为,∵S△ABC=15,∴△ADC的面积=15﹣9=6,∵AD平分∠BAC,DE⊥AB于E,∴AC边上的高=DE=3,∴AC=6×2÷3=4,故选:D.4.已知一个等腰三角形的两边长a、b满足方程组,则此等腰三角形的周长为()A.5 B.4 C.3 D.5或4【分析】先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案.【解答】解:解方程组得,所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5.故选:A.5.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选:C.6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.7.如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OE⊥AC于点E,且OE=2,则AB、CD之间的距离为()A.2 B.4 C.6 D.8【分析】要求二者的距离,首先要作出二者的距离,作OF⊥AB,OG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.【解答】解:作OF⊥AB,延长FO与CD交于G点,∵AB∥CD,∴FG垂直CD,∴FG就是AB与CD之间的距离.∵∠ACD平分线的交点,OE⊥AC交AC于E,∴OE=OF=OG,∴AB与CD之间的距离等于2OE=4.故选:B.8.如图,在△ABC中,已知点D,E,F分别为BC,AD,AE的中点,且S△ABC=12cm2,则阴影部分面积S=()cm2.A.1 B.2 C.3 D.4【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=S△ABC=6,同理得到S△EBD=S△EDC=S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=S△BEC=3.【解答】解:∵点D为BC的中点,∴S△ABD=S△ADC=S△ABC=6,∵点E为AD的中点,∴S△EBD=S△EDC=S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF=S△BEC=3,即阴影部分的面积为3cm2.故选:C.9.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=()A.60°B.80°C.70°D.50°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,故选:A.10.如图所示,在矩形纸片ABCD中,E,G为AB边上两点,且AE=EG=GB;F,H为CD边上两点,且DF=FH=HC.沿虚线EF折叠,使点A落在点G上,点D落在点H 上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上.叠完后,剪一个直径在EF上的半圆,再展开,则展开后的图形为()A.B.C.D.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【解答】解:∵在矩形纸片ABCD中,E,G为AB边上两点,且AE=EG=GB;F,H 为CD边上两点,且DF=FH=HC,∴四边形AEFD,EGHF,GBCH是三个全等的矩形.现在把矩形ABCD三等分,标上字母;严格按上面方法操作,剪一个直径在EF上的半圆,展开后实际是从矩形ABCD的一条三等分线EF处剪去一个圆,从一边BC上剪去半个圆.故选:B.二.填空题(共10小题)11.点P(3,2)关于x轴对称的点的坐标为(3,﹣2).【分析】坐标平面内两个点关于x轴对称,则横坐标不变,纵坐标互为相反数.【解答】解:根据轴对称的性质,得点P(3,2)关于y轴对称的点的坐标为(3,﹣2).故答案为:(3,﹣2).12.一个多边形的内角和是它的外角和的4倍,这个多边形是十边形.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.则这个多边形是十边形.故答案为:十.13.若等腰三角形的一个角为50°,则它的顶角为80°或50°.【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【解答】解:当该角为顶角时,顶角为50°;当该角为底角时,顶角为80°.故其顶角为50°或80°.故填50°或80°.14.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】先根据三角形内角和定理计算出∠BAC+∠BCA=180°﹣∠B=140°,则利用邻补角定义计算出∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=220°,再根据角平分线定义得到∠EAC=∠DAC,∠ECA=∠FCA,所以∠EAC+∠ECA=(∠DAC+∠FCA)=110°,然后再利用三角形内角和计算∠AEC的度数.【解答】解:∵∠B=40°,∴∠BAC+∠BCA=180°﹣40°=140°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣140°=220°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=110°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣110°=70°.故答案为:70°.15.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC 分成三个三角形,则S△ABO:S△BCO:S△CAO等于2:3:4.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=20,BC=30,AC=40,∴S△ABO:S△BCO:S△CAO=2:3:4.故答案为:2:3:4.16.若直角三角形的一锐角为30°,而斜边与较短边之和为24.那么斜边的长为16.【分析】设直角三角形的30°角对的边为a,斜边为2a,由题意知3a=18,则a=6.【解答】解:设直角三角形的30°角对的边为a,斜边为2a,由题意知,3a=24,∴a=8,2a=16cm,故答案为16.17.已知P(m﹣4,3m﹣7)关于y轴的对称点在第一象限,则m的整数解为3.【分析】先判断出点M在第二象限,再根据第二象限内点的横坐标是负数,纵坐标是正数列不等式组求解,然后选择即可.【解答】解:∵点P(m﹣4,3m﹣7)关于y轴的对称点在第一象限,∴点P在第二象限,∴,解得:<m<4,∴m的整数解为3,故答案为:3.18.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是1<AD<7.【分析】延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE =AB,再根据三角形的三边关系即可求解.【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,故1<AD<7.故答案为:1<AD<7.19.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是30°.【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD 是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.故答案为:30°.20.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE 经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是①②③(填序号)【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.综上所述,命题①②③正确.故答案为①②③.三.解答题(共4小题)21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.【分析】(1)根据顶点A,C的坐标分别为(﹣4,5),(﹣1,3)建立坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)根据点B′在坐标系中的位置写出其坐标即可.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知,B′(2,1).22.如图,△ABC和△AED中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD、CE,求证:BD=EC.【分析】根据角与角之间的等量关系求出∠BAD=∠EAC,根据SAS证△BAD≌△EAC,根据全等三角形的性质即可得出结论.【解答】证明:∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠EAC﹣∠BAE,∴∠BAD=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴BD=EC.23.如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.【分析】过点E作EM⊥AB于M,EN⊥AC于N,由角平分线的性质可得EM=EN,由“HL”可证Rt△BME≌Rt△CNE,可得∠ABE=∠ACE.【解答】解:过点E作EM⊥AB于M,EN⊥AC于N∵∠BAE=∠CAE,EM⊥AB,EN⊥AC∴EM=EN,且BE=CE∴Rt△BME≌Rt△CNE(HL)∴∠ABE=∠ACE24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.【分析】(1)△ABC,△OBC,△EBO,△CFO,△AEF一共5个等腰三角形,同时可证△BEO≌△CFO,可得EF=EO+FO=BE+CF;(2)由EF∥BC,可得∠2=∠3,又∠1=∠2,∴∠1=∠3,所以△BEO为等腰三角形,在△CFO中,同理可证;(3)由于OE∥BC,可得∠5=∠6,又∠4=∠5,∴∠4=∠6,∴△BEO是等腰三角形,在△CFO中,同理可证△CFO是等腰三角形,【解答】解:(1)图中有5个等腰三角形,EF=BE+CF,∵△BEO≌△CFO,且这两个三角形均为等腰三角形,可得EF=EO+FO=BE+CF;(2)还有两个等腰三角形,为△BEO、△CFO,如下图所示:∵EF∥BC,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴△BEO为等腰三角形,在△CFO中,同理可证.∴EF=BE+CF存在.(3)有等腰三角形:△BEO、△CFO,此时EF=BE﹣CF,∵如下图所示:OE∥BC,∴∠5=∠6,又∠4=∠5,∴∠4=∠6,∴△BEO是等腰三角形,在△CFO中,同理可证△CFO是等腰三角形,∵BE=EO,OF=FC,∴BE=EF+FO=EF+CF,∴EF=BE﹣CF。
人教版八年级上册数学期中考试试卷(考试时间:90分钟试卷满分:120分)一、选择题:本题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下面的图形是用数学家名字命名的,其中是轴对称图形的是()A.赵爽弦图B.费马螺线C.科克曲线D.斐波那契螺旋线2.(2021·珠海市九洲中学八年级期中)一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75°B.60°C.45°D.40°3.(2021·重庆·八年级期中)下列说法错误的是()A.三角形的三条高的交点一定在三角形内部B.三角形的三条中线的交点一定在三角形内部C.三角形的三条角平分线的交点一定在三角形内部D.三角形的三条边的垂直平分线的交点可能在三角形内部,也可能在三角形外部4.(2021·梁河县第一中学八年级月考)打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去5.(2021·珠海市九洲中学八年级期中)如果一个多边形的内角和是720°,那么这个多边形是()A .六边形B .五边形C .四边形D .三角形6.(2021·重庆巴南·八年级期中)如图,在等腰△ABC 中,AB =AC ,点D 、E 、F 分别是边AB 、BC 、CA 上的点,DE 与BF 相交于点G ,BD =BC ,BE =CF ,若∠A =40°,则∠DGF 的度数为( )A .40°B .60°C .70°D .110°7.(2021·重庆巴南·八年级期中)如图,AB ⊥AF ,∠B 、∠C 、∠D 、∠E 、∠F 的关系为( )A .∠B +∠C +∠D +∠E +∠F =270°B .∠B +∠C ﹣∠D +∠E +∠F =270° C .∠B +∠C +∠D +∠E +∠F =360° D .∠B +∠C ﹣∠D +∠E +CF =360° 8.(2021·重庆巴南·八年级期中)如图,△ABC 中,∠B =40°,AC 的垂直平分线交AC 于D ,交BC 于E ,且∠EAB :∠CAE =3:1,则∠C 等于( )A .28°B .25°C .22.5°D .20°9.(2021·北京九年级专题练习)数学课上,老师给出了如下问题:如图1,90B C ∠=∠=︒,E 是BC 的中点,DE 平分ADC ∠,求证:AB CD AD +=. 小明是这样想的:要证明AB CD AD +=,只需要在AD 上找到一点F ,再试图说明AF AB =,DF CD =即可.如图2,经过思考,小明给出了以下3种辅助线的添加方式.①过点E 作EF AD ⊥交AD 于点F ;②作EF EC =,交AD 于点F ;③在AD 上取一点F ,使得DF DC =,连接EF ;上述3种辅助线的添加方式,可以证明“AB CD AD +=”的有( )A .①②B .①③C .②③D .①②③10.(2021·四川省宜宾市第二中学校九年级一模)如图,A ,B ,E 三点在同一直线上,ABC ,CDE △都是等边三角形,连接AD ,BE ,OC :下列结论中正确的是( )①△ACD ≌△BCE ;②△CPQ 是等边三角形;③OC 平分AOE ∠;④△BPO ≌△EDO .A .①②B .①②③C .①②④D .①②③④二、填空题:本题共8个小题,每题3分,共24分。
八年级数学试题一、选择题(每题3分,共24分) 1.下列图案是轴对称图形的有()2•如果一个有理数的平方根和立方根相同,那么这个数是()A. ± 1B. 1C. 0D. 0 和 13.下列说法:①用一张底片冲洗出来的 2张1寸相片是全等形;②所有的正五边形是全等形;③全等形的周长相等;④面积相等的图形一定是全等形•其中正确的是( )4.将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后 AB 与E B 与在同一条直线<X^X>D . 4个A. ①②③B .①③④C .①③D .③上,则/ CBD 的度数 ( )A.大于90°B.等于90°C.小于90°D. 不能确定5.-81的平方根是()A . 9B-9C . 36.估计20的算术平方根的大小在(A . 2与3之间B . 3与4之间D . -3)C . 4与5之间D . 5与6之间7.如图1所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是当输入X 的值为-4时,则输出的结果为 _____________ . 12. 已知等腰三角形的一个内角为70。
