数学模拟五
- 格式:doc
- 大小:459.00 KB
- 文档页数:3
2023年海南省高考数学全真模拟卷(五)1. 若复数为纯虚数,则实数a的值为( )A. 2B. 2或C.D.2. 已知集合,,若,则实数m的取值范围为( )A. B. C. D.3. 已知,则( )A. B. C. 2 D. 44. 已知直线与圆C:交于A,B两点,且线段AB关于圆心对称,则( )A. 1B. 2C. 4D. 55. 家庭农场是指以农户家庭成员为主要劳动力的新型农业经营主体,某家庭农场从2019年开始逐年加大投入,加大投入后每年比前一年增加相同额度的收益,已知2019年的收益为30万元,2021年的收益为50万元,照此规律,从2019年至2026年该家庭农场的总收益为( )A. 630万元B. 350万元C. 420万元D. 520万元6. 若函数,则的图象大致为( )A. B.C. D.7. 如图,点P是棱长为2的正方体表面上的一个动点,直线AP与平面ABCD所成的角为,则点P的轨迹长度为( )A.B.C.D.8. 设,,,则a,b,c的大小关系是( )A. B. C. D.9. 某网友随机选取了某自媒体平台10位自媒体人,得到其粉丝数据单位:万人:,,,,,,,,,若该平台自媒体人的粉丝数其中和分别为上述样本的平均数和标准差,根据上述数据,则下列说法正确的是( )附:若随机变量X服从正态分布,则,,A. 这10位自媒体人粉丝数据的平均数为B. 这10位自媒体人粉丝数据的标准差为C. 这10位自媒体人粉丝数据的第25百分位数为D. 用样本估计总体,该平台自媒体人的粉丝数不超过万的概率约为10. 已知抛物线C的方程为,F为焦点,O为坐标原点,S表示面积,直线l:与抛物线交于A,B两点,且A在第一象限,则下列说法正确的是( )A. B. C. D.11. 若函数的图象如图,且,,则下列说法正确的是( )A. 函数的周期为5B. 函数的对称轴为,C. 函数在内没有单调性D. 若将的图象向左平移个单位长度,得到的函数图像关于y轴对称,则的最小值为112. 如图所示,在边长为3的等边三角形ABC中,,且点P在以AD的中点O为圆心,OA为半径的半圆上,若,则( )A.B.C. 存在最大值D. 的最大值为13. 已知向量,,定义,,则______ .14. 已知6名同学国庆假期相约去珠海野狸岛游玩,途中6名同学排成一排照相留念,若甲、乙、丙3人互不相邻,则不同的排法共有______ 种.15. 在平面内,设一动点P到点,的距离差的绝对值等于,若动点P的轨迹是曲线C,则曲线C的离心率的最小值为______ .16. 已知母线AD的长为的圆锥,其侧面积为,P是该圆锥内切球球面上一动点,则的最大值为______ .17. 已知等差数列中,,,数列的前n项和为,满足求数列,的通项公式;记,求数列的前20项的和18. 在圆内接四边形ABCD中,已知,,,为锐角.求及AD的长;求四边形ABCD周长的最大值.19. 某商场对M、N两类商品实行线上销售以下称“A渠道”和线下销售以下称“B 渠道”两种销售模式类商品成本价为元/件总量中有将按照原价200元/件的价格走B渠道销售,有将按照原价折的价格走A渠道销售;N类商品成本价为160元/件,总量中有将按照原价300元/件的价格走B渠道销售,有将按照原价折的价格走A渠道销售,这两种商品剩余部分促销时按照原价6折的价格销售,并能全部售完.通过计算比较这两类商品中哪类商品单件收益的均值更高收益=售价-成本;某商场举行让利大甩卖活动,全场M,N两类商品走A渠道销售,假设每位线上购买M,N商品的顾客只选其中一类购买,每位顾客限购1件,且购买商品的顾客中购买M类商品的概率为已知该商场当天这两类商品共售出5件,设X为该商场当天所售N类商品的件数,Y为当天销售这两类商品带来的总收益,求Y的期望,以及当时,n可取的最大值.20. 如图所示的多面体由正四棱柱与正四棱锥组合而成,与交于点,,,证明:平面平面;求平面PAD与平面夹角的余弦值.21. 已知椭圆C:的离心率为,且过点求椭圆C的标准方程;设Q为椭圆C上一动点,且Q不与顶点重合,M为椭圆C的右顶点,N为椭圆C的上顶点,直线QM与y轴交于点E,直线QN与x轴交于点F,求的值.22. 已知函数,求的单调区间;若,证明:;对于任意正整数n,,求t的最小正整数值.答案和解析1.【答案】C【解析】解:复数为纯虚数,则,解得故选:根据纯虚数的定义,得到方程组,求解即可.本题考查纯虚数的定义,属于基础题.2.【答案】B【解析】解:集合,,若,则,,解得,则实数m的取值范围为故选:由,得,从而,由此能求出实数m的取值范围.本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3.【答案】A【解析】解:因为,所以故选:由已知利用同角三角函数基本关系式,二倍角的正弦公式化简所求即可求解.本题考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.4.【答案】D【解析】解:由圆C:,可得圆心,线段AB关于圆心对称,直线过圆心,,解得故选:由题意可得直线过圆心,即可求解.本题考查直线与圆的位置关系,属基础题.5.【答案】D【解析】解:根据题意,加大投入后每年比前一年增加了相同额度的收益,故每年增加的收益为万元从2019年至2026年每年的收益分别为30、40、50、60、70、80、90、100万元,总收益万元故选:根据题中条件先算出每年增加的收益,然后计算出从2019年至2026年每年的收益,最后算出总收益即可.