南理工信号与信息处理
- 格式:doc
- 大小:12.50 KB
- 文档页数:2
信号与信息处理一、专业介绍1、学科简介信号与信息处理是一级学科信息与通信工程下设的二级学科。
此专业是当今发展最快的热点学科之一,随着信号与信息处理理论与技术的发展已使世界科技形势发生了很大的变革。
信息处理科学与技术已渗透到计算机、通信、交通运输、医学、物理、化学、生物学、军事、经济等各个领域。
它作为当前信息技术的核心学科,为通信、计算机应用、以及各类信息处理技术提供基础理论、基本方法、实用算法和实现方案。
它探索信号的基本表示、分析和合成方法,研究从信号中提取信息的基本途径及实用算法,发展各类信号和信息的编解码的新理论及技术,提高信号传输存储的有效性和可靠性。
在当前网络时代条件下,研究信号传输、加密、隐蔽及恢复等最新技术,均属于信号与信息处理学科的范畴。
积极开辟新的研究领域,不断地吸收新理论,在科学研究中运用交叉、融合、借鉴移植的方法不断地完善和充实本学科的理论,使之逐步形成自身的理论体系也是本学科的特点。
2、主要研究方向01图象处理、计算机视觉与模式识别02 语音信息处理与计算机听觉03 虚拟现实与计算机图形学04 现代信号处理与通信05 网络多媒体与信息安全06 嵌入式技术及应用07 无线传感网技术及其应用08 信息隐藏与数字水印技术09 普适计算技术与应用10 新一代通信网技术3、考试科目①101政治②201英语③301 数学一④913通信系统原理或920 数字信号处理(注:各招生单位研究方向和考试科目不同,在此以西安电子科技大学为例)二、就业前景1、就业方向此专业的毕业生可从事电子与通信、金融、商贸等企业的信息技术管理及电脑软硬件研发工作;进入通信与信息技术科研机构和教学部门从事科研与教学工作,政府公务员等。
2、就业前景进入21世纪,以信息技术为代表的科技革命使人们的生产、生活和思维方式发生了巨大改变。
随着信息技术在经济和社会各领域的应用和渗透,各行各业对信息类人才的需求也大大增加。
据权威人士预测,未来5年我国信息化人才需求可达1500万~2000万人。
1. 证明周期信号)(t f 的傅里叶级数可表示为如下指数形式)()(11∑∞-∞==n t jn e n F t f ωω其中 ∞-∞==⎰-,...,,)(1)(011n dt e t f T n F Tt jn ωω证明:)( 22212221)22(21)sin cos (21)(11111111110110101110∑∑∑∑∑∑∑∞-∞=∞=∞--=∞=--∞--=∞=-∞==-+-+=-+++=-+++=++=n t jn n tjn n n tjn n n n n tjn n n tjn n n n n tjn n n t jn n n n n ne n F e jb a e jb a a e jb a e jb a a e jb a e jb a a t n b t n aa t f ωωωωωωωωωω 当0=n 时⎰⎰=⨯==TTdt t f T dt t f Ta F 00)(1)(22121)0(当0≠n 时()dte tf Tdt t n j t n t f Tdt t n t f jdt t n t f T jb a n F T tjn TTTn n ⎰⎰⎰⎰-=-=⎥⎦⎤⎢⎣⎡-⨯=-=0011010111)(1sin cos )(1sin )(cos )(2212)(ωωωωωω2. 证明在能量误差最小准则下,用)sin cos (211110t n q t n pp n Nn nωω∑=++近似表示周期函数)(t f ,则N p p p ,...,,10和N q q ,...,1如何取值? 能量误差最小,即min )sin cos (21)(021110=⎥⎦⎤⎢⎣⎡+--⎰∑=dt t n q t n p p t f Tn Nn n ωω 0)sin cos (21)(021110=⎥⎦⎤⎢⎣⎡+--∂∂⎰∑=dt t n q t n p p t f p Tn N n n nωω 0cos )sin cos (21)(2101110=⎥⎦⎤⎢⎣⎡+--⎰∑=tdt n t n q t n p p t f Tn Nn n ωωωn TTn p Tdt t n p t n t f 2cos cos )(0121==⎰⎰ωω dt t n t f T p Tn ⎰=01cos )(2ω,N n ...,2,1=同理dt t n t f Tq Tn ⎰=01sin )(2ω,N n ...,2,1= 3. 证明:①实信号频谱共轭对称性⎰∞∞--=dt e t f F t j ωω)()()()(**)(ωω-=⎪⎪⎭⎫⎝⎛=⎰∞∞---F dt e t f t j②具有共轭对称频谱特性的信号一定是实信号[]⎰⎰∞∞-∞∞--+==ωωωωωωωd eF F d eF t f tj tj )()(21)()(*⎰⎰∞∞-∞∞--+=ωωωωωωd e F d eF tj tj )(21)(21*⎰∞∞--+=ωωωd eF t f tj )(21)(21*[])()(21)(21)(21**t f t f d eF t f tj +=⎪⎪⎭⎫ ⎝⎛+=⎰∞∞-ωωω )()(*t f t f ≡4. 设)(t x 为因果信号,即0<t 时,0)(=t x 。
信息管理和信息系统专业 ⼀、专业介绍 本专业为江苏省⾼等学校特⾊专业建设点。
1.在培养⽅向的定位上,充分突出⾯向企业需求为核⼼的复合型信息管理⼈才培养的⽬标特⾊; 2.在教学体系的设置上,充分突出计算机技术应⽤、经济管理、科技信息处理以及企业信息管理四⼤知识系列之间有机融和的建设特⾊; 3.在学⽣能⼒的培养上,重视知识教学与学⽣能⼒和素质培养的紧密结合,充分突出学⽣信息系统开发应⽤以及信息分析的基本能⼒培养的专业特⾊。
⼆、培养⽬标 本专业以马克思主义、⽑泽东思想、邓⼩平理论和现代哲学观念为基本原理,以国家经济建设需求为导向,以现代信息技术为⽀撑,培养具有计算机络技术应⽤技能、科技信息组织与分析的基本⽅法、经济管理与企业信息管理基础理论与知识、⾯向企业、⾯向社会的现代综合型、⾼素质的专门⼈才。
本专业毕业⽣可在各类企业、公司及政府部门从事信息化的管理⼯作、信息系统的规划、设计、建设与实施⼯作,以及经济和科技信息分析与决策⼯作。
三、培养要求 1.学习和掌握马克思主义、⽑泽东思想、邓⼩平理论的基本原理和思想,热爱祖国、遵纪守法、品德优良,刻苦钻研、勤于思考、勇于探索,敢于⾯对困难和挫折、不畏竞争与挑战、擅于团结和合作,具有敬业和献⾝的精神,为祖国的经济建设贡献才智。
2.认真学习计算机络技术原理和知识,重点掌握以企业为主要应⽤背景的基于络的信息系统开发技术;认真学习掌握以企业为主要应⽤对象的经济信息分析⽅法与信息资源管理知识与技能;认真学习掌握科技信息组织与处理的基本⽅法,并将相关思想与理论应⽤到络信息、企业信息的处理上;认真学习掌握经济管理相关知识,以为企业信息管理⼯作开展奠定基础。
3.培养运⽤所学的知识进⾏分析和解决问题的基本能⼒、实践操作能⼒,通过相关的实验、实践环境建设,强化⾯向企业的信息管理系统实际开发与应⽤能⼒培养,⾯向企业的市场信息、技术信息分析、竞争信息分析的操作能⼒培养;通过第⼆课堂的建设,强化学⽣创新能⼒与综合素质的培养。
