广东省百所高中2015届高三文科数学联考试题及答案
- 格式:pdf
- 大小:571.48 KB
- 文档页数:8
绝密★启用前 试卷类型:B2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 2、已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 3、下列函数中,既不是奇函数,也不是偶函数的是( ) A .2sin y x x =+ B .2cos y x x =- C .122x x y =+D .sin 2y x x =+ 4、若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 5、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos 2A =且b c <,则b =( )AB .2 C. D .36、若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 7、已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .18、已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9、在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .5 10、若集合(){},,,04,04,04,,,p q r s p s q s r s p q r sE =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11、不等式2340x x --+>的解集为 .(用区间表示)12、已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .13、若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . (二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15、(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C 23E =,则D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.) 16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值. 17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =. ()1证明:C//B 平面D P A ;()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21、(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.()1若()01f ≤,求a 的取值范围; ()2讨论()f x 的单调性; ()3当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数.。
2015年高三上学期期末名校联考数学试卷(文科)一、选择题(每小题5分,共60分)1. 复数224(1)i i ++的共轭复数是( ) A. 2i + B. 2i -+ C. 2i - D. 2i --2. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A. 112 B. 110 C. 15 D. 3103. 设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A. 4B. 14-C. 2D. 12- 4. 已知点(,)P x y 在不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域上运动,则z x y =-的取值范围是( )A. []2,1--B. []2,1-C. []1,2-D. []1,25. 设,x y 是两个实数,则“,x y 中至少有一个数大于1”是“222x y +>”成立的( )A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件6.设在△ABC 中,3AB BC ==,30ABC ∠=︒,AD 是边BC 上的高,则AD AC 的值等于( )A. 0B. 94C. 4D. 94- 7. 设集合{}2|230A x x x =+->,集合{}2|210,0B x x ax a =--≤>。
若A B 中恰含有一个整数u ,则实数a 的取值范围是( ) A. 30,4⎛⎫ ⎪⎝⎭ B. 34,43⎡⎫⎪⎢⎣⎭ C. 3,4⎡⎫+∞⎪⎢⎣⎭ D. ()1,+∞8. 等差数列{}n a 的前n 项和为*()n S n N ∈,且满足150S >,160S <,则11S a ,22S a ,…,1515S a 中最大的项为( ) A. 66S a B. 77S a C. 99S a D. 88S a 9. 三棱锥P-ABC 的三条侧棱PA 、PB 、PC 两两互相垂直,且长度分别为3、4、5,则三棱锥P-ABC 外接球的体积是( ) A. 202π B. 12526π C. 12523π D. 50π 10. 已知双曲线的两个焦点分别为1(5,0)F -,2(5,0)F ,P 是双曲线上的一点,12PFPF ⊥且122PF PF =,则双曲线方程是( )A. 22123x y -=B. 2214x y -=C. 22132x y -= D. 2214y x -= 11. 在如图所示的程序框图中,当*(1)n N n ∈>时,函数()n f x 等于函数1()n f x -的导函数,若输入函数1()sin cos f x x x =+,则输出的函数()n f x可化为( ) A. 2sin()4x π+ B. 2sin()4x π- C. 2sin()4x π-- D. 2sin()4x π-+12. 已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若()1f x ax ≥-,则a 的取值范围是( )A. []2,0-B. []2,1-C. []4,0-D. []4,1-二、填空题(每小题5分,共20分)13. 方程210xx =-的根(,1),x k k k Z ∈+∈,则k=_____。
一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合,,则()A.B.C.D.【答案】C【解析】试题分析:,故选C.考点:集合的交集运算.2. 已知是虚数单位,则复数()A.B.C.D.【答案】D考点:复数的乘法运算.3. 下列函数中,既不是奇函数,也不是偶函数的是()A.B.C.D.【答案】A【解析】试题分析:函数的定义域为,关于原点对称,因为,,所以函数既不是奇函数,也不是偶函数;函数的定义域为,关于原点对称,因为,所以函数是偶函数;函数的定义域为,关于原点对称,因为,所以函数是偶函数;函数的定义域为,关于原点对称,因为,所以函数是奇函数.故选A.考点:函数的奇偶性.4.若变量,满足约束条件,则的最大值为()A.B.C.D.【答案】C考点:线性规划.5.设的内角,,的对边分别为,,.若,,,且,则()A.B.C.D.【答案】B【解析】试题分析:由余弦定理得:,所以,即,解得:或,因为,所以,故选B.考点:余弦定理.6. 若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是()A.至少与,中的一条相交B.与,都相交C.至多与,中的一条相交D.与,都不相交【答案】A考点:空间点、线、面的位置关系.7.已知件产品中有件次品,其余为合格品.