本题考查函数模型的应用,属于中档题.6.【答案】B【解析】解:函数,定义域为R,,即为奇函数,图像关于原点对称,排除AC,当时,,,可得,排除故选:判断函数的奇偶性和对称性,利用函数符号,结合排除法进行判断即可.本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性,以及函数符号关系是解决本题的关键,是基础题.7.【答案】A【解析】解:若直线AP与平面ABCD所成的角为,则点P的轨迹为圆锥的侧面与正方体的表面的交轨,在平面内,点P的轨迹为对角线除掉A点,不影响;在平面内,点P的轨迹为对角线除掉A点,不影响;在平面内是以点为圆心2为半径的圆弧,如图,故点P的轨迹长度为故选:由题意易得点P的轨迹为圆锥的侧面与正方体的表面的交轨,进而求解即可.本题考查轨迹的长度的计算,属中档题.8.【答案】C【解析】解:因为,,,所以令,则,,,,令得,所以在上,单调递增,在上,单调递减,因为,所以,所以,故选:,,,令,则,,,求导分析单调性,即可得出答案.本题考查导数的综合应用,解题中需要理清思路,属于中档题.9.【答案】AD【解析】解:计算平均数为,选项A正确;计算方差为,所以标准差为,选项B错误;因为,所以这组数据的第25百分位数是第3个数据,为,选项C 错误;因为,且,所以,选项D 正确.故选:根据题意计算平均数和方差、标准差以及百分位数和正态分布,再判断即可.本题主要考查了平均数与方差、标准差和百分位数和正态分布的应用问题,是基础题.10.【答案】AC【解析】解:抛物线C 的方程为,为焦点,O 为坐标原点,S 表示面积,直线l :与抛物线交于A ,B 两点,可得,解得,,所以,所以A 正确;,所以B 不正确;C 正确;所以D 不正确.故选:联立直线与抛物线方程,求解A ,B 坐标,然后求解判断选项的正误即可.本题考查直线与抛物线的位置关系的应用,抛物线的简单性质的应用,是中档题.11.【答案】BD【解析】解:根据函数的图象,且,,可得,即,再根据五点法作图,可得,,可得函数的的周期为,故A 错误;令,,求得,,故函数的对称轴为,,故B正确;当,,函数单调递增,故C错误;若将的图象向左平移个单位长度,得到的函数的图像关于y轴对称,则的最小值为1,故D正确,故选:由特殊点B求出,由五点法作图求出的值,可得的解析式,再根据正弦函数的图象和性质,得出结论.本题主要考查由函数的部分图象求解析式,由特殊点求出,由五点法作图求出的值,正弦函数的图象和性质,属于中档题.12.【答案】ABC【解析】解:对于选项A,,且点P在以AD的中点O为圆心,OA为半径的半圆上,,,故A正确;对于选项B,,,故B正确;对于选项C,以点O为原点建立平面直角坐标系,如图所示:则,,,点P在以AD的中点O为圆心,OA为半径的半圆上,点P的轨迹方程为,且在x轴的下半部分,设,,则,,,,又,,当时,取得最大值9,故C正确;对于选项D,,,,,又,当时,取得最大值,故D错误.故选:对于AB,将,分别用表示,再结合数量积的运算律即可判断;对于CD,以点O为原点建立平面直角坐标系,设,,根据平面向量的坐标表示及坐标运算即可判断.本题主要考查了平面向量基本定理,考查了平面向量数量积的运算和性质,属于中档题.13.【答案】3【解析】解:,,,,,,,又,,,,故答案为:根据向量的模的定义,向量夹角公式,即可求解.本题考查向量的模的定义,向量夹角公式,属基础题.14.【答案】144【解析】解:先将除甲、乙、丙3人外的另外三个人排成一排,再将甲、乙、丙3人插入到已经排好的三个人形成的四个空中,共有种.故答案为:利用插空法可求出结果.本题考查不相邻的排列问题,属于基础题.15.【答案】2【解析】解:在平面内,设一动点P到点,的距离差的绝对值等于,可得曲线的离心率为:,当且仅当时,取等号,所以曲线C的离心率的最小值为故答案为:列出离心率的表达式,利用基本不等式求解最小值即可.本题考查双曲线的离心率的求法,基本不等式的应用,是基础题.16.【答案】【解析】解:设圆锥底面圆心为C,半径为r,该圆锥内切球球心为O,作出过母线AD的轴截面ABD,如图所示,,且圆锥侧面积为,,,圆锥底面直径,为正三角形,大圆O切AD于中点E,设EO交大圆于点F,又易知,球的半径,,,两式相减可得极化恒等式:,的最大值为故答案为:设圆锥底面圆心为C,半径为r,该圆锥内切球球心为O,作出过母线AD的轴截面ABD,根据题意易得,从而得为正三角形,且大圆O切AD于中点E,最后再利用向量极化恒等式,即可求解.本题考查圆锥的内切球问题,向量数量积的最值的求解,极化恒等式的应用,属中档题.17.【答案】解:由题意,设等差数列的公差为d,则,整理,得,解得,,,当时,,解得,当时,由,可得,两式相减,可得,整理,得,数列是以为首项,为公比的等比数列,,由可得,,则【解析】先设等差数列的公差为d,再根据题干已知条件列出关于首项与公差d的方程组,解出与d的值,即可计算出等差数列的通项公式,对于数列,先将代入题干表达式计算出的值,当时,由,可得,两式相减进一步推导即可发现数列是以为首项,为公比的等比数列,计算出数列的通项公式;先根据第题的结果计算出数列的通项公式,再运用分组求和法,等差数列和等比数列的求和公式即可计算出前20项的和本题主要考查等差数列和等比数列的基本运算,以及数列求和问题.