2013-2014学年浙教版八年级(下)期末数学检测卷
- 格式:doc
- 大小:544.59 KB
- 文档页数:37
浙教版数学八年级下册期末试卷一、选择题(本題有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.(3分)下列方程中属于一元二次方程的是()A.2x﹣1=3x B.x2=4 C.x2+3y+1=0 D.x3+1=x2.(3分)已知点(2,1),则它关于原点的对称点坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)下列运算正确的是()A.B.C.×=4 D.4.(3分)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.65.(3分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.29.29.29.2方差(环2)0.0350.0150.0250.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁6.(3分)在▱ABCD中,∠B+∠D=216°,则∠A的度数为()A.36°B.72°C.80°D.108°7.(3分)将一元二次方程x2﹣4x+1=0配方后,原方程可化为()A.(x+2)2=5 B.(x﹣2)2=5 C.(x﹣2)2=3 D.(x﹣4)2=15 8.(3分)反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 9.(3分)如图,在矩形ABCD中,AB=2,BC=10,E、F分别在边BC,AD上,BE =DF.将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE,△CHF.若AG分别平分∠EAD,则GH长为()A.3 B.4 C.5 D.710.(3分)如图,正方形ABCD的边长为3,点EF在正方形ABCD内.若四边形AECF恰是菱形连结FB,DE,且AF2﹣FB2=3,则菱形AECF的边长为()A.B.C.2 D.二、填空题(本题有8小题,每小题3分,共24分)11.(3分)二次根式有意义,则x的取值范围是.12.(3分)已知一组数据4,4,5,x,6,6的众数是6,则这组数据的中位数是.13.(3分)若一元二次方程x2﹣3x+c=0有两个相等的实数根,则c的值是.14.(3分)在周长为18cm的平行四边形中,相邻两条边的长度比为1:2,则这个平行四边形的较短的边长cm.15.(3分)已知多边形的内角和等于外角和的1.5倍,则这个多边形的边数为.16.(3分)工人师傅给一幅长为120cm,宽为40cm的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为7000cm2,设上面留白部分的宽度为xcm,可列得方程为.17.(3分)如图,在正方形ABCD中,G是对角线BD上的点,GE⊥CD,GF⊥BC,E,F 分别为垂足,连结EF.设M,N分别是AB,BG的中点,EF=5,则MN的长为.18.(3分)如图,▱OABC的顶点A的坐标为(2,0),B,C在第一象限.反比例函数y1=和y2=的图象分别经过C,B两点,延长BC交y轴于点D.设P是反比例函数y1=图象上的动点.若△POA的面积是△PCD面积的2倍,△POD的面积等于2k﹣8,则k的值为.三、解答题(本题有6小题,共46分)19.(8分)(1)计算:(2)解方程x2+6x=020.(6分)某校为了对甲、乙两个班的综合情况进行评估,从行规、学风、纪律三个项目亮分,得分情况如下表行规学风纪律甲班838890乙班938685(1)若根据三项得分的平均数从高到低确定名次,那么两个班级的排名顺序怎样?(2)若学校认为这三个项目的重要程度有所不同,而给予“行规”“学风”“纪律”三个项目在总分中所占的比例分别为20%,30%,50%,那么两个班级的排名顺序又怎样?21.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.已知点A在格点,请在给定的网格中按要求画出图形.(1)以A为顶点在图甲中画一个面积为21的平行四边形且它的四个顶点都在格点.(2)以A为顶点在图乙中画一个周长为20的菱形且它的四个顶点都在格点.22.(8分)如图,矩形OABC放置在平面直角坐标系上,点A,C分别在x轴,y轴的正半轴上,点B的坐标是(4,m),其中m>4.反比例函数y=(x>0)的图象交AB交于点D.(1)BD=(用m的代数式表示).(2)设点P为该反比例函数图象上的动点,且它的横坐标恰好等于m,连结PB,PD.①若△PBD的面积比矩形OABC面积多8,求m的值.②现将点D绕点P逆时针旋转90°得到点E,若点E恰好落在x轴上,直接写出m的值.23.(8分)暑假期间,某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.[销售利润=销售总额﹣进货成本)(1)若该纪念品的销售单价为45元时,则当天销售量为件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能请求出此时的销售单价;若不能,请说明理由.24.(10分)如图1,AB=10,P是线段AB上的一个动点,分别以AP,BP为边,在AB的同侧构造菱形APEF和菱形PBCD,P,E,D三点在同一条直线上,连结FP,BD,设射线FE与射线BD交于G.(1)当G在点E的右侧时,求证:四边形FGBP是平形四边形;(2)连结DF,PG,当四边形DFPG恰为矩形时,求FG的长;(3)如图2,设∠ABC=120°,FE=2EG,记点A与C之间的距离为d,直接写出d 的所有值.参考答案与试题解析一、选择题(本題有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.B2.D3.C4.A5.B6.B 7.C8.A9.B10.D二、填空题(本题有8小题,每小题3分,共24分)11.x≥3.12.5.5 13.14.3 15.5 16.(120+4x)(40+2x)=7000.17.2.5 18.6.4三、解答题(本题有6小题,共46分)19.解:(1)原式=3﹣=2;(2)x2+6x=0,x(x+6)=0,x=0,x+6=0,x1=0,x2=﹣6.20.解:(1)甲班算术平均数:(83+88+90)÷3=87,乙班的算术平均数:(93+86+85)÷3=88,因此第一名是乙班,第二名是甲班,答:根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)甲班的总评成绩:83×20%+88×30%+90×50%=88,乙班的总评成绩:93×20%=86×30%+85×50%=86.9∵88>86.9∴甲班高于乙班,答:两个班级的排名顺序发生变化,甲班第一,乙班第二.21.解:(1)如图甲所示:平行四边形ABCD即为所求;(2)如图乙所示:菱形ABCD即为所求.22.解:(1)当x=4时,y==4,∴点D的坐标为(4,4),∴BD=AB﹣AD=m﹣4.故答案为:m﹣4.(2)①过点P作PF⊥AB于点E,则PF=m﹣4,如图1所示.∵△PBD的面积比矩形OABC面积多8,∴BD•PF﹣OA•OC=8,即(m﹣4)2﹣4m=8,整理,得:m2﹣16m=0,解得:m1=0(舍去),m2=16.②过点P作PM⊥AB于点M,作PN⊥x轴于点N,如图2所示.∵∠DOM+∠MPE=90°,∠MPE+∠EPN=90°,∴∠DPM=∠EPN.在△DPM和△EPN中,,∴△DPM≌△EPN(AAS),∴PM=PN.∵点P在反比例函数y=(x>0)的图象上,∴点P的坐标为(m,),∴PM=m﹣4,PN=,∴m﹣4=,解得:m1=2+2,m2=2﹣2(舍去).∴若点E恰好落在x轴上时,m的值为2+2.23.解:(1)280﹣(45﹣40)×10=230(件).故答案为:230.(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=2610,整理,得:x2﹣98x+2301=0,整理,得:x1=39(不合题意,舍去),x2=59.答:当该纪念品的销售单价为59元时,该产品的当天销售利润是2610元.(3)不能,理由如下:设该纪念品的销售单价为y元(y>40),则当天的销售量为[280﹣(y﹣40)×10]件,依题意,得:(y﹣30)[280﹣(y﹣40)×10]=3700,整理,得:y2﹣98y+2410=0.∵△=(﹣98)2﹣4×1×2410=﹣36<0,∴该方程无解,即该纪念品的当天销售利润不能达到3700元.24.证明:(1)∵四边形APEF是菱形∴AP∥EF,∠APF=∠EPF=∠APE,∵四边形PBCD是菱形∴PB∥CD,∠CDB=∠PDB=∠CDP∴∠APE=∠PDC∴∠FPE=∠BDP∴PF∥BD,且AP∥EF∴四边形四边形FGBP是平形四边形;(2)若四边形DFPG恰为矩形∴PD=FG,PE=DE,EF=EG,∴PD=2EF∵四边形APEF是菱形,四边形PBCD是菱形∴AP=EF,PB=PD∴PB=2EF=2AP,且AB=10∴PB==FG(3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,∵FE=2EG,∴PB=FG=3EG,EF=AP=2EG∵AB=10∴AP+PB=5EG=10∴EG=2,∴AP=4,PB=6=BC,∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=3,CH=BH=3∴AH=13∴AC===14若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H∵FE=2EG,∴PB=FG=EG,EF=AP=2EG∵AB=10,∴3EG=10∴EG=∴BP=BC=∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=,CH=BH=∴AH=∴AC==综上所述:d=14或。
浙教版八年级下册数学期末检测试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()2.下列各数中,能使x-5有意义的是()A.0 B.2 C.4 D.63.下列算式中,正确的是()A.32-2=3 B.4+9=13C.(3-2)2=5-2 6 D.8÷2=44.一元二次方程x2-3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定5.甲、乙、丙、丁四位运动员在“110米栏”训练中,每人各跑5次,据统计,平均成绩都是13.2秒,方差分别是S2甲=0.11秒2,S2乙=0.03秒2,S2丙=0.05秒2,S2丁=0.02秒2,则这四位运动员“110米栏”的训练成绩最稳定的是() A.甲B.乙C.丙D.丁6.反比例函数y=-3x的图象上有P1(x1,-2),P2(x2,-3)两点,则x1与x2的大小关系是()A.x1>x2B.x1=x2C.x1<x2D.不能确定7.在一次中学生田径运动会上,男子跳高项目的成绩统计如下:成绩(m) 1.50 1.55 1.60 1.65 1.70人数 2 8 6 4 1 表中表示成绩的一组数据中,众数和中位数分别是()A.1.55 m,1.55 m B.1.55 m,1.60 mC.1.60 m,1.65 m D.1.60 m,1.70 m8.如图,在矩形ABCD中,AB=4,BC=8,对角线AC,BD相交于点O,过点O作OE⊥AC交AD于点E,则AE的长是()A.3 B.5 C.2.4 D.2.59.如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x 轴的正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边.若反比例函数y=kx的图象经过点D,四边形BCFG的面积为8,则k的值为()A.16 B.20C.24 D.2810.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连结AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连结AN,CM,则四边形ANCM是菱形.乙:分别作∠BAD,∠ABC的平分线AE,BF,分别交BC,AD于E,F,连结EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误二、填空题(本题有6小题,每小题4分,共24分)11.若代数式x+2x有意义,则x的取值范围是________.12.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是________.。
浙教版八年级下册数学期末练习卷一、选择题(共10题;共30分)1.(3分)下列式子中,x可以取−1和2的是( )A.1x−2B.x−1C.x+2D.x2−2 2.(3分)既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)如图,在▱ABCD中,∠A+∠C=80°,则∠D=( )A.140°B.40°C.70°D.80°4.(3分)将一元二次方程x2-x-1=0配成(x+p)2=q的形式,则p的值是( )A.-1B.1C.12D.−125.(3分)牛顿曾说过:“反证法是数学家最精良的武器之一”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设( )A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中没有一个内角小于60°D.三角形中每个内角都大于60°6.(3分)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环).及方差s2(单位:环2)如下表所示,根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )甲乙丙丁A.甲B.乙C.丙D.丁7.(3分)《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板高地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高到离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”如图,若设秋千绳索长为x尺,则可列方程为( )A.x2+102=(x+1)2B.x2+102=x2C.(x−4)2+10=x2D.x2+102=(x−4)28.(3分)已知点A(x₁,y₁),B(x₂,y₂)在反比例函数y =6的图象上,且:x1<0<x2,则下列结论x一定正确的是( )A.y₁+y₂<0B.y₁+y₂>0C.y₁<y₂D.y₁>y₂9.(3分)如图所示,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=k(k≠0)在第一象限x的图.象经过顶点A(m,m+3)和CD上的点E,且OB−CE=1,过点E的直线l交x轴于点F,交y轴于点G(0,−3),则OF的长为( )A.4.5B.5C.5.4D.610.(3分)如图,在正方形ABCD中,已知点P是线段AB上的一个动点(点P与点A不重合),作CQ⊥DP 交AD于点Q.现以PQ,CQ为邻边构造平行四边形PECQ,连接BE,则∠BEP+∠PQC的最小值为( )A.90°B.45°C.22.5°D.60°二、填空题(共6题;共18分)11.(3分)若二次根式x−4在实数范围内有意义,则x的取值范围是 .12.(3分)下面是某班23名女同学每分钟仰卧起坐的测试情况统计表:个数/个3538424548人数35744则该班女同学每分钟仰卧起坐个数的中位数是 .13.(3分)若n边形的每一个外角都是40°,则n的值为 14.(3分)已知关于x的一元二次方程a x2+bx+c=0满足a−b+c=0,则方程必有一个根为 .15.(3分)如图,用4张全等的直角三角形纸片拼成的图案,若直角三角形纸片的较长直角边为4,拼成的中间小正方形面积为1,则四边形ABCD的面积为 .16.(3分)如图,A,C是正比例函数y=x的图象与反比例函数y=4的图象的交点,过点A作AD⊥xx轴于点D,过点C作CB⊥x轴于点B,则四边形ABCD的周长为 .三、解答题(共8题;共72分)17.(8分)计算.(1)(4分)8+32−18(2)(4分)12+|3−2|+(12)−118.(8分)解方程:(1)(4分)x2+6x=−3;(2)(4分)x(x−7)=8(7−x)19.(6分)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)(2分)条形统计图中被墨汁污染的人数为 人.“8本”所在扇形的圆心角度数为 °;(2)(2分)求被抽查到的学生课外阅读量的平均数和中位数;(3)(2分)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.20.(6分)如图,△ABC的中线BE、CF相交于点G,已知点P,Q分别是BG,C的中点.(1)(3分)求证:四边形EFPQ是平行四边形;(2)(3分)若FG⊥BF,请判断FP与GE的数量关系,并说明理由.21.(8分)如图,一次函数y=-x+4的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B(b,1)两点,与x轴交于点C,与y轴交于点D.(1)(3分)求点B的坐标和反比例函数的表达式;(2)(2分)直接写出当x>0时,不等式-x+4-kx>0的解集;(3)(3分)若点P在y轴上,且△APB的面积为3,求点P的坐标.22.(10分)如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)(3分)求证:△ABF≌△EDF;(2)(7分)如图,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.23.(12分)根据以下素材,探索完成任务.如何改造硬纸板制作无盖纸盒?背景学校手工社团小组想把一张长50cm,宽40cm的矩形硬纸板,制作成一个高5cm,容积4680c m3的无盖长方体纸盒,且纸盒的长不小于32cm (纸板的厚度忽略不计).方案初始方案:将矩形硬纸板竖着裁剪xcm(阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.改进方案:将矩形硬纸板竖着裁剪xcm ,横着裁剪ycm (阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.问题解决任务1判断方案请通过计算判断初始方案是否可行?任务2改进方案改进方案中,当x =y 时,求x 的值.任务3探究方案当裁剪后能制作成符合要求的纸盒时,写出y关于x 的函数关系式.24.(14分) 阅读材料:已知a ,b 为非负实数,∵a +b−2ab =(a )2+(b )2−2a ⋅b =(a −b )2≥0,∴a +b ≥2ab ,当且仅当“a =b ”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知x >0,求代数式x +4x最小值.解:令a =x ,b =4x ,则由a +b ≥2ab ,得x +4x ≥2x ⋅4x =4.当且仅当x =4x,即x =2时,代数式取到最小值,最小值为4.根据以上材料解答下列问题:(1)(3分)已知x >0,则当x = 时,代数式x +3x到最小值,最小值为 ;(2)(3分)用篱笆围一个面积为100m 2的矩形花园,则当这个矩形花园的长、宽各为多少时,所用的篱笆最短?最短的篱笆的长度是多少米?(3)(5分)已知x >0,则自变量x 取何值时,代数式xx 2−2x +9取到最大值?最大值为多少?(4)(3分)若x 为任意实数,代数式xx 2+4x +5的值为m ,则m 范围为 .答案解析部分1.【答案】C2.【答案】B3.【答案】A4.【答案】D5.【答案】D6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】x≥412.【答案】4213.【答案】914.【答案】x=-115.【答案】2516.【答案】45+417.【答案】(1)解:原式=22+32-32=22(2)解:原式=23+2-3+2=4+318.【答案】(1)x1=−3+6,x2=−3−6(2)x1=7,x2=−819.【答案】(1)4;108(2)被调查同学阅读量的平均数为8.7本,中位数为9本(3)m的最大值为320.