附录一——MATLAB信号处理程序%% 1、准备工作 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 开始clc;clear;close all;clear vars;%% 雷达波形参数定义及说明f1=1e3; % 最低频率f2=11e3; % 最高频率B=f2-f1; % 信号带宽T=1e-2; % 信号扫频时宽(10ms)c=3e8; % 电磁波空间传播速度f0=(f1+f2)/2; % 雷达工作频率(中心频率)(3kHz)fs=1e5; % 采样率(100kHz)N_signal_T=round(fs*T); % 单周期信号的数据点数number_of_signal_period=400; % 脉冲信号的周期个数duty_ratio=0.5; % 信号占空比T_signal=T/duty_ratio; % 脉冲信号周期%% 导入AD数据时频分析[FileName,PathName] = uigetfile('C:\Users\XYB\Desktop\课程设计之雷达信号分析处理\AD数据\USB (3).dat','Select the USB.dat file');f = fullfile(PathName,filesep,FileName);fid = fopen(f,'r');data = fscanf(fid,'%x');fclose(fid);data = data(1:2:end)*256 + data(2:2:end); %将16进制转换为10进制datsgn = data./1000; %单位换算(mV->V)%转化为有符号数(去直流)datsgn=datsgn-mean(datsgn);%时域波形figure;plot([0:1/fs:(length(datsgn)-1)/fs],datsgn);xlabel('时间/s')ylabel('振幅/V')title('LFMCW时域波形')%频谱图N=1024;datfft = (2/N)*fftshift(fft(datsgn(1:N)));nordat = abs(datfft)/max(abs(datfft)); %对信号做FFT并归一化figure;plot([-length(datfft)/2:(length(datfft)/2-1)].*(fs/N),20*log10(abs(nordat)));xlabel('频率/Hz')ylabel('幅度/dB')title('LFMCW频谱图')%% 调频斜率曲线Hf=20*log10(abs(nordat));FHL=zeros(1,2);j=1;for i=round(length(Hf)/2):length(Hf)if(abs(Hf(i)+6.6)<0.2)FHL(j)=i;j=j+1;endendfigure;time_scan=(0:1/fs:T-1/fs);%扫描时间轴B_interval=(fs/N)*(FHL(2)-FHL(1))/length((0:1/fs:T-1/fs));%频率间隔B_test=[0:B_interval:(fs/N)*(FHL(2)-FHL(1))-B_interval]+(FHL(1)-(length(datfft)/2))*(fs/N);k_B=(fs/N)*(FHL(2)-FHL(1))/T/1000;error_B=abs(k_B*1000-(B/T))/(B/T)*100;%调频斜率测量误差plot(time_scan,B_test);xlabel('扫频周期/s')ylabel('频率范围/Hz')title({['L F M C W 扫频曲线'];['调频斜率:',num2str(k_B,'%.0f'),'KHz/s',' 测量误差:',num2str(error_B,'%.0f'),'%']});%% 信号变换与生成(转换为脉冲信号)if(N_signal_T>1024)N_signal_T=1024;endsignal_1T=datsgn(1:N_signal_T,1); %单周期的LFM信号signal_half_duty_ratio_1T=[signal_1T',zeros(N_signal_T/duty_ratio-N_signal_T,1)'];%单周期LFM脉冲信号(50%占空比)signal_NT=repmat(signal_half_duty_ratio_1T,1,number_of_signal_period); %周期延拓后的LFM脉冲信号(20个周期)figure;plot([0:1/fs:(length(signal_NT)-1)/fs],signal_NT);axis([0 (length(signal_NT)/80-1)/fs -2 2]);xlabel('时间/s')ylabel('振幅/V')title('LFM脉冲信号时域波形')%% 加入噪声noise=1*randn(1,length(signal_NT))';%高斯白噪声(没有滤波)/均值为0方差为1signal_noise=signal_NT+noise'; %信号叠加噪声%信号叠加噪声时域波形figure;subplot(211)plot([0:1/fs:(length(signal_NT)-1)/fs],signal_NT);xlabel('时间/s')ylabel('振幅/V')title('信号未叠加噪声时域波形')subplot(212)plot([0:1/fs:(length(signal_noise)-1)/fs],signal_noise);xlabel('时间/s')ylabel('振幅/V')title('信号叠加噪声时域波形')%% 2、单目标分析 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 回波信号合成(延时+多普勒+传输衰减)%-----------------------------% 目标信息:distance=8e5; % 目标径向距离(100km)t_delay=2*distance/c; % 与目标径向距离相对应的回波延时N_delay=round(t_delay*fs);%与回波延迟对应的数据点个数v=200000; % 目标径向速度(1000m/s)fd=2*v*f0/c; % 与目标径向速度对应的多普勒频移k=0.5; % 传输衰减系数%-----------------------------% 回波合成:t=0:1/fs:(length(signal_NT)-1)/fs; % 回波信号时间轴(有信号的部分,不考虑延迟)doppler=cos(2*pi*fd.*t)'; % 目标多普勒信号s_attenuation=k*signal_NT; % 考虑传输衰减的纯信号(无多普勒)s_attenuation_doppler=k*signal_NT.*doppler'; % 考虑传输衰减的纯信号(有多普勒)sr_noise_doppler=s_attenuation.*doppler'+noise'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)sr_noise_doppler_1=s_attenuation.