现从这件产品中任取件,恰有一件次品的概率为()A.B.C.D.【答案】B【解析】试题分析:件产品中有件次品,记为,,有件合格品,记为,,,从这件产品中任取件,有种,分别是,,,,,,,,,,恰有一件次品,有种,分别是,,,,,,设事件“恰有一件次品”,则,故选B.考点:古典概型.8.已知椭圆()的左焦点为,则()A.B.C.D.【答案】C【解析】试题分析:由题意得:,因为,所以,故选C.考点:椭圆的简单几何性质.9.在平面直角坐标系中,已知四边形是平行四边形,,,则()A.B.C.D.【答案】D【解析】试题分析:因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.10.若集合,,用表示集合中的元素个数,则()A.B.C.D.【答案】D考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11.不等式的解集为.(用区间表示)【答案】【解析】试题分析:由得:,所以不等式的解集为,所以答案应填:.考点:一元二次不等式.12.已知样本数据,,,的均值,则样本数据,,,的均值为.【答案】考点:均值的性质.13.若三个正数,,成等比数列,其中,,则.【答案】【解析】试题分析:因为三个正数,,成等比数列,所以,因为,所以,所以答案应填:.考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数),则与交点的直角坐标为.【答案】【解析】试题分析:曲线的直角坐标方程为,曲线的普通方程为,由得:,所以与交点的直角坐标为,所以答案应填:.考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点.15.(几何证明选讲选做题)如图,为圆的直径,为的延长线上一点,过作圆的切线,切点为,过作直线的垂线,垂足为.若,,则.【答案】考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知.求的值;求的值.【答案】(1);(2).考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17、(本小题满分12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.求直方图中的值;求月平均用电量的众数和中位数;在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?【答案】(1);(2),;(3).【解析】试题解析:(1)由得:,所以直方图中的值是考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18、(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,,,.证明:平面;证明:;求点到平面的距离.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题解析:(1)因为四边形是长方形,所以,因为平面,平面,所以平面(2)因为四边形是长方形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以(3)取的中点,连结和,因为,所以,在中,,因为平面平面,平面平面,平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因为平面,所以,设点到平面的距离为,因为,所以,即,所以点到平面的距离是考点:1、线面平行;2、线线垂直;3、点到平面的距离.19、(本小题满分14分)设数列的前项和为,.已知,,,且当时,.求的值;证明:为等比数列;求数列的通项公式.【答案】(1);(2)证明见解析;(3).考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.。
高中数学学习材料(灿若寒星精心整理制作)绝密★启用前试卷类型:B2015年普通高等学校招生全国统一考试数学文试题(广东卷,含解析)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{}1,1M=-,{}2,1,0N=-,则M N =()A.{}0,1-B.{}0C.{}1D.{}1,1-【答案】C 【解析】试题分析:{}1M N =,故选C.考点:集合的交集运算.2. 已知i是虚数单位,则复数()21i+=()A.2-B.2C.2i-D.2i 【答案】D考点:复数的乘法运算.3. 下列函数中,既不是奇函数,也不是偶函数的是()A.2siny x x=+B.2cosy x x=-C.122xxy=+D.sin2 y x x =+【答案】A 【解析】 试题分析:函数()2sin f x x x=+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x=+既不是奇函数,也不是偶函数;函数()2cos f x x x=-的定义域为R,关于原点对称,因为()()()()22cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x=-是偶函数;函数()122x xf x =+的定义域为R,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122xx f x =+是偶函数;函数()sin 2f x x x=+的定义域为R,关于原点对称,因为()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x=+是奇函数.故选A .考点:函数的奇偶性.4. 若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C考点:线性规划.5. 设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2A =,且b c <,则b =( )A .3B .2 C .22 D .3 【答案】B【解析】试题分析:由余弦定理得:2222cos a b c bc =+-A,所以()22232232232b b =+-⨯⨯⨯,即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B . 考点:余弦定理.6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l都相交 C .l 至多与1l ,2l 中的一条相交 D .l 与1l ,2l都不相交 【答案】A考点:空间点、线、面的位置关系.7. 已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 【答案】B 【解析】试题分析:5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种,分别是(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,恰有一件次品,有6种,分别是(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,设事件A =“恰有一件次品”,则()60.610P A ==,故选B .考点:古典概型.8.已知椭圆222125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .2 【答案】C【解析】试题分析:由题意得:222549m =-=,因为0m >,所以3m =,故选C . 考点:椭圆的简单几何性质.9. 在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .5 【答案】D 【解析】试题分析:因为四边形CD AB 是平行四边形,所以()()()C D 1,22,13,1A =AB +A =-+=-,所以()D C 23115A ⋅A =⨯+⨯-=,故选D .