,则另外两个内角的度数是 ___________ 一13. 如图,△ ABDACE,则AB 的对应边是 ______________ ,/ BAD 的对应角是 _____ .8.如图,在△ ABC 中,AB=AC ,/ A=36° , BD 、CE 分别是 △ ABC >△ BCD 的角平分线, 则图中的等腰三角形有() A . 5个B . 4个C . 3个D . 2个二、填空题(每题 4分,共32分)9. ____________________________ 无理数-的相反数是 _____ ,绝对值是 10. 在-3 , - <3 , — 1, ________________ 0这四个实数中,最大的是,最小的是 _______________________ ,11.以下是一个简单的数值运算程序: ( )B B图A .B .C .D .14.如图,AD II BC, / ABC 的平分线 BP 与/ BAD 的平分线 AP 相交于点 P ,作 PE 丄 AB 于点E .若PE=2,则两平行线 AD 与BC 间的距离为 ________________ ,15.如图,点 P 在/ AOB 的内部,点 M 、N 分别是点P 关于直线 OA 、OB ?的对称点, 线段MN 交OA 、OB 于点E 、F ,若△ PEF 的周长是 20cm ,则线段 MN 的长是16.如图所示,• E =/F =90 , - B — C , AE 二 AF ,结论:① EM 二 FN :②CD =DN :③N FAN EAM :④厶ACN ABM •其中正确的有 _____________ .三、解答题(共56分)17.计算(每小题5分,共10 分) (1) 1 . 0.81 - 3 -8496(2)血-2彳8-J (-16产(-£)(第 13题图) C(第 14题图)(第16题图)218. (6分)自由下落的物体的高度h (m)与下落时间t (s )的关系为h = 4.9 t •有一学生不慎让一个玻璃杯从19.6 m高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340 m / s)?19. (6分)已知:如图,D是厶ABC的边AB上一点,DF交AC于点E, DE = FE, FC // AB.求证:AD=CF •20. (6分)如图,写出A、B、C关于y轴对称的点坐标,并作出与△ ABC关于x轴对称的图形.>13!2 d i •* -3 -i -IO B (-11"!^ '1 2 3x hL21. (8分)认真观察下图4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1 : _____________________________________________________特征2: _________________________________________________________________(2)请在下图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征22. (8分)如图,两条公路AB, AC相交于点A,现要建个车站D,使得D到A村和B村的距离相等,并且到公路AB、AC的距离也相等.(1)请在图1中画出车站的位置.(2)若将A、B抽象为两个点,公路AC抽象为一条直线,请在直线AC上找一个点M , 使厶ABM是等腰三角形,这样的点能找几个?请你找出所有符合条件的点.C论:AE图1 图223. (10分)在厶ABC 中,AB =CB , / ABC =90o, F 为AB 延长线上一点,点E 在BC 上,且AE =CF •⑴ 求证:Rt △ ABE 也 Rt △ CBF ; (2) 若/ CAE =30o,求/ ACF 度数.24. ( 10分)数学课上,李老师出示了如下框中的题目, 在等边三角形ABC 中,点E 在AB 上, 点D 在CB 的延长线上,且ED=EC ,如图I 试确定线段AE 与DB 的大小关系,并说明 I 理由•I D 十B‘C 1I _______________________________________ I小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结DB (填“〉”,或”“=”.第24题图1第24题图2(2 )特例启发,解答题目解:题目中,AE与DB的大小关系是:AE _ DB (填“〉”,或:”“=”.理由如下:如图2,过点E作EF//BC,交AC于点F .(请你完成以下解答过程)(3 )拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED = EC .若ABC的边长为1,AE =2,求CD的长(请你直接写出结果)一、选择题(24分)1. B2. C3. C4. B5. D6. C7. D8. A二、填空题(32分)9. <3^/3 ; 10. 0, -3 ; 11. 2 ; 12. 70° 40°或55° 55°; 13. AC , / CAE ;14. 4 ; 15. 20cm ;16.①③④.三、解答题(64分)117.(10 分)(1)原式=-0.9_(_2)7 .................................... 2 分61 9= 2亠7 ..................................... 4分6 103 、= 9 ............................................. 5 分20⑵原式=2 - .2 2 -16 (-2) ..................... 2 分4= 2 - • 2 ——32 ..................................... 4 分4= 34 -—V2 ................................................. 5 分418. (6分)解:根据题意得 4.9t2=19.6 ......................... 1分丄2 19.6 八t ....................... 2分4.9t =2 .................... 3 分声音传播所用的时间是19.6" 340、0.6(s) ..................... 4分因为0.6 v 2 ............................................. 5分答:楼下的学生能躲开。
八年级上学期期中复习数学试卷(一)一.选择题(本大题10小题,每小题3分,共30分) 1.下列“表情图”中,属于轴对称图形的是( )A B C D 2.下列长度的各组线段中,能组成三角形的是( )A. 5,9,3B. 3,11,8C. 6.3,6.3,4.4D. 15,8,6 3.点M (3,-4)关于y 轴的对称点的坐标是( )A.(3,4)B.(-3,-4)C.(-3,4)D.(-4,3) 4.下列图形中具有稳定性的是( )A.六边形B.五边形C.平行四边形D.三角形5.如图,下面是利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是( )作法:①以O 为圆心,适当长为半径画弧,分别交OA ,OB 于点D ,E ; ③画射线OC ,射线OC 就是∠AOB 的角平分线.A.SSSB.SASC.ASA 6.已知图中的两个三角形全等,则∠1等于( )A.70°B.68°C.58°D.52°7.已知点A (-2,1),点B (3,2),在x 轴上求一点P ,使AP+BP 下列作法正确的是( ) A.点P 与O (0.0)重合B 连接AB 交y 轴于P ,点P 即为所求.C.过点A 作x 轴的垂线,垂足为P ,点P 即为所求D.作点B 关于x 轴的对称点C ,连接AC ,交x 轴于P ,点P 即为所求8.如图,已知AD 是△ABC 的BC 边上的高,补充下列一个条件不能使△ABD ≌△ACD 的条件是( ) A. ∠B=45° B.BD=CD C.AD 平分∠BAC D.AB=AC9.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A.7 B.6 C.5 D.4BCB BCFBBB10.如图,在△ABC中,AC=BC,BD平分∠ABC,CD平分∠ACB,AE=CE,则∠D和∠AEC的关系为()A. ∠D=∠AECB. ∠D≠∠AECC. 2∠AEC-∠D=180°D. 2∠D-2AEC=180°第8题图第9题图第10题图第11题图二.填空题(本大题共有6小题,每小题3分,共18分)11.如图,在△ABC中,∠A=70°,点D是BC延长线上一点,∠ACD=120°,则∠B= .12.如图,AB交CD于点O,△AOC≌△DOB,若OA=6,OC=3.4,AC=5.6,则AB= .13.已知等腰三角形的一边长为4,另一边长为8,则它的周长是.14.把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠CAE=52°,则∠BEC= .16.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=4cm,DE=3cm,则BC= cm.第12题图第14题图第15 题图第16题图三.解答题(本题共9题,共72分)17.(本小题满分6分)如图,∠1=∠2,∠3=∠4,∠A=80°,求∠BOC的度数AB 18.(本小题满分6分)如图,△ABC ≌△DEC ,点E 在AB 上,∠DCA=40°,请写出AB 的对应边并求∠BCE 的度数.19.(本小题满分6分)如图,AC=BD ,BC=AD ,求证:△EAB 是等腰三角形20.(本小题满分7分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (2,1),B (-1,3),C (-3,2)(1)作出△ABC 关于x 轴对称的△111A B C ; (2)点1A 的坐标 ,点1B 的坐标 ;(3)点P (a ,a-2)与点Q 关于x 轴对称,若PQ=8,则点P 的坐标 21.(本小题满分7分)如图,在等边△ABC 的三边上,分别取点D 、E 、F ,使AD=BE=CF ,求证:△DEF 是等边三角形.EEA 备用图图122.(本小题满分8分)如图,在等边△ABC 中,点D 为AC 上一点,CD=CE ,∠ACE=60° (1)求证:△BCD ≌△ACE ;(2)延长BD 交AE 于F ,连接CF ,若AF=CF ,猜想线段BF 、AF 的数量关系,并证明你的猜想.23.(本小题满分10分)如图,AD 是△ABC 的角平分线,点F 、E 分别在边AC ,AB 上,且BD=FD. (1)求证:∠B+∠ADF=180°; (2)如果∠B+2∠DEA=180°,试探究线段AE ,AF ,FD 之间有何数量关系,并证明你的结论.24.(本小题满分10分)如图,等腰Rt △ACB 中,∠ACB=90°,AC=BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF=AE.(1)如图1,过F 点作FG ⊥AC 交AC 于G 点,求证:△AGF ≌△ECA ;图2图3A图1图2图3(2)如图2,连接BF 交AC 于D 点,若ADCD=3,求证:E 点为BC 中点; (3)如图3,当E 点在CB 的延长线上时,连接BF 与AC 的延长线交于D 点,若43BC BE =,则AD CD =25.(本小题满分12分)已知点A 与点C 为x 轴上关于y 轴对称的两点,点B 为y 轴负半轴上一点。
人教版数学八年级上册期中测试题(一)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.243.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.117.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1913.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB 于点G.求证:CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【考点】待定系数法求正比例函数解析式.【专题】待定系数法.【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选D.2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.24【考点】一次函数图象上点的坐标特征.【专题】数形结合.【分析】求出直线y=3x+6与两坐标轴的交点坐标,画出函数图象,再根据三角形的面积公式求出三角形的面积.【解答】解:设直线与x轴交点坐标为A(x,0),与y轴交点为B(0,y).将A、B两点分别代入解析式得,x=﹣2,y=6.故A、B两点坐标为A(﹣2,0)、B(0,6).于是S=×2×6=6.△ABC如图:3.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o【考点】直角三角形的性质.【专题】计算题.【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:直角三角形中,两锐角三角形度数和为90°,则两锐角的各一半度数和为45°,根据三角形内角和为180°,可得钝角度数为135°,故选B.4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)【考点】坐标与图形性质.【专题】计算题.【分析】因为四边形为正方形,四条边相等,根据正方形的性质与边长为:|AB|=4,从而可计算出D的坐标.【解答】解:设D点的坐标为(x,y),已知四边形为正方形,四条边相等,且易知|AB|=4,AB∥CD,∴C,D两点的从坐标相等,∴y=﹣3,又∵AD∥BC,∴A,D两点的横坐标相等,∴x=﹣3,∴D的坐标为(﹣3,﹣3),故选A.5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司【考点】函数的图象.【专题】计算题;应用题;函数及其图像.【分析】观察函数图象可知,函数的横坐标表示路程,纵坐标表示收费,根据图象上特殊点的意义即可求出答案.【解答】解:A、交点为(2000,2000),那么当月用车路程为2000km,两家汽车租赁公司租赁费用相同,说法正确,不符合题意;B、由图象可得超过2000km时,相同路程,乙公司收费便宜,∴租赁乙汽车租赁公司车比较合算,说法正确,不符合题意;C、由图象易得乙的租赁费较高,当行驶2000千米时,总收费相同,那么可得甲租赁公司每公里收取的费用比乙租赁公司多,说法正确,不符合题意;D、∵由图象易得乙的租赁费较高,说法错误,符合题意,故选:D.6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【考点】角平分线的性质;三角形内角和定理.【专题】计算题.【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.13.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【考点】轴对称的性质.【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【考点】角平分线的性质.【专题】压轴题.【分析】先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【考点】等边三角形的性质;全等三角形的判定;角平分线的性质.【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正确.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】在直角三角形中,根据两锐角互余即可得到∠BAD=20°,根据角平分线的性质可求出∠BAO和∠ABO,最后由三角形外角的性质求得∠AOF=75°.【解答】解:∵AD是高,∠ABC=70°,∴∠BAD=90°﹣70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.【解答】解:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.【考点】全等三角形的判定与性质.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【考点】等腰三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…(3分)在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】作CE⊥AB,利用直角三角形性质求出CE长,和15海里比较即可看出船不改变航向是否会触礁.【解答】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】求证△AFC≌△CEB可得∠ACF=∠BCF,根据等腰三角形底边三线合一即可解题.【解答】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.【考点】作图—基本作图;等边三角形的性质.【专题】作图题.【分析】(1)根据等边三角形的性质得∠ABC=∠ACB=60°,利用∠CFD=∠D,则根据三角形外角性质得到∠ACB=2∠D,即∠D=∠ACB=30°,然后利用FB=FD得到∠FBD=∠D=30°,则BF平分∠ABC,于是根据等边三角形的性质可得到点F为AC的中点;(2)如图,过点F作FE⊥BD于E,利用含30度的直角三角形三边的关系得到CF=2CE,而CD=CF,则CF=2CE,再利用BC=2CF,所以BD=6CE.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BC=4CE,∴BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【专题】压轴题;动点型.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.【解答】证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF(SAS);(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.。
八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。