*doppler'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)delay_n=zeros(1,N_delay)'; % 时延序列sr_noise_doppler_delay=[delay_n',sr_noise_doppler];% 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)sr_noise_doppler_delay_1=[delay_n',s_attenuation]; % 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)%-----------------------------% 回波时域图(未滤波):% 未考虑传输衰减figure;subplot(211)plot(t,signal_NT);xlabel('时间/s')ylabel('振幅/V')title('未考虑传输衰减的纯信号')% 考虑传输衰减subplot(212)plot(t,s_attenuation);xlabel('时间/s')ylabel('振幅/V')title('考虑传输衰减的纯信号')% 有多普勒信息的回波(带噪声)figure;plot(t,sr_noise_doppler);xlabel('时间/s')ylabel('振幅/V')title('有多普勒信息的回波')%figure;plot([0:1/fs:(length(sr_noise_doppler_delay)-1)/fs],sr_noise_doppler_delay);xlabel('时间/s')ylabel('振幅/V')title('合成回波')%% 接收机前端滤波% 带通滤波器设计(切比雪夫)% 指标:通带宽度:1kHz-5kHz 截止频率:0.5*f1(下)、1.25*f2(上)ws1=f1/fs; %下截止频率(可为其他)wp1=2*f1/fs; %下通带频率wp2=2*f2/fs; %上通带频率ws2=2.5*f2/fs; %上截止频率(可为其他)Rp=1;Rs=30;ws=[ws1 ws2];wp=[wp1 wp2];[ N3,wn ] = cheb1ord( wp , ws , Rp , Rs);[ b,a ] = cheby1(N3,Rp,wn,'bandpass'); %获得转移函数系数filter_bp_sn= filter(b,a,sr_noise_doppler_delay);%信号叠加噪声通过带通滤波器noise_filter =filter(b,a,noise); %纯噪声通过带通滤波器signal_filter=filter(b,a,s_attenuation_doppler); %(传输衰减后)纯信号(有多普勒)通过带通滤波器X_bp_s = fftshift(abs(fft(filter_bp_sn)))/length(sr_noise_doppler_delay); %信号叠加噪声通过带通滤波后的幅频X_bp_s_angle = fftshift(angle(fft(filter_bp_sn))); %信号叠加噪声通过带通滤波后的相频X_bp_n = fftshift(abs(fft(noise_filter)))/length(noise_filter); %纯噪声通过带通滤波后的幅频X_bp_n_angle = fftshift(angle(fft(noise_filter))); %纯噪声通过带通滤波后的相频%滤波器频谱特性figure;freqz(b,a);%信号叠加噪声滤波前后时域波形对比figure;subplot(211);plot([0:length(sr_noise_doppler_delay)-1]./fs,sr_noise_doppler_delay);grid on;xlabel('时间/s')ylabel('振幅/V')title('信号叠加噪声带通滤波前时域图形');subplot(212);plot([0:length(sr_noise_doppler_delay)-1]./fs,filter_bp_sn);grid on;xlabel('时间/s')ylabel('振幅/V')title('信号叠加噪声带通滤波后时域图形');% %纯噪声滤波前后时域波形对比figure;subplot(211);plot([0:length(noise)-1]./fs,noise);grid on;xlabel('时间/s')ylabel('振幅/V')title('纯噪声带通滤波前时域图形');subplot(212);plot([0:length(noise_filter)-1]./fs,noise_filter);grid on;xlabel('时间/s')ylabel('振幅/V')title('纯噪声带通滤波后时域图形');% %纯信号滤波前后时域波形对比figure;subplot(211);plot([0:length(s_attenuation_doppler)-1]./fs,s_attenuation_doppler);grid on;xlabel('时间/s')ylabel('振幅/V')title('纯信号带通滤波前时域图形');subplot(212);plot([0:length(signal_filter)-1]./fs,signal_filter);grid on;xlabel('时间/s')ylabel('振幅/V')title('纯信号带通滤波后时域图形');% %信号叠加噪声带通滤波后幅频相频特性figure;subplot(2,1,1);f_fft_sn=[-length(sr_noise_doppler_delay)/2:length(sr_noise_doppler_delay)/2-1].*(fs/length(sr_noise_doppler_delay));%频率轴plot(f_fft_sn,X_bp_s);xlabel('频率/Hz')ylabel('幅度')title('信号叠加噪声带通滤波后频域幅度特性');subplot(2,1,2);plot(f_fft_sn,X_bp_s_angle);xlabel('频率/Hz')ylabel('相位')title('信号叠加噪声带通滤波后频域相位特性');% %纯噪声带通滤波后幅频相频特性figure;subplot(2,1,1);f_fft_n=[-length(noise)/2:length(noise)/2-1].*(fs/length(noise));%频率轴plot(f_fft_n,X_bp_n);xlabel('频率/Hz')ylabel('幅度')title('纯噪声带通滤波后频域幅度特性');subplot(2,1,2);plot(f_fft_n,X_bp_n_angle);xlabel('频率/Hz')ylabel('相位')title('纯噪声带通滤波后频域相位特性');%% 回波信噪比设定snr_in=0; %输入信噪比设定值sr_filter=filter_bp_sn; %带通滤波器处理后的回波信号S_P=sum((signal_filter).^2)/length(signal_filter); %(传输衰减的)回波纯信号滤波后平均功率noiseP=sum(abs(noise_filter).^2)/length(noise_filter); %滤波后的噪声平均功率A_extra=sqrt((noiseP/S_P).*(10.