考查了方程思想,分类讨论,转化与化归思想,分组求和法,等差数列和等比数列的求和公式的运用,以及逻辑推理能力和数学运算能力,属中档题.18.【答案】解:在中,,,,由余弦定理可得,即,整理可得:,可得或,当时,由余弦定理可得,可得为钝角,与题意相矛盾,当时,,所以,,符合条件,所以,;由四边形ABCD为圆内接四边形,,所以,在中,由余弦定理可得,当且仅当时取等号,所以,所以四边形的周长的最大值为,即四边形ABCD的周长的最大值为【解析】在中,由余弦定理可得AD的值,再由为锐角,确定AD的值,再由勾股定理可得的大小;由圆内接四边形可得B角的大小,再由余弦定理及均值不等式可得的最大值,进而求出四边形ABCD的周长的最大值.本题考查余弦定理及圆内接四边形的性质的应用,均值不等式的应用,属于中档题.19.【答案】解:设M类服装,N类服装的单件收益分别为元,元,则,,,故N类服装单件收益的期望更高;由题意可知,元,又,所以元,,,,因为,所以当时,n可取的最大值为【解析】结合期望公式由单件总盈利减去成本即可计算;由题知N类服装的销售件数符合二项分布,求出对应,,⋯⋯,的值,可确定n的最大值;先列出这5件衣服总收益关丁X的关系式,得,结合化简即可求解.本题考查了二项分布和离散型随机变量的期望计算,属于中档题.20.【答案】证明:多面体由正四棱柱与正四棱锥组合而成,与交于点,,,,,平面,,以为坐标原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,,,,,,,,,设平面PCB的法向量为,则,取,得,设平面的法向量,则,取,得,,平面平面;解:,,设平面PAD的法向量为,则,取,则,设平面的法向量为,则,取,得,设平面PAD与平面夹角为,则平面PAD与平面夹角的余弦值为:【解析】以为坐标原点,所在直线为x轴,所在直线为y轴,所在直线为z 轴,建立空间直角坐标系,利用向量法能证明平面平面;求出平面PAD的法向量和平面的法向量,利用向量法能求出平面PAD与平面夹角的余弦值.本题考查了面面平行的证明和二面角的计算,属于中档题.21.【答案】解:由,,,,,又点在椭圆上,,,,椭圆C的标准方程为;,,则,,直线QM的方程为:,令,得,直线QN的方程:,令,得,则,,的值为【解析】由已知可得,,求解即可;写出直线QM、QN的方程,得E,F的坐标,进而可得本题考查椭圆的方程的求法,考查直线与椭圆的位置关系,考查运算求解能力,属中档题.22.【答案】解:因为,所以,若,则当时,,函数单调递增;若,则当时,,函数单调递增,当时,,函数单调递减,综上所述,当时,函数的单调递增区间为;当时,函数的单调递增区间为,单调递减区间为证明:由知,当时,函数的单调递增区间为,单调递减区间为所以,即,所以当时,,故当,,且,又,即,故由知,当时,,即,则有,当且仅当时等号成立,一方面:,即另一方面:当时,,当时,,,的最小正整数值为【解析】利用导数的正负与函数单调性的关系及对参数进行讨论即可求解;根据的结论及函数的单调性与最值的关系即可求解;将不等式恒成立问题转化为最值问题,根据的结论及不等式放缩,再利用对数不等式求解.本题主要考查了导数与单调性及极值关系的应用,还考查了由不等式恒成立求参数范围,属于中档题.。
教师资格证考试全国统考初中数学模拟试卷五初级中学一、单项选择题(本大题共8小题,每题5分,共40分) 1.极限31lim(1x x x→∞+的值是( ).A .0B .1C .2eD .3e2.设α为n 维单位列向量,E 为n 阶单位矩阵,则( ). A .T E αα-不可逆B .T E αα+不可逆C .2T E αα+不可逆D .2TE αα-不可逆3.过点()02,0,3M -,是法线为()1,2,3n =的平面方程是( ). A .30x xy z -+=B .2370x y z +++=C .3x y z ++=D .2370x y z +--=4.已知函数f (x )在点x0处的导数值为2,则000()(2)lim x f x x f x x x∆→+∆--∆∆的值是( ).A .2B .3C .6D .45.已知1(1,1,1)T α=-,2(1,2,0)T α=是齐次线性方程组0Ax =的基础解系,那么下列向量中0Ax =的解向量是( ).A .(1,1,3)T -B .(2,1,3)T -C .(2,2,5)T -D .(2,2,6)T -6.定积分2311ln x xdx ⎰的值( ).A .大于0B .小于0C .等于0D .不确定7.首先使用符号“0”来表示零的国家或民族是( ). A .中国B .印度C .阿拉伯D .古希腊8.2011版《义务教育数学课程标准》指出符号只要表现在( ). A .能从具体情境中抽象出数量关系和变化规律并用符号来表示 B .能够理解并运用符号表示数量、数量关系和变化规律 C .会进行符号间的转化D .能选择适当的程序和方法解决用符号所表述问题 二、简答题(本大题共5小题,每小题7分,共35分)9.求二次曲线222x y -=在线性变换2222⎛⎫-⎪⎪⎪ ⎪⎝⎭作用下的曲线方程.10.求解下列非齐次线性方程组:123123124+22 3+210 11+38x x xx x xx x-=⎧⎪-=⎨⎪=⎩11.根据函数极限的定义证明:3311 lim22 xxx→∞+=.12.学生学习数学的重要方式有哪些?13.