2022-2023学年八年级上学期期中考前必刷卷01数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A .B .C .D .2.(2021·四川·东坡区实验中学八年级期中)如图,△ABC≌△DEF,若∠A=132°,∠FED=15°,则∠C等于()A.13°B.23°C.33°D.43°3.(2022·江西赣州·八年级期中)若a、b、c为△ABC的三边长,且满足|a﹣5|+2b-=0,则c的值可以为()A.6B.7C.8D.94.(2021·山东烟台·七年级期中)如图,要使ABC ABD△≌△,下面给出的四组条件,错误的一组是()A.C D∠=∠,BAC BAD∠=∠B.BC BD=,AC AD=C.BAC BAD∠=∠,ABC ABD∠=∠D.BD BC=,BAC BAD∠=∠5.(2021·浙江·平阳苏步青学校八年级阶段练习)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.(2021·湖北·襄阳市樊城区青泥湾中学八年级阶段练习)如图,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°则∠O的度数为()A.10°B.15°C.18°D.20°7.(2021·黑龙江·同江市第三中学八年级期中)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.288.(2022·辽宁·丹东第九中学八年级期末)如图,ABC的三边AB,BC,CA的长分别为15,20,25,点O是ABC三条角平分线的交点,则ABOS:BCOS△:CAOS△等于()A .1:1:1B .1:2:3C .2:3:4D .3:4:59.(2022·宁夏·中宁县第三中学八年级期末)如图,在ABC 中,4AB AC ==,15B ∠=︒,CD 是腰AB 上的高,则CD 的长( )A .4B .2C .1D .1210.(2022·北京一七一中八年级阶段练习)如图所示,ABC 的两条角平分线相交于点D ,过点D 作EF ∥BC ,交AB 于点E ,交AC 于点F ,若AEF 的周长为30cm ,则AB AC +=( )cm .A .10B .20C .30D .4011.(2022·全国·八年级专题练习)如图,△ABC 中,AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,若∠BAC =70︒,则∠EAN 的度数为( )A .35︒B .40︒C .50︒D .55︒12.(2022·广东·揭西县宝塔实验学校八年级期中)如图,在△ABC 中,∠C =90°∠B =30°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④1:3ACDACBSS=:.其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE AC ⊥于点E ,Q 为BC 延长线上一点,当AP CQ =时,PQ 交AC 于点D ,则DE 的长为( )A .13B .12C .23D .不能确定14.(2022·陕西·西安爱知初级中学七年级期末)如图,在ABC 中,90BAC ∠=︒,2AB AC =,点D 是线段AB 的中点,将一块锐角为45︒的直角三角板按如图()ADE 放置,使直角三角板斜边的两个端点分别与A 、D 重合,连接BE 、CE ,CE 与AB 交于点.F 下列判断正确的有( )①ACE ≌DBE ;②BE CE ⊥;③DE DF =;④DEFACFSS=A .①②B .①②③C .①②④D .①②③④第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2020·福建省福州延安中学八年级期中)已知点Р(a ,3)和点Q (4,b )关于x 轴对称,则()2021a b +=________.16.(2022·福建省龙岩市永定区第二初级中学九年级期中)如图,将一个正六边形与一个正五边形如图放置,顶点A 、B 、C 、D 四点共线,E 为公共顶点.则∠BEC =_____.17.(2021·福建·福州教院二附中八年级期末)如图,将等边△ABC 的三条边向外延长一倍,得到第一个新的111A B C △,第二次将等边111A B C △的三边向外延长一倍,得到第二个新的222A B C △,依此规律继续延长下去,若△ABC 的面积01S =,则第2022个新的三角形的面积2022S 为________18.(2021·江苏南京·八年级阶段练习)如图,已知△ABC ,AB =AC =10cm ,∠B =∠C ,BC =8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段AC 上由C 点向A 点运动.若点Q 的运动速度为v cm/s ,则当△BPD 与△CQP 全等时,v 的值为_______cm/s .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·重庆·巴川初级中学校八年级期中)如图,已知点B ,E ,C ,F 在一条直线上,BE =CF ,AC DE ∥,A D ∠=∠.(1)求证:△ABC ≌△DFE ; (2)若BF =12,EC =4,求BC 的长.20.(2019·北京市八一中学八年级期中)在直角坐标系中,ABC 的三个顶点的位置如图所示.(1)请画出ABC 关于y 轴对称的A B C '''(其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法); (2)直接写出A ',B ',C '三点的坐标:A '( ),B '( ),C '( )(3)在x 轴上找出点P ,使得点P 到点A 、点B 的距离之和最短(保留作图痕迹)(4)点Q 在坐标轴上,且满足BCQ △是等腰三角形,则所有符合条件的Q 点有__________个.21.(2022·黑龙江大庆·八年级期末)如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1) ①求证CD =CE ;②求证:△ADE 是等边三角形;(2)若D 为直线BC 上任一点(如图2)其他条件不变,“△ADE 是等边三角形”的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.22.(2022·江苏·宜兴外国语学校八年级阶段练习)(1)如图,在7×6的方格中,△ABC 的顶点均在格点上.试只用不带刻度的直尺,按要求画出线段EF (E ,F 均为格点),各画出一条即可.(2)如图,△ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC 的角平分线BD (不写作法,保留作图痕迹).23.(2022·河南信阳·八年级期中)我们通过“三角形全等的判定”的学习,可以知道“两边和它们的夹角分别相等的两个三角形全等”是一个基本事实,用它可以判定两个三角形全等;而满足条件“两边和其中一边所对的角分别相等”的两个三角形却不一定全等.下面请你来探究“两边和其中一边所对的角分别相等的两个三角形不一定全等”.探究:已知△ABC ,求作一个△DEF ,使EF =BC ,∠F =∠C ,DE =AB (即两边和其中一边所对的角分别相等).(1)动手画图:请依据下面的步骤,用尺规完成作图过程(保留作图痕迹): ①画EF =BC ;②在线段EF 的上方画∠F =∠C ; ③画DE =AB ;④顺次连接相应顶点得所求三角形.(2)观察:观察你画的图形,你会发现满足条件的三角形有____个;其中三角形____(填三角形的名称)与△ABC 明显不全等;(3)小结:经历以上探究过程,可得结论:______.24.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC 中,点D 在边BC 延长线上,100ACB ∠=︒,∠ABC 的平分线交AD 于点E ,过点E 作EH ⊥BD ,垂足为H ,且50CEH ∠=︒.(1)求∠ACE 的度数; (2)求证:AE 平分∠CAF ; (3)若AC+CD =14,AB =8.5,且21ACDS=,求△ABE 的面积.25.(2022·全国·八年级专题练习)(1)如图①,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内部点A '的位置时,∠A 、∠1、∠2之间有怎样的数量关系?并说明理由.(2)如图②,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 外部点A '的位置时,∠A 、∠1、∠2之间有怎样的数量关系?并说明理由.(3)如图③,把四边形ABCD 沿EF 折叠,当点A 、D 分别落在四边形BCFE 内部点A '、D 的位置时,你能求出∠A '、∠D 、∠1与∠2之间的数量关系吗?并说明理由.26.(2021·辽宁葫芦岛·八年级期中)如图,在三角形ABC 中,∠ABC =90°,AB =BC ,点A ,B 分别在坐标轴上.(1)如图①,若点C 的横坐标为﹣3,点B 的坐标为 ;(2)如图②,若x 轴恰好平分∠BAC ,BC 交x 轴于点M ,过点C 作CD 垂直x 轴于D 点,试猜想线段CD 与AM 的数量关系,并说明理由;(3)如图③,OB =BF ,∠OBF =90°,连接CF 交y 轴于P 点,点B 在y 轴的正半轴上运动时,△BPC 与△AOB 的面积比是否变化?若不变,直接写出其值,若变化,直接写出取值范围.2022-2023学年八年级上学期期中考前必刷卷01(人教版2022)数学·全解全析【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据△ABC△△DEF,△FED=15°,得△CBA=15°,再根据三角形内角和即可得答案.【详解】解:△△ABC△△DEF,△FED=15°,△△CBA=△FED=15°,△△A=132°,△△C=180°-132°=15°=33°,故选:C.【点睛】本题考查了全等三角形的性质,三角形的内角和,解题的关键是掌握三角形全等的性质.3.A【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值.【详解】解:△|a﹣,△a﹣5=0,a=5;b﹣2=0,b=2;则5﹣2<c<5+2,3<c<7,6符合条件;故选:A.【点睛】本题考查非负数的性质和三角形三条边的关系,准确求出a、b的值是解题的关键.4.D【分析】根据全等三角形的判定定理逐项判定即可.【详解】解:A 、△C D ∠=∠,BAC BAD ∠=∠,AB =AB ,△ABC ABD △≌△(AAS ),正确,故此选项不符合题意;B 、△BC BD =,AC AD =,AB =AB ,△ABC ABD △≌△(SSS ),正确,故此选项不符合题意; C 、△BAC BAD ∠=∠,ABC ABD ∠=∠,AB =AB ,△ABC ABD △≌△(ASA ),正确,故此选项不符合题意;D 、BD BC =,BAC BAD ∠=∠,AB =AB ,两边以及一边对角对应相等,不能判定ABC ABD △≌△,故此选项符合题意;故选:D .【点睛】本题考查全靠等三角形的判定,熟练掌握全靠三角形判定定理:SSS ,SAS ,ASA ,AAS ,HL 是解题的关键. 5.D【分析】若使PA +PC =BC ,则PA =PB ,点P 在线段AB 的垂直平分线上,需要做线段AB 的垂直平分线.【详解】解:A.由作图可知BA =BP ,△BC =BP +PC =BA +PC ,故A 不符合题意; B.由作图可知PA =PC ,△BC =BP +PC =BP +PA ,故B 不符合题意; C.由作图可知AC =PC ,△BC =BP +PC =BP +AC ,故C 不符合题意; D.由作图可知PA =PB ,△BC =BP +PC =PA +PC ,故D 符合题意; 故选:D.【点睛】本题考查了垂直平分线的性质及作图,熟练掌握垂直平分线的作图方法是解题关键. 6.C【分析】设△O=x ,进而根据三角形外角的性质表示出△2,即可表示出△3,同理表示出△4,可得△5,再表示出△6,即可△7,最后根据△8=△O +△7得出答案即可. 【详解】设△O=x ,△△2是△ABO 的外角,且△O =△1, △△2=△O +△1=2x , △△3=△2=2x . △△4是△BCO 的外角, △△4=△O +△3=3x , △△5=△4=3x . △△6是△CDO 的外角, △△6=△O +△5=4x , △△7=△6=4x .△△8是△DEO 的外角, △△8=△O +△7=5x , 即5x =90°, 解得x =18°. 故选:C .【点睛】本题主要考查了三角形的外角的性质,根据三角形外角的性质得出待求角之间的等量关系是解题的关键. 7.B【分析】根据垂直平分线的性质可得EC =AE ,据此即可作答. 【详解】△ED 是边AC 的垂直平分线, △AE =EC ,△AB =10厘米,BC =8厘米,△BC +CE +EB =BC +AE +EB =BC +AB =18厘米, 即△BEC 的周长为18厘米, 故选:B .【点睛】本题主要考查了垂直平分线的性质,根据垂直平分线的性质可得EC =AE ,是解答本题的关键. 8.D【分析】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,利用角平分线的性质得到OD OE OF ==,然后根据三角形面积公式得到ABOS:BCO S △:CAOS AB =:BC :AC .【详解】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,点O 是ABC 三条角平分线的交点, OD OE OF ∴==,ABO S∴:BCO S △:12CAOSAB OD ⎛⎫=⋅ ⎪⎝⎭:12OE BC ⎛⎫⋅ ⎪⎝⎭:12OF AC AB ⎛⎫⋅= ⎪⎝⎭:BC :15AC =:20:253=:4:5.故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积公式. 9.B【分析】根据三角形外角的性质得30DAC ∠=︒,再利用含30角的直角三角形的性质可得CD的长. 【详解】解:AB AC =,15B ∠=︒,15ACB B ∴∠=∠=︒,30DAC ∴∠=︒,CD 是腰AB 上的高, CD AB ∴⊥,122CD AC ∴==, 故选:B【点睛】本题主要考查了等腰三角形的性质,含30角的直角三角形的性质等知识,求出30DAC ∠=︒是解题的关键.10.C【分析】利用平行线的性质和角平分线的定义得到△EBD =△EDB ,证出ED =EB ,同理DF =FC ,则△AEF 的周长即为AB +AC ,可得出答案. 【详解】解:△EF ∥BC , △△EDB =△DBC , △BD 平分△ABC , △△ABD =△DBC , △△EBD =△EDB , △ED =EB , 同理:FD =FC ,△AE +AF +EF =AE +EB +AF +FC =AB +AC =30cm , 即AB +AC =30cm , 故选:C .【点睛】本题考查了等腰三角形的判定和性质、平行线的性质等知识,证出ED =EB ,FD =FC 是解题的关键. 11.B【分析】根据三角形内角和定理可求△B +△C ,根据垂直平分线性质,EA =EB ,NA =NC ,则△EAB =△B ,△NAC =△C ,从而可得△BAC =△BAE +△NAC -△EAN =△B +△C -△EAN ,即可得到△EAN =△B +△C -△BAC ,即可得解. 【详解】解:△△BAC =70︒ , △△B +△C =18070110︒︒︒﹣= , △AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N , △EA =EB ,NA =NC ,△△EAB =△B ,△NAC =△C ,△△BAC =△BAE +△NAC -△EAN =△B +△C -△EAN , △△EAN =△B +△C -△BAC , =11070︒︒﹣ =40︒. 故选:B .【点睛】本题主要考查了三角形的内角和,线段垂直平分线的性质,角的和差关系,能得到求△EAN 的关系式是关键. 12.D【分析】①根据作图的过程可以判定AD 是△BAC 的角平分线;②利用角平分线的定义可以推知△CAD =30°,则由直角三角形的性质来求△ADC 的度数;③利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比. 【详解】解:①根据作图的过程可知,AD 是△BAC 的平分线. 故①正确; ②如图,△在△ABC 中,△C =90°,△B =30°, △△CAB =60°.又△AD 是△BAC 的平分线, △△1=△2=12△CAB =30°,△△3=90°-△2=60°,即△ADC =60°. 故②正确; ③△△1=△B =30°, △AD =BD ,△点D 在AB 的中垂线上. 故③正确;④△如图,在直角△ACD 中,△2=30°, △CD =12AD ,△BC =CD +BD =12AD +AD =32AD ,DACS=12AC •CD =14AC •AD .△ABCS =12AC •BC =12AC •32AD =34AC •AD .△DACS:ABCS=14AC •AD :34AC •AD =1:3. 故④正确.综上所述,正确的结论是:①②③④, 故选D .【点睛】本题考查了角平分线的判定、线段垂直平分线的判定和性质、含30度角的直角三角形的性质以及作图-基本作图.解题时,需要熟悉线段垂直平分线的判定和性质. 13.B【分析】根据题意先过点Q 作AD 的延长线的垂线QF ,证明AEP ≅CFQ ,再证明DEP ≅DFQ 得到DE =DF ,最后可以得到DE =12AC ,求出最终结果. 【详解】如图,过点Q 作AD 的延长线的垂线于点F , △△ABC 是等边三角形, △△A =△ACB =60°, △△ACB =△QCF , △△QCF =60°, 又△PE △AC ,QF △AC , △△AEP =△CFQ =90° , 又AP =CQ ,△△AEP △△CFQ (AAS ) , △AE =CF ,PE =QF , 同理可证,△DEP △△DFQ , △DE =DF ,△AC =AE +DE +CD =DE +CD +CF =DE +DF =2DE , △DE =12AC =12 . 故选B .