【答案】(1)证明:∵BE、CF是△ABC的中线,∴EF 是△ABC 的中位线,∴EF ∥BC ,EF =12BC ,∵P 、Q 分别是BG 、CG 的中点,∴ PQ 是△BCG 的中位线,∴PQ ∥BC ,PQ =12BC ,∴EF ∥OQ ,EF =PQ ,∴四边形EFPQ 是平行四边形;(2)解:FP =GE ,理由如下:∵四边形EFPQ 是平行四边形,∴GP =GE ,∵FG ⊥BF ∴∠BFG =90°,又∵P 是BG 中点,∴FP =GP =12BG .∴FP =GE .21.【答案】(1)解:把点B(b ,1)代人y=-x+4 ,得1=-b+4 ,解得b=3,∴B(3,1).∵反比例函数y=kx(k≠0)的图象经过点B ,∴ k=3×1=3,∴反比例函数的表达式为y=3x.(2)1<x<3(3)解:当x=0时,则y=-x+4=4,∴点D 的坐标为(0,4),设点P 的坐标为(0,y).∵ S △APB =S △BPD -S △APD =12PD·xp-12PD·x=3,∴12×(3-1)PD=3,∴PD=3,∴点P 的坐标为(0,1)或(0,7).22.【答案】(1)证明:∵四边形ABCD 是矩形∴∠A =∠C ,AB =CD又∵矩形ABCD 沿BD 折叠∴∠C =∠E ,CD =ED ∴∠A =∠E ,AB =DE在△ABF 和△EDF 中{∠A =∠E ∠AFB =∠EFD AB =DE∴△ABF≌△EDF (AAS )(2)解:①四边形BFDG 是菱形,理由如下:∵四边形ABCD 是矩形∴FD ∥BG又∵DG ∥BF ,FD ∥BG ∴四边形BFDG 是平行四边形又∵四边形BFDG 是平行四边形,DF =BF ∴四边形BFDG 是菱形②∵四边形ABCD 是矩形,AB =6,AD =8∴BD =AB 2+AD 2=62+82=10,OB =12BD =5设BF =DF =x ,则AF =AD−DF =8−x 在Rt △ABF 中,A B 2+A F 2=B F 2∴62+(8−x )2=x 2解得:x =254,即BF =254∴FO =BF 2−OB 2=(254)2−52=154∴FG =2FO =15223.【答案】解:任务1:根据题意得:(50−x−2×5)×(40−2×5)×5=4680,解得:x =8.8,此时长方体盒子的长为:50−8.8−2×5=31.2(cm)<32cm ∴初始方案是不可行;任务2:当x =y 时,根据题意得:(50−x−2×5)×(40−x−2×5)×5=4680, 解得:x 1=4或x 2=66,当x 1=4时,盒子的长为50−2×5−4=36>32,符合题意; 当x 2=66时,盒子的长为50−2×5−66=−26<32,不符合题意;∴x 的值为4;任务3:y =30−93640−x,24.【答案】(1)3;23(2)解:设这个矩形的长为x 米,篱笆周长为y 米,根据题意,用篱笆围一个面积为100m 2的矩形花园,则矩形的宽为100x米,∴y =2(x +100x )≥4x ⋅100x=40,当且仅当x =100x时,取等号,即当x =10时,函数有最小值,最小值为40,∴这个矩形花园的长、宽均为10米时,所用的篱笆最短,最短的篱笆的长度是40米(3)解:∵x >0,∴y =xx 2−2x +9=1x−2+9x =1x +9x −2,又∵x +9x ≥2x ⋅9x=6,当且仅当x =9x 时,即当x =3时,(x +9x)取最小值,最小值为6,∴此时y 有最大值,最大值为y =16−2=14,∴自变量x =3时,函数y =x x 2−2x +9取最大值,最大值为14.(4)−52−1≤m ≤52−1。
2013—2014学年八年级数学科第二学期期末检测题班别: 姓名: 评价:一、 填空题。
(每小题4分,共32分)1、当x_______时,分式2-xx 2+1 的值为负数。
2、当x=_______时,分式x 3与x-62的值互为相反数。
3、已知反比例函数y=xm 5-的图象分布在第二、四象限内,则m 的取值范围是______。
4、已知y 与x 成反比例,且当x=3时,y=-6;则当y=3时,x= ______。
5、在△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,AB=8,则BC=______ 。
6、如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD=120°,AB+AC=15cm ,则BD=______ cm 。
7、如图,在直角梯形中,底AD=6 cm ,BC=11 cm ,腰CD=12 cm ,则这个直角梯形的周长为______cm 。
8、数据11,9,7,10,14,7,6,5的中位数是______ ,众数是______。
二、 选择题。
(每小题5分,共40分)9、若分式 x 2-9x-3 的值为零,则x 的值是 ( )A 、3B 、-3C 、±3D 、0110、人的头发的直径约为0.00007m ,用科学记数法表示这长度时,正确的是( )A 、0.7×10-5mB 、0.7×10-6mC 、7×10-5mD 、7×10-6m11、当路程s 一定时,速度v 与时间t 之间的函数关系是 ( )A 、正比例函数B 、反比例函数C 、一次函数D 、函数关系不能确定12、已知函数y=x1( x >0),则 ( )A 、函数在第一象限内,且y 随x 的增大而减小B 、函数在第一象限内,且y 随x 的增大而增大C 、函数在第二象限内,且y 随x 的增大而减小D 、函数在第二象限内,且y 随x 的增大而增大13、在△ABC 中,已知AC=6,AB=8,BC=10,则 ( )A 、∠A=90°B 、∠B=90°C 、∠C=90°D 、∠B=∠C14ABCD 中,∠C=108°,点E 在ADAE=CD ,则∠ABE= ( )A 、18°B 、36°C 、72°D 、108°15、用二块边长为a 的等边三角形纸片拼成的四边形是 ( )A 、菱形B 、矩形C 、正方形D 、等腰梯形16、下列各组数据中,方差是2的是 ( )A 、101,98,102,100,99B 、101,101,102,102,99C 、100,100,99,98,98D 、103,101,97,99,1002三、 解答题。
杭州市公益中学2014-2015学年第二学期期末考试八年级数学试题一、选择1、下列二次根式:222,2,5.0,31,5y x b a a +-中,是最简二次根式的有( ) A 、2个 B 、3个 C 、4个 D 、5个2、用配方法解方程0222=--x x ,下列变形正确的是( )A 、()212=-xB 、()222=-xC 、()312=-xD 、()322=-x 3、已知实数b a ,分别满足046,04622=+-=+-b b a a ,且b a ≠,则22b a +的值为( )A 、36B 、50C 、28D 、254、小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求。
根据他的作图方法可知四边形ADBC 一定是( )A 、矩形B 、菱形C 、正方形D 、平行四边形5、已知点()()2211,,,y x B y x A 是反比例函数)0(>=k xk y 图象上的两点,若210x x <<,则有( ) A 、210y y << B 、120y y << C 、021<<y y D 、012<<y y6、如图,E 是矩形ABCD 内的一个动点,连接EA 、EB 、EC 、ED ,得到△EAB 、△EBC 、△ECD 、△EDA ,设它们的面积分别是m 、n 、p 、q ,给出如下结论:上。
点一定在,则)若(的交点;与点一定是,则若BD E n m BD AC E n m q n p m p q n m ====++=+4)3(;)2(;)1(其中正确的结论的序号是( ) 第6题图A 、(1)(3)B 、(2)(4)C 、(1)(2)(3)D 、(2)(3)(4)7、如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原 点,点D 在反比例函数)0(1052>=-=x xk k y 的图象上。
2014学年八年级数学(下册)质量检测卷(2014.6 )温馨提醒:1、本试卷分试题卷和答题卷,答案做在答题卷上。
2、本试卷共三大题,24小题,共120分,考试时间120分钟一、选择题(本题共有10小题,每小题3分,共30分,请将正确的选项写在答题纸上.)3. 下列命题中,正确的是 ()4. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是()p1EanqFDPwA • 50(1 x )2 =182B • 50 50(1 x ) 50(1 x )= 182 2C • 50(1 x ) 50(1 x ) =182D . 50 50(1 x ) =1825. 下面这几个车标中,是中心对称图形而不是轴对称图形的共有(8•在平面直角坐标系中,将抛物线式是()5PCzVD7HxAy=x 2先向右平移2个单位,再向上平移 2个单位,得到的抛物线的解析2 A. y=(x+2) +22C.y=(x-2) +22B.y=(x-2) -2D.y=(x+2)2-2 9 •已知点A 与点B 关于原点对称•若点 A 的坐标为(一1,a ),点B 的坐标为(b ,3),则a b =( )A • x w 2B • x > 2C • x > 2)2•卜列方程是 元二次方程的是(2A • x -2y =11B • — 1=2xC • x 2 -2 =0D • X M 2b5E2RGbCAPD • 3x 1 = 2 — xA •对角线相等的四边形是矩形B •对角线互相平分的四边形是平行四边形C •对角线互相垂直的四边形是菱形D •对角线互相垂直且相等的四边形是正方形A • 1个 若三角形的边长为A • 6B • 6.53、 B • 2 个C • 3 个D • 4 个 DXDiTa9E3d4、5,那么连结各边中点所成的三角形的周长为( )C • 7D . 8将一张正方形纸片,按如图步骤①,②, 沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )RTCrpUDGiT卜~zlrI—-7— 1 •代数式、、x-2有意义,则x 的取值范围是(①③(C) (D)A . — 310 .如图①,在矩形 的路程为x , △ ABP 的面积为y ,如果y 关于x 的函数图象如图②所示,则在此运动过程中点 最大距离为( B . 3 C . — 1 D . 1ABCD 中,动点P 从点B 出发,沿 B ~C T D T A 方向运动至点 A 处停止.设点 P 与点P 运动 A 间的 jLBHrnAlLg图① (第 二、填空题(本题共有 6小题,11.已知一个多边形的内角和等于12 .用反证法证明“若丨 B.D . . 41 XHAQX74J0X每小题4分,共24分,请将答案写在答题纸上 .)900,则这个多边形的边数是a |工|b |,则a 我”时,应假设 ______ 13 如图,在四边形 ABCD 中,已知AB=CD ,再添加一个条件 _______________ 边形ABCD 是平行四边形•(图形中不再添加辅助线) Zzz6ZB2Ltk14 .如图,点A 、B 是双曲线y=?上的点,分别经过 A 、B 两点向x 轴、 x ___ . LDAYtRyKfE(写出一个即可) ,则四y 轴作垂线段,若S 阴影=1,则S i S2 ~ 做第二个菱形 AAB,C 2 D 2,使• B^60 ;作 AD 3 _B (C 2 于点 D 3,以 AD 3 为一边做第三个菱形 AB 3C 3D 3,使• B^ = 60 ; .... 依此类推,第n 个菱形A^C n D n 的边AD n 的长是.rqyn14ZNXI2014学年八年级数学(下册)质量检测答题卷(2014.6 ) EmxvxOtOco选择题 二、填空题 11. ______ 14. _____________ SixE2yXPq5 15. ___________________12. _________ 16. ________13. ___________三、 解答题(本题共有 8小题,共66分,请将答案写在答题纸上,务必写出解答过程 17.计算(本题6分)(1)( 2) 2、一2-3.3 3.3 2,218 .解方程(6分)2(1) 4x -4x 1 =02(2) x 2x T = 019.(本题8分)商场某种商品平均每天可销售 30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价 1元,商场平均每天可多售出2件•设每件商品降价x 元.据此规律,请回答:6ewMyirQFL(1) 商场日销售量增加 ________ 件,每件商品盈利 ___________ 元(用含x 的代数式表示);kavU42VRUs (2) 在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?20. (本题8分)如图,0是矩形ABCD的对角线的交点. 作ED // AC, CE // BD , DE, CE 相交于点E.求证:四边形OCED是菱形.C221. (本小题满分8分)已知关于x的一元二次方程x r x^m-I^O .(1)当m的值为、,17 1时,请利用求根公式判断此方程的解的情况;(2)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根,并说明理由。
一、选择题1.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 2.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( ) A .4-B .1-C .0D .13.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖): 组员 甲乙丙丁戊平均成绩众数得分81 77 80 82 80A .80,80B .81,80C .80,2D .81,24.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( ) A .平均数B .方差C .众数D .中位数5.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( ) A .12y y >B .12y y =C .12y y <D .不确定6.如图,在矩形ABCD 中,3AB =,4BC =,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C.D.7.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.8.在数轴上,点A表示-2,点B表示4.,P Q为数轴上两点,点Р从点A出发以每秒1个单位长度的速度向左运动,同时点Q从点B出发以每秒2个单位长度的速度向左运动,点Q到达原点О后,立即以原来的速度返回,当点Q回到点B时,点Р与点Q同时停止运动.设点Р运动的时间为x秒,点Р与点Q之间的距离为y个单位长度,则下列图像中表示y与x的函数关系的是()A.B.C .D .9.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠10.若二次根式1x -有意义,则x 的取值范围是( ) A .x <1B .x >1C .x≥1D .x≤111.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243D .125312.若实数m 、n 满足|m ﹣4n -0,且m 、n 恰好是Rt ABC 的两条边长,则ABC 的周长是( )A .5B .57C .12D .12或7二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____.15.如图,正方形ABCD,CEFG边在x轴的正半轴上,顶点A,E在直线12 y x =上,如果正方形ABCD边长是1,那么点F的坐标是______.16.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3...在直线l上,点B1,B2,B3..在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3...,依次均为等腰直角三角形,直角顶点都在x轴上,则第2021个等腰直角三角形A2021B2020B2021顶点B2021的横坐标为__________.17.如图,正方形ABCD中,5AD=,点E、F是正方形ABCD内的两点,且4AE FC==,3BE DF==,则EF的平方为________.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若1DE=,则BF的长为__________.19.222233+=333388+=4441515+= (77)a ab b+(a、b均为实数)则=a__________,=b__________.20.如图所示的网格是正方形网格,则CBD ABC∠+∠=______°(点A,B,C,D是网格线交点)三、解答题21.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________; (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.22.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题. 收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89 整理数据: 表一 分数段 70x <7080x ≤< 8090x ≤< 90100x ≤≤初一人数 1 mn12 初二人数22412分析数据: 表二 种类 平均数 中位数 众数方差 初一 90.5 91.5y84.75 初二90.5x100123.05得出结论:(1)在表中:m =_______,n =_______,x =_______,y =_______; (2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人? 23.小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿原路匀速跑步6min 返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为480m ?24.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且3AM =,4DN =,求四边形DEMN 的面积. 25.计算:(183(26)27+(2)11513(1)(0.5) 2674⨯-÷;(3)5 2311x yx y+=⎧⎨+=⎩;(4)4(2)153123x yy x+=-⎧⎪+⎨=-⎪⎩.26.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.容易证明△ACD≌△BCE,则①∠AEB的度数为;②直接写出AE、BE、CM之间的数量关系:(3)如图3,△ABC中,若∠A=90°,D为BC的中点,DE⊥DF交AB、AC于E、F,求证:BE2+CF2=EF2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.2.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.3.A解析:A【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.4.B解析:B 【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定. 【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B. 【点睛】考核知识点:均数、众数、中位数、方差的意义.5.A解析:A 【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案. 【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >, 故选A . 【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键.6.D解析:D 【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解. 【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.7.B解析:B【分析】根据一次函数y=kx+b的图象经过第一、二、四象限,可以得到k和b的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k中b,-k的正负,从而得到图象经过哪几个象限,从而可以解答本题.