最小树形图
- 格式:docx
- 大小:98.15 KB
- 文档页数:2
最⼩树形图——朱刘算法学习笔记问题描述给定⼀张⽆向图和⼀个根r,求出⼀个n-1条边的⼀张⼦图,使得从r出发可以到达任意⼀个点,同时使得所有选择的边权之和最⼩。
根据最⼩树形图的定义,这张图的除了根的每⼀个点都必须有且仅有⼀个⼊度。
那么我们可以贪⼼⼀点,对于除了根的所有点都找出⼀条连向它的边且边权最⼩,称作这个点的代表边,并把这些边权加⼊答案中。
然后我们找出了⼀张图,这张图中每个点都只有⼀个⼊度。
如果不算根的话,它应当是⼀个外向基环树森林。
然后我们找到所有的环,把它们缩成⼀个点。
再去扫描不在环内的边,假设有u->v,那么这条边的边权要减掉v的代表边权。
因为v是⼀个环,如果继续连u->v的边的话,相当于是把原来v的⽗亲断开,再连上u。
于是我们就完成了缩点,⼀直做下去,知道图中没有环。
⽆解就是图中除了根有点没有⼊度。
代码细节1、初始化,我们令id[]表⽰这个点在那个环⾥,top[]表⽰环顶(找环时⽤),mi[]表⽰代表边的边权,cnt表⽰环数。
2、找环的时候,因为是⼀颗外向基环树,所以我们对于每个点记录father,这样father就变成了内向基环树,这样可以⽅便找环。
3、没有和其他点组成环的让它⾃⼰成为⼀个环。
4、每做完⼀轮之后要更新⼀下点数和根。
代码#include<iostream>#include<cstdio>#define N 109#define M 10009#define inf 2e9using namespace std;int tot,top[N],id[N],cnt,mi[N],n,m,fa[N],r;long long ans;inline int rd(){int x=0;char c=getchar();bool f=0;while(!isdigit(c)){if(c=='-')f=1;c=getchar();}while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}return f?-x:x;}struct edge{int from,to,l;}e[M];inline void add(int u,int v,int l){e[++tot].to=v;e[tot].l=l;e[tot].from=u;}inline bool solve(){while(1){for(int i=1;i<=n;++i)id[i]=top[i]=0,mi[i]=inf;for(int i=1;i<=m;++i)if(e[i].to!=e[i].from&&e[i].l<mi[e[i].to])fa[e[i].to]=e[i].from,mi[e[i].to]=e[i].l;int u=0;mi[r]=0;for(int i=1;i<=n;++i){if(mi[i]==inf)return0;ans+=mi[i];for(u=i;u!=r&&top[u]!=i&&!id[u];u=fa[u])top[u]=i;if(u!=r&&!id[u]){id[u]=++cnt;for(int v=fa[u];v!=u;v=fa[v])id[v]=cnt;}}if(!cnt)return1;for(int i=1;i<=n;++i)if(!id[i])id[i]=++cnt;for(int i=1;i<=m;++i){int num=mi[e[i].to];e[i].from=id[e[i].from];e[i].to=id[e[i].to];if(e[i].from!=e[i].to)e[i].l-=num;}n=cnt;r=id[r];cnt=0;}}int main(){n=rd();m=rd();r=rd();int u,v,w;for(int i=1;i<=m;++i){u=rd();v=rd();w=rd();add(u,v,w); }if(solve())cout<<ans;else puts("-1");return0;}。
最小树与最小树形图(数学建模)讲解一、最小树的定义及性质1. 定义:最小树,又称最小树,是指在给定的带权无向图中,包含图中所有顶点的一个树形结构,且树中所有边的权值之和最小。
2. 性质:(1)最小树中不存在回路;(2)对于最小树中的任意两个顶点,它们之间有且仅有一条路径;(3)最小树中边的数量等于顶点数量减一;(4)在最小树中添加任意一条边,都会形成一条回路;(5)最小树不唯一,但权值之和相同。
二、求解最小树的方法1. Prim算法Prim算法是一种贪心算法,其基本思想是从图中的一个顶点开始,逐步添加边和顶点,直到形成最小树。
具体步骤如下:(1)初始化:选择一个顶点作为最小树的起点,将其加入最小树集合;(2)迭代:在最小树集合和非最小树集合之间,寻找一条权值最小的边,将其加入最小树集合;(3)重复步骤2,直到所有顶点都加入最小树集合。
2. Kruskal算法Kruskal算法同样是一种贪心算法,其基本思想是将图中的所有边按权值从小到大排序,然后依次选择权值最小的边,判断是否形成回路,若不形成回路,则将其加入最小树集合。