【点睛】本题属于全等三角形的综合问题,考查作辅助线、全等三角形的判定和等边三角形的性质,熟练掌握和运用全等三角形的判定定理是关键.14.C【分析】利用ADE 为等腰直角三角形得到45EAD EDA ∠∠==︒,EA ED =,则135EAC EDB ∠∠==︒,则可根据“SAS ”判断ACE △DBE SAS (),从而对①进行判断;再利用AEC DEB ∠∠=证明90BEC DEA ∠∠==︒,则可对②进行判断;由于9090DEF BED AEC ∠∠∠=︒-=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>得到AEC ACE ∠∠>,所以DEF DFE ∠∠<,于是可对③进行判断;由ACE △DBE 得到ACE DBE S S =,由BD AD =得到DAE DBE S S =,所以ACE DAE S S =,从而可对④进行判断.【详解】解:2AB AC =,点D 是线段AB 的中点,BD AD AC ∴==, ADE 为等腰直角三角形,45EAD EDA ∠∠∴==︒,EA ED =,4590135EAC EAD BAC ∠∠∠=+=︒+︒=︒,180********EDB EDA ∠∠=︒-=︒-︒=︒, EAC EDB ∠∠∴=,在ACE 和DBE 中,EA ED EAC EDB AC DB =⎧⎪∠=∠⎨⎪=⎩,ACE ∴△SAS DBE (),所以①正确;AEC DEB ∠∠∴=,90BEC BED DEC AEC DEC DEA ∠∠∠∠∠∠∴=+=+==︒,BE EC ∴⊥,所以②正确;90DEF BED ∠∠=︒-.而AEC DEB ∠∠=,90DEF AEC ∠∠∴=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>,AEC ACE ∠∠∴>,DEF DFE ∠∠∴<,DE DF ∴>,所以③错误; ACE △DBE ,ACE DBE S S ∴=,BD AD =,DAE DBE S S ∴=,ACE DAE SS ∴=, DEF ACFS S ∴=,所以④正确. 故选:C .【点睛】本题考查全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.15.1【分析】直接利用关于x 轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a ,b 的值,进而得出答案.【详解】解:△点P (a ,3)和点Q (4,b )关于x 轴对称,△a =4,b =-3,则20212021()(43)1a b +=-=.故答案为:1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键. 16.48°##48度【分析】根据多边形的内角和,分别得出△ABE =120°,△DCE =108°,再根据平角的定义和三角形的内角和算出△BEC .【详解】解:由多边形的内角和可得,△ABE =()621806-⨯︒ =120°, △△EBC =180°﹣△ABE =180°﹣120°=60°,△△DCE =()521805-⨯︒=108°,△△BCE =180°﹣108°=72°,由三角形的内角和得:△BEC =180°﹣△EBC ﹣△BCE =180°﹣60°﹣72°=48°.故答案为:48°.【点睛】本题考查了多边形的内角和定理,掌握定理是解题的关键.17.20227【分析】连接1CB ,根据等底同高可得1111112,2,2B BC A CC A AB S S S ===,从而可得17S =,同样的方法可得227S =,再归纳类推出一般规律即可得.【详解】解:如图,连接1CB ,1AB BB =,ABC 的面积01S =,101BCB ABC S S S ∴===,又1BC CC =,1111B CC BCB SS ∴==, 112B BC S ∴=,同理可得:11112,2A CC A AB SS ==, 111122217A B C S S ∴==+++=,同理可得:2221112277A B C A B C S S S ===,归纳类推得:7n n n A B n C n S S==,其中n 为非负整数,202220227S ∴=, 故答案为:20227.【点睛】本题考查了图形类规律探索、三角形中线与面积,正确归纳类推出一般规律是解题关键.18.3或154【分析】分情况讨论BPD △,CQP 全等:①设运动了t 秒,BPD CQP ≅△△,得BP CQ =,3t vt =,算出v ;②设运动了t 秒,BDP QCP ≅,得BD CQ =,PB PC =;得34t =,5vt =,解出v ,即可.10AB AC ==,8BC =【详解】①设运动了t 秒,BP CQ =,BPD CQP ≅△△,△点D 是AB 的中点 △152BD AB == △BD PC =△()853BP cm =-=△B 点向C 点运动了33t =,1t =秒△BPD CQP ≅△△△BP CQ =△31v =⨯△3/s v cm =②设运动了t 秒,当BD CQ =时,BDP QCP ≅△5BD =,142PB PC BC === △34t = 解得43t =秒 △BD CQ = △453v =⨯ △15/s 4v cm = 故答案为:3或154. 【点睛】本题考查全等三角形、动点问题,解题的关键是以静制动,利用全等三角形的性质进行解答.19.(1)证明见解析(2)8【分析】(1)先根据平行线的性质可得ACB DEF ∠=∠,再根据线段和差可得BC FE =,然后根据AAS 定理即可得证;(2)先根据线段和差可得8BE CF +=,从而可得4BE =,再根据BC BE EC =+即可得.(1)证明:AC DE ∥,ACB DEF ∠=∠∴,BE CF =,BE CE CF CE ∴+=+,即BC FE =,在ABC 和DFE △中,A D ACB DEF BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DFE ∴≅.(2)解:12,4BF EC ==,8BE CF BF EC ∴+=-=,BE CF =,4BE ∴=,448∴=+=+=.BC BE EC【点睛】本题考查了平行线的性质、三角形全等的判定,线段和差,熟练掌握三角形全等的判定方法是解题关键.20.(1)见解析;(2)4,1;2,3;−1,−2;(3)见解析;(4)10.【分析】(1)由点的对称性,作出图形即可;(2)关于y轴对称的点的坐标特点:横坐标变为相反数,纵坐标不变,即可求解;(3)作A点关于x轴的对称点A'',连接A B''交x轴于点P,P点即为所求;(4)利用两圆一线确定等腰三角形,作出图形即可求解.(1)如图1:(2)由图可知A(−4,1),B(−2,3),C(1,−2),△A点关于y轴对称的点为(4,1),B点关于y轴对称的点为(2,3),C点关于y轴对称的点为(−1,−2),△A′(4,1),B′(2,3),C′(−1,−2),故答案为:4,1;2,3;−1,−2;(3)如图2:作A点关于x轴的对称点A'',连接A B''交x轴于点P,△AP BP A P BP A B ''''+=+=,此时PA +PB 值最小;(4)如图:以B 为圆心,BC 长为半径做圆,此圆与坐标轴有4个交点,以C 为圆心,BC 长为半径做圆,此圆与坐标轴有4个交点,作线段BC 的垂直平分线,此线与坐标轴有2个交点,△△BCQ 是等腰三角形时,Q 点坐标有10个,故答案为:10.【点睛】本题考查轴对称作图,图形与坐标,熟练掌握轴对称的性质,垂直平分线的性质,等腰三角形的性质,两圆一线确定等腰三角形的方法是解题的关键.21.(1)①见解析;②见解析(2)成立,理由见解析【分析】(1)①利用等边三角形的性质得到BD=CD,AD△BC,进一步求出△EDC=30°,然后根据三角形内角和定理推出△DOC=90°,再根据三角形的外角性质可求出△DEC=30°,从而得出△EDC=△DEC,再根据“等角对等边”即可证明结论;②由SAS证明△ABD△△ACE得出AD=AE,然后根据“有一个角是60°的等腰三角形是等边三角形”可判断出△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF△△EDC得出AD=ED,再运用已证的结论“△ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:△a∥AB,且△ABC为等边三角形,△△ACE=△BAC=△ABD=60°,AB=AC,△D是BC中点,即BD=CD,△AD△BC,△△ADC=90°,△△ADE=60°,△△EDC=△ADC-△ADE=90°-60°=30°,△△DOC=180°-△EDC-△ACB=90°,△△DEC=△DOC-△ACE=90°-60°=30°,△△EDC=△DEC,△CD=CE;②△BD=CD,CD=CE,△BD=CE,在△ABD和△ACE中,△AB ACABD ACEBD CE=⎧⎪∠=∠⎨⎪=⎩,△△ABD△△ACE(SAS),△AD=AE,又△△ADE=60°,△△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,△△ACB=60°,△△DCF是等边三角形,△DF=CD,△△ADF+△FDE=△EDC+△FDE=60°,△△ADF=△EDC,△△DAF+△ADE=△DEC+△ACE,△ACE=△ADE=60°,△△DAF=△DEC,△△ADF△△EDC(AAS),△AD=ED,又△△ADE=60°,△△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.22.(1)见解析;(2)见解析【分析】(1)根据题目要求,利用数形结合的思想画出线段EF即可;(2)取格点Q,连接AQ,取AQ的中点J,作射线BJ交AC于点D,线段BD即为所求.【详解】解:(1)如图,线段EF即为所求:(2)如图,线段BD即为所求.【点睛】本题考查作图-应用与设计作图,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.23.(1)见解析';(2)2,D EF(3)两边和其中一边所对的角分别相等的两个三角形不一定全等【分析】(1)根据尺规作线段,作一个角等于已知角的步骤作图即可;(2)根据所画图形填空即可;(3)根据探究过程结合全等三角形的判定可得出结论.(1)解:如图所示:(2)'(填三角形的名称)与观察所画的图形,发现满足条件的三角形有2个;其中三角形D EF△ABC明显不全等,';故答案为:2,D EF(3)经历以上探究过程,可得结论:两边和其中一边所对的角分别相等的两个三角形不一定全等,故答案为:两边和其中一边所对的角分别相等的两个三角形不一定全等.【点睛】本题考查了尺规作图,全等三角形的判定,熟练掌握尺规作图的方法和全等三角形的判定定理是解题的关键.24.(1)40︒(2)证明见解析(3)514【分析】(1)先求出80ACD ∠=︒,再根据直角三角形的两个锐角互余可得40DCE ∠=︒,然后根据ACE ACD DCE ∠=∠-∠即可得;(2)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,先根据角平分线的性质可得,EM EH EN EH ==,从而可得EM EN =,再根据角平分线的判定即可得证; (3)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,则EM EH EN ==,设EM EH EN x ===,再根据21ACE DCE ACD S S S +==和三角形的面积公式可得x 的值,从而可得EM 的值,然后利用三角形的面积公式即可得.(1)解:100ACB ∠=︒,18080ACD ACB ∴∠=︒-∠=︒,,50EH BD CEH ⊥∠=︒,9040DCE CEH ∴∠=︒-∠=︒,40ACE ACD DCE ∴∠=∠-∠=︒.(2)证明:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,BE 平分ABC ∠,,EM BF EH BD ⊥⊥,EM EH ∴=,由(1)可知,40ACE DCE ∠=∠=︒,即CE 平分ACD ∠, EN EH ∴=,EM EN ∴=,又点E 在CAF ∠的内部,AE ∴平分CAF ∠.(3)解:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,由(2)已得:EM EH EN ==,设EM EH EN x ===,21ACD S =, 21ACE DCE S S +∴=,112221AC EN CD EH ∴⋅+⋅=,即()1221x AC CD +=, 又14AC CD +=,211223142x AC CD ⨯=∴⨯==+, 3EM ∴=,8.5AB =,ABE ∴的面积为11518.53224AB EM ⋅=⨯⨯=. 【点睛】本题主要考查了角平分线的判定与性质,解题的关键是熟练掌握角平分线的性质定理:角的平分线上的点到角的两边的距离相等.25.(1)2△A =△1+△2;见解析;(2)2△A =△1﹣△2;见解析;(3)2(△A +△D )=△1+△2+360°,见解析【分析】(1)根据翻折的性质表示出△3、△4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出△3、△4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出△3、△4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,△3=EDA '∠=12(180-△1),△4=DEA '∠=12(180-△2),△△A +△3+△4=180°,△△A +12(180-△1)+12(180-△2)=180°,整理得,2△A =△1+△2;(2)如图,同理,根据翻折的性质,△3=12(180-△1),△4=12(180+△2),△△A+△3+△4=180°,△△A+12(180-△1)+12(180+△2)=180°,整理得,2△A=△1-△2;(3)如图,同理,根据翻折的性质,△3=12(180-△1),△4=12(180-△2),△△A+△D+△3+△4=360°,△△A+△D+12(180-△1)+12(180-△2)=360°,整理得,2(△A+△D)=△1+△2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.26.(1)(0,3);(2)AM =2CD ,理由见解析;(3)不变,12【分析】(1)过点C 作CH △y 轴于H ,由全等三角形的判定定理可得ABO BCH ≌,可得3CH BO ==,即可求解; (2)延长AB ,CD 交于点N ,由全等三角形的判定定理可得ADN ADC ≌,得出CD DN =,再依据全等三角形判定定理证明ABM CBN ≌,可得AM CN =,即可得结论;(3)如图③,作CG △y 轴于G ,由全等三角形判定定理可得BAO CBG ≌,得出BG AO =,CG OB =,再依据全等三角形的判定可证CGP FBP ≌,得出PB PG =,可得1122PB BG AO ==,由三角形面积公式可求解. 【详解】解:(1)如图①,过点C 作CH △y 轴于H ,△90BHC ABC ∠=︒=∠,△90BCH CBH ABH CBH ∠+∠=∠+∠=︒,△BCH ABH ∠=∠,△点C 的横坐标为﹣3,△3CH =,在ABO 和BCH 中,BCH ABH BHC AOB BC AB ∠=∠⎧⎪∠∠⎨⎪=⎩=,△ABO BCH ≌,△3CH BO ==,△点B (0,3);故答案为:(0,3);(2)2AM CD =,如图②,延长AB ,CD 交于点N ,△AD 平分BAC ∠,△BAD CAD ∠=∠,在ADN 和ADC 中,90BAD CAD AD AD ADN ADC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, △ADN ADC ≌,△CD DN =,△2CN CD =,△90BAD ∠+∠=︒N ,90BCN ∠+∠=︒N ,△BAD BCN ∠=∠,在ABM 和CBN 中,BAM BCN BA BC ABM CBN ∠=∠⎧⎪=⎨⎪∠=∠⎩, △ABM CBN ≌,△AM CN =,△2AM CD =;(3)△BPC 与△AOB 的面积比不会变化,理由:如图③,作CG △y 轴于G ,△90BAO OBA ∠+∠︒=,90OBA CBG ∠+∠︒=,△BAO CBG ∠∠=,在BAO 和CBG 中,90AOB BGC BAO CBG AB BC ∠=∠=︒⎧⎪∠∠⎨⎪=⎩=,△BAO CBG ≌,△BG AO =,CG OB =,△OB BF =,△BF GC =,在CGP 和FBP 中,90CPG FPB CGP FBP CG BF ∠=∠⎧⎪∠∠=︒⎨⎪=⎩=,△CGP FBP ≌,△PB PG =, △1122PB BG AO ==, △12AOB S OB OA ∆=⨯⨯,111222PBC S PB GC OB OA ∆=⨯⨯=⨯⨯⨯, △12PBC AOB S S ∆∆=:. 【点睛】题目主要考查全等三角形的判定定理和性质,理解题意,作出相应辅助线,充分运用全等三角形的判定是解题关键.。