考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算. 10. 若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200 【答案】D考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11. 不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1-【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.考点:一元二次不等式. 12. 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 . 【答案】11考点:均值的性质.13. 若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . 【答案】1 【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以()()25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1.考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14. (坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x t y t ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .【答案】()2,4-【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x +=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-.考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C 23E =,则D A = .【答案】3考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1.考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[) 160,180,[) 180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?【答案】(1)0.0075;(2)230,224;(3)5. 【解析】试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.()1证明:C//B 平面D P A ; ()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3)372.【解析】试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DCP 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P(3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在Rt D ∆PE 中,22D D PE =P -E22437=-=,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CD V V -P A P-A =三棱锥三棱锥,所以D CD 1133S h S ∆P A ∆A ⋅=⋅PE,即CD D 136737212342S h S ∆A ∆P A ⨯⨯⨯⋅PE ===⨯⨯,所以点C 到平面D P A 的距离是372考点:1、线面平行;2、线线垂直;3、点到平面的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列;()3求数列{}na的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212nna n-⎛⎫=-⨯ ⎪⎝⎭.考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.。
目录:广东省实验中学2015届高三第一次阶段考试数学(文)试题 Word 版含解析.doc 广东省海珠区等四区2015届高三联考数学(文) Word 版含答案.doc广东省深圳市2015届高三上学期第一次五校联考数学文试题 Word 版含解析.doc 广东省湛江市2015届高三上学期毕业班调研测试数学文试题 Word 版含解析.doc 广东省珠海一中等六校2015届高三11月第二次联考数学文试题 Word 版含答案.doc 广东省肇庆市2015届高中毕业班10月第一次统一检测试题 数学文 Word 版含答案.doc 广东省阳东一中、广雅中学2015届高三第一次联考数学(文)试题 Word 版含解析.doc 广东省韶关市2015届高三十校10月联考数学文试题 Word 版含答案.doc韶关市2015届高三级十校联考试题(文科数学)本试卷共4页,21小题,满分150分。
考试用时120分钟。
【注意事项】1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号、试室号、座位号填写在答题卷相应位置上。
2.必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;不按以上要求作答的答案无效。
3.考生必须保持答题卷的整洁,考试结束后,将答题卷收回。
一、选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合{|1}A x x =>,2{|4}B x x =<,那么AB =( )A.(2,2)-B.(1,2)-C.(1,2)D.(1,4) 2.设i 为虚数单位,则51ii-+等于( ) A.i 32-- B.i 32+- C.i 32- D.i 32+ 3.命题“01,≥+-∈∀x e R x x”的否定是( )A .01,<+-∈∀x e R x xB .01,≥+-∈∃x e R x xC .01,>+-∈∀x e R x xD .01,<+-∈∃x e R x x4.下列函数中,既是奇函数又存在极值的是( )A. 3y x =B. ln()y x =-C. xy xe -= D.2y x x=+5.设y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3311y x y x y x ,则目标函数y x z +=4的最小值为( )A. -1B. 0C. 1D.26.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A.5B. 5C.52 D. 547.阅读右图所示程序框图,运行相应的程序,输出S 的值等于( ) A. -3 B. -10 C. 0 D. -2 8. 已知n m ,为异面直线,⊂m 平面α,⊂n 平面β,l =⋂βα,则直线l ( )A. 与n m ,都相交B. 与n m ,都不相交C. 与n m ,中至少一条相交D. 至多与n m ,中的一条相交9.设a R ∈,若函数xy e ax =+,x R ∈,有大于1-的极值点,则( ) A 、1a <- B 、1a >- C 、1a e <- D 、1a e>-10.设M 是ABC ∆内一点,且32=⋅AC AB ,︒=∠30BAC .定义),,()(p n m M f =,其中p n m ,,分别是MAB MCA MBC ∆∆∆,,的面积. 若),,21()(y x P f =,则22l g l g o x o y +的最大值是( )A .5-B .4-C .3-D .2-二、填空题:本大题共5小题,每小题5分,满分20分.其中14、15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分。