【详解】解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴b>0,-k>0,∴一次函数y=bx-k图象第一、二、三象限,故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.8.B解析:B【分析】数轴上两点之间的距离等于靠近右边点对应的数值减去左边点对应的数值,这是计算的基础;其次,要学会分段分析,分0≤<x≤2和2<x≤4求解,用x表示点P表示的数为-2-x,点Q表示的数为4-2x或2x-4,具体计算画图即可.【详解】∵A表示-2,B表示4,∴BA=4-(-2)=6,∴当x=0时,PQ=AB=6;∵OB=4个单位,点Q的速度是2个单位/s,∴Q运动到原点的时间为4÷2=2(s),∴当0<x≤2时,点P表示的数为-2-x,点Q表示的数为4-2x,∴PQ=4-2x-(-2-x)=6-x,∴当x=2时,y=6-2=4,∴当2<x≤4时,点Q从返回运动,点P表示的数为-2-x,点Q表示的数为2x-4,∴PQ=2x-4-(-2-x)=3x-2,∴当x=4时,y=12-2=10,只有B图像与上面的分析一致,故选B.【点睛】本题考查了数轴上两点之间的距离,数轴上的点与表示的数的关系,路程,速度和时间的关系,根据时间的大小,正确分类表示动线段PQ的长度是解题的关键.9.D解析:D【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【详解】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.10.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.11.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A.【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.12.D解析:D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】∵|m﹣4n-0,∴|m﹣3|=04n-0,∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当42234+5,则△ABC的周长=3+4+5=12,当42243-7,则△ABC的周长=7=7,故选:D.【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差.【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m , 则2222()()()23a mb mc m S -+-+-==, 则数据a +3,b +3,c +3的平均数是m+3, ∴方差为:2222(33)(33)(33)3a m b m c m S +--++--++--=222()()()23a mb mc m -+-+-==, 故答案为:2.【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.15.【分析】令y =1可得x =2即点A (21)根据正方形的性质可得点E 的横坐标待入解析式即可求得点E 的纵坐标继而根据正方形的性质可得点F 的坐标【详解】∵正方形边在轴的正半轴上∴AB =BC =CD =AD =1C 解析:93,22⎛⎫ ⎪⎝⎭【分析】令y =1可得x =2,即点A (2,1)根据正方形的性质可得点E 的横坐标,待入解析式即可求得点E 的纵坐标,继而根据正方形的性质可得点F 的坐标.【详解】∵正方形ABCD ,CEFG 边在x 轴的正半轴上,∴AB =BC =CD =AD =1,CE =CG =EF =GF ,AB 、CD 、CE 、FG ⊥x 轴,∵顶点A ,E 在直线12y x =令y =1,则x =2∴点A (2,1)∴点E 的横坐标为3将x =3代入直线12y x =,得32y = ∴点E 、F 的纵坐标是32 即32CE FG EF === ∴点F 的横坐标为39322+= 即点F (92,32) 故答案为:(92,32) 【点睛】本题考查一次函数的应用,涉及到正方形的性质、点的坐标,解题的关键是熟练掌握正方形的性质求得点A 、E 的坐标.16.【分析】先求出…的横坐标探究总结得到即可根据规律解决问题【详解】解:探究规律:令则令则∴∴…发现并总结规律:∴运用规律:当时故答案为【点睛】本题考查规律型:点的坐标等腰直角三角形的性质等知识解题的关 解析:202222-【分析】先求出123,,B B B …的横坐标,探究总结得到122,n n B x +=-,即可根据规律解决问题.【详解】解:探究规律: :2,l y x =+令0,x = 则2,y =()10,2,A ∴令0,y = 则2,x =-()2,0,A ∴-12,OA OA ∴==∴11121223232,4,8,OB OA B B B A B A B B ======∴12222,B x ==- 23622,B x ==-341422,B x ==-…,发现并总结规律:∴122,n n B x +=-运用规律:当2021n =时,202120222 2.B x ∴=-故答案为20222 2.-【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.17.2【分析】延长BE 交CF 于G 再根据全等三角形的判定得出△BCG 与△ABE 全等得出AE=BG=4由BE=3得出EG=1同理得出GF=1再根据勾股定理得出EF 的平方【详解】解:延长BE 交CF 于G 如图:∵解析:2【分析】延长BE 交CF 于G ,再根据全等三角形的判定得出△BCG 与△ABE 全等,得出AE=BG=4,由BE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的平方.【详解】解:延长BE 交CF 于G ,如图:∵AB=5,AE=4,BE=3,222345+=,∴△ABE 是直角三角形,∴同理可得△DFC 是直角三角形,在Rt △ABE 和Rt △CDF 中,543AB CD AE CF BE DF ==⎧⎪==⎨⎪==⎩,∴Rt △ABE ≅Rt △CDF ,∴∠1=∠5,∵四边形ABCD 是正方形,∴∠ABC=∠BCD=90︒,∴∠4+∠5=90︒,∠4+∠3=90︒,∠1+∠2=90︒,∴∠3=∠5,∠4=∠2,在△CBG 和△BAE 中,3524AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CBG ≌△BAE (ASA ),∴AE=BG=4,CG=BE=3,∴EG=4-3=1,同理可得:GF=1,∴EF 2=EG 2+GF 2=2,故答案为:2.【点睛】本题考查了正方形的性质及全等三角形的判定与性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.18.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x 在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 51【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.20.45【分析】做线段BA 关于BC 的对称线段BE 连接DE 先证明再证明△BDE 为等腰直角三角形得到∠DBE=45°问题得证【详解】解:如图做线段BA 关于BC 的对称线段BE 连接DE 则∠ABC=∠EBC ∴根据解析:45【分析】做线段BA 关于BC 的对称线段BE ,连接DE ,先证明CBD ABC DBE ∠+∠=∠,再证明△BDE 为等腰直角三角形,得到∠DBE=45°,问题得证.【详解】解:如图,做线段BA 关于BC 的对称线段BE ,连接DE ,则∠ABC=∠EBC ,∴CBD ABC CBD EBC DBE ∠+∠=∠+∠=∠,根据勾股定理得BD ==BE ==,DE ,∴BE=DE ,222=26=BE DE BD +∴∠BED=90°,∴△BDE 为等腰直角三角形,∴∠DBE=45°,∴45CBD ABC ∠+∠=︒.故答案为:45【点睛】本题考查了勾股定理及其逆定理在网格中应用,根据题意作出线段BA 关于BC 的对称线段BE 是解题关键.三、解答题21.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.22.(1)2,5,93,98;(2)初一;(3)225【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x、y;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人数所占的百分比,即可得出答案.【详解】(1)根据给出的数据可得:∵成绩在7080x≤<范围内的共有2名,∴m=2∵成绩在8090x≤<范围内的有5名,∴n=5把初二成绩从小到大排列,则中位数x=92942+=93,∵初一成绩中出现次数最多的是98∴y=98;故答案为:2,5,93,98;(2)∵根据表二可得初一的方差是84.75,初二的方差是123.05∴初一的方差小于初二的方差∴得分情况较稳定的是初一故答案为:初一(3)根据20名初一同学测试成绩,取得100分的同学有3个,占3 20根据20名初二同学测试成绩,取得100分的同学有6个,占6 20则该校初一、初二年级学生本次测试成绩中可以得满分的人数共有:500×320+500×620=225(人)该校初一、初二年级学生本次测试成绩中可以得满分的人数共有225人.故答案为:225【点睛】本题考查了中位数、众数的定义,已知一组数求中位数和众数;考查了方差的意义,在考虑稳定性时,利用方差来判断;会用样本估算总体.23.(1)80m/min;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解;()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m.【详解】解:(1)由题意可得:96096080(m/min)612-= 答:小慧返回家中的速度比去文具店的速度快80m/min(2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.24.(1)见解析;(2)24【分析】(1)依据平行四边形的性质,即可得到△AMB ≌△CND ;(2)依据全等三角形的性质,即可得出四边形DEMN 是平行四边形,再根据等腰三角形的性质,即可得到∠EMN 是直角,进而得到四边形DEMN 是矩形,即可得出四边形DEMN 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,OA OC =,∴BAC DCA ∠=∠,又点M ,N 分别为OA 、OC 的中点, ∴1122===AM AO CO CN , 在AMB 和CND △中, AB CD BAC DCA AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△CND(SAS)(2)∵△AMB ≌△CND ,∴BM=DN ,∠ABM=∠CDN ,又∵BM=EM ,∴DN=EM ,∵AB ∥CD ,∴∠ABO=∠CDO ,∴∠MBO=∠NDO ,∴ME∥DN,∴四边形DEMN是平行四边形,∵BD=2AB,BD=2BO,∴AB=OB,又∵M是AO的中点,∴BM⊥AO,∴∠EMN=90°,∴四边形DEMN是矩形,∵AM=3,DN=4,∴AM=MO=3,DN=BM=4,∴MN=6,∴矩形DEMN的面积=6×4=24.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及矩形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(1;(2;(3)41xy=⎧⎨=⎩;(4)31xy=-⎧⎨=⎩【分析】(1)先进行二次根式的乘法运算,然后化简后合并即可;(2)利用二次根式的乘除法则运算;(3)利用加减消元法解方程组;(4)先把原方程组整理后,然后利用加减消元法解方程组.【详解】(1++=;(2(÷=-16;(3)5 2311x yx y+=⎧⎨+=⎩①②,②﹣①×2得3y﹣2y=1,解得y=1,把y=1代入①得x +1=5,解得x=4,所以方程组的解为41x y =⎧⎨=⎩; (4)原方程组整理为457233x y x y +=-⎧⎨+=-⎩①②, ①﹣②×2得﹣y=﹣1,解得y=1,把y=1代入②得2x +3=﹣3,解得x=﹣3,所以原方程组的解为31x y =-⎧⎨=⎩. 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组. 26.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE≌△DCG,EF=GF,∴BE=CG,∠B=∠GCD,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt△CFG中,CF2+GC2=GF2,∴BE2+CF2=EF2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.。
浙教版数学八年级下册期末考试试题一、单选题1.下列计算正确的是()A=B=C=D3=-2.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°3.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0 4.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.正五边形D.矩形5.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2,求原正方形空地的边长xm,可列方程为()A.(x﹣1)(x﹣2)=18 B.x2﹣3x+16=0C.(x+1)(x+2)=18 D.x2+3x+16=07.如图,四边形ABCD是菱形,8AC=,DB=6,DH⊥AB于H,则DH等于( )A.245B.125C.5 D.48.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=kx(k≠0)的图象过点C,则该反比例函数的表达式为()A.y=3xB.y=4xC.y=5xD.y=6x二、填空题9.方程230x x-=的根为.10.在二次根式√2x+1中,x的取值范围是_________.11.在实数0,−π,√2,−4中,最小的数是__________.12.如图,在▱ABCD 中,AB =3,BC =5,以点B 为圆心,以任意长为半径画弧,分别交BA 、 BC 于点P 、Q 再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠ABC 内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为____________.13.在矩形ABCD 中,由9个边长均为1的正方形组成的“L 型”模板如图放置,此时量得CF=3,则BC 边的长度为_____________.14.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y=x+1上,点C 1、C 2、C 3…在x 轴上,则An 的坐标是________________.三、解答题 15.解方程:(1)()x 2x 2x 1-=- (2)2x 3x 20-+=16.计算:|−√3|+√2×√6+(12)−1−(√2019−√2017)017.已知关于x 的方程x 2+ax+a ﹣2=0.若该方程的一个根为1,求a 的值及该方程的另一根.18.阅读下面材料,解答问题:将4个数a 、b 、c 、d 排列成2行2列,记为:|acb d|,叫做二阶行列式.意义是|a c b d |=ad −bc .例如:|57 68|=5×8−6×7=−2. (1)请你计算|5√27 √6√8|的值; (2)若|x +13x 2x +1|=9,求x 的值.19.如图,网格每个小正方形的顶点叫格点,线段AB 的端点在格点上.按要求以线段AB 为边或对角线,分别在网格中作两个不全等四边形. 要求(1)四边形顶点在格点上;(2)四边形为轴对称图形20.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m= ______ ,n= ______ ;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______ 组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.21.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.22.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8,BC=10,(1)求BF的长;(2)求△ECF的面积.23.数学兴趣小组几名同学到商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.(1)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(2)若每天盈利为W元,请利用配方法直接写出每箱售价为多少元时,每天盈利最多.24.如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE=1cm,若M、N两点同时从点D 出发,到第一次相遇时停止运动.(1)求经过几秒钟M、N两点停止运动?(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;(3)设运动时间为t(s),用含字母t的代数式表示△EMN的面积S(cm2).参考答案1.B【解析】【分析】根据二次根式的运算法则对各选项进行计算,然后判断即可.【详解】解:A. A选项错误;B. ==C. ==,所以C选项错误;=-=,所以D选项错误,33故选:B.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题关键.2.C【解析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.3.D【解析】【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【详解】A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D 选项正确. 故选D . 4.D 【解析】 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【详解】解:A 、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误; B 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误; C 、正五边形是轴对称图形,不是中心对称图形,故本选项错误. D 、矩形既是轴对称图形,又是中心对称图形,故本选项正确; 故选:D . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 5.D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙,∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 6.A 【解析】 【分析】可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式方程可列出. 【详解】设原正方形的边长为xm ,依题意有: (x ﹣1)(x ﹣2)=18. 故选A . 【点睛】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键. 7.A 【解析】 【分析】根据菱形性质求出AO =4,OB =3,∠AOB =90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可. 