人教版八年级(上)期中数学试卷(1)一.选择题(本题共16分,每小题2分)1.下列各组图形中,属于全等图形的是()A.B.C.D.2.画△ABC中AB边上的高,下列画法中正确的是()A.B.C.D.3.我校初二年级计划11月3日下午前往圆明园,开展以“圆明园的毁灭:铭记责任,思国家复兴”为主题的社会综合实践活动.出发前计划每班准备一个三角形的队旗,你认为下列三边长规格可以实现三角形队旗制作的是()A.3dm,3dm,6dm B.3dm,3dm,8dmC.3.5dm,3.5dm,3.5dm D.9dm,3dm,3.5dm4.下列式子从左到右的变形是因式分解的是()A.(a﹣3)(a+2)=a2﹣a﹣6B.x2﹣1+y2=(x+1)(x﹣1)+y2C.2x2y=2x•xy D.a2+2a=a(a+2)5.下列计算正确的是()A.a3•a2=a6B.a6÷a3=a3C.(m3)3=m6D.(﹣3b3)2=6b66.如图,用直尺和圆规作一个角等于已知角,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.为进一步美化校园,我校计划在校园绿化区增设3条绿化带,如图所示,绿化带MN∥PQ,绿化带AB交绿化带MN于A,交绿化带PQ于B.若要建一喷灌处到三条绿化带的距离相等,则可供选择的喷灌处修建点有()A.4处B.3处C.2处D.1处8.如图所示,在△ABC中,∠ABC=66°,BD平分∠ABC,P为线段BD上一动点,Q为边AB上一动点,当AP+PQ的值最小时,∠APB的度数是()A.114°B.123°C.147°D.124°二.填空题(本题共16分,每小题2分)9.若(x﹣1)0=1,则x满足条件.10.已知一个多边形有12条边,则这个多边形的内角和为°,外角和为°.11.2023年10月1日,杭州亚运会射击项目进入最后一个比赛日,中国射击队最终以16枚金牌的成绩结束本届亚运会,以较大优势占据射击项目金牌榜头名.射击队员在瞄准目标时,手、肘、肩构成托枪三角形,这种方法应用的几何原理是.12.分解因式:ab3﹣ab=.13.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=5,AB=6,则△ABD的面积是.14.若x﹣y=3,xy=5,则x2+y2=.15.在△ABC中,∠B=30°,AD是BC边上的高,若∠CAD=∠B,则∠BAC=.16.如图,已知四边形ABCD中,AB=12cm,BC=10cm,CD=14cm,∠B=∠C,点E为AB的中点.如果点P在线段BC上以2cm/s的速度沿B﹣C运动,同时,点Q在线段CD 上由C点向D点运动.当点Q的运动速度为cm/s时,能够使△BPE与△CQP 全等.三.计算题(本题共20分,第17题共11分,18题共9分)17.计算:(1)ab2•(﹣2a2b)3;(2)(2x+1)(x+y)﹣3y(x+1);(3)(4x3y﹣6x2y2+12xy3)÷2xy.18.分解因式:(1)a3﹣6a2+9a;(2)x2(x﹣3)+4(3﹣x).四.解答题(本题共48分,第19、20题7分,21、22题每题8分,23、24题每题9分)19.如图,在△ABC中,∠BAC=70°,∠ACB=60°,∠ACB的平分线交AB于点D,∠ABC的平分线BO交CD于点O.(1)补全图形(尺规作图,保留作图痕迹,不写作法);(2)求∠BOD的度数.20.先化简,再求值:已知x2+x﹣20=0,求代数式(2x+3)(2x﹣3)﹣x(5x+4)﹣(x﹣1)2的值.21.如图,在△ABC中,∠ACB=90°,点E在AC上,点E、D、F在一条直线上,且AD =BD,ED=FD.求证:FB⊥CB.22.已知一个三角形的两条边长分别是1cm和2cm,一个内角为40°.(1)请你借助如图画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在如图的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°”,那么满足这一条件,且彼此不全等的三角形共有个.23.【阅读材料】“数形结合”是一种非常重要的数学思想方法.比如:在学习“整式的乘法”时,我们通过构造几何图形,用“等积法”直观地推导出了完全平方和公式:(a+b)2=a2+2ab+b2(如图1).利用“数形结合”的思想方法,可以从代数角度解决图形问题,也可以用图形关系解决代数问题.【方法应用】根据以上材料提供的方法,完成下列问题:(1)由图2可得等式:;由图3可得等式:;(2)利用图3得到的结论,解决问题:若a+b+c=15,ab+ac+bc=35,则a2+b2+c2=;(3)如图4,若用其中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形(无空隙、无重叠地拼接),则x+y+z=;(4)如图4,若有4张边长为a的正方形纸片,4张边长分别为ab的长方形纸片,5张边长为b的正方形纸片.从中取出若干张纸片,每种纸片至少取一张.把取出的这些纸片拼成一个正方形(无空隙、无重叠地拼接),则拼成的正方形的边长最长可以为.24.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E=°;(2)如图2,若∠EAB与∠ECB的角交于点F,求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且,设EC与AB的交点为H,射线HN在∠AHC的内部且,射线HN与FM交于点P,若∠F AH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠F AH+n∠FPH,求出m,n的值.附加题(本题共10分,第1题4分,第2题6分)25.探究与发现:小戴同学通过计算下列两位数的乘积,发现结果存在一定的规律,请你补充小戴同学的探究过程:53×57=3021,38×32=1216,84×86=7224,71×79=5609.…;①观察相乘的两位数,若设一个两位数的十位上的数字为m,个位上的数字为n,则另一个两位数的十位上的数字为,个位上的数字为(其中m,n为小于10的正整数).②则以上两位数相乘的规律是(用含m、n的等式表示);③请用所学知识证明②中的规律.26.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”.解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0).(1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是.(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围.(3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥2S△PQN,直接写出点N纵坐标的取值范围.。
人教版八年级第一学期期中数学试卷及答案一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.实数4的平方根是()A.B.±4C.4D.±22.下列实数中,无理数是()A.B.0C.D.3.143.估计﹣1的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和15.下列计算正确的是()A.x2⋅x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=6x36.若等式2a2•a+□=3a3成立,则□填写单项式可以是()A.a B.a2C.a3D.a47.计算27m6÷(﹣3m2)3的结果是()A.1B.﹣1C.3D.﹣38.在下列各多项式中,不能用平方差公式因式分解的是()A.﹣m2﹣1B.﹣1+4m2C.﹣36x2+y2D.a2﹣16b29.如图,正方形卡片A类,B类和长方形卡片C类若干张,若要用A、B、C三类卡片拼一个长为(a+3b),宽为(a+b)的长方形,则需要C类卡片()A.2张B.3张C.4张D.5张10.计算:0.252020×42021=()A.0.25B.4C.1D.202011.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B12.如图,AC=AD,∠CAD=∠BAE,再添加一个条件仍不能判定△ABC≌△AED的是()A.AB=AE B.∠C=∠D C.DE=CB D.∠E=∠B二、填空题(本大题满分12分,每小题3分)13.的算术平方根是;=.14.把命题“等角的余角相等”改写成:“如果,那么”.15.如图,在△ABC中,点D在AB边上,E是AC边的中点,CF∥AB,CF与DE的延长线交于点F,若AB=4,CF=3,则BD的长为.16.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是.三、解答题(本大题满分72分)17.(20分)计算:(1)﹣+;(2)2(x﹣1)2﹣x(2x+1);(3)(x+3)(x﹣3)﹣3(x2+x﹣3);(4)20222﹣4044×2023+20232(用简便方法).18.(15分)分解因式:(1)x3﹣2x2y+xy2;(2)(a﹣2)(a﹣4)+1;(3)4m2﹣16n2.19.(7分)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.20.(8分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.如图,是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?21.(10分)如图.点A、C、F、D在同一直线上,AF=DC,∠A=∠D,AB=DE.证明(1)△ABC≌△CAE;(2)BC∥EF.22.(12分)已知,在△ABC中,D,A,E三点都在同一直线上,∠BDA=∠AEC=∠BAC.(1)如图1,若AB=AC,∠BAC=90°.求证:①△ABD≌△CAE;②DE=CE+BD(2)如图2,∠BDA=∠AEC,BD=EF=7cm,DE=9cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们的运动时间为t(s),是否存在x,使得△ABD与△CAE全等?若存在,求出相应的x,t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.实数4的平方根是()A.B.±4C.4D.±2【分析】根据平方根的定义可知4的平方根有两个,为±2.【解答】解:∵(±2)2=4,∴4的平方根为±2,故选:D.2.下列实数中,无理数是()A.B.0C.D.3.14【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.0是整数,属于有理数,故本选项不合题意;C.是无理数,故本选项符合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:C.3.估计﹣1的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【分析】根据算术平方根的定义,估算无理数的大小,进而估算﹣1的大小即可.【解答】解:∵<<,即3<<4,∴3﹣1<﹣1<4﹣1,即2<﹣1<3,故选:B.4.下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和1【分析】根据立方根的定义和求法,平方根的定义和求法,以及算术平方根的定义和求法,逐项判定即可.【解答】解:A、3的平方根是±,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.5.下列计算正确的是()A.x2⋅x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=6x3【分析】分别根据同底数幂乘除法法则、合并同类项法则、幂的乘方法则进行计算即可.【解答】解:A.x2⋅x3=x5,选项错误,不符合题意;B.x6÷x3=x3,选项正确,符合题意;C.x3+x3=2x3,选项错误,不符合题意;D.(﹣2x)3=﹣8x3,选项错误,不符合题意;故选:B.6.若等式2a2•a+□=3a3成立,则□填写单项式可以是()A.a B.a2C.a3D.a4【分析】直接利用单项式乘单项式以及合并同类项法则计算得出答案.【解答】解:∵等式2a2•a+□=3a3成立,∴2a3+□=3a3,∴□填写单项式可以是:3a3﹣2a3=a3.故选:C.7.计算27m6÷(﹣3m2)3的结果是()A.1B.﹣1C.3D.﹣3【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:27m6÷(﹣3m2)3=27m6÷(﹣27m6)=﹣1.故选:B.8.在下列各多项式中,不能用平方差公式因式分解的是()A.﹣m2﹣1B.﹣1+4m2C.﹣36x2+y2D.a2﹣16b2【分析】根据平方差公式法分解因式,即可求解.【解答】解:A、﹣m2﹣1不能用平方差公式分解,故A符合题意;B、﹣1+4m2=(2m+1)(2m﹣1),故B不符合题意;C、﹣36x2+y2=(y+6x)(y﹣6x),故C不符合题意;D、a2﹣16b2=(a+4b)(a﹣4b),故D不符合题意;故选:A.9.如图,正方形卡片A类,B类和长方形卡片C类若干张,若要用A、B、C三类卡片拼一个长为(a+3b),宽为(a+b)的长方形,则需要C类卡片()A.2张B.3张C.4张D.5张【分析】根据长方形的面积=长×宽,求出长为a+3b,宽为a+b的长方形的面积是多少,判断出需要C类卡片多少张即可.【解答】解:长为a+3b,宽为a+b的长方形的面积为:(a+3b)(a+b)=a2+4ab+3b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片1张,B类卡片3张,C类卡片4张.故选:C.10.计算:0.252020×42021=()A.0.25B.4C.1D.2020【分析】根据幂的乘方与积的乘方法则进行计算即可.【解答】解:原式=0.252020×42020×4=(0.25×4)2020×4=1×4=4.故选:B.11.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B【分析】根据全等三角形的性质得出AC=BD,∠A=∠B,OA=OB,OC=OD,再逐个判断即可.【解答】解:∵△AOC≌△BOD,∴AC=BD,∠A=∠B,OA=OB,OC=OD,∵AB=OA+OB,CD=OC+OD,∴不能推出AC=BD,即只有选项A符合题意,选项B、选项C、选项D都不符合题意;故选:A.12.如图,AC=AD,∠CAD=∠BAE,再添加一个条件仍不能判定△ABC≌△AED的是()A.AB=AE B.∠C=∠D C.DE=CB D.∠E=∠B【分析】根据∠CAD=∠BAE求出∠BAC=∠DAE,再根据全等三角形的判定定理逐个判断即可.【解答】解:∵∠CAD=∠BAE,∴∠CAD+∠BAD=∠BAE+∠BAD,即∠BAC=∠DAE,A.AB=AE,AC=AD,∠BAC=∠DAE,符合全等三角形的判定定理SAS,能证明△ABC≌△AED,故本选项不符合题意;B.∠C=∠D,AC=AD,∠BAC=∠DAE,符合全等三角形的判定定理ASA,能证明△ABC≌△AED,故本选项不符合题意;C.DE=CB,AC=AD,∠BAC=∠DAE,不符合全等三角形的判定定理SAS,不能证明△ABC≌△AED,故本选项符合题意;D.∠B=∠E,∠BAC=∠DAE,AC=AD,符合全等三角形的判定定理AAS,能证明△ABC≌△AED,故本选项不符合题意;故选:C.二、填空题(本大题满分12分,每小题3分)13.的算术平方根是2;=3.【分析】根据算术平方根和立方根的定义解答即可.【解答】解:∵=4,且22=4,∴的算术平方根是2;∵33=27,∴=3.故答案为:2,3.14.把命题“等角的余角相等”改写成:“如果两个角是等角的余角,那么这两个角相等”.【分析】根据命题的定义,写成如果,那么的形式即可.【解答】解:命题:等角的余角相等,可以写作:如果两个角是等角的余角,那么这两个角相等.故答案为:两个角是等角的余角;这两个角相等.15.如图,在△ABC中,点D在AB边上,E是AC边的中点,CF∥AB,CF与DE的延长线交于点F,若AB=4,CF=3,则BD的长为1.【分析】根据AAS证明△ADE与△CFE全等,进而利用全等三角形的性质解答即可.【解答】解:∵CF∥AB,∴∠A=∠ACF,∠F=∠ADE,∵E是AC的中点,∴AE=CE,在△ADE与△CFE中,,∴△ADE≌△CFE(AAS),∴AD=CF=3,∴BD=AB﹣AD=4﹣3=1,故答案为:1.16.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是3.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S列出方程求解即可.△ACD【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,×4×2+×AC×2=7,解得AC=3.故答案为3.三、解答题(本大题满分72分)17.(20分)计算:(1)﹣+;(2)2(x﹣1)2﹣x(2x+1);(3)(x+3)(x﹣3)﹣3(x2+x﹣3);(4)20222﹣4044×2023+20232(用简便方法).【分析】(1)先化简,然后计算加减法即可;(2)根据完全平方公式和单项式乘多项式,将题目中的式子展开,然后合并同类项即可;(3)根据平方差公式和单项式乘多项式,将题目中的式子展开,然后合并同类项即可;(4)先变形,然后写出完全平方公式的形式,再计算即可.