2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣23.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.105.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2 C.2 D.36.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.18.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.99.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.210.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+5S n=8S n+1+S n﹣1.+2(1)求a4的值;(2)证明:{a n﹣a n}为等比数列;+1(3)求数列{a n}的通项公式.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}【分析】进行交集的运算即可.【解答】解:M∩N={﹣1,1}∩{﹣2,1,0}={1}.故选:C.【点评】考查列举法表示集合,交集的概念及运算.2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【分析】利用完全平方式展开化简即可.【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.【点评】本题考查了复数的运算;注意i2=﹣1.3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx【分析】利用函数奇偶性的判断方法对选项分别分析选择.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D.【点评】本题考查了函数奇偶性的判断,在定义域关于原点对称的前提下,判断f(﹣x)与f(x)的关系,相等就是偶函数,相反就是奇函数.4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.10【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z最大.由,解得,即B(4,﹣1).此时z的最大值为z=2×4+3×(﹣1)=8﹣3=5,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2 C.2 D.3【分析】运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2.【解答】解:a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:B.【点评】本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题.6.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【分析】可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可推出和l1,l2异面矛盾,这样便说明D正确.【解答】解:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:,∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.故选:D.【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.1【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6.故选:B.【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理.8.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.9【分析】利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m.【解答】解:∵椭圆+=1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B.【点评】本题考查椭圆的性质,考查学生的计算能力,比较基础.9.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.2【分析】由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法则可得,==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.【点评】本题主要考查了向量加法的平行四边形法则及向量数量积的坐标表示,属于基础试题.10.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)【分析】首先将二次项系数化为正数,然后利用因式分解法解之.【解答】解:原不等式等价于x2+3x﹣4<0,所以(x+4)(x﹣1)<0,所以﹣4<x<1;所以不等式的解集为(﹣4,1);故答案为:(﹣4,1).【点评】本题考查了一元二次不等式的解法;一般的首先将二次项系数化为正数,然后选择适当的方法解之;属于基础题.12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.【分析】利用平均数计算公式求解【解答】解:∵数据x1,x2,…,x n的平均数为均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为:=5×2+1=11;故答案为:11.【点评】本题考查数据的平均数的求法,是基础题.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b= 1.【分析】由已知可得,b2=ac,代入已知条件即可求解b【解答】解:∵三个正数a,b,c 成等比数列,∴b2=ac,∵a=5+2,c=5﹣2,∴=1,故答案为:1.【点评】本题主要考查了等比数列的性质,属于基础试题坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).【分析】曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立解出即可.【解答】解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立,解得,则C1与C2交点的直角坐标为(2,﹣4).故答案为:(2,﹣4).【点评】本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.【分析】连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论.【解答】解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=BE•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3.【点评】本题考查切割线定理,考查学生分析解决问题的能力,比较基础.