【详解】解:∵四边形ABCD 是菱形,设AB,CD 交于O 点, ∴AO =OC ,BO =OD ,AC ⊥BD , ∵AC =8,DB =6,∴AO =4,OB =3,∠AOB =90°,由勾股定理得:AB 5,∵S 菱形ABCD =12×AC×BD =AB×DH ,∴12×8×6=5×DH , ∴DH =245, 故选:A .【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC×BD =AB×DH 是解此题的关键.8.A【解析】解:如图,过点C 作CE ⊥y 轴于E .在正方形ABCD 中,∵AB =BC ,∠ABC =90°,∴∠ABO +∠CBE =90°.∵∠OAB +∠ABO =90°,∴∠OAB =∠CBE .∵点A 的坐标为(﹣4,0),∴OA =4.∵AB =5,∴OB =3.在△ABO 和△BCE 中,∵∠OAB =∠CBE ,∠AOB =∠BEC ,AB =BC ,∴△ABO ≌△BCE (AAS ),∴OA =BE =4,CE =OB =3,∴OE =BE ﹣OB =4﹣3=1,∴点C 的坐标为(3,1).∵反比例函数k y x =(k ≠0)的图象过点C ,∴k =xy =3×1=3,∴反比例函数的表达式为3y x=.故选A .点睛:本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D 的坐标是解题的关键.9.120,?3x x ==.【解析】试题分析:x (x -3)=0 解得:1x =0,2x =3.考点:解一元二次方程.10.x ≥−12【解析】【分析】根据二次根式的性质:二次根式的被开方数是非负数,得2x+1≥0.解不等式可得答案.【详解】解:根据题意,得2x+1≥0,解得,x≥-12;故答案是:x≥-12.【点睛】本题考查了二次根式的意义和性质.概念:式子√a (a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.-4【解析】【分析】根据正数大于0,0大于一切负数,两个负数绝对值大的反而小判断即可.【详解】解:∵√2>0,-4<−π<0∴-4<−π<0<√2最小的数是-4.故答案为:-4.【点睛】考查实数的比较;用到的知识点为:正数大于0;0大于一切负数;两个负数绝对值大的反而小,注意应熟记常见无理数的约值.12.2【解析】根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,解:根据作图的方法得:AE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为2.“点睛”此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.13.7.【解析】试题分析:由图和已知,EF=5,CF=3,∴根据勾股定理可得EC=4.易证ΔABE≌ΔECF(AAS),∴BE="CF=3" .∴BC=7.考点:1.矩形的性质;2.勾股定理;3.全等三角形的判定和性质.14.(21n--1,21n-)【解析】【详解】解:∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…A n 的坐标为(121n --,12n -),故答案为(121n --,12n -).15.(1)12x =22x = (2)11x =,22x =【解析】【分析】(1)对方程去括号、移项合并同类项,化成一元二次方程的一般形式,把常数项移到等号的右边,再运用配方法求解;(2)先根据2x x +(p+q )x+pq=(x+p)(+q )对方程左边进行因式分解,化为两个一元一次方程求解.【详解】(1)去括号:2x -2x=2x-1,移项、合并同类项:2x -4x+1=0,配方得:2(2)3x -=解得12x =22x =(2)2320x x -+=(x-1)(x-2)=0x-1=0或x-2=0解得11x =,22x =.故答案为(1)12x =22x = (2)11x =,22x =.【点睛】本题考查了用配方法和因式分解法解一元二次方程,能根据方程的特点选择合适的方法并熟练掌握解方程的方法和步骤是关键.16.3√3+1【解析】【分析】根据负整数指数幂a n =1a n (a≠0,n 为正整数),零指数幂的意义a 0=1(a≠0),和实数的运算法则进行计算.【详解】解:|−√3|+√2×√6+(12)−1−(√2019−√2017)0=√3+2√3+2-1=3√3+1.故答案为:3√3+1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值、整数指数幂等考点的运算.17.a=21;另一根为-23. 【解析】试题分析:将x=1代入方程x 2+ax+a-2=0得到a 的值,再根据根与系数的关系求出另一根;试题解析:将x=1代入方程x 2+ax+a-2=0得,1+a+a-2=0,解得,a=21; 方程为x 2+21x-23=0,即2x 2+x-3=0,设另一根为x 1,则1•x 1=-23,x 1=-23. 考点:1、一元二次方程的解;2、根与系数的关系.18.(1)√2;(2)x 1=2,x 2=−2.【解析】【分析】(1)根据新定义得到|5√27 √6√8|=5×√8-√6×√27,然后进行二次根式的乘法运算; (2)根据新定义得到(x+1)(2x+1)-3x=9,然后整理后利用直接开平方法解方程.【详解】(1)原式=5×√8−√6×√27=5×2√2−√6×3√3=10√2−9√2=√2;(2)由题可得:(x+1)(2x+1)﹣3x=9,2x2+3x+1−3x=9,∴2x2=8解得:x1=2,x2=−2.故答案为:(1)√2;(2)x1=2,x2=−2.【点睛】本题通过新定义运算的形式考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了直接开平方法解一元二次方程.19.见解析,本题答案不唯一.【解析】【分析】利用轴对称图形性质,以及全等四边形的定义,如矩形、正方形都是轴对称图形,根据题意画出图形即可.【详解】解:如图所示,本题答案不唯一.【点睛】本题考查作图-轴对称变换,轴对称图形是按一条直线折叠后重合的图形.解题的关键是理解题意,掌握常见图形的性质,并按要求作图.20.(1)4;1;(2)见解析;(3)B;(4)48.【解析】【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【详解】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;9500≤x<10500的有9865这1个,即n=1.故答案为4;1;(2)如图:(3)由于一共20个数据,其中位数是第10、11个数据的平均数,而第10、11个数据的平均数均落在B组,∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组;故答案为B;(4)120×43120++=48(人),答:估计其中一天行走步数不少于7500步的有48人.故答案为48.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2) 证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.22.(1)BF=6;(2)6.【解析】【分析】(1)因为点F为点D的折后的落点,所以△AFE≌△ADE,由此可得AF=AD=10cm,在△ABF中利用勾股定理,可得BF的值,(2)先求出DE的长,进而求出CE的长,利用三角形的面积公式即可求出△ECF 的面积.【详解】(1)∵△ADE折叠后的图形是△AFE,∴△AFE≌△ADE∴AD=AF,∠D=∠AFE,DE=EF,∵AD=BC=10,∴AF=AD=10,又∵AB=8,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2,∴82+BF2=102,∴BF=6;故答案为:6.(2)则可得FC=BC-BF=10-6=4,设EC的长为x,∴DE=(8-x),∵FC=4,在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=48,∴x=3,故EC=3.∴S△ECF=12EC·FC=12×4×3=6.故答案为:6.【点睛】本题考查了图形对折的问题,在解题时一定要注意,折叠的图形与折叠后的图形全等,此题还考查了勾股定理以及三角形的面积公式的应用.23.(1)当每箱牛奶售价为50元时,平均每天的利润为900元.(2)60元. 【解析】【分析】(1)根据平均每天销售这种牛奶的利润=每箱的利润×销售量,设每箱售价为x 元,根据“每天盈利900元”列出方程(x-40)[30+3(70-x)]=900 求解即可;(2)根据平均每天销售这种牛奶的利润等于每箱的利润×销售量得到W=(x-40)[30+3(70-x)],整理后根据二次函数的性质求解.【详解】(1)解:设每箱售价为x元,根据题意得:(x-40)[30+3(70-x)]=900化简得:x2-120x+3500=0解得:x1=50或x2=70(不合题意,舍去)∴x=50答:当每箱牛奶售价为50元时,平均每天的利润为900元.(2)由题意得W=(x-40)[30+3(70-x)]=-3x2+360x-9600=−3(x−60)2+1200∴当售价为每箱牛奶60元时,每天盈利最多.【点睛】本题考查了二次函数的应用:先把二次函数关系式变形成顶点式:y=a(x-k)2+h,当a<0,x=k时,y有最大值h;当a>0,x=k时,y有最小值h.也考查了利润的含义.24.(1)经过6 s两点相遇.(2)当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4或4.8s.(3)当0<t<53时,S =-3t2+372t;当53≤t<143时,S=S△EMN=12EM•CD=12×(3t-5-1)×5=35-152t;当143<t≤5时,S= t-35;当5<t<6时,S =15-52t.【解析】【分析】(1)由题意可得:M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),则可得t=30÷(2+3)=6;(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,然后设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10-2t=14-3t,②当构成▱AMEN时,10-2t=3t-14,继而求得答案;(3)分别从当0<t<53时,当53t <143时,当143<t<5时,当5<t<6时,去分析求解即可求得答案.【详解】解:(1)∵矩形ABCD中,AB=5cm,BC=10cm,∴M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),∴t=30÷(2+3)=6 (s)答:经过6 s两点相遇.故答案为6s.(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10-2t=14-3t,解得t =4;②当构成▱AMEN时,10-2t=3t-14,解得t=4.8;答:当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4s或4.8s.故答案为4s或4.8s.(3)如图(1),当0<t<53时,点M在线段CD上,S=S△EMN =S梯形CDNE-S△DMN-S△CEM=12×(2t+9)×5 -12×2t×3t -12×9×(5-3t)=-3t2+372t;如图(2),当53≤t<143时,点M在线段CE上,S=S△EMN=12EM•CD=12×(3t-5-1)×5=35-152t;如图(3),当143<t<5时,点M在线段BE上,S=S△EMN=12ME•CD =12×(3t-14)×5=152t-35;如图(4),当5<t<6时,点M、N都在线段AB上,S=S△EMN=12MN•BE=12×(30-2t-3t)×1=15-52t.故答案为当0<t<53时,S =-3t2+372t;当53≤t<143时,S= 35-152t;当143<t<5时,S= t-35;当5<t<6时,S =15-52t.【点睛】此题考查了矩形的性质.此题难度较大,属于动点题目,解题时注意分类讨论思想、方程思想与数形结合思想的应用.。
浙教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD2、某班 6 个合作小组的人数分别是:4,6,4,5,7,8,现第 4 小组调出 1 人去第 2 小组,则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.平均数变小B.平均数变大C.方差不变D.方差变大3、下列说法中,正确是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C.一组数据8,8,7,10,6,8,9的众数是8 D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小4、一个多边形的内角和是360°,则这个多边形的边数为()A.6B.5C.4D.35、正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.四条边都相等D.对角线平分一组对角6、将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A.125°B.115°C.110°D.120°7、下列说法不正确的是()A.条形统计图能清楚地反映出各项目的具体数量B.折线统计图能清楚地反映事物的变化情况C.扇形统计图能清楚地表示出各个部分在总体中所占的百分比D.统计图只有以上三种8、某次器乐比赛共有11名选手参加,且他们的得分都互不相同.现在知道这次比赛按选手得分由高到低的顺序设置了6个获奖名额.若已知某位选手参加这次比赛的得分,要判断他能否获奖,则在下列描述选手比赛成绩的统计量中,只需知道()A.方差B.平均数C.众数D.中位数9、下列式子中无意义的是()A. B. C. D.10、一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根11、A,B,C是平面内不在同一条直线上的三点,D是平面内任意一点,若A,B,C,D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )A.1个B.2个C.3个D.4个12、能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CDB.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB13、二次函数y=ax2+bx+c的图像如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图像是()A. B. C. D.14、下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线相等的四边形是矩形④对角互补的四边形内接于圆A.①②B.②③C.③④D.①④15、若,0<x<1,则的值是()A. B.-2 C.±2 D.±二、填空题(共10题,共计30分)16、如图,直线x=t(t>0)与反比例函数的图象分别交于B,C 两点,A为y轴上的任意一点,则△ABC的面积为________.17、如图,菱形的周长是,,那么这个菱形的对角线的长是________.18、如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:________,使四边形ABCD为平行四边形.(不添加任何辅助线)19、如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为________.20、一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________.21、关于x的方程ax2+bx﹣1=0的一个解是x=﹣1,则2015﹣a+b=________.22、如果x≥1,那么化简的结果是________.23、如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为________.24、圆柱的体积为10cm3,则它的高ycm与底面积xcm2之间的函数关系式是________ .25、如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C (2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为________.三、解答题(共5题,共计25分)26、解方程:3x(2x+1)=4x+2.27、甲、乙两名战士在相同条件下各射靶6次,每次命中的环数分别是:(单位:环)甲:4,9,10,7,8,10;乙:8,9,9,8,6,8.(1)分别计算甲、乙两名战士的平均数和方差;(2)哪名战士的成绩比较稳定.28、如图,在中,,正方形的三个顶点分别在边,,上。
八年级数学第1 页共6 页2013-2014学年度(下)八年级期末质量检测数学(满分:150分;考试时间:120分钟) 注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.1、下列计算正确的是()A .234265+=B .842=C .2733¸=D .2(3)3-=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是()A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是()A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7 B .7,6.5 C .5.5,7 D .6.5,7 5、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是()(A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<0 6、如图,把直线L 沿x 轴正方向向右平移2个单位得到直线L ′,则直线L /的解析式为()A.12+=x yB. 42-=x yC. 22y x =- D. 22+-=x y 7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为()(A )4 cm (B )5 cm (C )6 cm (D )10 cm A第7题BCDEEDCBA(第8题A B C D E F 8、如图,ABC D 和DCE D 都是边长为4的等边三角形,的等边三角形,点点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为(的长为( )(A )3(B )23(C )33(D )43二、细心填一填:本大题共8小题,每小题4分,共32分.分. 9、计算123-的结果是的结果是 . 10、实数p 在数轴上的位置如图所示,化简22(1)(2)_______p p -+-=。