在数学教学活动中,教师要把基本理念转化为自己的教学行为,处理好哪些关系?三、解答题(本大题1小题,10分)14.设离散型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧=18.04.00)(x F -111133x x x x -≤≤≥<<< (1)用表格画出X 的概率分布; (2)求P {}1X 2≠<X 的值.四、论述题(本大题1小题,15分)阅读案例,并回答问题.15.对学生数学学习的评价,既要关注学习结果,也要关注学习过程,你认为对学生数学学习过程的评价应关注哪些方面?试举例说明.五、案例分析题(本大题1小题,20分)阅读案例,并回答问题. 16.反比例函数的图象与性质的教学片段 老师:请同学画一次函数y =2x -3的图象学生1:(走上黑板)取两点(1,-1),(2/3,0),然后画出一条直线. 老师(接着要求):画反比例函数y =2/x 的图象学生2:(自信的走上黑板)类似取两点(1,2)(2,1),也画出来了一条直线.注:此时教室里出现了同学们的窃窃私语,有认为画的对,也有认为画的不对的,有一部分学生傻傻的盯着老师看,想从他这里得到答案.学生3:(大胆的站起来对学生2道)从解析式上看y不能等于0,那即y=2/x与x轴不会有交点,你怎么有交点了,我想你可能错了.老师:(及时肯定学生3)能用函数解析式来分析问题,不简单啊!学生4;若x>0,从解析式上看,无论x取多大,函数值y均是一个正数,而从画出的图象看,此时有些函数值是负数,这不可能啊!老师:有的同学不光会看解析式,并且还会看图象了,有进步.老师:函数y=2x-3为什么只要找到两点就可以画出图象?学生5:因为以前画一次函数的图象前,找到好多点画在坐标系中,发现这些点都在一条线上,所以得出一次函数的图象是一直线,而两点可以确定一直线.老师:好!讲得好!同学们应该知道下面怎么办了吧.(1)分析上述教学片段,教学过程中师生哪些教学行为值得肯定.(2)分析上述教学过程中存在的问题,并进行改进.六、教学设计题(本大题1小题,30分)17.以《三角形内角和》为课题,完成下列数学设计(1)从《数学思考》方面阐述课题《三角形内角和》的教学目标;(2)设计新课导入和新知教学两个环节,并写出相应设计意图.提示:三角形内角和等于180度.教师资格证考试全国统考初中数学模拟试卷五初级中学一、单项选择题(本大题共8小题,每题5分,共40分)1.【答案】D .解析:33lim 3311lim 1lim 1x xx x x e e x x →∞→∞→∞⎡⎤⎛⎫⎛⎫+=+==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.2.【答案】A .解析:可设)(1,0,,0Tα=⋅⋅⋅,则T αα的特征量为1,0,,0⋅⋅⋅,从而T E αα-的特征量为0,0,,1⋅⋅⋅,因此T E αα-不可逆.3.【答案】B .解析:根据平面的方程点法式,已知点()0000,,M x y z ,法线向量(),,n A B C =,平面的点法式方程为()()()0000A x x B y y C z z -+-+-=,因此过点()02,0,3M -,是法线为()1,2,3n =的平面方程是()()()1220330x y z -+-++=,即2370x y z +++=,故选B .4.【答案】C .解析:000000()(2)()(2)3limlim3x x f x x f x x f x x f x x x x∆→∆→+∆--∆+∆--∆=⋅∆∆()03326f x '==⨯=. 5.【答案】B .解析:如果A 选项是0Ax =的解,则D 必是0Ax =的解,因此A 、D 均不是0Ax =的解,由于1(1,1,1)T α=-,2(1,2,0)T α=是齐次线性方程组0Ax =的基础解系,则1α、2α是0Ax =的基础解系,那么1α、2α可以表示为0Ax =的任何一个解η,即方程组1122x αx αη+=必有解,因为112211221122121201100110103501130003⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,可见第二个方程组无解,即(2,2,5)T -不能由1α、2α线性表出,故C 不成立,故本题选B .6.【答案】B .解析:由于ln x 在1,12⎛⎫⎪⎝⎭上小于0.由定积分的性质,得1312ln x xdx ⎰小于0.7.【答案】B .8.【答案】B .解析:只有选项B 是新课标明确指出的. 二、简答题(本大题共5小题,每小题7分,共35分)9.【答案】1xy =.解析:设()000,P x y 为二次曲线222x y -=上任意一点,(),P x y 为()000,P x y 在线性变换下的像,则00000022222222x y x y x y x y ⎛⎫⎛⎫--⎪ ⎪⎛⎫⎪⎪= ⎪⎪ ⎪⎝⎛⎫= ⎪⎭+ ⎪ ⎪⎝⎭⎭⎝⎭⎝,所以00002222x x y y x y ⎧=-⎪⎪⎨⎪=+⎪⎩,解得002222x x yy y x ⎧=+⎪⎪⎨⎪=-⎪⎩,将()000,P x y代入二次曲线方程得2222222x y y x +-⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理得1xy =.10.【答案】见解析.