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.【分析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可.【解答】解:tanα=2.(1)tan(α+)===﹣3;(2)== ==1.【点评】本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户.【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.【分析】(1)利用四边形ABCD是长方形,可得BC∥AD,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;(3)利用等体积法,求点C到平面PDA的距离.【解答】(1)证明:因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA;(2)证明:因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD;(3)解:取CD的中点E,连接AE和PE,因为PD=PC,所以PE⊥CD,在Rt△PED中,PE===.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h.因为V C=V P﹣ACD,﹣PDA所以,所以h==,所以点C到平面PDA的距离是.【点评】本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且+5S n=8S n+1+S n﹣1.当n≥2时,4S n+2(1)求a4的值;﹣a n}为等比数列;(2)证明:{a n+1(3)求数列{a n}的通项公式.【分析】(1)直接在数列递推式中取n=2,求得;(2)由4S n+5S n=8S n+1+S n﹣1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得+2到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式.【解答】(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;+5S n=8S n+1+S n﹣1(n≥2),∴4S n+2﹣4S n+1+S n﹣S n﹣1=4S n+1﹣4S n (2)证明:∵4S n+2(n≥2),即4a n+a n=4a n+1(n≥2),+2+a n=4a n+1.∵,∴4a n+2∵=.∴数列{}是以=1为首项,公比为的等比数列;(3)解:由(2)知,{}是以为首项,公比为的等比数列,∴.即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n}的通项公式是.【点评】本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.【分析】(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可.(2)化简函数f(x)的解析式,通过当x<a时,当x≥a时,利用二次函数f (x)的对称轴求解函数的单调区间即可.(3)化简F(x)=f(x)+,求出函数的导数,利用导函数的符号,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数.【解答】解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1.可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,].当a<0时,|a|+a﹣1≤0,恒成立.综上a.∴a的取值范围:;(2)函数f(x)==,当x<a时,函数f(x)的对称轴为:x==a+>a,y=f(x)在(﹣∞,a)时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a时,=,所以,函数F(x)在(0,a)上是减函数.当x≥a时,因为a≥2,所以,F′(x)=═,所以,函数F(x)在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点.综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点.【点评】本题考查的知识点比较多,包括绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单调性的关系,考查分类讨论思想的应用,函数与方程的思想,转化思想的应用,也考查化归思想的应用.。
2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣23.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.105.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2 C.2 D.36.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.18.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.99.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.210.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card (X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n +5S n=8S n+1+S n﹣1.≥2时,4S n+2(1)求a4的值;﹣a n}为等比数列;(2)证明:{a n+1(3)求数列{a n}的通项公式.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}【分析】进行交集的运算即可.【解答】解:M∩N={﹣1,1}∩{﹣2,1,0}={1}.故选:C.【点评】考查列举法表示集合,交集的概念及运算.2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【分析】利用完全平方式展开化简即可.【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.【点评】本题考查了复数的运算;注意i2=﹣1.3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx【分析】利用函数奇偶性的判断方法对选项分别分析选择.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D.【点评】本题考查了函数奇偶性的判断,在定义域关于原点对称的前提下,判断f(﹣x)与f(x)的关系,相等就是偶函数,相反就是奇函数.4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.10【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z最大.由,解得,即B(4,﹣1).此时z的最大值为z=2×4+3×(﹣1)=8﹣3=5,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2 C.2 D.3【分析】运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2.【解答】解:a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:B.