【解答】解:(1)﹣+=5﹣(﹣4)+2=5+4+2=11;(2)2(x﹣1)2﹣x(2x+1)=2(x2﹣2x+1)﹣(2x2+x)=2x2﹣4x+2﹣2x2﹣x=﹣5x+2;(3)(x+3)(x﹣3)﹣3(x2+x﹣3)=x2﹣9﹣3x2﹣3x+9=﹣2x2﹣3x;(4)20222﹣4044×2023+20232=20222﹣2×2022×2023+20232=(2022﹣2023)2=(﹣1)2=1.18.(15分)分解因式:(1)x3﹣2x2y+xy2;(2)(a﹣2)(a﹣4)+1;(3)4m2﹣16n2.【分析】(1)先提公因式,再利用公式进行因式分解;(2)先利用多项式乘多项式,合并同类项后再利用公式因式分解即可;(3)利用平方差公式因式分解即可.【解答】解:(1)x3﹣2x2y+xy2=x(x2﹣2xy+y2)=x(x﹣y)2;(2)(a﹣2)(a﹣4)+1=a2﹣4a﹣2a+8+1=a2﹣6a+9=(a﹣3)2;(3)4m2﹣16n2.=4(m2﹣4n2)=4(m﹣2n)(m+2n).19.(7分)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.【分析】由题意可知,在化简的过程中可以运用平方差公式(a+b)(a﹣b)=a2﹣b2和完全平方差公式(a﹣b)2=a2﹣2ab+b2快速计算,再把x=﹣1代入化简后得到的式子中求值.【解答】解:原式=4x2﹣1﹣(4x2﹣12x+9)=4x2﹣1﹣4x2+12x﹣9=12x﹣10.∵x=﹣1,∴12x﹣10=12×(﹣1)﹣10=﹣22.20.(8分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.如图,是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?【分析】由完全平方公式可求a2+b2=60的值,由面积的和差关系可求解.【解答】解:∵a+b=10,ab=20,∴(a+b)2=100,∴a2+b2+2ab=100,∴a2+b2=60,∴S阴影=S两正方形﹣S△ABD﹣S△BFG=a2+b2﹣a2﹣b(a+b)=(a2+b2﹣ab)=×(60﹣20)=20.21.(10分)如图.点A、C、F、D在同一直线上,AF=DC,∠A=∠D,AB=DE.证明(1)△ABC≌△CAE;(2)BC∥EF.【分析】(1)由AF=CD,可求得AC=DF,利用SAS可证明△ABC≌△DEF;(2)由全等三角形的性质可得∠ACB=∠DFE,再利用平行线的判定可证明BC=EF.【解答】证明:(1)∵AF=CD,∴AF﹣FC=CD﹣FC即AC=DF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF(已证),∴∠ACB=∠DFE,∴∠BCF=∠EFC,∴BC∥EF.22.(12分)已知,在△ABC中,D,A,E三点都在同一直线上,∠BDA=∠AEC=∠BAC.(1)如图1,若AB=AC,∠BAC=90°.求证:①△ABD≌△CAE;②DE=CE+BD(2)如图2,∠BDA=∠AEC,BD=EF=7cm,DE=9cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们的运动时间为t(s),是否存在x,使得△ABD与△CAE全等?若存在,求出相应的x,t的值;若不存在,请说明理由.【分析】(1)①由“AAS”可证△ABD≌△CAE;②由全等三角形的性质可得AD=CE,BD=AE,可得结论;(2)分△DAB≌△ECA或△DAB≌△EAC两种情形,分别根据全等三角形的性质可解决问题.【解答】(1)证明:①∵∠BAC=90°=∠BDA=∠AEC,∴∠BAD+∠CAE=90°=∠CAE+∠ACE,∴∠ACE=∠BAD,又∵AB=AC,∠ADB=∠AEC=90°,∴△ABD≌△CAE(AAS),②∵△ABD≌△CAE,∴AD=CE,BD=AE,∴DE=DA+AE=CE+BD;(2)解:存在,当△DAB≌△ECA时,∴AD=CE=2cm,BD=AE=7cm,∴t=1,此时x=2;当△DAB≌△EAC时,∴AD=AE=4.5cm,DB=EC=7cm,∴t==,x==,综上:t=1,x=2或t=,x=.。
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .83.下面的多边形中,内角和与外角和相等的是( )A .B .C .D .4.在ABC 中,若一个内角等于另外两个角的差,则( )A .必有一个角等于30B .必有一个角等于45︒C .必有一个角等于60︒D .必有一个角等于90︒5.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2c B .2a +2b C .2c D .06.如图,已知MB ND =,MBA NDC ∠=∠,添加下列条件仍不能判定ABM CDN ≌的是A .M N ∠=∠B .AM CN =C .AB CD = D .//AM CN 7.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°8.如图,2AB =,6BC AE ==,7CE CF ==,8BF =,则四边形ABDE 与CDF 面积的比值是( )A .1B .34C .23D .129.如图所示,在ABC 中,5AB AC ==,F 是BC 边上任意一一点,过F 作FD AB ⊥于D ,FE AC ⊥于E ,若10ABC S =△,则FE FD +=( )A .2B .4C .6D .810.如图,在ABC △中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;②BD DF AD +=;③CE DE ⊥;④BDE ACE S S =△△,其中正确的有( )A .①②B .①③C .①②③D .①②③④ 11.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长是( )A .13cmB .16cmC .19cmD .22cm12.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别是D ,E ,AD ,CE 交于点H .已知4EH EB ==,6AE =,则CH 的长为( )A .1B .2C .35D .53二、填空题 13.如图,ABC 与A B C '''关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=︒,90C ∠=︒,45A ∠=︒,30A ∠=︒,则12∠+∠=______.15.如图,在△ABC 中,DE 是AC 的垂直平分线,△ABC 的周长为19cm ,△ABD 的周长为13cm ,则AE 的长为______.16.设三角形的三个内角分别为α、β、γ,且a βγ≥≥,2αγ=,则β的最大值与最小值的和是___.三、解答题17.尺规作图,保留作图痕迹,不写作法.(1)作△ABC 中∠B 的平分线;(2)作△ABC 边BC 上的高.18.如图所示,在平面直角坐标系中,ABC △的三个顶点的坐标分别为()3,2A -,()1,3B -,()2,1C .(1)在图中作出与ABC △关于x 轴对称的111A B C △;(2)点1A 的坐标是______,ABC S = 。
人教版数学八年级(上)期中考试测试卷(1)一.选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3.(3分)如图,△ABC中,∠ACB=90°,D为BC上一点,DE⊥AB于点E,下列说法中,错误的是()A.△ABC中,AC是BC上的高B.△ABD中,DE是AB上的高C.△ABD中,AC是BD上的高D.△ADE中,AE是AD上的高4.(3分)两根木棒的长分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形.如果第三根木棒长为偶数,则满足条件的三角形的个数为()A.3个B.4个C.5个D.6个5.(3分)若△ABC≌△DEF,且∠A=60°,∠E=70°,则∠C的度数为()A.50°B.60°C.70°D.50°或80°6.(3分)如图,点A,E,C在同一直线上,△ABC≌△DEC,BC=5,CD=8,则AE的长为()A.2B.3C.4D.57.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BDA=∠CDA 8.(3分)如图,点B在CD上,△ABO≌△CDO,当AO∥CD,∠BOD=30°时,∠A的度数为()A.20°B.30°C.40°D.35°9.(3分)把一个多边形纸片沿一条直线截下一个三角形后,变成一个四边形,则原多边形纸片的边数不可能是()A.3B.4C.5D.610.(3分)如图,射线OC平分∠AOB,点D、Q分别在射线OC、OB上,若OQ=4,△ODQ的面积为10,过点D作DP⊥OA于点P,则DP的长为()A.10B.5C.4D.311.(3分)到三角形各顶点距离相等的点是()A.三条边垂直平分线交点B.三个内角平分线交点C.三条中线交点D.三条高交点12.(3分)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,2∠BAE=∠CAD,连接DE,下列结论中正确的有()①AC⊥DE;②∠ADE=∠ACB;③若CD∥AB,则AE⊥AD;④DE=CE+2BE.A.①②③B.②③④C.②③D.①②④二.填空题(本大题共4小题,每小题3分,共12分)13.(3分)在直角三角形中,有一个锐角是另外一个锐角的5倍,则这个锐角的度数为度.14.(3分)已知AD是△ABC的中线,若△ABD与△ACD的周长分别是17和15,△ABC 的周长是22,则AD的长为.15.(3分)如图,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,若BC=8,BD=5,则DE的长为.16.(3分)如图,AB=7cm,AC=5cm,∠CAB=∠DBA=60°,点P在线段AB上以2cm/s 的速度由点A向点B运动,同时,点Q在射线BD上运动速度为xcm/s,它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束),当点P,Q运动到某处时,有△ACP与△BPQ全等,此时t=.三.解答题(本大题共8小题,共72分)17.(8分)已知a,b,c是△ABC的三边长.(1)若a,b,c满足|a﹣b|+|b﹣c|=0,试判断△ABC的形状;(2)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|.18.(8分)(1)根据图中的相关数据,求出x的值.(2)一个多边形的内角和是1260°,求这个多边形的边数.19.(8分)在△ABC中,BC=8,AB=1.(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为17,求△BCD的周长.20.(8分)在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求∠BAH的度数.21.(8分)已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.22.(10分)如图,AB=CD,AH=CG,DG⊥AC于G,BH⊥AC于H,BD交AC于点M.(1)求证:Rt△ABH≌Rt△CDG;(2)求证:MB=MD.23.(10分)如图,点D,E分别在AB,AC上,∠ADC=∠AEB=90°,BE,CD相交于点O,OB=OC.求证:∠1=∠2.小虎同学的证明过程如下:证明:∵∠ADC=∠AEB=90°,∴∠DOB+∠B=∠EOC+∠C=90°.∵∠DOB=∠EOC,∴∠B=∠C.……第一步又OA=OA,OB=OC,∴△ABO≌△ACO.……第二步∴∠1=∠2.……第三步(1)小虎同学的证明过程中,第步出现错误;(2)请写出正确的证明过程.24.(12分)(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN 的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F 在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.。
人教版八年级第一学期期中数学试卷及答案(试卷共6页,考试时间120分钟,满分150分)一、选择题:(本大题共12个小题,每小题4分,共48分)每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1. 在下列长度的四组线段中,能组成三角形的是()A. 3,7,15B. 1,2,4C. 5,5,10D. 2,3,32. 下列图形中具有稳定性的是()A B C D3. 若画△ABC中AB边上的高,下列画法中正确的是().A B C D4. 如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. ASAB. SASC. AASD. SSS5. 如图2,、、分别表示,ABC的三边长,则下面与,ABC一定全等的三角形是( )A B C D6. 等腰三角形的两边长是6cm和3cm,那么它的周长是( )A. 9cmB. 12 cmC. 12 cm或15 cmD. 15 cm7. 一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形8. 在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积是8,则△BEF的面积是()8题 9题 10题A. 2B. 1C. 4D. 39. 如图,AB ∥DE ,AF =DC ,若要证明△ABC ≌△DEF ,还需补充的条件是( )A. AC =DFB. AB =DEC. ∠A =∠DD. BC =EF10. 如图,已知点O 是△ABC 内一点,且点O 到三边的距离相等,,A=40゜,则,BOC=( )A .130°B .140°C .110°D .120°11. 关于x 的不等式组3420x a x -<⎧⎨->⎩有3个正整数解,且关于x 方程2x ﹣a =2有整数解,则满足条件的所有整数a 的值之和为( )A. 25B. 26C. 27D. 3912. 如图,在ABD △和ACE 中,AB AD =,AC AE =,AB AC >,50DAB CAE ∠=∠=︒连接BE ,CD 交于点F ,连接AF .下列结论:①BE CD =;②50EFC ∠=︒;③AF 平分DAE △;④FA 平分DFE ∠.其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13. 一个多边形的每个外角都等于60°,则这个多边形的边数为________.14. 如图,小强利用全等三角形的知识测量池塘两段M,N 的距离,如果OP =ON ,OQ=OM ,PQ=30m 则池塘两段M,N 的距离为________.15. 如图,在,ABC 中,,C =90°,AD 平分,BAC ,AB =5,CD =2,则,ABD 的面积是________.14题 15题 17题16. 小马虎同学在计算某个凸多边形的内角和时得到1840°,老师说他算错了,于是小马虎认真地检查了一遍发现漏算了一个内角,求漏算的那个内角是________度.17. 在ABC 中,5AC =,中线7AD =,则AB 边的取值范围是________.18. 特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19. 如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .20.如图,在Rt ABC △中,,C =90°.(1)作,BAC 的平分线AD 交边BC 于点D .(尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若,BAC =38°,求,ADB 的度数.四、解答题(每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.AE 和BD 相交于点O .21. 如图,,A =,B ,AE =BE ,点DAC 边上,,1=,2,(1)求证:△AEC ,△BED ;(2)若,1=42°,求,BDE的度数.22、如图,AD是,ABC的高,AE平分,BAC.(1)若,B=64°,,C=48°,求,DAE的度数;(2)若,B﹣,C=32°,求,DAE的度数.23.如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.24. 如图所示,在人教版八年级上册数学教材P53的数学活动中有这样一段描述:(1)D 为△ABC 外一点,若AD =CD ,AB =CB ,则我们把这种两组邻边分别相等的四边形叫做“筝形”,试猜想筝形对角线AC 、BD 有什么性质?并证明你的猜想.(2)知识拓展:如果D 为△ABC 内一点,BD 平分∠ABC ,且AD =CD ,试证明:AB =CB .五.解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25. 对于一个三位自然数m ,若m 的百位数字等于两个一位正整数a 与b 的和()a b >,m 的个位数字等于两个一位正整数a 与b 的差,m 的十位数字等于b ,则称m 是“和差数”,规定(),m F a b =.例如:723是“和差数”,因为752=+,352=-,22=,所以723是“和差数”,即()7235,2F =.(1)填空:()3,1F =______.(2)请判断311是否是“和差数”?