浙教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、□ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DFB.AE=CFC.AF//CED.∠BAE=∠DCF2、在如图所示的网格中,已知线段AB,现要在该网格内再确定格点C和格点D,某数学探究小组在探究时发现以下结论:以下结论错误的是()A.将线段平移得到线段,使四边形为正方形的有2种; B.将线段平移得到线段,使四边形为菱形的(正方形除外)有3种; C.将线段平移得到线段,使四边形为矩形的(正方形除外)有两种; D.不存在以为对角线的四边形是菱形.3、在一次11人参加的歌咏比赛中,预赛成绩各不同,要取前6名参加决赛,小丽已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这11名同学成绩的()A.平均数B.众数C.中位数D.方差4、下列说法中正确命题有( )①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为A.0个B.1个C.2个D.3个5、如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<时,则x的取值范围是()A.1<x<3B.x<1或x>3C.0<x<1D.0<x<1或x>36、关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠27、若一元二次方程﹣3x2+6x+m=0的一个根为x1=3,则该方程的另一个根是()A.x2=﹣1 B.x2=﹣3 C.x2=﹣5 D.x2=58、在一幅长80cm、宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图如下图所示,如果要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )A.x 2+130x-1 400=0B.x 2+65x-350=0C.x 2-130x-1 400=0D.x 2-65x-350=09、已知方程x2﹣6x+q=0可以配方成(x﹣p)2=7的形式,那么x2﹣6x+q=2可以配方成下列的()A.(x﹣p)2=5B.(x﹣p)2=9C.(x﹣p+2)2=9D.(x﹣p+2)2=510、用配方法解方程时,原方程应变形为()A. B. C. D.11、下列计算正确的是()A. =-2B. =2C. = 2D. =12、如图,以等边三角形ABC的边AC为边,向外做正方形ACDE,则(1)∠BCE=105°;(2)∠BAE=150°;(3)BE=BD;(4)∠DBE=30°;其中结论正确的有()个A.4B.3C.2D.113、若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C.D.14、某校是海安三门球特色学校,现准备从该校九年级四个班中选出一个班的7名学生组建三门球队,根据各班选出的学生,测量其身高,计算得到的数据如下表所示,表:九年级(1~4班)学生平均身高统计表学生平均身高(单标准差位:m)九(1)班 1.57 0.3九(2)班 1.57 0.7九(3)班 1.6 0.3九(4)班 1.6 0.7要求各班选出的学生身高较为整齐,且平均身高约为1.6m.学校应选择()A.九(1)班B.九(2)班C.九(3)班D.九(4)班15、如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是()A.2B.3C.4D.5二、填空题(共10题,共计30分)16、化简=________.17、如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y= (x>0)的图象经过OA的中点C,交AB于点D,连结CD,若△ACD的面积是2,则k的值是________。
浙教版八年级数学下册期末试卷及答案浙教版八年级数学(下)期末测试卷一、选择题(本题有10小题,每小题3分,共30分)1.二次根式 a+3 中,字母 a 的取值范围是A) a。
-3 (B) a ≥ -3 (C) a。
3 (D) a ≥ 3答案:B解析:二次根式 a+3 中,要求a+3 ≥ 0,所以a ≥ -3.2.在下列关于平行四边形的各命题中,假命题是A) 平行四边形的对边相等 (B) 平行四边形的对角相等C) 平行四边形的对角线互相平分 (D) 平行四边形的对角线互相垂直答案:A解析:平行四边形的对边相等是正确的,其他三个选项都是正确的。
3.一元二次方程 x^2 - 4x - 6 = 0,经过配方可变形为A) (x - 2)^2 = 10 (B) (x - 2)^2 = 6C) (x - 4)^2 = 6 (D) (x - 2)^2 = 2答案:B解析:将 x^2 - 4x - 6 = 0 移项得 x^2 - 4x = 6,再将 x^2 - 4x 补全平方得 (x - 2)^2 - 4 = 6,即 (x - 2)^2 = 10.4.在下列图形中,中心对称图形是A) 等边三角形 (B) 平行四边形C) 等腰梯形 (D) 正五边形答案:B解析:平行四边形有中心对称轴。
5.若 6^(2x-1) = 36,则 2^(x+1) 的值是:A) 4 (B) 8 (C) 32 - 8 (D) 3 + 3 = 6答案:A解析:6^(2x-1) = 36,两边取对数得 (2x-1)log6 = log36,化简得 x = 2,代入 2^(x+1) 中得 2^(3) = 8.6.下列计算正确的是A) 3 + 2 = 5 (B) 3 - 2 = 1答案:A解析:3 + 2 = 5 是正确的,3 - 2 = 1 也是正确的。
7.一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为A) 正三角形 (B) 正方形C) 正五边形 (D) 正六边形答案:C解析:正三角形、正方形、正六边形的内角和分别为180°、360°、720°,它们的公因数是 60°,所以另外一个正多边形的内角和也是 60°,即正五边形。
浙教版八年级数学下学期期末测试卷有答案此套浙教版八年级数学下学期期末测试卷有答案免费下载由绿色圃中小学教育网整理,所有试卷与新课标XX年中学八年级初二教材大纲同步,本站最新搜集整理有语文数学英语物理化学地理历史生物下册期末试卷供大伙儿免费利用下载打印,转载前请注明出处。
因初中下学期期末试卷复制时部份内容如图片、答案等无法直接显示,请用户直接到帖子二楼(往下拉)下载WORD编辑的DOC附件下载阅读或打印!如有疑问,请联系网站底部工作人员,将第一时刻为您解决问题!试卷内容预览:八(下)数学期终温习试卷(二)班级姓名得分一、选择题(20′)。
一、代数式在实数范围内成心义,那么x的取值范围是()。
A、x≥2B、x≥1C、x≠2D、x≥1且x≠2二、方程①②③④中,一元二次方程的个数是()。
A、1个B、2个C、3个D、4个3、一组数据共40个,分为6组,第1到第四组的频数别离为10,5,7,6,第5组的频率为0.1,那么第6组的频数为()。
A、4 B、10 C、6 D、84、以下语句中,不是命题的是()。
A、假设两角之和为90°,那么这两个角互补。
B、同角的余角相等。
C、作线段的垂直平分线D、相等的角是对顶角五、用反证法证明“a>b”时应假设()。
A、a>bB、a<bC、a=bD、a≤b六、以下图形中,不能单独镶嵌成平面图形的是()。
A、正三角形B、正方形C、正五边形D、正六边形7、以下图形中,既是轴对称图形又是中心对称图形的个数有()。
|A、1个 B、2个 C、3个 D、4个八、矩形具有而菱形不具有的性质是()。
A、对边平行且相等B、对角线垂直C、对角线相互平分D、对角线相等九、如图,用8块相同的长方形地砖拼成一个矩形,已知地砖的宽为10cm,那么每块长方形地砖的面积是()。
A、200 cm2B、300 cm2C、600 cm2D、2400 cm210、将一个平行四边形的纸片对折一次,使得折痕平分那个平行四边形的面积,那么如此的折纸方式的种数是()。
2013—2014学年八下第二学期期末模拟试卷一、 选择题(每小题3分,共30分)1. 下列运算:(1)235+= (2)5352522+= (3)3232+=, (4)2281517+= (5)2292535a b a b +=+,其中正确的一共有( ) A .2个B .3个C .4个D .以上都不对2. 若代数式x 2+5x+6与-x+1的值相等,则x 的值为( )A .x 1=-1,x 2=-5B .x 1=-6,x 2=1C .x 1=-2,x 2=-3D .x =-13. 关于x 的方程k 2x 2+(2k -1)x +1=0有实数根,则下列结论正确的是( )A .当k =12时方程的两根互为相反数 B .方程有一个根可能是x =-1 C .方程一定有两根,且两根一定同号D .当41≤k 时方程有实数根 4. 已知数据1、2、3、3、4、5,则下列关于这组数据的说法错误的是:( )A .平均数、中位数和众数都是3B .极差为4C .方差为10D .标准差是3155.如图,以正方形ABCD 的对角线AC 为一边作菱形AEFC ,则∠F AB=( ) A .22.5°B .30°C .15°D .25°第5题第6题6. 如图,E 是正方形ABCD 对角线AC 上一点,EF ⊥AB ,EG ⊥BC ,F 、G 是垂足,若正方形ABCD周长为a ,则EF +EG 等于( ) A .14aB .12aC .aD .2a7.(1)ky k x y x=--=函数及在同一坐标系中的图象大致是( )8. (2013年临沂)如图,等边三角形OAB 的一边OA 在x 轴上,双曲线xy 3=在第一象限内的图像经过OB 边的中点C ,则点B 的坐标是 ( )A .( 1,3)B .(3, 1 )C .( 2 ,32)D .(32 ,2 )第8题第9题第10题9. 如图,已知点A 在反比例函数x y 2=的图象上,点B ,C 分别在反比例函数xy 4=的图象上,且AB ∥x 轴,AC ∥y 轴,若AB =2AC ,则点A 的坐标为( ) A .(1,2)B .(2,1)C .( 2 , 2 )D .(3,23)10. 如图,四边形ABCD 是菱形,且,是等边三角形,M 为对角线BD(不含B点)上任意一点,将BM 绕点B 逆时针旋转得到BN ,连接EN 、AM 、CM ,则下列五个结论中正确的是( )①若菱形ABCD 的边长为1,则的最小值1;②;③;④连接AN ,则;⑤当的最小值为时,菱形ABCD 的边长为2. A .①②③B .②④⑤C .①②⑤D .②③⑤二、填空(每题4分,共24分)11. 已知反比例函数4y x=,则当函数值错误!未找到引用源。
一、选择题1.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是55B .众数是60C .平均数是54D .方差是292.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解; (2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和; (4)多边形内角和等于360︒; (5)一组数据1,2,3,4,5的众数是0 A .0个B .1个C .2个D .3个3.某次知识竞赛中,两组学生成绩如下表,通过计算可知两组的方差为S 2甲172=,S 2乙256=,下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定; ③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均是80,但成绩≥80的人数甲比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好. 其中正确的有( )个A .2B .3C .4D .54.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,855.关于一次函数2y x b =-+(b 为常数),下列说法正确的是( ) A .y 随x 的增大而增大 B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点 6.对于函数31y x =-+,下列结论正确的是( )A .y 随x 的增大而增大B .它的图象经过第一、二、三象限C .它的图象必经过点()0,1D .当1x >时,0y >7.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 234······应交电费y (元)0.55 1.1 1.65 2.2 ······ x y x y x ②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( ) A .4个B .3个C .2个D .1个8.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米; ④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④9.下列计算正确的是( )A .3236362⨯==B 164=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .(25235410-⨯++=10.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( ) A .OAB OBA ∠=∠; B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠.11.如图,在菱形ABCD 中,对角线BD =4,AC =3BD ,则菱形ABCD 的面积为( )A .96B .48C .24D .612.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个二、填空题13.已知一组数据:x 1,x 2,x 3,…,x n 的平均数是2,方差是3,另一组数据:3x 1﹣2,3x 2﹣2,…3x n ﹣2的方差是__________.14.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 x45 45 42 S 2 1.82.31.8__.15.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.16.如图,直线(0)y kx b k =+≠经过(1,2)A --和(3,0)B -两点,则关于x 的不等式组10x kx b +<+<的解是____________.17.如图,直角三角形ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,AF 平分CAB ∠交CD 于点E ,交BC 于点F ,//EG AB 交CB 于点G ,FH AB ⊥于H ,以下4个结论:①ACD B ∠=∠;②CEF △是等边三角形;③CD FH DE =+;④BG CE =中正确的是______(将正确结论的序号填空)18.如图,在ABC 中,已知AB =8,BC =6,AC =7,依次连接ABC 的三边中点,得到111A B C △,再依次连接111A B C △的三边中点,得到222A B C △,,按这样的规律下去,202020202020A B C △的周长为____.19.()9920020211(0.25)2232(2)(3)22π-⨯--+--÷-⨯+-=∣∣_________20.在ABC ∆中,AC =8,45C ∠=︒,AB =6,则BC =___________.三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图; (2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?22.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分 方差 中位数 众数 合格率 优秀率 一班 7.2 2.11 7 6 92.5% 20% 二班6.854.288885%10%根据图表信息,回答问题:(1)用方差推断, 班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?23.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 24.在ABC 中,23,AB CD AB =⊥于点,2D CD =(1)如图1,当点D 是线段AB 的中点时, ①AC 的长为________;②延长AC 至点E ,使得CE AC =,此时CE 与CB 的数量关系是_______,BCE ∠与A ∠的数量关系是_______;(2)如图2,当点D 不是线段AB 的中点时,画BCE ∠(点E 与点D 在直线BC 的异侧),使2BCE ∠=,A CE CB ∠=,连接AE . ①按要求补全图形; ②求AE 的长. 25.计算: (1)341+-216(5)25++-; (2)(x ﹣2y+3)(x+2y+3).26.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命器(填“真”或“假”) ①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”. 命题①是_______命题,命题②是______命题; (2)如图2, Rt ABC .90︒∠=C ,30B,3AC =Rt ABC 是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度:若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否. 【详解】这组数据按照从小到大的顺序排列为:40,50,50,50,55,55,60,60,60,60, 则众数为:60,中位数为:55, 平均数为:405050505555606060606010++++++++++=54,方差为:22221(4054)3(5054)2(5554)4(6054)10⎡⎤-+⨯-+⨯-+⨯-⎣⎦=39. 故选D .2.B解析:B 【分析】利用二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义分别判断后即可确定正确的选项. 【详解】解:(1)二元一次方程组的两个方程的所有公共解,叫做二元一次方程组的解,故原命题错误,不符合题意;(2)如果a >b ,则当c <0时,ac >bc ,故原命题错误,不符合题意; (3)三角形的外角等于与它不相邻的两个内角的和,正确,符合题意; (4)多边形内角和等于(n-2)×180°,故原命题错误,不符合题意; (5)数据1,2,3,4,5没有众数,故错误,不符合题意, 正确的个数为1个, 故选:B . 【点睛】本题考查了二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义,属于基础知识,比较简单.3.C解析:C 【分析】根据中位数、众数、方差、平均数的概念来解答. 【详解】解:①平均数:甲组:(50×2+60×5+70×10+80×13+90×14+100×6)÷50=80, 乙组:(50×4+60×4+70×16+80×2+90×12+100×12)÷50=80, ②S 甲2=172<S 乙2=256,故甲组学生成绩比乙组学生成绩稳定; ③甲组成绩的众数90>乙组成绩的众数70;④成绩≥80的人数甲组33人比乙组26人多;从中位数来看,甲组成绩80=乙组成绩80,故错误.⑤成绩高于或等于90分的人数乙组24人比甲组20人多,高分段乙组成绩比甲组好. 故①②③⑤正确. 故选:C . 【点睛】此题考查中位数和众数的定义.解题关键在于掌握各定义性质.4.A解析:A 【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可. 【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872+=87. 故选A . 【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.5.B解析:B 【分析】由一次函数的增减性判断A ;通过求直线与坐标轴交点可判断B ;根据一次函数图象与系数的关系判断C ;根据k 值相同而b 值不相同两条直线平行判断D ;. 【详解】解:A 、因为-2<0,所以y 随x 的增大而减小,故A 错误;B 、当b=4时,直线与坐标轴的交点分别为(2,0),(0,4),所以与坐标轴围成的面积是4,故B 正确;C 、图象一定过第二、四象限,故C 错误;D 、2y x b =-+与直线y=3-2x 重合或平行,不相交,故D 错误; 故选:B . 【点睛】本题主要考查了一次函数的图象与性质,采用数形结合的方法求解是关键.6.C解析:C 【分析】根据一次函数的图象与性质逐项判断即可得. 【详解】一次函数31y x =-+中的30k =-<, y ∴随x 的增大而减小,则选项A 错误;一次函数31y x =-+中的30,10k b =-<=>,∴它的图象经过第一、二、四象限,则选项B 错误;当0x =时,1y =,∴它的图象必经过点()0,1,则选项C 正确;当0y =时,310x -+=,解得13x =, y 随x 的增大而减小,∴当13x <时,0y >,则选项D 错误; 故选:C . 【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.7.B解析:B 【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性. 【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55, ∴y 是x 的一次函数,故①正确,②正确, 设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误. 故选:B . 