【点评】本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题.6.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【分析】可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可推出和l1,l2异面矛盾,这样便说明D正确.【解答】解:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:,∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.故选:D.【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.1【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6.故选:B.【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理.8.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.9【分析】利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m.【解答】解:∵椭圆+=1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B.【点评】本题考查椭圆的性质,考查学生的计算能力,比较基础.9.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.2【分析】由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法则可得,==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.【点评】本题主要考查了向量加法的平行四边形法则及向量数量积的坐标表示,属于基础试题.10.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card (X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)【分析】首先将二次项系数化为正数,然后利用因式分解法解之.【解答】解:原不等式等价于x2+3x﹣4<0,所以(x+4)(x﹣1)<0,所以﹣4<x<1;所以不等式的解集为(﹣4,1);故答案为:(﹣4,1).【点评】本题考查了一元二次不等式的解法;一般的首先将二次项系数化为正数,然后选择适当的方法解之;属于基础题.12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.【分析】利用平均数计算公式求解【解答】解:∵数据x1,x2,…,x n的平均数为均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为:=5×2+1=11;故答案为:11.【点评】本题考查数据的平均数的求法,是基础题.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=1.【分析】由已知可得,b2=ac,代入已知条件即可求解b【解答】解:∵三个正数a,b,c 成等比数列,∴b2=ac,∵a=5+2,c=5﹣2,∴=1,故答案为:1.【点评】本题主要考查了等比数列的性质,属于基础试题坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).【分析】曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立解出即可.【解答】解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立,解得,则C1与C2交点的直角坐标为(2,﹣4).故答案为:(2,﹣4).【点评】本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.【分析】连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论.【解答】解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=BE•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3.【点评】本题考查切割线定理,考查学生分析解决问题的能力,比较基础.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.【分析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可.【解答】解:tanα=2.(1)tan(α+)===﹣3;(2)====1.【点评】本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户.【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.【分析】(1)利用四边形ABCD是长方形,可得BC∥AD,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;(3)利用等体积法,求点C到平面PDA的距离.【解答】(1)证明:因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA;(2)证明:因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD;(3)解:取CD的中点E,连接AE和PE,因为PD=PC,所以PE⊥CD,在Rt△PED中,PE===.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h.=V P﹣ACD,因为V C﹣PDA所以,所以h==,所以点C到平面PDA的距离是.【点评】本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n +5S n=8S n+1+S n﹣1.≥2时,4S n+2(1)求a4的值;﹣a n}为等比数列;(2)证明:{a n+1(3)求数列{a n}的通项公式.【分析】(1)直接在数列递推式中取n=2,求得;+5S n=8S n+1+S n﹣1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得到(2)由4S n+2,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式.【解答】(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;+5S n=8S n+1+S n﹣1(n≥2),∴4S n+2﹣4S n+1+S n﹣S n﹣1=4S n+1﹣4S n(n≥2),(2)证明:∵4S n+2+a n=4a n+1(n≥2),即4a n+2∵,∴4a n+a n=4a n+1.+2∵=.∴数列{}是以=1为首项,公比为的等比数列;(3)解:由(2)知,{}是以为首项,公比为的等比数列,∴.即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n}的通项公式是.【点评】本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C 只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.【分析】(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可.