解析:() 124212133831210312101130811308A b r r ---⎛⎫⎛⎫⎪ ⎪=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2131133830101134110303396r r r r --⎛⎫- ⎪- ⎪- ⎪-⎝⎭321338301011340006r r --⎛⎫ ⎪-- ⎪ ⎪-⎝⎭ , 因()()23R A R A b =≠= ,故方程组无解. 11.【答案】见解析.解析:0ε∀>,要使333311112222x x x xε+-==<成立,只须x >,可取X =,于是对0ε∀>,0X ∃>,当x X >时,有331122x x ε+-<,所以3311lim 22x x x →∞+=. 12.【参考答案】一、自觉预习习惯:1、了解所要学习的新知识;2、准备好上课所需的书、本、文具及资料;3、运用工具书帮助预习;4、把遇到的不懂之处和难点标记下来.二、仔细观察习惯:1、有意识地运用视、听、味、嗅、触等感觉器官来观察事物;2、观察全面、清楚、找出特点及特征.三、认真听讲习惯:1、集中注意力、专心听讲;2、听清楚所讲内容;3、边听边想、理解内容;4、能记下有关要点.四、乐于交流习惯:1、敢于发表自己的见解;2、耐心地听完别人的话再发言;3、说话清楚、完整、简洁明了;4、吸引他人发言的长处,补充和纠正自己的观点.五、勤于阅读习惯:1、集中注意力认真阅读;2、边读边思考,理解阅读内容;3、反复阅读,并使用圈划等方法理解题意,正确解题.六、独立作业习惯:1、先复习后作业;2、做作业时一心一意,不兼做其他的事情;3、独立作业不抄袭;4、作业字迹工整、格式规范;5、做完作业及时检查、发现错误及时纠正.七、乐于动手习惯:1、经常使用学具帮助学习;2、通过作图、演示等来帮助自己学习;3、敢于动手进行小发明、小创造的尝试.八、及时笔记习惯:1、听课时把听到的内容及时记下来;2、经常归纳、比较运算方法. 九、及时积累习惯:1、意识的积累;2、对获取的信息进行分类和整理.十、善用时间习惯:1、有制定作息时间的习惯;2、遵守作息时间表附部分儿歌乐于交流好朋友,拉拉手课内课外爱交流别人发言耐心听,取长补短排忧愁.13.【参考答案】在数学教学活动中,教师要把基本理念转化为自己的教学行为, 处理好教师讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;合理地运用现代信息技术,有条件的地区,要尽可能合理、有效地使用计算机和有关软件,提高教学效益.三、解答题(本大题1小题,10分) 14.【答案】(1)参见解析;(2)23. 解析:(1)X 的概率分布为:X -1 1 3 P0.40.40.2(2){}{}{}{}{}{}2,110.4221130.6|13P X X P X P X P X P X P X X <≠=-<====≠=-+=≠.四、论述题(本大题1小题,15分)阅读案例,并回答问题. 15.【参考答案】数学学习评价,既要关注学生数学知识与技能的理解和掌握,也要关注学生学习数学的情感与态度;既要关注学生数学学习的结果,更要关注他们在学习数学过程中的变化和发展;另外评价是与教学过程并行的同等重要的过程,评价提供的是学生强有力的信息,教师要及时给予学生指导和反馈,促进学生改进.评价还应体现以人为本的思想,构建个体的发展.具体地说,对学生数学学习过程评价应关注以下几个方面:(1)评价学生在学习过程中表现出来的对数学的认识、数学思想的感受、数学学习态度、动机和兴趣等方面的变化,评价学生在学习过程中的自信心、勤奋、刻苦以及克服困难的毅力等意志品质方面的变化.注重学生数学学习的积极情感和良好学习品质的形成过程.(2)评价学生能否理解并有条理地表达数学内容,是否积极主动地参与数学学习活动,是否愿意和能够与同伴交流、与他人合作探究数学问题.注重学生参与数学学习,和同伴交流、合作的过程.(3)评价学生在学习过程中是否肯于思考、善于思考,能否不断反思自己的数学学习过程,并改进学习方法.注重学生思考方法和思维习惯的养成过程.(4)评价学生从实际情境中抽象出来的数学知识以及应用数学知识解决问题的意识和能力. 五、案例分析题(本大题1小题,20分)阅读案例,并回答问题. 16.【参考答案】(1)从以上教学片段中,教师的教学行为值得肯定之处有①教师先让学生画出一次函数y =2x -3的图象,既复习了旧知,又为反比例函数的图象的画法打下基础.②当学生3、4回答出问题后,教师及时给予肯定,并鼓励学生,激发学生的学习兴趣,符合新课标理念.③教学过程中,教师一直充当着组织者、引导者与合作者的角色,充分体现学生是学习的主体.学生值得肯定之处有①学生对于旧知(一次函数相关的知识)的掌握非常扎实.②在课堂上,学生积极踊跃进行思考,并回答教师的问题,答案多样化.(2)存在的问题:①整个教学过程中,教师提出问题,让学生回答,而当学生回答错误时,教师没有给予帮助,及时引导,以致于部分学生傻傻的盯着教师.②教师只对回答正确的学生给予一定的肯定,没有关注班级中每一位同学.③教师在教学过程中没有充当好教师的角色(组织者、引导者、合作者).改进方案:①当学生回答答案出现错误时,教师应该给予一定的引导,解决学生的疑惑.②在教学过程中,教师应该关注每一位同学,对于学生的答案都要给予评价,不仅要关注结果,也要关注过程性评价.③在实际的教学过程中教师要做好自己的角色.