^(snr_in/10))); %信号外加幅度sr_snr=[delay_n',(A_extra*signal_filter+noise_filter')]; %设定输入信噪比的回波信号%设定输入信噪比后的时域波形figure;plot([0:1/fs:(length(sr_noise_doppler_delay)-1)/fs],sr_snr)xlabel('时间/s')ylabel('振幅/V')text_s=['设定输入信噪比后的时域波形(信噪比:',num2str(snr_in,'%.0f'),'dB',')'];title(text_s);%% 匹配滤波处理(时域卷积法)match_filter=fliplr(signal_1T'); % 匹配滤波器冲激响应match_out=conv(match_filter,sr_snr); % 信号叠加噪声通过匹配滤波器match_out_noise=conv(match_filter,noise_filter); % 纯噪声通过匹配滤波器match_out_signal=conv(match_filter,A_extra*signal_filter); % 纯信号通过匹配滤波器match_out_signal_1=conv(match_filter,signal_1T); % 单周期信号匹配滤波% 单周期匹配滤波波形figure;plot([0:1/fs:(length(match_out_signal_1)-1)/fs],20*log10(abs(match_out_signal_1)/max(abs(match_out_signal_1))));xlabel('时间/s')ylabel('振幅/V')title('单周期匹配滤波冲激响应')%匹配滤波冲激响应figure;plot([0:1/fs:(length(match_filter)-1)/fs],match_filter)xlabel('时间/s')ylabel('振幅/V')title('匹配滤波冲激响应')%匹配滤波输出波形figure;subplot(311)plot([0:1/fs:(length(match_out)-1)/fs],abs(match_out));title('信号叠加噪声匹配输出')subplot(312)plot([0:1/fs:(length(match_out_noise)-1)/fs],abs(match_out_noise));title('纯噪声匹配输出')subplot(313)% plot(abs(match_out_signal));plot([0:1/fs:(length(match_out_signal)-1)/fs],abs(match_out_signal));title('纯信号匹配输出')%匹配滤波信噪比增益计算n_mf_P=sum(abs(match_out_noise).^2)/length(match_out_noise);%匹配滤波后噪声功率s_mf_P_max=max(abs(match_out_signal))^2; %匹配滤波后信号峰值功率G_snr_mf=10*log10(s_mf_P_max/n_mf_P)-snr_in; %匹配滤波信噪比增益计算%% 多普勒滤波处理(MTD)%距离门重排distance_door=c/(2*fs); %相邻采样点之间的距离NT=number_of_signal_period;%信号周期数MTD_process_sn=zeros(N_signal_T/duty_ratio,NT);%信号和噪声同时经过脉压后重排MTD_process_s=zeros(N_signal_T,NT); %信号经过脉压后重排(用于信噪比增益分析)MTD_process_n=zeros(N_signal_T,NT); %噪声经过脉压后重排(用于信噪比增益分析)j=1;for i=1:N_signal_T/duty_ratio*NTif((mod(i,N_signal_T/duty_ratio)==0))MTD_process_s((i/j),j)=match_out_signal(i);MTD_process_sn((i/j),j)=match_out(i);MTD_process_n((i/j),j)=match_out_noise(i);j=j+1;elseMTD_process_s(mod(i,N_signal_T/duty_ratio),j)=match_out_signal(i);MTD_process_sn(mod(i,N_signal_T/duty_ratio),j)=match_out(i);MTD_process_n(mod(i,N_signal_T/duty_ratio),j)=match_out_noise(i);endendfigure;mesh([1:NT],(0:distance_door:(N_signal_T/duty_ratio*distance_door-distance_door))-N_signal_T*distance_door,(abs(MTD_process_sn)));xlabel('频率通道');ylabel('目标距离');title('距离门重排')%FFTi=round(log2((NT)));while ((2^i)<(NT))i=i+1;endMTD_N=2^(i);%确定FFT点数%内存分配MTD_FFT_sn=zeros(N_signal_T/duty_ratio,MTD_N);MTD_FFT_sn_w_H=zeros(N_signal_T/duty_ratio,MTD_N);MTD_FFT_sn_w_B=zeros(N_signal_T/duty_ratio,MTD_N);for i=1:N_signal_T/duty_ratioMTD_FFT_sn(i,:)=(2/MTD_N)*abs(fft([MTD_process_sn(i,:)],MTD_N));%信号+噪声脉压后FFT%加海明窗MTD_FFT_sn_w_H(i,:)=(2/MTD_N)*abs(fft(([MTD_process_sn(i,:),zeros(1,MTD_N-NT)]).*hamming(MTD_N)',MTD_N));%信号+噪声脉压后加窗后FFT%加布拉克曼窗MTD_FFT_sn_w_B(i,:)=(2/MTD_N)*abs(fft(([MTD_process_sn(i,:),zeros(1,MTD_N-NT)]).