(2)化简函数f(x)的解析式,通过当x<a时,当x≥a时,利用二次函数f(x)的对称轴求解函数的单调区间即可.(3)化简F(x)=f(x)+,求出函数的导数,利用导函数的符,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数.【解答】解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1.可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,].当a<0时,|a|+a﹣1≤0,恒成立.综上a.∴a的取值范围:;(2)函数f(x)==,当x<a时,函数f(x)的对称轴为:x==a+>a,y=f(x)在(﹣∞,a)时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a时,=,所以,函数F(x)在(0,a)上是减函数.当x≥a时,因为a≥2,所以,F′(x)=═,所以,函数F(x)在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点.综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点.【点评】本题考查的知识点比较多,包括绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单调性的关系,考查分类讨论思想的应用,函数与方程的思想,转化思想的应用,也考查化归思想的应用.。
2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)2,是偶函数;4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()y=y=,解得,5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=(),cosA=×6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任件的取法为8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()利用椭圆+椭圆=19.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()==∴10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.的平均数为均值的均值为:13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=1.,2∴坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).,把的参数方程为,解得,几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.,可得∴∴三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.+=====117.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?)月平均用电量的众数是=×18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.PE==.h==的距离是.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.,求得为首项,公比为{为首项,公比为{为首项,,∵∵{是以为首项,公比为的等比数列;{是以为首项,公比为的等比数列,∴为首项,∴,即的通项公式是20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.联立方程组,,其中﹣<)=,其中<,﹣,联立方程组,±,的端点(,±±的取值范围为(﹣,}21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.+a,a.,x==a+=a﹣=时,=═,.当,=.,即。
绝密★启用前 试卷类型:B 2015年普通高等学校招生全国统一考试(广东卷)数 学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、座位号、填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合M =|-1, 1|,N =|-2, 1, 0|,则M ∩N = A .|0, -1| B .|0| C .|1| D .|-1, 1| 2.已知i 是虚数单位,则复数(1+i )2= A .-2 B .2 C .-2i D .2i 3.下列函数中,既不是奇函数,也不是偶函数的是 A .2sin y x x =+ B .2cos y x x =-C .D .sin 2y x x =+4.若变量x ,y 满足约束条件,则23z x y =+的最大值为 A .10 B .8C .5D .25.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,,且b <c ,则b =A .B .2C .D .36.若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 至少与l 1,l 2中的一条相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 与l 1,l 2都不相交7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为 A .0.4 B .0.6 C .0.8 D .18.已知椭圆 (0m >)的左焦点为()1F 4,0-,则m = A .9 B .4 C .3 D .2 9.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,,,则 A .2 B .3 C .4 D .510.若集合E =|(p , q , r , s )| 0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p , q , r , s ∈N |,F =|(t , u , v , w )| 0≤t <u ≤4,0≤v <w ≤4且t , u , v , w ∈N |,用card(X )表示集合X 中的元素个数,则card(E )+ card(F )=A .50B .100C .150D .200 【答案】1~5: CDACB 6~10: ABCDD1.C 【解析】考查集合的交集运算。