④最后教师要对学生出现的问题,进行总结,并引导学生注意一次函数和反比例函数的区别,以及如何进行画反比例函数图象.六、教学设计题(本大题1小题,30分)17.【参考答案】(1)知识与技能目标:掌握三角形的内角和是180度,已知三角形的两个角时,能够计算另外一个角的度数.过程与方法:通过小组讨论、交流、探索、验证,得出三角形的内角和是180度,提升合作交流的能力.情感态度与价值观:提升对数学学习的兴趣.(2)新课导入环节:利用谜语导入:形状似座山,稳定性能坚,三竿首尾连,学问不简单(打一图形名称).待学生猜出来之后,提问三角形的内角和是多少呢?并进行标题的板书.设计意图:利用谜语导入不仅和本节课的知识点是紧密相联系的,而且比较有趣,能够激发学生的兴趣,更好地进行教学.新课讲授环节:三角形里面的三个角都是三角形的内角.为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3.并提问:什么是三角形的内角和呢?预设:三角形的三个角的度数的和,就是三角形的内角和.展示三个不同的三角形,分别是锐角、直角以及钝角三角形.并提问:大家猜一猜三角形的内角和是多少度?180度、360度、200度.大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?操作验证:小组合作选一个自己喜欢的三角形,选喜欢的方法进行验证(各个小组的三角形都不一样).学生拿出准备好的剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题.学生汇报阶段:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?提问:有没有别的方法进行验证?预设:剪拼:学生上台演示.请大家四人小组合作,用他的方法验证其他三角形.并展示学生作品.师生共同总结:三角形的内角和为180度.巩固提高:(1)等腰三角形的顶角是96度,求另外两个角的度数.(2)一个角是40度,一个角是50度,求这个三角形是什么三角形?小结作业:有什么样的收获?三角形的内角和都是180度.作业:回家跟爸爸妈妈分享今天的收获.设计意图:鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力.。
中考数学模拟试题五一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.|-5|的相反数是()A.5 B.-5 C.-15D.153.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.114.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为()A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×1065.若不等式组恰有两个整数解,则m的取值范围是()A.-1≤m<0 B.-1<m≤0 C.-1≤m≤0 D.-1<m<06.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.167.如图,在△ABC中,AB=AC=5,BC=8,⊙O经过B、C两点,且AO=4,则⊙O的半径长是()A.17或65B.4或65C.4或17D.4或17或658.银泰购物中心一月份的营业额为400万元,第一季度营业总额为1600万元,若平均每月增长率为x,则可列方程为()A.400(1+x)2=1600 B.400[1+(1+x)+(1+x)2]=1600C.400+400x+400x2=1600 D.400(1+x+2x)=16009.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .+3(100﹣x )=100B .﹣3(100﹣x )=100C .3x +=100D .3x ﹣=100 10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD=2.其中正确的结论有( B ) A.4个 B .3个 C .2个 D .1个二、填空题(本大题共6小题,每小题3分,满分18分.)11.分解因式:20-5a 2= .12.如图,在△ABC 中,D 为AC 边上的点,∠DBC=∠A ,BC =6,AC =3,则CD 的长为 _________ .13.已知:平面直角坐标系xOy 中,圆心在x 轴上的⊙M 与y轴交于点D (0,4)、点H ,过H 作⊙O 的切线交x 轴于点A ,若点M (-3,0),则sin ∠HAO 的值为 .14.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 5 .15.如图,已知正方形ABCD 的边长为2,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三角形的周长之和为 .16.如图,在等边△ABC 中,AB=4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称第10题图F E DB CA点分别为M ,N ,则线段MN 长的取值范围是 6≤MN ≤4 .