*blackman(MTD_N)',MTD_N));%信号+噪声脉压后加窗后FFTendfigure;[R_single,V_single]=find(fftshift(20*log10(abs(MTD_FFT_sn)))==max(max(fftsh ift(20*log10(abs(MTD_FFT_sn))))));V_single_1=(V_single(2,1)-MTD_N/2)*(0.5*(1/MTD_N)*c/f0/(T_signal));%目标速度error_v=abs(V_single_1-v)/v*100;%测速误差(%)R_single_1=R_single(1,1)*distance_door;%目标距离error_R=abs(R_single_1-distance)/distance*100;%测速误差(%)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),(fftshift(20*log10(abs(MTD_FFT_sn)))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title({['\fontsize{12}{单目标探测}'];['目标距离:',num2str(R_single_1,'%.0f'),'m',' 目标速度:',num2str(V_single_1,'%.0f'),'m/s'];['测距误差:',num2str(error_R,'%.0f'),'%',' 测速误差:',num2str(error_v,'%.0f'),'%']})figure;subplot(311)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),(fftshift(20*log10(abs(MTD_FFT_sn)))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('FFT单目标(不加窗)')subplot(312)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),fftshift(20*log10(abs(MTD_FFT_sn_w_H))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('FFT单目标(加海明窗)')subplot(313)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),fftshift(20*log10(abs(MTD_FFT_sn_w_B))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('FFT单目标(加布拉克曼窗)')%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 多目标分析 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %**************************************%****************目标一****************%目标信息R_1=1e6; % 目标径向距离t_delay_1=2*R_1/c; % 与目标径向距离相对应的回波延时N_delay_1=round(t_delay_1*fs);%与回波延迟对应的数据点个数v_1=1250e3; % 目标径向速度fd_1=2*v_1*f0/c; % 与目标径向速度对应的多普勒频移k_1=0.8; % 传输衰减系数%目标回波t=0:1/fs:(length(signal_NT)-1)/fs; % 回波信号时间轴(有信号的部分,不考虑延迟)doppler=cos(2*pi*fd_1.*t)'; % 目标多普勒信号s_attenuation=k_1*signal_NT; % 考虑传输衰减的纯信号(无多普勒)s_attenuation_doppler=k_1*signal_NT.*doppler'; % 考虑传输衰减的纯信号(有多普勒)sr_noise_doppler=s_attenuation.*doppler'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)delay_n=zeros(1,N_delay_1)'; % 时延序列sr_target_1=[delay_n',sr_noise_doppler]; % 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)%**************************************%****************目标二****************%目标信息R_2=1.5e6; % 目标径向距离t_delay_2=2*R_2/c; % 与目标径向距离相对应的回波延时N_delay_2=round(t_delay_2*fs); %与回波延迟对应的数据点个数v_2=500e3; % 目标径向速度fd_2=2*v_2*f0/c; % 与目标径向速度对应的多普勒频移k_2=0.6; % 传输衰减系数%目标回波t=0:1/fs:(length(signal_NT)-1)/fs; % 回波信号时间轴(有信号的部分,不考虑延迟)doppler=cos(2*pi*fd_2.*t)'; % 目标多普勒信号s_attenuation=k_2*signal_NT; % 考虑传输衰减的纯信号(无多普勒)s_attenuation_doppler=k_2*signal_NT.*doppler'; % 考虑传输衰减的纯信号(有多普勒)sr_noise_doppler=s_attenuation.*doppler'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)delay_n=zeros(1,N_delay_2)'; % 时延序列sr_target_2=[delay_n',sr_noise_doppler]; % 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)%**************************************%****************目标三****************%目标信息R_3=5e6; % 目标径向距离t_delay_3=2*R_3/c; % 与目标径向距离相对应的回波延时N_delay_3=round(t_delay_3*fs); %与回波延迟对应的数据点个数v_3=1500e3; % 目标径向速度fd_3=2*v_3*f0/c; % 与目标径向速度对应的多普勒频移k_3=0.4; % 传输衰减系数%目标回波t=0:1/fs:(length(signal_NT)-1)/fs; % 回波信号时间轴(有信号的部分,不考虑延迟)doppler=cos(2*pi*fd_3.*t)'; % 目标多普勒信号s_attenuation=k_3*signal_NT; % 考虑传输衰减的纯信号(无多普勒)s_attenuation_doppler=k_3*signal_NT.*doppler'; % 考虑传输衰减的纯信号(有多普勒)sr_noise_doppler=s_attenuation.