具体步骤如下:(1)初始化:将所有顶点视为独立的树;(2)按权值从小到大排序所有边;(3)迭代:选择权值最小的边,判断其是否形成回路,若不形成回路,则将其加入最小树集合;(4)重复步骤3,直到所有顶点都在同一棵树中。
三、最小树形图的定义及求解方法1. 定义:最小树形图,又称最优树形图,是指在给定的有向图中,找到一个包含所有顶点的树形结构,使得树中所有边的权值之和最小。
2. 求解方法:朱刘算法(Edmonds' Algorithm)朱刘算法是一种用于求解最小树形图的算法,其基本思想是通过寻找图中的最小权值环,进行收缩和扩展操作,最终得到最小树形图。
具体步骤如下:(1)寻找最小权值环;(2)对最小权值环进行收缩操作,将环中的顶点合并为一个新顶点;(3)在新图中寻找最小树形图;(4)将新图中的最小树形图扩展回原图,得到原图的最小树形图。
斯坦纳树算法
斯坦纳树算法,也称为“终极斯坦纳树算法”,是一种用于解决带权图中的最小树形图问题的算法。
该算法具有时间复杂度为O(n^3 * 2^n)的特点,因此适用于小型图和中等规模的图,但在大型图上会出现运行时间过长的问题。
斯坦纳树算法的基本思想是将原图中的顶点集合划分成若干个
子集,然后对每个子集构建一棵最小树形图,最后将所有子集的最小树形图合并成一棵最终的最小树形图。
该算法的核心在于如何构建子集的最小树形图,这通常使用DP(动态规划)的方式进行求解。
具体而言,斯坦纳树算法的步骤如下:
1.将所有边的权值取对数,并对原图做一些预处理,以提高算法效率。
2.对于每个子集S,使用DP的方式计算S中所有点到S中某个点的最短距离,记为d(S,v),其中v是S中任意一个点。
3.对于每个子集S,将S中所有点连成一棵生成树,使得该树的根节点为S中某个点,且所有连边的权值之和等于d(S,v)。
4.通过枚举所有的子集S,计算每个子集的最小树形图,并记录下最小树形图的权值。
5.将所有子集的最小树形图合并成一棵最终的最小树形图。
需要注意的是,斯坦纳树算法只适用于有向图,且存在一些限制条件,如原图必须联通等。
此外,该算法在实际应用中,可能需要结合其他算法一起使用,以解决一些特殊情况下的问题。
poj3164
最小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T,并且T 中所有边的总权值最小。
最小树形图的第一个算法是1965年朱永津和刘振宏提出的复杂度为O(VE)的算法。
判断是否存在树形图的方法很简单,只需要以v为根作一次图的遍历就可以了,所以下面的算法中不再考虑树形图不存在的情况。
在所有操作开始之前,我们需要把图中所有的自环全都清除。
很明显,自环是不可能在任何一个树形图上的。
只有进行了这步操作,总算法复杂度才真正能保证是O(VE)。
首先为除根之外的每个点选定一条入边(以该点为终点的有向边),这条入边一定要是所有入边中最小的。
现在所有的最小入边都选择出来了,如果这个入边集不存在有向环的话,我们可以证明这个集合就是该图的最小树形图。
这个证明并不是很难。
如果存在有向环的话,我们就要将这个有向环所称一个人工顶点,同时改变图中边的权。
假设某点u在该环上,并设这个环中指向u的边权是in[u],那么对于每条从u出发的边(u, i, w),在新图中连接(new, i, w)的边,其中new为新加的人工顶点; 对于每条进入u的边(i, u, w),在新图中建立边(i, new, w-in[u])的边。
为什么入边的权要减去in[u](等效抵消,在还原有向生成树时是等价的),这个后面会解释,在这里先给出算法的步骤。
然后可以证明,新图中最小树形图的权加上旧图中被收缩的那个环的权和,就是原图中最小树形图的权。
(没有有向圈后就完成了算法)
上面结论也不做证明了。
现在依据上面的结论,说明一下为什么出边的权不变,入边的权要减去in [u]。
对于新图中的最小树形图T,设指向人工节点的边为e。
将人工节点展开以后,e指向了一个环。
假设原先e是指向u的,这个时候我们将环上指向u的边in[u]删除,这样就得到了原图中的一个树形图。
我们会发现,如果新图中e的权w'(e)是原图中e的权w(e)减去in[u]权的话,那么在我们删除掉in[u],并且将e恢复为原图状态的时候,这个树形图的权仍然是新图树形图的权加环的权,而这个权值正是最小树形图的权值。
所以在展开节点之后,我们得到的仍然是最小树形图。
逐步展开所有的人工节点,就会得到初始图的最小树形图了。
如果实现得很聪明的话,可以达到找最小入边O(E),找环O(V),收缩O(E),其中在找环O(V)这里需要一点技巧。
这样每次收缩的复杂度是O(E),然后最多会收缩几次呢?由于我们一开始已经拿掉了所有的自环,我门可以知道每个环至少包含2个点,收缩成1个点之后,总点数减少了至少1。
当整个图收缩到只有1个点的时候,最小树形图就不不用求了。
所以我们最多只会进行V-1次的收缩,所以总得复杂度自然是O(VE)了。
由此可见,如果一开始不除去自环的话,理论复杂度会和自环的数目有关。
要点:
首先判断连通性,若从根节点能访问到每个节点,说明存在有向生成树
其次在判断是否存在有向圈,对n个顶点找n-1个最小弧,要么某个节点的前代节点是树根,要么存在有向圈,具体处理时将整个圈收缩到首次发现存在圈的节点。