三、解答下列各题(共72分)17、(5分)计算:21()3-20170+|2-23|-tan60°18. (6分)如右图,矩形ABCD ,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE 于F .(1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.19.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,随州市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D 粽的人数?(4)若有外型完全相同的A 、B 、C 、D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(7分)已知:如图,一次函数y=x+b的图象与反比例函数y=kx(k<0)的图象交于A、B两点,A点坐标为(1,m),连接OB,过点B作BC⊥x轴,垂足为点C,且△BOC的面积为32.(1)求k的值;(2)求这个一次函数的解析式.21.(7分)如图,中国海监船在钓鱼岛附近海域沿正西方向航行执行巡航任务,在A处望见钓鱼岛在南偏西45°方向,海监船航行到B处时望见钓鱼岛在南偏45°方向,又航行了15分钟到达C处,望见钓鱼岛在南偏60°方向,若海监船的速度为36海里/小时,求中国海监船在此次航行过程中离钓鱼岛的最近距离为多少海里?(3≈1.732,结果精确到0.1海里).22.(8分) 如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使CD=BC,连接AD与CM交于点E,若⊙O的半径为2,ED=1,求AC的长.23.(9分)实验中学九年级学生小凡、小文和小宇到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小凡:如果以9元/千克的价格销售,那么每天可售出350千克.小文:如果每千克的利润为2元,那么每天可售出300千克.小宇:如果以11元/千克的价格销售,那么每天可获取利润750元.物价部门规定:该水果的加价不得超过进价的45﹪.【利润=(销售价-进价)×销售量】(1)请根据他们的对话填写下表:(3分)销售单价x(元/kg)9 10 11销售量y(kg)(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3分)(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3分)24.(10分)如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N是分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.(2)求△AMN面积的最小值;(3)求点P到直线CD距离的最大值;25. (12分)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MA-MC|的值最大?若存在,请求出点M的坐标;若不存在,请说明理由.答案:21.22.(1)证明:连接OC.∵AB为⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.∵CM是⊙O的切线,∴OC⊥CM.∴∠ACM+∠ACO=90°.∵CO=AO,∴∠BAC=∠ACO.∴∠ACM=∠ABC.(2)解:∵BC=CD,OB=OA,∴OC∥AD.又∵OC⊥CE,∴CE⊥AD,∵∠ACD=∠ACB=90°,∴∠AEC=∠ACD.∴△ADC∽△ACE.∴.∵⊙O的半径为2,∴AD=4.∴.∴AC=2.24.解:(1)如图1中,∵ABCD是菱形,∠ABC=60°,∴△ABC为等边三角形在△AMB和△ANC中,AB=AC∠B=∠ACN=60°BM=NC∴△AMB≌△ANC∴AM=AN,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN为等边三角形,当AM⊥BC时,△AMN的边长最小,面积最小,=•(2)2=3此时AM=MN=AN=2,S△AMN(2)如图2中,当AM⊥BC时,点P到CD距离最大.作PE⊥CD于E.理由:由(1)可知△AMN是等边三角形,当AM⊥BC时,△AMN的边长最小,此时PA长最小,PC的长最大,点P到直线CD距离的最大,∵BM=MC=2,∠CMP=30°,∠MPC=90°,∴PC=MC=1,在Rt △PCE 中,∵∠CPE=30°,PC=1,∴EC=PC=, ∴PE==.∴点P 到直线CD 距离的最大值为; 25.解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴, 解得,∴抛物线的解析式为y =x 2-4x +3.(2)令x =0,则y =3,∴点C (0,3),又∵点A (3,0),∴直线AC 的解析式为y = -x +3,设点P (x ,x 2-4x +3),∵PD ∥y 轴,且点D 在AC 上,∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x-)2+, ∵a =-1<0,∴当x =时,线段PD 的长度有最大值,最大值为. (3)存在.由抛物线的对称性可知,对称轴垂直平分AB ,可得:MA =MB ,由三角形的三边关系,|MA -MC |<BC ,可得:当M 、B 、C 三点共线时,|MA -MC |最大,即为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),由B 、C 两点的坐标分别为(1,0)、(0,3), 则, ⎩⎨⎧=++=++01039c b c b ⎩⎨⎧==3-4c b 23492349⎩⎨⎧==+30b b k解得,∴直线BC 的解析式为y = -3x +3,∵抛物线y =x 2-4x +3的对称轴为直线x =2,∴当x =2时,y=-3×2+3=-3,∴点M (2,-3),即抛物线对称轴上存在点M (2,-3),使|MA -MC |最大.⎩⎨⎧==3-3b k。