【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解.8.A解析:A 【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高; ②设直线AC 的解析式为y =kx +b (k ≠0),然后利用待定系数法求出直线AC 线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得156kb⎧=⎪⎨⎪=⎩,所以,直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,14065y=⨯+=14,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,15065y=⨯+=16,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.9.D解析:D【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进行判断.【详解】A、32322754⨯=⨯=,故A错误;B4=,故B错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误; D 、()25235425625410-⨯+⨯++=-+++=,故D 正确.故选:D .【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键. 10.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠OAB=∠ACD ,∵∠OAB=∠OAD ,∴∠DAC=∠DCA ,∴AD=CD ,∴四边形ABCD 是菱形(邻边相等的平行四边形是菱形)故选:D .【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.11.C解析:C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD =4,AC =3BD ,∴AC =12,∴菱形ABCD 的面积为12AC×BD =11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.12.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P,则A(6,0),B(3,0);C(3,3);D(4.5;1.5);P(14,0)则AP=14-6=8m<10m,故A需调整;BP=14-3=11m>10m,故B不需调整;=,不需调整;=<10m,故D需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.二、填空题13.27【分析】根据方差的定义得到把数据x1x2x3…xn都扩大3倍则方差扩大3的平方倍然后每个数据减2方差不变于是得到3x1﹣23x2﹣2…3xn﹣2的方差为27【详解】∵x1x2x3…xn的平均数是解析:27【分析】根据方差的定义得到把数据x1,x2,x3,…x n都扩大3倍,则方差扩大3的平方倍,然后每个数据减2,方差不变,于是得到3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.【详解】∵x1,x2,x3,…x n的平均数是2,方差是3,∴3x1,3x2,…3x n的方差=3×32=27,∴3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.故答案为27.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷 解析:甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.15.【分析】一次函数中k=-1<0y 将随x 的增大而减小根据-1<2即可得出答案【详解】解:∵在一次函数中k=-1<0y 将随x 的增大而减小又∵-1<2∴y1>y2故答案为:y1>y2【点睛】本题考查一次函解析:12y y >【分析】一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,根据-1<2即可得出答案.【详解】解:∵在一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,又∵-1<2,∴y 1>y 2.故答案为:y 1>y 2.【点睛】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b (k 、b 为常数,k≠0),当k >0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.16.【分析】用待定系数法求出kb 的值然后将它们代入不等式组中进行求解即可【详解】解:将A(−1-2)和B(−30)代入y=kx+b 中得:解得:∴y=-x-3则x+1<-x-3<0解得:−3<x<−2故答解析:32x -<<-【分析】用待定系数法求出k 、b 的值,然后将它们代入不等式组中进行求解即可.【详解】解:将 A(− 1,-2) 和 B(− 3,0) 代入 y=kx+b 中得:230k b k b -+=-⎧⎨-+=⎩解得:13k b =-⎧⎨=-⎩, ∴y=-x-3,则 x+1<-x-3<0 ,解得: −3<x<−2,故答案为:−3<x<−2【点睛】本题考查了待定系数法求一次函数解析式以及不等式的解法,难度不大.17.①③④【分析】连接EH 得出平行四边形EHBG 推出BG=EH 求出∠CEF=∠AFC 得出CE=CF 证△CAE ≌△HAE 推出CE=EH 即可得出答案【详解】解:如图连接EH ∵∠ACB=90°∴∠3+∠4=9解析:①③④【分析】连接EH ,得出平行四边形EHBG ,推出BG=EH ,求出∠CEF=∠AFC ,得出CE=CF ,证△CAE ≌△HAE ,推出CE=EH ,即可得出答案.【详解】解:如图,连接EH ,∵∠ACB=90°,∴∠3+∠4=90°,∵CD ⊥AB ,∴∠ADC=90°,∴∠B+∠4=90°,∴∠3=∠B ,故①正确;∵∠ADC=∠ACB=90°,∴∠1+∠AFC=90°,∠2+∠AED=90°,∵AE 平分∠CAB ,∴∠1=∠2,∵∠AED=∠CEF ,∴∠CEF=∠AFC ,∴CE=CF ,∴△CEF 是等腰三角形,故②错误;∵AF 平分∠CAB ,FH ⊥AB ,FC ⊥AC ,∴FH=FC ,在Rt △CAF 和Rt △HAF 中,AF AF CF FH =⎧⎨=⎩, ∴Rt △CAF ≌Rt △HAF (HL ),∴AC=AH ,在△CAE 和△HAE 中,12AC AH AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAE ≌△HAE (SAS ),∴∠3=∠AHE ,CE=EH ,∵∠3=∠B ,∴∠AHE=∠B ,∴EH ∥BC ,∵CD ⊥AB ,FH ⊥AB ,∴CD ∥FH ,∴四边形CEHF 是平行四边形,∴CE=FH ,∴CD=CE+DE=FH+DE ,故③正确;∵EG ∥AB ,EH ∥BC ,∴四边形EHBG 是平行四边形,∴EH=BG ,∵CE=EH ,∴BG=CE .故④正确.所以正确的是①③④.故答案为:①③④.【点睛】本题考查了平行四边形的性质和判定,三角形的内角和定理,全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生综合运用定理进行推理的能力,有一定的难度.18.【分析】由再利用中位线的性质可得:再总结规律可得:从而运用规律可得答案【详解】解:探究规律:AB=8BC=6AC=7分别为的中点同理:总结规律:运用规律:当时故答案为:【点睛】本题考查的是图形周长的 解析:2020212 【分析】 由21ABCC AB BC AC =++=,再利用中位线的性质可得:111121,22A B C ABC C C ==2221112121,22A B C A B C C C ==再总结规律可得:21,2n n n A B C n C =从而运用规律可得答案.【详解】解:探究规律:AB =8,BC =6,AC =7, 21ABC C AB BC AC ∴=++=, 111,,A B C 分别为,,BC AC AB 的中点,111111111,,,222A B AB B C BC AC AC ∴=== 111121,22A B C ABC C C ∴== 同理:2221112112121,2222A B C A B C C C ==⨯= ······总结规律:21,2n n n A B C nC =运用规律: 当2020n =时,202020202020202021.2A B C C= 故答案为:202021.2【点睛】本题考查的是图形周长的规律探究,三角形中位线的性质,掌握探究规律的方法与三角形中位线的性质是解题的关键. 19.【分析】分别利用积的乘方逆运算绝对值的性质有理数的运算法则二次根式的性质计算各项即可求解【详解】解:故答案为:【点睛】本题考查实数的混合运算掌握积的乘方逆运算绝对值的性质有理数的运算法则二次根式的性 解析:π7-【分析】分别利用积的乘方逆运算、绝对值的性质、有理数的运算法则、二次根式的性质计算各项,即可求解.【详解】解:()992002011(0.25)2232(2)22-⨯--+--÷-⨯∣∣ ()9910011(0.25)491π35222⎛⎫=-⨯-+--⨯-⨯+- ⎪⎝⎭()991(0.254)410π4532⎛⎫=-⨯⨯-+-⨯-+- ⎪⎝⎭()14π32255=-⨯-++- π7=-,故答案为:π7-.【点睛】本题考查实数的混合运算,掌握积的乘方逆运算、绝对值的性质、有理数的运算法则、二次根式的性质是解题的关键.20.【分析】有两种情况可能是锐角三角形可能是钝角三角形过A 点作AD 垂直于BC 当为锐角三角时BC=CD+BD 当为钝角三角形时BC=CD-BD 利用勾股定理求出各边即可得到答案【详解】如图过点A 作垂足为D 当为 解析:422±【分析】ABC ∆有两种情况,可能是锐角三角形,可能是钝角三角形,过A 点作AD 垂直于BC ,当为ABC ∆锐角三角时,BC=CD+BD ,当ABC ∆为钝角三角形时,BC=CD-BD 利用勾股定理求出各边即可得到答案.【详解】如图,过点A 作AD BC ⊥ 垂足为D当为ABC ∆锐角三角时,AC =8,45C ∠=︒,90ADC ∠=︒∴ AD=CD=42在Rt ABD ∆中22226(42)3632AB AD -=-=-∴ BC=CD+BD=422当为ABC ∆钝角三角时,同理可得 CD=2 ,BD=2∴ BC=CD-BD=422故答案为:422【点睛】本题考查了三角形的分类,勾股定理的应用,准确的画出图形是解决本题的关键.三、解答题21.(1)40;补图见详解;(2)36°;(3)13200元.【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解;(3)计算出本次调查的平均数,再根据题意列式计算即可求解.【详解】解:(1)10÷25%=40(人),40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=36 40⨯︒︒;(3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元),答:七年级学生捐款约为13200元.【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.(1)二,一;(2)乙同学的推断比较科学合理,理由见解析.【分析】(1)根据方差的大小即可判断出波动的大小;结合合格率和优秀率则要先数值大的,由此即可得答案;(2)结合条形统计图,根据平均分、中位数、众数的优缺点进行解答即可.【详解】(1)一班的方差为2.11,二班的方差为4.28,用方差推断,二班的成绩波动较大;一班的合格率为92.5% ,优秀率为20%,二班的合格率为85%,优秀率为10%,一班的合格率与优秀率均比二班的大,因此用优秀率和合格率推断,一班的阅读水平更好些,故答案为二;一;(2)乙同学的推断比较科学合理.理由:虽然二班成绩的平均分比一班低,但从条形图中可以看出,二班有3名学生的成绩是1分,它在该组数据中是一个极端值,平均数受极端值影响较大,而中位数或众数不易受极端值的影响,所以,乙同学的推断更客观些.【点睛】本题考查了数据的收集整理与描述,涉及了平均数,方差,众数和中位数等知识,熟练掌握相关知识以及各自的优缺点是解题的关键.23.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .24.(1)②CE=CB ;∠BCE=2∠A ;(2)①补全的图形见解析;②【分析】(1)①由D 是BC 的中点及CD ⊥AB ,根据勾股定理即可求解;②证明△ADC ≌△BDC ,继而得到BC=CE ,根据∠BCE=∠CAB+∠CBA ,∠CAB=∠CBA ,即可得到∠BCE=2∠A ; (2)①根据题干补全图形即可;②作∠ACM=∠BCE ,在射线CM 上截取CF=CA ,连接BF 、AF ,过点C 作CG ⊥AF 于点G ,利用已知条件先证△ACE ≌△FCB ,得到AE=BF ,然后再证四边形ADCG 是矩形,可求得AG=CD=2AF ,Rt △BAF 中,利用勾股定理即可求出BF ,继而可得AE 的长.【详解】解:(1)①∵D 是BC 的中点,CD ⊥AB ,∴∠ADC=∠BDC =90°,∴在Rt △ADC 中,可得:AC ==②如图,延长AC 至点E ,使CE=AC ,在△ADC 和△BDC 中,DC DC AD BDADC BDC =⎧⎪=⎨⎪∠=∠⎩, ∴△ADC ≌△BDC ,∴AC=BC ,又∵AC=CE ,∴CB=CE ,∵∠BCE=∠CAB+∠CBA ,∠CAB=∠CBA ,∴∠BCE=∠CAB+∠CAB=2∠CAB ,即∠BCE=2∠A ;(2)①补全的图形见下图:②如图,作∠ACM=∠BCE ,在射线CM 上截取CF=CA ,连接BF 、AF ,过点C 作CG ⊥AF 于点G ,∴∠ACM+∠FCE=∠BCE+∠FCE,即∠ACE=∠FCB,∵CE=CB,∴△ACE≌△FCB,∴AE=BF,又∵CG⊥AF,∴∠CGF=90°,∵CF=CA,∴∠ACF=2∠ACG,AF=2AG,又∵∠BCE=2∠BAC,∠ACF=∠BCE,∴∠ACG=∠BAC,∴CG∥AD,∴∠AGC=∠BAF=∠ADC=90°,∴四边形ADCG是矩形,∴2,∴AF=2,在Rt△BAF中,∠BAF=90°,AB=23,AF=2∴222025BF AB AF=+==又∵AE=BF,∴AE=25即AE的长为5【点睛】本题考查全等三角形、等腰三角形、矩形的判定和性质、勾股定理及尺规作图,解题的关键是综合运用这些知识.25.(1)345;(2)x2+6x+9﹣4y2【分析】(1)首先计算开方,然后从左向右依次计算;求出算式的值是多少即可.(2)将各多项式分组,利用平方差公式和完全平方公式计算即可.【详解】解:(1)原式=2+(﹣1)+45+5=6+4 5=345;(2)原式=(x+3﹣2y)(x+3+2y)=(x+3)2﹣4y2=x2+6x+9﹣4y2.【点睛】本题主要考查实数的运算,平方差公式和完全平方公式,解决此类问题,要熟练掌握运算顺序和运算方法.26.(1)假,真;(2)2【分析】(1)根据“和谐分割线”的定义即可判断;(2)如图作∠CAB的平分线,只要证明线段AD是“和谐分割线”即可,并求AD的长;【详解】解:(1)①从等边三角形一个顶点出发,所分成的两个三角形必定不是等边三角形,不与原三角形的三个内角分别相等,故等边三角形不存在“和谐分割线”,是假命题;②如图,△ABC中,∠ACB=2∠ABC,CD平分∠ACB,则∠B=∠BCD=∠ACD,即△BCD是等腰三角形,在△ACD和△ABC中,∠A=∠A,∠ACD=∠B,∠ADC=∠ACB=2∠B,故△ABC必存在“和谐分割线”,正确,是真命题,故答案为:假,真;(2)Rt△ABC存在“和谐分割线”,理由是:如图作∠CAB的平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠B=30°,∴DA=DB,∴∠DAB=∠B=∠CAD=30°,又∠C=∠C,∠ADC=∠CAB=60°,∴△ADB是等腰三角形,且△ACD和△ABC三个内角相等,∴线段AD是△ABC的“和谐分割线”,∴3=2.【点睛】本题考查三角形综合题、等腰三角形的判定和性质、三角形内角和、“和谐分割线”的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。
浙教版数学八年级下册期末测试试卷一、细心选一选(本题有10小题,每小题3分,共30分)1.(3分)二次根式在实数范围内有意义,则x应满足的条件是()A.x≥1B.x>1C.x>﹣1D.x≥﹣12.(3分)若一个多边形的内角和为360°,则这个多边形的边数是()A.3B.4C.5D.63.(3分)下列选项中,计算正确的是()A.+=B.÷=2C.5﹣5=D.3=14.(3分)下列各点中,在函数的图象上的点是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)5.(3分)小红连续6次掷骰子得到的点数分别是5、4、4、2、1、6.则这组数据的众数是()A.5B.4C.2D.66.(3分)下列四个手机应用图标中,属于中心对称图形的是()A.B.C.D.7.(3分)下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=2,b=1C.a=﹣3,b=2D.a=﹣2,b=38.(3分)用配方法将方程x2+4x﹣4=0化成(x+m)2=n的形式,则m,n的值是()A.﹣2,0B.2,0C.﹣2,8D.2,89.(3分)欧几里得是古希腊数学家,所著的《几何原本》闻名于世.在《几何原本》中,形如x2+ax =b2的方程的图解法是:如图,以和b为直角边作Rt△ABC,再在斜边上截取BD=,则图中哪条线段的长是方程x2+ax=b2的解?答:是()A.AC B.AD C.AB D.BC10.(3分)如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则矩形ABCD的面积是()A.13B.C.60D.120二、精心填一填(本题有6小题,每小题3分,共18分)11.(3分)化简:=.12.(3分)写出一个二次项系数为1,解为1与﹣3的一元二次方程:.13.(3分)已知一组数据1,4,a,3,5,若它的平均数是3,则这组数据的中位数是.14.(3分)如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为.15.(3分)如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为.16.(3分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是.三、解答题(共4小题,满分27分)17.(7分)解下列方程:(1)x2﹣3x=0.(2)(x﹣3)(x﹣1)=8.18.(6分)在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上且AE=CF,证明:DE =BF.19.(6分)如图,图1、图2是两张大小完全相同的6×6方格纸,每个小方格的顶点叫做格点,以格点为顶点的多边形叫做格点多边形.网格中有一个边长为2的格点正方形,按下列要求画出拼图后的格点平行四边形(用阴影表示)(1)把图1中的格点正方形分割成两部分,再通过图形变换拼成一个平行四边形,在图1中画出这个格点平行四边形;(2)把图2中的格点正方形分割成三部分,再通过图形变换拼成一个平行四边形,在图2中画出这个格点平行四边形.20.(8分)某校要从小红、小明和小亮三名同学中挑选一名同学参加数学素养大赛,在最近的四次专题测试中,他们三人的成绩如下表所示:学生集合证明PISA问题应用题动点问题专题小红70758085小明80807276小亮75759065(1)请算出小红的平均分为多少?(2)该校根据四次专题考试成绩的重要程度不同而赋予每个专题成绩一个权重,权重比依次为x:1:2:1,最后得出三人的成绩(加权平均数),若从高分到低分排序为小亮、小明、小红,求正整数x的值.四、耐心做一做(本题有3小题,共25分)21.(8分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.(1)若每盆增加x株,平均每株盈利y元,写出y关于x的函数表达式;(2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?22.