*doppler'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)delay_n=zeros(1,N_delay_3)'; % 时延序列sr_target_3=[delay_n',sr_noise_doppler]; % 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)%**************************************%**************回波合成****************max_1=max(length(sr_target_2),length(sr_target_1));max_n=max(length(sr_target_3),max_1);sr_multiple_target=[sr_target_1,zeros(1,max_n-length(sr_target_1))]+[sr_target_2,zeros(1,max_n-length(sr_target_2))]+[sr_target_3,zeros(1,max_n-length(sr_target_3))];%**************************************%**************BPF滤波*****************sr_multiple_target_BPF_out=filter(b,a,sr_multiple_target); %信号叠加噪声通过带通滤波器%**************************************%**************匹配滤波****************sr_multiple_target_BPF_out_match_out=conv(match_filter,sr_multiple_target_BPF_out);% 信号叠加噪声通过匹配滤波器%**************************************%**************距离门重排**************MTD_process_multiple_target=zeros(N_signal_T/duty_ratio,NT); %信号和噪声同时经过脉压后重排j=1;for i=1:N_signal_T/duty_ratio*NTif((mod(i,N_signal_T/duty_ratio)==0))MTD_process_multiple_target((i/j),j)=sr_multiple_target_BPF_out_match_out(i);j=j+1;elseMTD_process_multiple_target(mod(i,N_signal_T/duty_ratio),j)=sr_multiple_target_BPF_out_match_out(i);endendfigure;mesh([1:NT],(0:distance_door:(N_signal_T/duty_ratio*distance_door-distance_door)),(abs(MTD_process_multiple_target)));xlabel('频率通道');ylabel('目标距离');title('距离门重排')i=round(log2((NT)));while ((2^i)<(NT))i=i+1;endMTD_N=2^(i);%确定FFT点数%内存分配MTD_FFT_multiple_target=zeros(N_signal_T/duty_ratio,MTD_N);for i=1:N_signal_T/duty_ratioMTD_FFT_multiple_target(i,:)=(2/MTD_N)*abs(fft([MTD_process_multiple_target(i,:)],MTD_N)); %信号+噪声脉压后FFT%加海明窗MTD_FFT_sn_w_H(i,:)=(2/MTD_N)*abs(fft(([MTD_process_multiple_target(i,:),zeros(1,MTD_N-NT)]).*hamming(MTD_N)',MTD_N));%信号+噪声脉压后加窗后FFT%加布拉克曼窗MTD_FFT_sn_w_B(i,:)=(2/MTD_N)*abs(fft(([MTD_process_multiple_target(i,:),zeros(1,MTD_N-NT)]).*blackman(MTD_N)',MTD_N));%信号+噪声脉压后加窗后FFTendfigure;subplot(311)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),(fftshift(20*log10(abs(MTD_FFT_multiple_target)))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('多目标探测(不加窗)')subplot(312)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),fftshift(20*log10(abs(MTD_FFT_sn_w_H))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('多目标探测(加海明窗)')subplot(313)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),fftshift(20*log10(abs(MTD_FFT_sn_w_B))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('多目标探测(加布拉克曼窗)')。
电⼦信息⼯程专业 ⼀、专业特⾊ 本专业重视学科基础建设和专业技能培养,注重学⽣全⾯素质的提⾼,特别是创新能⼒和实践能⼒的培养,采取有效的措施使学⽣得到必要的训练和锻炼。
本专业由信息系统和信息安全两个专业⽅向构成。
2005年被批准为江苏省品牌专业,2008年被批准为特⾊专业建设点。
毕业⽣适应⾯宽,具有良好的就业前景。
⼆、培养⽬标 本专业培养具备电⼦技术和信息系统的基础知识,能在信息、电⼦等⾏业从事各类电⼦设备和信息系统的研究、设计、制造、应⽤和开发的⾼级⼯程技术⼈才。
三、培养要求 本专业是⼀个电⼦和信息⼯程⽅⾯的较宽⼝径专业。
本专业学⽣主要学习信号的获取与转换、信息的传输与处理、电⼦设备与信息系统等⽅⾯的专业知识,受到电⼦信息系统⽅⾯的良好实践训练。
以电⼦技术和信息处理技术为主要研究内容,具备电⼦信息系统的设计、开发、应⽤和集成的基本能⼒。
毕业⽣应获得以下⼏个⽅⾯的知识和能⼒: 1.较系统地掌握本专业领域宽⼴的技术基础理论知识,适应电⼦和信息⼯程⽅⾯⼴泛的⼯作范围; 2.掌握电⼦电路的基本理论和实验技术,具备分析和设计电⼦设备的基本能⼒; 3.掌握信息获取、处理的基本理论和应⽤的⼀般⽅法,具有设计、集成、应⽤及计算机模拟信息系统的基本能⼒; 4.了解信息产业的基本⽅针、政策和法规,了解企业管理的基本知识; 5.了解电⼦设备和信息系统的理论前沿,具有研究、开发新系统、新技术的初步能⼒; 6.掌握⽂献检索、资料查询的基本⽅法,具有⼀定的科学研究和实际⼯作能⼒。
四、学制与学位 标准学制:四年 修业年限:三到六年 授予学位:⼯学学⼠ 五、主⼲学科、交叉学科 主⼲学科:信息与通信⼯程、系统⼯程、电磁场与微波技术,主⼲学科“信息与通信⼯程”具有⼀级学科博⼠学位授予权,设有博⼠后流动站;“通信与信息系统”为江苏省重点学科。
交叉学科:计算机科学与技术 六、主要课程 电路理论系列课程、计算机技术系列课程、通信原理、信号与系统、数字信号处理、数字逻辑电路、电磁场与电磁波、控制⼯程基础、信息理论与编码、信息融合技术、信息系统原理及应⽤、密码学基础、络对抗技术、密码学、模式分类及应⽤等。
题目:雷达线性调频信号的脉冲压缩处理线性调频脉冲信号,时宽10us,带宽40MHz,对该信号进行匹配滤波后,即脉压处理,处理增益为多少,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内差点看4dB带宽,以该带宽说明距离分辨率与带宽的对应关系。