并说明理由;(3)若一个三位自然数910010n x y =⨯++(18x ≤<,18y ≤<,x 、y 是整数,即n 的百位数字是9,十位数字是x ,个位数字是y )为“和差数”,求所有满足条件的“和差数”n .26. (1)如图1,在四边形ABCD 中,AB =AD ,,B =,D =90°,E 、F 分别是边BC 、CD 上的点,且,EAF =12,BAD . 求证:EF =BE +FD ;(2)如图2在四边形ABCD 中,AB =AD ,,B +,D =180°,E 、F 分别是边BC 、CD 上的点,且EF =BE +FD ; 求证:,EAF =12,BAD ,(3)如图3在四边形ABCD 中,AB =AD ,,B +,ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且,EAF =40°,,BAD =80°, 写出EF 、BE 、FD 之间的数量关系,并证明你的结论.数学试卷参考答案一、选择题D C C A B D C A B C B C二、填空题:6 30m 5 140 919AB << 4:3三、解答题:19. 解∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE . ---------------2在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩--------------------5∴△ABF≌△DCE,∴∠A=∠D.--------------------8 20.解:(1)如图,AD即为所作:--------------------5(2),AD平分,BAC,,BAC=38°,,1192CAD BAC∠∠==︒,,,C=90°,,,ADB=,CAD+,C=109°. --------------------8四、解答题21.解(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∵∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∵A BAE BEAEC BED∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△BED(ASA).--------------------5(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=(180°-42°)÷2=69°,∴∠BDE=∠C=69°.--------------------10 22.解:(1),AD是,ABC的高,,B=64°,,C=48°,,,BAC=180°-,B-,C=68°,,BAD=26°.,AE平分,BAC,,,BAE=34°.,,DAE=,BAE-,BAD=8°;--------------------5(2),,B-,C=32°,,,B=,C+32°.,AD是,ABC的高,,,BAC=180°-,B-,C=148°-2,C,,,BAD=90°-,B=58°-,C.,AE平分,BAC,,,BAE=74°-,C.,,DAE=,BAE-,BAD=74°-,C-(58°-,C)=16°,答:,DAE的度数为16°.--------------------10 23.(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS).--------------------3②证明:由(1)知:△ADC≌△CEB,∴AD=CE,CD=BE,∵DC+CE=DE,∴AD+BE=DE.--------------------5(2)证明:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD =CE ,CD =BE ,∴DE =EC ﹣CD =AD ﹣BE . --------------------1024.解:(1)猜想BD ⊥AC∵AD =CD ,AB =CB ,在△ADB 和△BCD 中,AB BCAD DC BD BD=⎧⎪=⎨⎪=⎩∴△ADB ≌△CDB (SSS ),∴∠BAD =∠BCD ,∠ADO =∠CDO ,在△AOD 和△ODC 中,AD DCADO ODC OD OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COD (SAS ),∴∠AOD =∠COD ,而∠AOD +∠COD =180°,∴∠DOC =90°,∴BD ⊥AC . --------------------5 (2)如图,过点D 分别作DE ⊥AB ,DF ⊥ACA ,垂足分别为E ,F , ∵BD 平分∠ABC ,∴DE =DF ,∵AD =AD ,∴Rt △BDE ≌Rt △BDF (HL ),∴BE =BF ,∵ED =FD ,AD =CD ,∴Rt △ADE ≌Rt △CDF (HL ),∴AE =CF ,∴BE +AE =CF +BF ,即AB =CB . --------------------10五.解答题:25. 解:(1) 412; --------------------2(2)311是“和差数”,,321=+,121=-,11=,,311是“和差数”; --------------------4(3),910010n x y =⨯++(18x ≤<,18y <≤,x 、y 是整数) ,9a b a b y +=⎧⎨-=⎩,29a y =+,514a y b =⎧⎪=⎨⎪=⎩,633a y b =⎧⎪=⎨⎪=⎩,752a y b =⎧⎪=⎨⎪=⎩,871a yb =⎧⎪=⎨⎪=⎩,941n =或933或925或917. --------------------10 26.解:(1)延长EB 到G ,使BG =DF ,连接AG .,,ABG =,ABC =,D =90°,AB =AD ,,,ABG ,,ADF .,AG =AF ,,1=,2.,,1+,3=,2+,3=,EAF =12,BAD .,,GAE =,EAF .又,AE =AE ,,,AEG ,,AEF .,EG =EF .,EG =BE +BG .,EF =BE +FD --------------------4(2)证明:如图2,延长CB 至M ,使BM =DF ,连接AM , ∵∠ABC +∠D =180°,∠ABC +∠1=180°,∴∠1=∠D , 在△ABM 和△ADF 中,1AB ADD BM DF=⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠3=∠2,MB=FD,∵EF =BE +FD∴EF=BE+MB∴EF=EM在△MAE和△F AE中,{AM=AF EM=EF AE=AE∴△MAE≌△F AE(SSS),∴∠EAF=∠MAE∵∠3+∠4=∠EAF,∴∠EAM=∠3+∠4=∠2+∠4=∠EAF,而∠2+∠4+∠EAF=∠BAD∴∠EAF=12∠BAD--------------------8(3)结论EF=BE+FD不成立,应当是EF=BE-FD.证明:在BE上截取BG,使BG=DF,连接AG.,,B+,ADC=180°,,ADF+,ADC=180°,,,B=,ADF.,AB=AD,,,ABG,,ADF.,,BAG=,DAF,AG=AF.,,BAG+,EAD=,DAF+,EAD=,EAF=12,BAD.,,GAE=,EAF.,AE=AE,,,AEG,,AEF.,EG=EF,EG=BE-BG,EF=BE-FD.--------------------12。
人教版八年级第一学期期中数学试卷一.选择题(共10小题,每小题3分)1.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.下列大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.中国人民大学D.浙江大学2.下列四组图形中,是全等形的一组是()A.B.C.D.3.下列选项中的三条线段能首尾相接构成三角形的是()A.1cm,2cm,4cm B.3cm,4cm,8cmC.9cm,6cm,4cm D.5cm,5cm,10cm4.木工王师傅用四根木条做了一个四边形框架.要使这个框架不变形,他至少需要再钉上木条的数量是()A.0条B.1条C.2条D.3条5.点P(﹣3,1)关于y轴对称点的坐标为()A.(1,﹣3)B.(3,1)C.(﹣3,﹣1)D.(3,﹣1)6.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长7cm,则△ACD的周长()A.18cm B.22cm C.19cm D.31cm7.如图,在△ABC中,∠BAC=60°,∠BCE=40°,AD平分∠BAC,CE⊥AB于点E,则∠ADC的度数为()A.100°B.90°C.80°D.50°8.如图,已知△ABC≌△BAD,线段AD与BC交于点O,则下面的结论中不正确的是()A.AC=BD B.BC=AD C.∠CAO=∠BOD D.∠CAB=∠DBA9.如图,△ABC中,AD平分∠BAC,AB=4,AC=2,若△ACD的面积等于3,则△ABD的面积为()A.8B.4C.6D.1210.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中,正确的是()A.①②③B.①②③④C.①②④D.②③④二.填空题(共8小题,每小题4分)11.已知a,b,c是△ABC的三边长,a,b满足|a﹣2|+(b﹣5)2=0,c为奇数,则c=.12.如图,CE是△ABC的外角∠ACD的平分线,若∠B=30°,∠ACE=60°,则∠A=°.13.如图,已知AD平分∠BAC,要使△ABD≌△ACD,需要添加的条件是(添加一个即可).14.如图,直线m∥n,△ABC的顶点B、C分别在直线n、m上,且∠ACB=90°,若∠1=50°.则∠2的度数为.15.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠B=50°,∠E=65°,则①∠1=∠3;②∠CAD+∠2=180°;③如果∠2=40°,则有BC∥AD;④如果∠2=30°,则有AC∥DE,上述结论中正确的是.(填写序号)16.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是.17.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=8,DE=2,AB=5,则AC长是.18.如图,点O是△ABC的两外角平分线的交点,下列结论:①OB=OC;②点O到AB、AC的距离相等;③点O 到△ABC的三边的距离相等;④点O在∠A的平分线上.其中结论正确的是(填序号).三.解答题(共8小题)19.在如图的直线n上作出点C,使AC+BC的值最小.(不写作法,保留作图痕迹)20.回答下列问题:(1)一个等腰三角形的周长是20cm,若它的一条边长为6cm,求它的另两条边长.(2)一个等腰三角形的一边长是4,另一边长是9,求这个等腰三角形的周长.21.如图,已知点C,F在直线AD上,且有BC=EF,AB=DE,CD=AF.求证:△ABC≌△DEF.22.如图,在平面直角坐标系xOy中,△ABC的顶点都在网格线的交点上,点B的坐标为(﹣2,0),点C的坐标为(﹣1,2).(1)直接写出点A的坐标和点A关于y轴的对称点的坐标,并画出△ABC关于y轴的对称图形△A1B1C1;(不写画法,保留画图痕迹)(2)求△A1B1C1的面积.23.如图,△ABC中,D,E分别是边AB,AC延长线上的点,AP平分∠BAC,BP平分∠CBD,求证:CP平分∠BCE.证:过P分别作PF⊥AD,PG⊥AE,PH⊥BC,∵AP平分∠BAC(),且PF⊥AD,PG⊥AE,∴(角平分线上的点到角的两边的距离相等),∵BP平分∠CBD,且,∴PF=PH,∴(),又∵PG⊥AE,PH⊥BC,∴CP平分∠BCE.24.如图,在四边形ABCD中,∠B=∠D=90°,AE,CF分别是∠DAB及∠DCB的平分线.(1)求证:AE∥FC.(2)若∠BCD=56°,求∠DAE.25.已知:如图△ABC中AB=6cm,AC=8cm,BD平分∠ABC,CD平分∠ACB,过D作直线平行于BC,交AB,AC于E,F.(1)求证:△DFC是等腰三角形;(2)求△AEF的周长.26.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠MBC的度数是度;(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.参考答案一.选择题(共10小题,每小题3分)1.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.下列大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.中国人民大学D.浙江大学【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四组图形中,是全等形的一组是()A.B.C.D.【分析】根据能够完全重合的两个图形叫做全等形,进而分别判断得出答案.解:A.不是全等形,故此选项不合题意;B.不是全等形,故此选项不合题意;C.是全等形,故此选项符合题意;D.不是全等形,故此选项不合题意;故选:C.【点评】本题考查的是全等图形,做题时要注意运用定义,注意观察题中图形.3.下列选项中的三条线段能首尾相接构成三角形的是()A.1cm,2cm,4cm B.3cm,4cm,8cmC.9cm,6cm,4cm D.5cm,5cm,10cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.解:根据三角形的三边关系,得:A、1+2<4,不能构成三角形,故不符合题意;B、3+4<8,不能构成三角形,故不符合题意;C、4+6>9,能构成三角形,故符合题意;D、5+5=10,不能构成三角形,故不符合题意.故选:C.【点评】本题主要考查了三角形三边关系:三角形任意两边之和大于第三边.4.木工王师傅用四根木条做了一个四边形框架.要使这个框架不变形,他至少需要再钉上木条的数量是()A.0条B.1条C.2条D.3条【分析】根据三角形的稳定性可得答案.解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故选:B.【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.5.点P(﹣3,1)关于y轴对称点的坐标为()A.(1,﹣3)B.(3,1)C.(﹣3,﹣1)D.(3,﹣1)【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,进而得出答案.解:点P(﹣3,1)关于y轴的对称点的坐标为(3,1).故选:B.【点评】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.6.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长7cm,则△ACD的周长()A.18cm B.22cm C.19cm D.31cm【分析】根据三角形中线的定义可得BD=CD,再表示出△ABD和△ACD的周长的差就是AB、AC的差,然后计算即可.解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长7cm,∴△ACD周长为:25﹣7=18(cm).故选:A.【点评】本题主要考查了三角形的中线的定义,把三角形的周长的差转化为已知两边AB、AC的长度的差是解题的关键.7.如图,在△ABC中,∠BAC=60°,∠BCE=40°,AD平分∠BAC,CE⊥AB于点E,则∠ADC的度数为()A.100°B.90°C.80°D.50°【分析】根据三角形内角和定理以及角平分线的定义求出∠B与∠BAD的度数即可求解.解:∵CE⊥AB,∴∠BEC=90°,∵∠BCE=40°,∴∠B=50°,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=80°.故选:C.【点评】本题考查了三角形内角和定理,三角形的外角定理以及角平分线的定义,熟练掌握三角形内角和定理是解题的关键.8.如图,已知△ABC≌△BAD,线段AD与BC交于点O,则下面的结论中不正确的是()A.AC=BD B.BC=AD C.∠CAO=∠BOD D.∠CAB=∠DBA【分析】根据全等三角形的性质求解即可.解:∵△ABC≌△BAD,∴AC=BD,BC=AD,∠CAB=∠DBA,故A、B、D正确,不符合题意;根据题意,无法判定∠CAO=∠BOD,故C错误,符合题意,故选:C.【点评】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等、对应角相等”是解题的关键.9.如图,△ABC中,AD平分∠BAC,AB=4,AC=2,若△ACD的面积等于3,则△ABD的面积为()A.8B.4C.6D.12【分析】根据角平分线的性质得出DE=DF,再根据三角形面积公式求解即可.解:如图,过D点作DE⊥AB于E,DF⊥AC于F,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ACD=AC•DF=3,AC=2,∴DF==3,∴DE=3,∴S△ABD=AB•DE=×4×3=6.故选:C.【点评】此题考查了角平分线的性质,熟记角平分线的性质定理是解题的关键.10.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中,正确的是()A.①②③B.①②③④C.