试卷类型: B2015 年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共 10 小题,每小题 5 分,满分 50 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合 M1,1,N2,1,0 ,则()A. 0,1 B . 0 C . 1 D.1,12、已知i是虚数单位,则复数2()1 iA .2B .2C . 2i D.2i3、下列函数中,既不是奇函数,也不是偶函数的是()A . y x2sin xB . y x2cosxC .y2x12x D.y x sin 2xx 2 y24、若变量 x ,y满足约束条件x y 0,则 z 2x 3 y 的最大值为()x4A.10 B . 8 C . 5 D.2、设C的内角,, C 的对边分别为 a , b , c .若 a 2 ,c 2 3,5cos 3,且 b c ,则 b()2A. 3B.2C.2 2D. 36、若直线 l1和 l 2是异面直线, l1在平面内, l2在平面内, l 是平面与平面的交线,则下列命题正确的是()A. l 至少与 l1, l2中的一条相交B. l 与 l1, l 2都相交C. l 至多与 l1, l2中的一条相交D. l 与 l1, l 2都不相交7、已知 5 件产品中有2件次品,其余为合格品.现从这 5 件产品中任取2件,恰有一件次品的概率为()A. 0.4B. 0.6C. 0.8 D.18、已知椭圆x2y2( m0 )的左焦点为 F14,0,则 m()25m21A . 9B .4C . 3 D.29、在平面直角坐标系x y 中,已知四边形CD 是平行四边形,1, 2,D2,1 ,则 D C()A .2B . 3C .4 D.510、若集合p, q, r , s 0p s4,0q s4,0r s 4且 p, q, r , s,F t,u, v, w 0t u4,0v w4且 t, u, v, w,用 card表示集合中的元素个数,则 card card F()A .50B.100C.150 D. 2005 小题,考生作答 4 小题,每小题 5 分,满分 20 分.)二、填空题(本大题共(一)必做题( 11~13题)11、不等式x23x 40 的解集为.(用区间表示)12、已知样本数据 x1,x2,,x n的均值 x 5 ,则样本数据 2x1 1 ,2x21,,2 x n 1的均值为.13、若三个正数 a , b , c 成等比数列,其中 a 5 2 6 , c 5 2 6 ,则b.(二)选做题( 14、15 题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系x y 中,以原点为极点, x 轴的正半轴为极轴建立极坐标系.曲线 C1的极坐标方程为cos sinx t 22 ,曲线 C2的参数方程为( t 为参数),则 C1与 C2交y 2 2t点的直角坐标为.15、(几何证明选讲选做题)如图1,为圆的直径,为的延长线上一点,过作圆的切线,切点为 C ,过作直线 C 的垂线,垂足为D.若 4 ,C23 ,则D.三、解答题(本大题共 6 小题,满分80 分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12 分)已知 tan 2 .1 求tan4的值;2求sin 2的值.sin cos cos 2sin 2117、(本小题满分12 分)某城市 100 户居民的月平均用电量(单位:度),以160,180 , 180,200 , 200,220 , 220,240 , 240,260 , 260,280 , 280,300分组的频率分布直方图如图 2 .1求直方图中 x 的值;2求月平均用电量的众数和中位数;3在月平均用电量为 220,240 , 240,260 , 260,280 , 280,300 的四组用户中,用分层抽样的方法抽取 11 户居民,则月平均用电量在220,240的用户中应抽取多少户?3,三角形DC 所在的平面与长方形CD 所在的18、(本小题满分14 分)如图平面垂直,D C 4 , 6 , C 3 .1证明:C//平面D;2证明:C D ;3求点 C 到平面D的距离.19、(本小题满分 14 分)设数列 a n的前 n 项和为 S n,n.已知 a1 1 ,a2 3 ,5,且当 n 2a3 2 时, 4S n 2 5S n8S n 1 S n 1.41求 a4的值;2证明: a n 11a n为等比数列;23求数列 a n的通项公式.20、(本小题满分14 分)已知过原点的动直线 l 与圆 C1 : x2y26x 5 0 相交于不同的两点,.1求圆 C1的圆心坐标;2求线段的中点的轨迹 C 的方程;3是否存在实数 k ,使得直线 L: y k x 4 与曲线 C 只有一个交点?若存在,求出 k 的取值范围;若不存在,说明理由.21、(本小题满分 14 分)设 a 为实数,函数2.f xx ax a a a 11 若 f 01,求 a 的取值范围;2讨论 f x 的单调性;3当 a 2 时,讨论f x 4在区间 0,内的零点个数.x2015 年普通高等学校招生全国统一考试(广东卷)数学(文科)参考答案一、选择题1.C2.D3.A4.C5.B6.A7.B8.C9.D10.D二、填空题4,111.【答案】12.【答案】1113.【答案】 114. 【答案】2, 415. 【答案】 316. 【答案】( 1) 3;( 2) 1.17. 【答案】( 1)0.0075;( 2)230, 224 ;( 3) 5.3 718. 【答案】( 1)证明见解析; ( 2)证明见解析; ( 3) 2.( 1)因为四边形CD是长方形,所以C//D,因为C平面 D , D 平面D ,所以C//平面 D(2)因为四边形CD是长方形,所以CCD,因为平面DC平面CD,平面DC 平面 CDCD , C 平面 CD,所以C平面DC,因为D平面DC ,所以CD(3)取CD的中点,连结和,因为DC,所以CD ,在 RtD中,D 2 D 242327,因为平面DC平面CD,平面DC平面CDCD ,平面 DC,所以平面CD,由( 2)知: C平面DC,由( 1)知:C// D ,所以D平面 DC ,因为 D平面DC ,所以 DD ,设点 C 到平面 D的距1h1离 为h, 因 为V三棱锥CV三棱锥, 所 以S DSCD, 即DCD33S13 673 7CD2hS D1 3 423 72,所以点C到平面D 的距离是27n1a n2n1119. 【答案】( 1)82;( 2)证明见解析; ( 3).S 4 5S 2 8S 3 S 1 ,即 4 3 5 a 4 38 13 5 1145 124(1) 当 n=2 时, 422a 47解得: 8(2)因为4S n 2 5S n 8S n 1 S n 1 n 2 , 所以4S n 24S n 1 S nS n 14Sn 14S n n 2 , 即4a n 2 a n 4a n 1 n 2 ,因为4a 3 a 14×5an 21 an 1 4a n 2 2a n 12a n 1 a n 1a n2 1 6 4a 2 ,所以 4a n 2 4a n 1,因为14a n 1 2a n 2 2a n 1a n 24an 12ana n 1 1 a n 是以 a 2 1a 1 1为首项,公比为 1 的等比数列,所以数列2 2 2a n 1111(3)由2a n是以a22 a 1 12 的等比数列,所以知:数列2为首项,公比为1a nn 1an 1122a n 1a n4a na 12n 1nn1111即22,所以数列2是以 2为首项, 公差为 4 的等差数列, 所以a n2 n 1 4 4n 2nn 1n11a n 4n 2122n 1, 即2 2,所以 数列a n的通项公式是n 11a n2n 12329 5 25 2 5y23,0xx 3k20. 【答案】( 1) ;(2)24 3;( 3)存在,77k4或3 .(1)圆 C 1: x 2 y 2 6x 5 0化为 x 3 2 y 2 4, 所以圆 C 1的圆心坐标为 3,0(2)设线段 AB 的中点 M x o , y o , 由圆的性质可得 C 1M 垂直于直线 l设直线l的方 程为y mx(已知直线 l 的斜率存在),所以 k cm m1, y 0 mx 0 , 所以y 0 y 0291,23x 0 20即x 03 2 x 0 3 x 0x 0y 0 2y 04所以3m4因为动直线 l 与圆C 1相交,所以m21 <2,所以 m2< 5;所以y22 24 x 2 , 所以 3xx 2 4 x 2 , 解得 x53,所以m x 0 <5<50 0> 3或x 0<0, 又因为 0<x 053 <x3.3 29 5M x 0 , y 0x 0y 02x 3 . 所以满足24 3 即3 29 5xy 2x 3 .24 3(3)由题意知直线 l 表示过定点 T 4,0,斜率为 k 的直线结合图形,3 29 55 , 2 5x 0y 0 2x 0 3 表示的是一段关于 x 轴对称,起点为24 33 3按逆时针方向运动到圆弧。