1.程序为:T=10e-6;B=112e6;Rmin=8500;Rmax=11500;R=[9000,10000,10020];RCS=[1 1 1 ];C=3e8;K=B/T;Rwid=Rmax-Rmin;Twid=2*Rwid/C;Fs=10*B;Ts=1/Fs;Nwid=ceil(Twid/Ts);t=linspace(2*Rmin/C,2*Rmax/C,Nwid); M=length(R);td=ones(M,1)*t-2*R'/C*ones(1,Nwid);Srt1=RCS*(exp(1i*pi*K*td.^2).*(abs(td)<T/2));Srt=Srt1;Nchirp=ceil(T/Ts);Nfft=2^nextpow2(Nwid+Nwid-1); Srw=fft(Srt,Nfft);Srw1=fft(Srt1,Nfft);t0=linspace(-T/2,T/2,Nchirp);St=exp(1i*pi*K*t0.^2);Sw=fft(St,Nfft);Sot=fftshift(ifft(Srw.*conj(Sw)));Sot1=fftshift(ifft(Srw1.*conj(Sw)));N0=Nfft/2-Nchirp/2;Z=abs(Sot(N0:N0+Nwid-1));Z=Z/max(Z);Z=20*log10(Z+1e-6);figuresubplot(211)plot(t*1e6,real(Srt));axis tight;xlabel('us');ylabel('幅度')title(['线性信号压缩前']);subplot(212)plot(t*C/2,Z)xlabel('Range in meters');ylabel('幅度 ')title(['线性信号压缩后']);选取0.9*10^4HZ 的一个脉冲进行放大分析(调整Y 轴与X 轴的范围)58606264666870727476us幅度线性调频信号压缩前0.850.90.9511.05 1.1 1.15x 104-150-100-5050Range in meters 幅度 线性调频信号压缩后选取主瓣调整:大致可以看出压缩后的带宽为0.1hz理论上分析处理增益为:D=10*10e -6*112*10e6=1120D=112/B1=1120.B1=0.1HZ2.分辩率。
研究生专业信号与信息处理毕业后都能从事什么类型的工作以及在校期间都学些什么1.就业方向:可到电子信息管理、电子设备、计算机、通讯等企业和公司从事开发、研究等方面的工作。
也可在光通信、光电子学、应用光学、光信息科学等领域从事设计、开发、科研及技术管理等部门工作;或在工业网络技术或其它相关领域中从事科研教学、科技开发、产品设计、工程技术、技术改造与生产管理等工作。
还可从事光通信、光电信息转换、信息处理、网络技术、计算机应用等现代高新技术领域中有关研究、开发、检测、控制、管理等工作。
2.在校期间学习课程一般有:随机数字信号、图像处理、图像编码、嵌入式、DSP 、现代电路(FPGA )通通信信与与信信息息系系统统 主主要要侧侧重重接接入入网网系系统统级级的的知知识识,,诸诸如如宽宽带带接接入入网网((N N O O D D E E B B ,,R R N N C C )),,标标准准在在T T D D S S C C D D M M A A ,,W W C C D D M M A A ,,C C D D M M A A ,,L L T T E E 等等系系统统,,涉涉及及 的的东东西西较较多多,,比比较较大大型型,,做做设设备备研研发发较较好好,,设设备备厂厂商商和和运运营营商商都都需需要要,,诸诸如如H H W W ,,z z t t e e ,,a a s s b b 等等接接入入网网部部门门,,P P S S ,,C C S S 等等,,所所学学课课程程侧侧重重::通通信信原原理理,,无无线线网网络络技技术术,,现现代代通通信信系系统统等等等等,,关关注注系系统统设设计计与与实实现现及及性性能能;;信信号号与与信信息息处处理理::范范围围较较多多,,主主要要无无线线电电通通信信信信号号的的研研究究、、图图像像、、音音频频、、视视频频等等等等,,要要是是做做信信号号处处理理,,就就侧侧重重无无线线链链路路级级信信号号,,偏偏软软就就是是做做信信号号处处理理算算法法或或者者链链路路级级物物理理层层的的底底层层信信号号仿仿真真,,类类似似于于滤滤波波器器设设计计等等,,还还有有就就是是做做图图像像视视频频等等研研究究;;总总体体说说来来,,通通信信与与信信息息系系统统较较好好些些,,不不说说别别的的,,就就是是专专业业名名称称听听着着也也好好,,找找J J O O B B 时时很很容容易易。
电子科学与技术专业介绍--------------------------------------------------------------------------------一、专业特色本专业针对光电信息技术和现代微电子技术的发展趋势,突出光电技术和微电子与信息处理学科的交叉和融合,以光电成像探测理论与技术及微电子理论与技术为专业特色。
二、培养目标本专业培养德、智、体全面发展,具备光电信息处理与微电子学领域内宽厚理论基础、实验能力、知识面宽、创新能力强,能在光电信息工程、微电子技术和通信与计算机等研究领域从事光电子器件、光电系统和集成电路的设计、开发、应用和管理等方面的高素质研究应用型专门人才。
三、培养要求本专业的学生主要学习光电信息处理和微电子学的基本理论和基本知识,接受光电信息系统和集成电路分析与设计等方面的基本训练,具有设计、开发、集成及应用的基本能力。
毕业生应获得以下几方面的知识和能力:1.掌握光电子和微电子的基本理论、基本知识,主要包括光电成像探测、微电子学、集成电路设计与工艺、计算机原理及应用、图像处理等基本知识;2.掌握光电信息采集、传输、处理、存储、显示等基本知识及相关系统和器件的分析研究、开发设计和制造的工程应用能力;3.掌握集成电路设计、集成电路制造工艺等基本知识及相关系统和器件的分析研究、开发设计和制造的工程应用能力;4.了解电子科学与技术的发展动态,具备扎实的理论和实践基础,能适应光电子和微电子产业的发展趋势;5.具有一定独立工作能力、科学研究能力、以及知识自我更新和不断创新的能力;6.具有较好的人文、艺术和社会科学基础,并熟练掌握一门外语。
四、学制与学位标准学制:四年修业年限:三至六年授予学位:工学学士五、主干学科、交叉学科主干学科:电子科学与技术交叉学科:光学工程、电子信息工程、通信工程六、主要课程光电技术方向:电路、模拟电子线路、信号与系统、微机原理与应用、半导体物理学、固体物理、理论物理基础、软件技术基础、光学、光电信号处理、光辐射测量、光电子器件、光电成像技术、超大规模集成电路设计(英)、固体电子器件(英)、光电子技术、显示技术、光电检测技术、数字图像处理等。
DSP题库详解1已知3阶椭圆IIR数字低通滤波器的性能指标为:通带截止频率0.4π,通带波纹为0.6dB,最小阻带衰减为32dB。
设计一个6阶全通滤波器对其通带的群延时进行均衡。
绘制低通滤波器和级联滤波器的群延时。