①②④D.②③④【分析】利用HL证明Rt△BDE和Rt△CDF全等,根据全等三角形对应边相等可得DE=DF,再根据到角的两边距离相等的点在角的平分线上判断出AD平分∠BAC,然后利用HL证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,再根据图形表示出AE、AF,整理即可得到AC﹣AB=2BE.进而可以进行判断即可.解:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,故①正确;∵DE⊥AB,DF⊥AC,∴AD平分∠BAC,故②正确;在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴AB+BE=AC﹣FC,∴AC﹣AB=BE+FC=2BE,即AC﹣AB=2BE,故④正确;由垂线段最短可得AE<AD,故③错误,综上所述,正确的是①②④.故选:C.【点评】本题考查了全等三角形的判定与性质,到角的两边距离相等的点在角的平分线上,熟练掌握三角形全等的判定方法并准确识图是解题的关键.二.填空题(共8小题,每小题4分)11.已知a,b,c是△ABC的三边长,a,b满足|a﹣2|+(b﹣5)2=0,c为奇数,则c=5.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.解:∵a,b满足|a﹣2|+(b﹣5)2=0,∴a﹣2=0,b﹣5=0,解得a=2,b=5,∵5﹣2=3,5+2=7,∴3<c<7,又∵c为奇数,∴c=5,故答案是:5.【点评】本题主要考查三角形三边关系和非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.12.如图,CE是△ABC的外角∠ACD的平分线,若∠B=30°,∠ACE=60°,则∠A=90°.【分析】由角平分线的定义可得∠ACD=2∠ACE=120°,再由三角形的外角性质即可求∠A的度数.解:∵CE平分∠ACD,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD是△ABC的外角,∠B=30°,∴∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=90°.故答案为:90.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的外角等于与它不相邻的两个内角之和.13.如图,已知AD平分∠BAC,要使△ABD≌△ACD,需要添加的条件是AB=AC(添加一个即可).【分析】根据AD平分∠BAC,可得∠BAD=∠CAD,再根据AD是公共边,可添加角相等或边相等的条件,答案不唯一.解:∵AD平分∠BAC,∴∠BAD=∠CAD,又∵AD=AD,∴添加AB=AC后,根据SAS可判定△ABD≌△ACD.故答案为:AB=AC.【点评】本题主要考查了全等三角形的判定,解决问题的关键是掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.14.如图,直线m∥n,△ABC的顶点B、C分别在直线n、m上,且∠ACB=90°,若∠1=50°.则∠2的度数为140°.【分析】先根据平行线的性质得到∠ECB=∠1=50°,再利用互余得到∠ACE=40°,然后根据邻补角的定义求∠2的度数.解:∵m∥n∴∠ECB=∠1=50°,又∵∠ACB=∠BCE+∠ACE=90°,∴∠ACE=40°,又∵∠ACE+∠2=180°∴∠2=140°.故答案为:140°.【点评】本题考查了直角三角形的性质:在直角三角形中,两个锐角互余.也考查了平行线的性质.15.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠B=50°,∠E=65°,则①∠1=∠3;②∠CAD+∠2=180°;③如果∠2=40°,则有BC∥AD;④如果∠2=30°,则有AC∥DE,上述结论中正确的是①②③.(填写序号)【分析】根据平行线的判定和性质、直角三角形的性质判断即可.解:①∵∠BAC=∠DAE=90°,∴∠1+∠2=∠2+∠3,∴∠1=∠3,故①结论正确;②∵∠1+∠2+∠2+∠3=180°,∴∠CAD+∠2=180°,故②结论正确;③∵∠2=40°,∴∠3=90°﹣40°=50°,∴∠3=∠B,∴BC∥AD,故③结论正确;④∵∠2=30°,∴∠1=60°,∵∠E=65°,∴AC与DE不平行,故④不正确.故答案为:①②③.【点评】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.16.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是ASA.【分析】根据全等三角形的判定方法解决此题.解:由图得:遮挡住的三角形中露出两个角及其夹边.∴根据三角形的判定方法ASA可解决此题.故答案为:ASA.【点评】本题主要考查全等三角形的判定,熟练掌握全等三角形的判定是解决本题的关键.17.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=8,DE=2,AB=5,则AC长是3.【分析】根据角平分线性质求出DF,根据三角形面积公式求出△ABD的面积,求出△ADC面积,即可求出答案.解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ADB=AB×DE=×5×2=5,∵△ABC的面积为8,∴△ADC的面积为8﹣5=3,∴AC×DF=3,∴AC×2=3,∴AC=3,故答案为:3.【点评】本题考查了角平分线性质,三角形的面积的应用,解此题的关键是求出DF长和△ADC的面积.18.如图,点O是△ABC的两外角平分线的交点,下列结论:①OB=OC;②点O到AB、AC的距离相等;③点O 到△ABC的三边的距离相等;④点O在∠A的平分线上.其中结论正确的是②③④(填序号).【分析】过点O作OE⊥AB于E,作OF⊥BC于F,作OG⊥AC于G,由角平分线的性质和判定进行解答即可.解:如图,过点O作OE⊥AB于E,作OF⊥BC于F,作OG⊥AC于G,∵点O是△ABC的两外角平分线的交点,∴OE=OG,OF=OG,∴OE=OF=OG,∴点O在∠A的平分线上,故②③④正确,只有点F是BC的中点时,BO=CO,故①错误,综上所述,结论正确的是②③④.故答案为:②③④.【点评】本题考查了角平分线的判定与性质,熟记角平分线上的点到角的两边的距离相等,到角的两边距离相等的点在角的平分线上;正确作出辅助线是解题的关键三.解答题(共8小题)19.在如图的直线n上作出点C,使AC+BC的值最小.(不写作法,保留作图痕迹)【分析】作A点关于直线n的对称点D,连接BD交直线n于点C,连接AC,点C即为所求.解:作A点关于直线n的对称点D,连接BD交直线n于点C,连接AC∵AC=CD,∴AC+BC=CD+BC≥BD,∴当B、C、D三点共线时,AC+BC有最小值.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法是解题的关键.20.回答下列问题:(1)一个等腰三角形的周长是20cm,若它的一条边长为6cm,求它的另两条边长.(2)一个等腰三角形的一边长是4,另一边长是9,求这个等腰三角形的周长.【分析】(1)等腰三角形有一条边长为6cm,没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.(2)分4是腰长和底边长两种情况讨论求解.解:(1)∵当腰为6cm时,底边长=20﹣6﹣6=8(cm),当底为6cm时,三角形的腰=×(20﹣6)=7(cm),∴其他两边长为6cm,8cm或7cm,7cm.(2)4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形;4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,这个等腰三角形的周长为22.【点评】此题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.21.如图,已知点C,F在直线AD上,且有BC=EF,AB=DE,CD=AF.求证:△ABC≌△DEF.【分析】首先根据CD=AF可得CD+CF=AF+CF,即AC=DF,可利用SSS证明△ABC≌△DEF.【解答】证明:∵CD=AF,∴CD+CF=AF+CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).【点评】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22.如图,在平面直角坐标系xOy中,△ABC的顶点都在网格线的交点上,点B的坐标为(﹣2,0),点C的坐标为(﹣1,2).(1)直接写出点A的坐标和点A关于y轴的对称点的坐标,并画出△ABC关于y轴的对称图形△A1B1C1;(不写画法,保留画图痕迹)(2)求△A1B1C1的面积.【分析】(1)由图可得点A的坐标;关于y轴对称的点,横坐标互为相反数,纵坐标不变,即可得点A关于y 轴的对称点的坐标;根据轴对称的性质作图即可.(2)利用割补法求三角形的面积即可.解:(1)由图可得,A(﹣4,4),∴点A关于y轴的对称点的坐标为(4,4).如图,△A1B1C1即为所求.(2)△A1B1C1的面积为3×4﹣﹣﹣=4.【点评】本题考查作图﹣轴对称变换、三角形的面积,熟练掌握轴对称的性质是解答本题的关键.23.如图,△ABC中,D,E分别是边AB,AC延长线上的点,AP平分∠BAC,BP平分∠CBD,求证:CP平分∠BCE.证:过P分别作PF⊥AD,PG⊥AE,PH⊥BC,∵AP平分∠BAC(已知),且PF⊥AD,PG⊥AE,∴PG=PF(角平分线上的点到角的两边的距离相等),∵BP平分∠CBD,且PF⊥AD,PH⊥BC,∴PF=PH,∴PG=PH(等量代换),又∵PG⊥AE,PH⊥BC,∴CP平分∠BCE.【分析】过P分别作PF⊥AD,PG⊥AE,PH⊥BC,利用角平分线的性质推知PG=PF=PH;然后结合PG⊥AE,PH⊥BC推知结论.【解答】证明:过P分别作PF⊥AD,PG⊥AE,PH⊥BC,∵AP平分∠BAC(已知),且PF⊥AD,PG⊥AE,∴PG=PF(角平分线上的点到角的两边的距离相等),∵BP平分∠CBD,且PF⊥AD,PH⊥BC,∴PF=PH,∴PG=PH(等量代换),又∵PG⊥AE,PH⊥BC,∴CP平分∠BCE.故答案为:已知;PG=PF;PF⊥AD,PH⊥BC;PG=PH;等量代换.【点评】本题主要考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.使用该结论的前提条件是图中有角平分线.24.如图,在四边形ABCD中,∠B=∠D=90°,AE,CF分别是∠DAB及∠DCB的平分线.(1)求证:AE∥FC.(2)若∠BCD=56°,求∠DAE.【分析】(1)由角平分线定义,两锐角互余的概念,平行线的判定,即可解决问题;(2)由角平分线定义,平行线的性质,即可求解.【解答】(1)证明:∵四边形的内角和是360°,∴∠DAB+∠DCB=360°﹣∠B﹣∠D=180°,∵AE,CF分别是∠DAB和∠DCB的平分线.∴∠FCB=∠DCB,∠BAE=∠DAB,∴∠FCB+∠BAE=(∠DAB+∠DCB)=90°,∵∠AEB+∠BAE=90°,∴∠FCB=∠AEB,∴AE∥FC;(2)解:∵CF是∠DCB的平分线.∴∠DCF=∠DCB=28°,∴∠DFC=90°﹣∠DCF=62°,∵AE∥FC,∴∠DAE=∠DFC=62°.【点评】本题考查角平分线定义,两锐角互余的概念,平行线的性质和判定,关键是掌握并熟练应用以上知识点.25.已知:如图△ABC中AB=6cm,AC=8cm,BD平分∠ABC,CD平分∠ACB,过D作直线平行于BC,交AB,AC于E,F.(1)求证:△DFC是等腰三角形;(2)求△AEF的周长.【分析】(1)根据平行线的性质可得∠FDC=∠DCB,根据角平分线的定义可得∠FCD=∠BCD,可得∠FCD =∠FDC,进一步即可得证;(2)同理(1)可得DE=BE,根据△AEF的周长=AE+AF+DE+DF=AB+AC,求解即可.【解答】(1)证明:∵EF∥BC,∴∠FDC=∠DCB,∵CD平分∠ACB,∴∠FCD=∠BCD,∴∠FCD=∠FDC,∴FD=FC,∴△DFC是等腰三角形;(2)解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠DBE,∴∠EDB=∠DBE,∴DE=BE,∵DF=FC,∴△AEF的周长=AE+AF+DE+DF=AE+AF+BE+FC=AB+AC,∵AB=8cm,AC=6cm,∴AB+AC=8+6=14(cm),∴△AEF的周长为14cm.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义等,熟练掌握等腰三角形的判定和性质是解题的关键.26.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠MBC的度数是30度;(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【分析】(1)依据△ABC是等腰三角形,即可得到∠ACB的度数以及∠A的度数,再根据MN是垂直平分线,即可得到MA=MB,∠MBA=∠A=40°,进而得出∠MBC的度数;(2)①依据垂直平分线的性质,即可得到AM=BM,进而得出△BCM的周长=AC+BC,再根据AB=AC=8cm,△MBC的周长是14cm,即可得到BC的长;②依据PB+PC=PA+PC,PA+PC≥AC,即可得到当P与M重合时,PA+PC=AC,此时PB+PC最小,进而得出△PBC的周长最小值.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴MA=MB,∴∠MBA=∠A=40°,∴∠MBC=30°,故答案为:30;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△BCM的周长=BM+CM+BC=AM+MC+BC=AC+BC,∵AB=AC=8cm,△MBC的周长是14cm,∴BC=14﹣8=6(cm);②当P与M重合时,△PBC的周长最小.理由:∵PB+PC=PA+PC,PA+PC≥AC,∴当P与M重合时,PA+PC=AC,此时PB+PC最小值等于AC的长,∴△PBC的周长最小值=AC+BC=8+6=14(cm).【点评】本题主要考查了最短路线问题以及等腰三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.。
八年级数学上册期中考试
班级:姓名:学号:分数:一、选择题。
(3′×8=24′)
1、如图,已知△AB C≌△EFD,∠C=∠D,AB=EF,则下列说法错误的是()
A.BC=FD
B.AC=EF
C.∠A=∠DEF
D.AE=BF
(第1题图)(第2题图)
2、如图,OA=OB,OC=OD,∠O=60°,∠C=25°,∠BED的度数是()
A.60°
B.55°
C.70°
D.50°
3、下列条件中,不一定能证明两个三角形全等的是:()
A.两边和一角对应相等
B.两角和一边对应相等
C.三边对应相等
D.两边对应相等的两个直角三角形
4、下列几何图形中,对称轴最多的是()
A.平行四边形
B.长方形
C.等边三角形
D.半圆
5、下列说法正确的是()
A.-0.064的立方根是0.4
B.0.36的算术平方根是±0.6
C.
8
27
的平方根是±
2
3
D. 1 的算术平方根是1
6、81 的平方根是() A.9 B.±9 C.±3 D.3
7、已知31000a错误!未找到引用源。
=m,则3a= () A.100 B.10 C.0.1 D.10
8、如图(第8题图),△ABC中,BC=10,边BC的垂直平分线DE分别交AB、BC于点
E、D,BE=6,则△BCE的周长是() A.16 B.22 C.26 D.21
(第8题图)
二、填空。
(3′×7=21′)
1、等腰三角形中,有一个角是70°,则另外两个角分别为()。
2、两边长分别为为6㎝、8㎝的等腰三角形的周长是()。
3、点A(-3,-5)关于Y轴对称的点的坐标是()。
4、与40 最接近的两个整数是()。
5、 3 ≈1.732,300 ≈( )(结果保留四个有效数字)
6、64 的立方根是()。
7、已知2
a+|b-1|=0,那么(a+b)2011的值是()。
三、作图题。
(5′×2=10′)
1、作出△ABC关于直线L称轴对称的图形。
2
、画出下图中正五边形的对称轴。
四、解答题。
(共45分)
1、如图,△AB C≌△DEC,∠ACB=90°,∠DCB=126°,求∠ACE的度数。
(6分)
2、如图,∠AOP=∠BOP=15°,P C∥OA,P D⊥OA,若PC=4,求PD的长。
(8分)(提示:作P E⊥OB于点E)
3、如图,△AB C和△ADE是等边三角形。
(8分)
求证:BD=CE (提示:△AB D≌△ACE)
4、如图,AB=AC,BD⊥AC于点D,∠A=40°,求∠DBC的度数。
(6分)
5、已知A=
m-n
m+n+10 是m+n+10的算术平方根,B=
m-2n+3
4m+6n-1 是4m+6n-1的立方根。
求B-A的立方根。
(8分
6、某农场有一块长30米宽20米得场地,要在这块场地上建一个正方形鱼池,是鱼池的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长是多少?(精确到0.1米, 3 ≈1.732)(9分)。