(7分)如图,在△ABC中,CA=CB=5,AB=6,AB⊥y轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.(1)若OA=8,求k的值;(2)若CB=BD,求点C的坐标.23.(10分)如图,等腰△ABC中,已知AC=BC=2√10,AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.(1)求证:四边形BCFE是平行四边形;(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=.参考答案与试题解析一、细心选一选(本题有10小题,每小题3分,共30分)1.A 2.B 3.B 4.C 5.B 6.A 7.C 8.D 9.B 10.D.二、精心填一填(本题有6小题,每小题3分,共18分)11.312.x2+2x﹣3=013.314.815.16.三、解答题(共4小题,满分27分)17.解:(1)x2﹣3x=0,x(x﹣3)=0,x=0,x﹣3=0,x1=0,x2=3;(2)(x﹣3)(x﹣1)=8,整理得:x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0,x+1=0,x1=5,x2=﹣1.18.证明:∵连接BE,DF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形BEDF是平行四边形,∴DE=BF.19.解:(1)如图1中,平行四边形ABCD即为所求(答案不唯一).(2)如图2中平行四边形ABCD即为所求(大不唯一).20.解:(1)(70+75+80+85)÷4=77.5分,答:小红的平均分为77.5分.(2)由题意得:>>解得:2<x<4,∵x为正整数的值.∴x=3,答:正整数x的值为3.四、耐心做一做(本题有3小题,共25分)21.解:(1)由题意知:每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,则:y=(x+3)(3﹣0.5x)=﹣0.5x2+1.5x+9;(2)由题意得:(x+3)(3﹣0.5x)=10.化简,整理得x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株.22.解:(1)过C作CM⊥AB,CN⊥y轴,垂足为M、N,∵CA=CB=5,AB=6,∴AM=MB=3=CN,在Rt△ACD中,CD==4,∴AN=4,ON=OA﹣AN=8﹣4=4,∴C(3,4)代入y=得:k=12,答:k的值为12.(2)∵BC=BD=5,∴AD=6﹣5=1,设OA=a,则ON=a﹣4,C(3,a﹣4),D(1,a)∵点C、D在反比例函数的图象上,∴3(a﹣4)=1×a,解得:a=6,∴C(3,2)答:点C的坐标为(3,2)23.(1)证明:如图1,∵AC=BC,∴∠B=∠BAC,∵CF平分∠ACH,∴∠ACF=∠FCH,∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,∴∠FCH=∠B,∴BE∥CF,∵EF∥BC,∴四边形BCFE是平行四边形;(2)解:四边形AECF是矩形,理由是:如图2,∵E是AB的中点,AC=BC,∴CE⊥AB,∴∠AEC=90°,由(1)知:四边形BCFE是平行四边形,∴CF=BE=AE,∵AE∥CF,∴四边形AECF是矩形;(3)解:分三种情况:①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,如图3,∴BE=BC,即2t=2,t=;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,如图4,过C作CD⊥AB于D,∵AC=BC,AB=4,∴BD=2,由勾股定理得:CD===6,∵EG2=EC2,即(2t)2=62+(2t﹣2)2,t=5;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,如图5,CA=AF=BC,此时E 与A重合,∴t=2,综上,t的值为秒或5秒或2秒;故答案为:秒或5秒或2秒.。
浙教版八年级(下)期末考试数学试题(含答案)浙教版八年级数学第二学期期末统考试题及答案考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。
2.答题前,必须在答题卡填写校名、班级、姓名和考号。
3.答案都必须做在答题卡标定的位置上,答错位置无效。
一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项。
注意可以用多种不同的方法来选取正确答案。
1.下列图形中,不是中心对称图形的是()。
A.正方形B.矩形C.菱形D.梯形2.二次根式$\frac{1}{2x-1}$中字母$x$的取值范围是()。
A.$x\geq2$B.$x>2$C.$x\geq\frac{1}{1}$D.$x>\frac{2}{2 }$3.用配方法将方程$x^2+6x-11=0$变形,正确的是()。
A.$(x-3)^2=20$B.$(x-3)^2=2$ C.$(x+3)^2=2$ D.$(x+3)^2=20$4.能证明命题“$x$是实数,则$(x-3)>0$”是假命题的反例是()。
A.$x=1$B.$x=2$C.$x=3$D.$x=4$5.一组数据:$x$,2,3,6,8的平均数是6,则这组数据的极差是()。
A.9B.7C.6D.16.在下列命题中,真命题是()。
A.一组对边平行的四边形是平行四边形。
B.有一个角是直角的四边形是矩形。
C.有一组邻边相等的平行四边形是菱形。
D.对角线互相垂直平分的四边形是正方形。
7.已知一元二次方程$x^2-8x+12=0$的两个解恰好是等腰$\triangle ABC$的底边长和腰长,则$\triangle ABC$的周长为()。
A.14B.10C.11D.1或108.用反证法证明命题:“若整系数一元二次方程$ax^2+bx+c=0(a\neq0)$有有理根,那么$a$,$b$,$c$中至少有一个是偶数”时,下列假设正确的是( )。
2014年浙教版八下期末测试卷一.选择题(共10小题,满分30分,每小题3分) 1.(3分)(2013•武汉)式子在实数范围内有意义,则x 的取值范围是( )2.(3分)(2010•眉山)化简的结果是( )C .25.(3分)(2011•滨州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下6.(3分)(2009•株洲)定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”2.CD .8.(3分)(2013•巴中)在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( ).CD .9.(3分)(2010•枣庄)如图,正△AOB 的顶点A 在反比例函数y=(x >0)的图象上,则点B 的坐标为( ),10.(3分)(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是()二.填空题(共6小题,满分25分)11.(4分)(2009•湘西州)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=_________.12.(4分)(2012•天水)若x2﹣x﹣2=0,则的值等于为_________.(改编课本例题)13.(4分)(2009•广安)为了增加游人观赏花园风景的路程,将平行四边形花园中形如图1的恒宽为a米的直路改为形如图2恒宽为a米的曲路,道路改造前后各余下的面积(即图中阴影部分面积)分别记为S1和S2,则S1_________S2(填“>”“=”或“<”).14.(4分)(2008•巴中)如图,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,则∠AEF= _________度.15.(4分)(2011•黔南州)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于_________(结果保留π).16.(5分)(2009•天津)已知图中的曲线是反比例函数y=(m为常数,m≠5)图象的一支.(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么;(Ⅱ)若该函数的图象与正比例函数y=2x的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当△OAB 的面积为4时,求点A的坐标及反比例函数的解析式.三.解答题(共8小题,满分80分,每小题10分)17.(5分))先化简,再求值:,其中x=.18.(5分)(2009•仙桃)先化简,再求值:,其中x=2﹣.19.(10分)(2009•梧州)如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN 于E,连接AE、CD.(1)求证:AD=CE;(2)填空:四边形ADCE的形状是_________.20.(10分)(2009•重庆)为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月该班同学的植树情况的部分统计如下图所示:21.(10分)(2010•鞍山)在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB 上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求出此时BE的长;若不存在,请说明理由.22.(5分)(2009•中山)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?23.如图,A、B两点在函数y=(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.24.(10分)(2009•中山)如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C,第2个平行四边形和第6个平行四边形的面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2013•武汉)式子在实数范围内有意义,则x的取值范围是()主要考查了二次根式的意义和性质.概念:式子2.(3分)(2010•眉山)化简的结果是()=3C.﹣25.(3分)(2011•滨州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下6.(3分)(2009•株洲)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”2.C D.8.(3分)(2013•巴中)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是().C D.9.(3分)(2010•枣庄)如图,正△AOB的顶点A在反比例函数y=(x>0)的图象上,则点B的坐标为(),把这点代入反比例函数的解析式就得到,10.(3分)(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是()(y=经过点(y=经过点(二.填空题(共6小题,满分25分)11.(4分)(2009•湘西州)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.得出.4==.12.(4分)(2012•天水)若x2﹣x﹣2=0,则的值等于为.(改编课本例题)==13.(4分)(2009•广安)为了增加游人观赏花园风景的路程,将平行四边形花园中形如图1的恒宽为a米的直路改为形如图2恒宽为a米的曲路,道路改造前后各余下的面积(即图中阴影部分面积)分别记为S1和S2,则S1= S2(填“>”“=”或“<”).14.(4分)(2008•巴中)如图,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,则∠AEF= 90度.15.(4分)(2011•黔南州)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于π(结果保留π).y=16.(5分)(2009•天津)已知图中的曲线是反比例函数y=(m为常数,m≠5)图象的一支.(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么;(Ⅱ)若该函数的图象与正比例函数y=2x的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当△OAB 的面积为4时,求点A的坐标及反比例函数的解析式.|k|∴y=4=,即.(S=三.解答题(共8小题,满分80分,每小题10分)17.(10分)(2009•北京)如图,A、B两点在函数y=(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.求出(∴.18.(10分)(2009•中山)如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C,第2个平行四边形和第6个平行四边形的面积.×BC==16B=BC=8==BC×个平行四边形的面积是:=319.(10分)(2009•梧州)如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN 于E,连接AE、CD.(1)求证:AD=CE;(2)填空:四边形ADCE的形状是.∴20.(10分)(2009•重庆)为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月该班同学的植树情况的部分统计如下图所示:21.(10分)(2010•鞍山)在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB 上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求出此时BE的长;若不存在,请说明理由.BK=(FG=x xS x﹣+BK=(=AK==4∴FG=BE﹣+)得:﹣x x=14周长的三分之一为=8,面积的三分之一为∴,FM=,=时,梯形∴,周长的三分之一为=8,面积的三分之一为∴FM=,=时,梯形∴,22.(10分)(2009•中山)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?23.(10分)(2008•威海)先化简,再求值:,其中x=.÷,时,原式==24.(10分)(2009•仙桃)先化简,再求值:,其中x=2﹣.时,﹣。
2013-2014学年浙教版八年级(下)期末数学检测卷A(一)2013-2014学年浙教版八年级(下)期末数学检测卷A (一)姓名: 得分:一、选择题(每小题2分,共20分) 1.(2分)(2010•深圳)下列图形中,是中心对称图形但不是轴对称图形的是( ) A .B .C .D .2.(2分)(2003•武汉)不解方程,判别方程5x 2﹣7x+5=0的根的情况是( ) A . 有两个相等的实数根 B . 有两个不相等的实数根 C . 只有一个实数根 D . 没有实数根3.(2分)(2005•杭州)若化简的结果为2x ﹣5,则x 的取值范围是( )A . x 为任意实数B . 1≤x ≤4C . x ≥1D . x ≤4 4.(2分)(2007•湖州)要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是( ) A . 平均数 B . 中位数 C . 众数 D . 方差5.(2分)一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则+=( )A .B . 1C .D .6.(2分)(2007•日照)如图,在周长为20cm 的▱ABCD 中,AB ≠AD ,对角线AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )7.(2分)(2010•威海)如图,在梯形ABCD 中,AB ∥CD ,AD=BC ,对角线AC ⊥BD ,垂足为O ,若CD=3,AB=5,则AC 的长为( )A . 4cmB . 6cmC .8cm D . 10cmA .B . 4C .D .8.(2分)(2010•丹东)把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A . (10+2)cmB . (10+)cmC .22cm D . 18cm9.(2分)(2005•宁波)正比例函数y=x 与反比例函数y=的图象相交于A 、C 两点.AB ⊥x 轴于B ,CD ⊥y 轴于D (如图),则四边形ABCD 的面积为( )10.(2分)关于x 的方程k 2x 2+2(k ﹣1)x+1=0有两个实数根,则k 的取值范围是( )A . k <B . k ≤C . k <且k ≠0D .k ≤且k ≠0二、填空题(每小题3分,共30分) 11.(3分)化简:= _________ .12.(3分)当x= _________时,代数式6x 2+15x+12的值等于21. 13.(3分)某公司在2012年的盈利额为200万元,预计2014年的盈利额将达到242万元.若每年比上一年盈利额增长的百分率相同,那么该公司在2013年的盈利额为 _________ 万元. 14.(3分)(2006•芜湖)一组数据5,8,x ,10,4的平均数是2x ,则这组数据的方差是 _________ .15.(3分)关于x 的一元二次方程(a ﹣1)x 2+x+|a|﹣1=0的一个根是0,则实数a 的值为 _________ . 16.(3分)如图①,将长为20cm ,宽为2cm 的长方形白纸条,折成如图②的图形并在其一面着色,则着色的面积为 _________ cm 2.17.(3分)如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A ,B 点构成直角三角形ABC 的顶点C 的位置有 _________ 个.A . 1B .C . 2D .18.(3分)已知n是正整数,P n(x n,y n)是反比例函数图象上的一列点,其中x1=1,x2=2,…,x n=n,记T1=x1y2,T2=x2y3,…,T9=x9y10;若T1=1,则T1•T2…T9的值是_________.19.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F,连结EF,点M为EF的中点,则AM的最小值为_________.20.(3分)(2009•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为_________.三、解答题(共50分)21.(6分)计算:(1)﹣++;(2).22.(6分)解方程:(1)2x2﹣x﹣6=0;(2)y2﹣8y=4.23.(6分)(2006•扬州)某校九年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两位同学在父母的支持下各捐献了50册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数 4 5 6 7 8 50人数 6 8 15 2(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.24.(6分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?25.(8分)如图,在△ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF和四边形CDHN都是正方形.求证:△FMH是等腰直角三角形.26.(8分)已知有两张全等的矩形纸片.(1)将两张纸片叠合成如图1,请判断四边形ABCD的形状,并说明理由;(2)设矩形的长是6,宽是3.当这两张纸片叠合成如图2时,菱形的面积最大,求此时菱形ABCD的面积.27.(10分)(2008•镇江)如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OA TB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m﹣n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).2013-2014学年浙教版八年级(下)期末数学检测卷A(一)参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)(2010•深圳)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形;生活中的旋转现象.