%Progranm 1% Group-delay equalization of an IIR filter.%[n,d] = ellip(3,0.6,32,0.4);[GdH,w] = grpdelay(n,d,512);plot(w/pi,GdH); gridxlabel('\omega/\pi'); ylabel('Group delay, samples');title('Original Filter');F = 0:0.001:0.4;g = grpdelay(n,d,F,2); % Equalize the passbandGd = max(g)-g;% Design the allpass delay equalizer[num,den,tau] = iirgrpdelay(6, F, [0 0.4], Gd); %设计六阶的全通滤波器[b,a]=iirgrpdelay(6,F,[0 0.4],Gd);He1=dfilt.df2(b,a);He=dfilt.df2(n,d);He_all=dfilt.cascade(He,He1);grpdelay(He_all) %DFILT:Digital Filter Implementation.%[GdA,w] = grpdelay(num,den,512);%figure(2);%plot(w/pi,GdH+GdA); grid%xlabel('\omega/\pi');ylabel('Group delay, samples');%title('Group Delay Equalized Filter');2设计巴特沃兹模拟低通滤波器,其滤波器的阶数和3-dB截止频率由键盘输入,程序能根据输入的参数,绘制滤波器的增益响应。
电子信息工程考研方向解读电子信息工程考研的方向其实很多的,不过大家所知道甚少,笔者就搜集整理一些有关该专业的考研方向,希望对大家有所帮助。
考研方向中不同的学科是不同的,分为一级学科是学科大类,二级学科是其下的学科小类;对于学校而言,二级学科无法申请成为一级学科,但是可以申请成为硕士和博士学位授予点,而一级学科一旦申请成功,其下的所有二级学科都可申请成为博士学位授予点。
例如:0809一级学科:电子科学与技术080901物理电子学080902电路与系统080903微电子学与固体电子学080904电磁场与微波技术0810一级学科:信息与通信工程081001通信与信息系统☆081002信号与信息处理☆0811一级学科:控制科学与工程081103系统工程081104模式识别与智能系统我找了以下专业方向以供大家参考,共十二大类。
其中有些是与物理、机械、光电、电气、自动化、计算机等交叉的学科,但电信专业的学生可以报考。
1电路与系统2集成电路工程3自动控制工程4模式识别与智能系统5通信与信息系统6信号与信息处理7电子与通信工程8电力电子与电力传动9光电信息工程10物理电子学11精密仪器及机械简介12测试计量技术及仪器01.电路与系统电路与系统学科研究电路与系统的理论、分析、测试、设计和物理实现。
它是信息与通信工程和电子科学与技术这两个学科之间的桥梁,又是信号与信息处理、通信、控制、计算机乃至电力、电子等诸方面研究和开发的理论与技术基础。
因为电路与系统学科的有力支持,才使得利用现代电子科学技术和最新元器件实现复杂、高性能的各种信息和通信网络与系统成为现实。
学科概况信息与通讯产业的高速发展以及微电子器件集成规模的迅速增大,使得电子电路与系统走向数字化、集成化、多维化。
电路与系统学科理论逐步由经典向现代过渡,同时和信息与通讯工程、计算机科学与技术、生物电子学等学科交叠,相互渗透,形成一系列的边缘、交叉学科,如新的微处理器设计、各种软、硬件数字信号处理系统设计、人工神经网络及其硬件实现等。
绪论:本章介绍数字信号处理课程的基本概念。
0.1信号、系统与信号处理1.信号及其分类信号是信息的载体,以某种函数的形式传递信息。
这个函数可以是时间域、频率域或其它域,但最基础的域是时域。
分类:周期信号/非周期信号确定信号/随机信号能量信号/功率信号连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类:2.系统系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。
3.信号处理信号处理即是用系统对信号进行某种加工。
包括:滤波、分析、变换、综合、压缩、估计、识别等等。
所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。
0.2数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理。
不仅应用于数字化信号的处理,而且也可应用于模拟信号的处理。
以下讨论模拟信号数字化处理系统框图。
(1)前置滤波器将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。
(2)A/D变换器在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。
在A/D 变换器中的保持电路中进一步变换为若干位码。
(3)数字信号处理器(DSP)(4)D/A变换器按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。
由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。
(5)模拟滤波器把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。
0.3数字信号处理的特点(1)灵活性。
(2)高精度和高稳定性。
(3)便于大规模集成。
(4)对数字信号可以存储、运算、系统可以获得高性能指标。
0.4数字信号处理基本学科分支数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。
(081001)★▲通信与信息系统
01、通信理论与技术
02、随机信号理论与应用
03、电子系统理论与技术
04、网络安全与对抗
[101] 思想政治理论
[201] 英语一
[301] 数学一
[818] 信号、系统与数字电路[信号与系统(75分)、数字电路(75分)]
模拟电子线路
和数字信号处
理
(081002)★信号与信息处理
01、信号获取与处理
02、现代信号处理
03、高速数字信号处理
04、多媒体信息处理与加密
[101] 思想政治理论
[203]日语[202]俄语
[201]英语一任选一门
[301] 数学一
[818] 信号、系统与数字电路[信号与系统(75分)、数字电路(75分)]
模拟电子线路
和数字信号处
理
(085208)电子与通信工程(专业学位)
01、通信理论与技术
02、网络安全与对抗
03、信号获取与处理
04、高速数字信号处理
05、微波毫米波通信技术
06、微波毫米波器件及系统
[101] 思想政治理论
[204] 英语二
[302] 数学二
[818] 信号、系统与数字电路[信号与系
统(75分)、数字电路(75分)]
模拟电子线路
和数字信号处
理
818 信号、系统与数字电路
《信号与系统》(第三版)2008年电子工业出版社徐天成、谷亚林、钱玲《信号与系统》(第二版)2000年高等教育出版社郑君里、应启珩、杨为理《数字电子技术基础》(第五版)高等教育出版社闫石
《数字逻辑电路与系统设计》2008.7 电子工业出版社蒋立平
《Digital logic Circuit Analysis and Design》清华大学出版社Nelson VP 等
数字电路《数字电路》兵器工业出版社蒋立平。