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,也是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选A.点评:掌握中心对称图形与轴对称图形的概念.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2.(2分)(2003•武汉)不解方程,判别方程5x2﹣7x+5=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵a=5,b=﹣7,c=5∴△=b2﹣4ac=(﹣7)2﹣4×5×5=﹣51<0∴方程没有实数根故选D.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.(2分)(2005•杭州)若化简的结果为2x﹣5,则x的取值范围是()A.x为任意实数B.1≤x≤4 C.x≥1 D.x≤4考点:二次根式的性质与化简.专题:计算题.分析:根据完全平方公式先把多项式化简为|1﹣x|﹣|x﹣4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.解答:解:原式可化简为|1﹣x|﹣|x﹣4|,当1﹣x≥0,x﹣4≥0时,可得x无解,不符合题意;当1﹣x≥0,x﹣4≤0时,可得x≤4时,原式=1﹣x﹣4+x=﹣3;当1﹣x≤0,x﹣4≥0时,可得x≥4时,原式=x﹣1﹣x+4=3;当1﹣x≤0,x﹣4≤0时,可得1≤x≤4时,原式=x﹣1﹣4+x=2x﹣5.据以上分析可得当1≤x≤4时,多项式等于2x﹣5.故选B.点评:本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.4.(2分)(2007•湖州)要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是()A.平均数B.中位数C.众数D.方差考点:统计量的选择.专题:应用题.分析:根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.解答:解:由于方差反映数据的波动情况,应知道数据的方差.故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(2分)一元二次方程x2+x﹣1=0的两根分别为x1,x2,则+=()A.B.1C.D.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到x1+x2=﹣1,x1•x2=﹣1,然后把+进行通分,再利用整体代入的方法进行计算.解答:解:根据题意得x1+x2=﹣1,x1•x2=﹣1,所以+===1.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(2分)(2007•日照)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm考点:线段垂直平分线的性质;平行四边形的性质.专题:几何图形问题.分析:根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.解答:解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.点评:此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.7.(2分)(2010•威海)如图,在梯形ABCD中,AB∥CD,AD=BC,对角线AC⊥BD,垂足为O,若CD=3,AB=5,则AC的长为()A.B.4C.D.考点:等腰梯形的性质.分析:作辅助线,平移一腰,由等腰梯形的性质和勾股定理解得答案.解答:解:过点C作CE∥BD,交AB的延长线于点E,∵AB∥CD,∴四边形BECD是平行四边形,∴BE=CD=3,∵AC⊥BD,∴AC⊥CE,∴AC=BD,∴AC=CE,由勾股定理得,2AC2=64,∴AC=4,故选A.点评:本题主要考查等腰梯形的性质的应用.8.(2分)(2010•丹东)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()A.(10+2)cm B.(10+)cm C.22cm D.18cm考点:等腰梯形的性质.分析:根据剪去的三角形的面积可得矩形的宽,利用勾股定理即可求得等腰梯形的腰长,根据折叠可得梯形其余边长,相加即为梯形的周长.解答:解:∵剪掉部分的面积为6cm2,∴矩形的宽为2,易得梯形的下底为矩形的长,上底为(8÷2﹣3)×2=2,腰长为=,∴打开后梯形的cm.故选:A.点评:此题主要考查了学生对等腰梯形的性质及翻折掌握情况,解决本题的关键是根据折叠的性质得到等腰梯形的各边长.9.(2分)(2005•宁波)正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y轴于D (如图),则四边形ABCD的面积为()A.1B.C.2D.考点:反比例函数系数k的几何意义.专题:计算题;数形结合.分析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOB=S△ODC=,再根据反比例函数的对称性可知:OB=OD,得出最后根据四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC,得出结果.解答:解:根据反比例函数的对称性可知:OB=OD,AB=CD,∴四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC=1×2=2.故选C.点评:本题主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.10.(2分)关于x的方程k2x2+2(k﹣1)x+1=0有两个实数根,则k的取值范围是()A.k<B.k≤C.k<且k≠0D.k≤且k≠0考点:根的判别式.分析:因为关于x的一元二次方程k2x2+2(k﹣1)x+1=0有两个实数根,所以必须满足下列条件:二次项系数不为零且判别式△=b2﹣4ac≥0,列出不等式求解即可确定k的取值范围.程k2x2+2(k﹣1)x+1=0有两个实数根,∴△=[2(k﹣1)]2﹣4k2≥0且k2≠0,解得k≤且k≠0.故选D.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件,二、填空题(每小题3分,共30分)11.(3分)化简:=.考点:二次根式的性质与化简.分析:根据二次根式的性质,算术平方根的值必须是正数,所以开方所得结果是|1﹣|,然后再去绝对值.解答:解:因为>1,所以=﹣1故答案为:﹣1.点评:本题主要考查二次根式的化简,其中必须符合二次根式的性质.12.(3分)当x=0.5或﹣3时,代数式6x2+15x+12的值等于21.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:6x2+15x+12=21,即6x2+15x﹣9=0,分解因式得:(6x﹣3)(x+3)=0,解得:x1=0.5,x2=﹣3,故答案为:0.5或﹣3点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握各自解法是解本题的关键.13.(3分)某公司在2012年的盈利额为200万元,预计2014年的盈利额将达到242万元.若每年比上一年盈利额增长的百分率相同,那么该公司在2013年的盈利额为220万元.考点:一元二次方程的应用.专题:增长率问题.分析:此题可通过设出营业额增长的百分率x,根据等量关系“2014年的营业额等于2012年的营业额乘(1+增长的百分率)乘(1+增长的百分率)”列出一元二次方程求解增长的百分率,再通过一元一次方程解得:2013年的盈利解答:解:设盈利额增长的百分率为x,则该公司在2013年的盈利额为200(1+x);由题意得,200(1+x)2=242,解得x=0.1或﹣2.1(不合题意,舍去),故x=0.1∴该公司在2013年的盈利额为:200(1+x)=220万元.故答案为:220.点评:此题考查增长率的定义,同学们应加强培养对应用题的理解能力,判断出题干信息,列出一元二次方程去求解.14.(3分)(2006•芜湖)一组数据5,8,x,10,4的平均数是2x,则这组数据的方差是 6.8.考点:方差;算术平均数.专题:压轴题.分析:本题可运用求平均数公式:解出x的值,再运用方差的公式解出方差.解答:解:依题意得:5+8+x+10+4=2x•5所以x=3,2x=6方差s2=[(5﹣6)2+(8﹣6)2+(3﹣6)2+(10故填6.8.点评:本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.15.(3分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为﹣1.考点:一元二次方程的解;一元二次方程的定义.分析:已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出a的值.解答:解:∵关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,∴|a|﹣1=0,即a=±1,∵a﹣1≠0∴a=﹣1,故答案为:﹣1.点评:此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.16.(3分)如图①,将长为20cm,宽为2cm的长方形白纸条,折成如图②的图形并在其一面着色,则着色的面积为36cm2.考点:翻折变换(折叠问题).分析:根据折叠的性质,已知图形的折叠就是已知两个图形全等.由图知,着色部分的面积是原来的纸条面积减去两个等腰直角三角形的面积.解答:解:着色部分的面积=原来的纸条面积﹣两个等腰直角三角形的面积=20×2﹣2××2×2=36cm2.故答案为:36.点评:本题考查图形的折叠变化及等腰直角三角形的面积公式.关键是要理解折叠是一种对称变换.17.(3分)如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有5个.考点:勾股定理的逆专题:网格型.分析:根据题意画出图形,根据勾股定理的逆定理进行判断即可.解答:解:如图所示:当∠C为直角顶点时,有C1,C2两点;当∠A为直角顶点时,有C3一点;当∠B为直角顶点时,有C4,C5两点,综上所述,共有5个点.故答案为:5.点评:本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.18.(3分)已知n是正整数,P n(x n,y n)是反比例函数图象上的一列点,其中x1=1,x2=2,…,x n=n,记T1=x1y2,T2=x2y3,…,T9=x9y10;若T1=1,则T1•T2…T9的值是25.6.考点:反比例函数图象上点的坐标特征.专题:压轴题.分析:根据反比例函数图象上点的坐标特征,得出原式=,进T1•T2•…•T n=x1y2•x2y3…x n y n+1=x1••x2••x3•…x n•=x1•,又因为x1=1,n=9,又因为T1=1,所以x1y2=1,又因为x1=1,所以y2=1,即=1,又x2=2,k=2,所以原式=,于是T1•T2•…•T9=x1(y2•x2)(y3•x3)…(y9•x9)y10===25.6.故答案为:25.6.点评:此题主要考查了反比例函数图象上点的特征,解答此题的关键是将x1••x2••x3•…x n•的相同字母消掉,使原式化简为一个仅含k的代数式,然后解答.19.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F,连结EF,点M为EF的中点,则AM的最小值为.考点:矩形的判定与性质;垂线段最短.分析:根据矩形的性质就可以得出,EF,AP互相平分,且EF=AP,垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.解答:解:∵四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP.BC=AB.AC,∴AP.BC=AB.AC.在Rt△ABC中,由勾股定理,得∴5AP=3×4∴AP=.∴AM=故答案为:.点评:本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键.20.(3分)(2009•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为.考点:反比例函数系数k的几何意义.专题:压轴题;规律型.分析:根据反比例函数中k的几何意义再结合图象即可解答.解答:解:∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角个定值,S=|k|.∴S1=1,S△OA2P2=1,∵OA1=A1A2,∴S△OA2P2=,同理可得,S2=S1=,S3=S1=,S4=S1=,S5=S1=.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.(1)﹣++;(2).考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据零指数幂、负整数指数幂和平方差公式计算.解答:解:(1)原式=2﹣++﹣1=﹣1;(2)原式=2﹣1﹣1++=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.22.(6分)解方程:(1)2x2﹣x﹣6=0;(2)y2﹣8y=4.解一元二次方程-配方法.专题:计算题.分析:(1)方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程两边加上16,利用完全平方公式变形,开方即可求出解.解答:解:(1)分解因式得:(2x+3)(x﹣2)=0,可得2x+3=0或x﹣2=0,解得:x1=1.5,x2=2;(2)配方得:y2﹣8y+16=20,即(y﹣4)2=20,开方得:y﹣4=±2,解得:y1=4+2,y2=4﹣2.点评:此题考查了解一元二次方程﹣因式分解法及配方法,熟练掌握各自解法是解本题的关键.23.(6分)(2006•扬州)某校九年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两位同学在父母的支持下各捐献了50册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数 4 5 6 7 8 50人数 6 8 15 2(1)分别求出该班级捐献7册图书和8册图书的人数.考点:中位数;二元一次方程组的应用;算术平均数;众数.专题:图表型.分析:(1)根据:全班40名同学和共捐图书320册这两个相等关系,设捐献7册的人数为x,捐献8册的人数为y,就可以列出方程组解决.(2)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.然后根据它们的意义判断.解答:解:(1)设捐献7册的人数为x,捐献8册的人数为y,则解得答:捐献7册的人数为6人,捐献8册的人数为3人.(2)捐书册数按从小到大的顺序排列得到第20,21个数均为6,所以中位数为6.出现次数最多的是6,所以众数为6.因为平均数8受两个50的影响较大,所以平均数不能反映该班同学捐书册数的一般情况.点评:此题考查了学生对中位数、众数、平均数的掌握情况及对二元一次方程组的应用.24.(6分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?考点:一元二次方程的应用.专题:销售问题;压轴题.分析:设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3﹣2﹣x),由于这种小型西瓜每降价O.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:200+千克.本题的等量关系为:每千克的利润×每天售解答:解:设应将每千克小型西瓜的售价降低x元.根据题意,得[(3﹣2)﹣x](200+)﹣24=200.原式可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2,x2=0.3.因为为了促销故x=0.2不符合题意,舍去,∴x=0.3.答:应将每千克小型西瓜的售价降低0.3元.点评:考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.25.(8分)如图,在△ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF和四边形CDHN都是正方形.求证:△FMH是等腰直角三角形.考点:全等三角形的判定与性质;三角形中位线定理;正方形的性质.专题:证明题.分析:首先要连接MB、MD,然后证明△FBM≌△MDH,为90°.解答:证明:连接MB、MD,如图2,设FM与AC交于点P,∵B、D、M分别是AC、CE、AE的中点,∴MD∥BC,且MD=AC=BC=BF;MB∥CD,且MB=CE=CD=DH(三角形的中位线平行于第三边并且等于第三边的一半),∴四边形BCDM是平行四边形,∴∠CBM=∠CDM,又∵∠FBP=∠HDC,∴∠FBM=∠MDH,在△FBM和△MDH中,∴△FBM≌△MDH(SAS),∴FM=MH,且∠FMB=∠MHD,∠BFM=∠HMD.∴∠FMB+∠HMD=180°﹣∠FBM,∵BM∥CE,∴∠AMB=∠E,同理:∠DME=∠A.∴∠AMB+∠DME=∠A+∠AMB=∠CBM.由已知可得:BM=CE=AB=BF,∴∠A=∠BMA,∠BMF=∠BFM,∴∠FMH=180°﹣(∠FMB+∠HMD)﹣(∠AMB+∠DME),=180°﹣(180°﹣∠FBM)﹣∠CBM,=∠FBM﹣∠CBM=∠FBC=90°.∴△FMH是等腰直角三角形.点评:此题主要考查了全等三角形的判定和性质,三角形的中位线,平行四边形的性质和判定应用,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等,本题综合考查了等腰三角形的判定,偏难,学生要综合运用学过的几何知识来证明.26.(8分)已知有两张全等的矩形纸片.(1)将两张纸片叠合成如图1,请判断四边形ABCD的形状,并说明理由;(2)设矩形的长是6,宽是3.当这两张纸片叠合成如图2时,菱形的面积最大,求此时菱形ABCD的面积.考点:菱形的判定与性质;勾股定理;矩形的性质.专题:计算题.分析:(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AP=AQ得平行四边形ABCD是菱形;(2)设BC=x,则CG=6﹣x,CD=BC=x,在Rt△CDG中,由勾股定理得出x,再求得面积.解答:解:(1)四边形ABCD是菱形.理由:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)设BC=x,则CG=6﹣x,CD=BC=x,在Rt△CDG中,CG2+DG2=CD2,∴(6﹣x)2+32=x2,解得x=,∴S=BC•DG=.点评:本题是一道综合性质的题目,考查了菱形的判定和性质、勾股定理和矩形的性质等知识点,是中考的常见题型.27.(10分)(2008•镇江)如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OA TB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m﹣n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).考点:反比例函数的应用.专题:应用题.分析:首先根据题意,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递,且方阵始终保持矩形形状且面积恒为10000平方米,将此数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.解答:解:(1)设反比例函数为(k>0),则k=xy=mn=S矩=10000,形OA TB∴.(2)设鲜花方阵的长为m米,则宽为(250﹣m)米,由题意得m(250﹣m)=10000,250m﹣m2=10000,即m2﹣250m+10000=0,解得m=50或m=200,满足题意.∴此时火炬的坐标为(50,200)或(200,50).(3)。