绝密★启用前长春市实验中学2022-2023学年高三下学期模拟考试(五)数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码.2.请认真阅读答题卡上的注意事项,在答题卡上与题号相对应的答题区域内答题,写在试卷、草稿纸上或答题卡非题号对应答题区域的答案一律无效.不得在答题卡上做任何标记.3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.考试结束后,答题卡要交回,试卷由考生自行保存.第I 卷一、选择题:本题包括1至8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A.{02}x x <≤∣ B.{}2x x ≤∣ C.{10}x x <∣ D.R 2.i 为虚数单位,复数2i 12iz +=-,复数z 的共轭复数为z ,则z 的虚部为( ) A.1- B.2- C.2i - D.i -3.已知{}n a 是无穷等差数列,其前项和为n S ,则“{}n a 为递增数列”是“存在*n ∈N 使得0n S >”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.在ABC 中,E 为AC 上一点,2AC AE =,P 为线段BE 上任一点,若AP xAB yAC =+,则21x y+的最小值是( )A.3+B.4+C.6D.85.声音中包含着正弦函数,声音是由于物体的振动产生的能引起听觉的波.每一个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素:音调,响度,音长和音色.这都与正弦函数的参数有关.我们一般听到的声音的函数是()111sin sin2sin3sin4234f x x x x x =++++,对于函数()f x ,下列说法正确的是( ) A.π是()f x 的一个周期 B.()f x 关于2x π=对称C.0是()f x 的一个极值点D.()f x 关于(),0π中心对称6.将甲、乙等5名志愿者分配到4个社区做新冠肺炎疫情防控宣传,要求每名志愿者去一个社区,每个社区至少去一名志愿者,则甲、乙二人去不同社区的概率为( ) A.310 B.35 C.910 D.147.在菱形ABCD 中,2AB =,60A ∠=︒,将B C D △绕对角线BD 所在直线旋转至BPD ,使得AP P ABD -的外接球的表面积为( )A.8π3B.20π3C.27D.25π3 8.已知函数()()221sin 1x x f x x ++=+,其导函数记为()f x ',则()()()()389389389389f f f f ''++---=( ) A.2 B.2- C.3 D.3-二、多选题:本题包括9至12小题,每小题5分,共20分,在每小题给出的四个选项中,至少有两项符合题目要求.9.某商店2022年1月至12月每月的收入、支出情况的统计如图所示,则下列说法中正确的有( )A.第二季度月平均利润为30万元B.收入的中位数和众数都是50C.下半年支出比上半年支出稳定D.利润最高的月份是2月份和11月份10.如图,一个平面α斜截一个足够高的圆柱,与圆柱侧面相交的图形为椭圆E .若圆柱底面圆半径为r ,平面α与圆柱底面所成的锐二面角大小为θ,则下列对椭圆E 的描述中,正确的是( )A.短轴为2r ,且与θ大小无关B.离心率为cos θ,且与r 大小无关C.焦距为2tan r θD.面积为2cos r πθ11.如图所示,设单位圆与x 轴的正半轴相交于点()1,0A ,以x 轴非负半轴为始边作锐角α,β,αβ-,它们的终边分别与单位圆相交于点1P ,1A ,P ,则下列说法正确的是( )A.11A P AP =B.扇形11OA P 的面积为αβ-C.12sin2A P αβ=- D.当π3α=时,四边形11OAA P 的面积为1πsin 23β⎛⎫+ ⎪⎝⎭ 12.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于()()1122,,,P x y Q x y 两点,点P 在l 上的射影为1P ,则下列说法正确的是( )A.若125x x +=,则7PQ =B.以PQ 为直径的圆与准线l 相交C.设()0,1M ,则1PM PP +≥D.过点()0,1M 与抛物线C 有且仅有一个公共点的直线有3条第Ⅱ卷(非选择题)三、填空题13.53(2)()x x y +-的展开式中,42x y 的系数是__________.14.若曲线()()sin 1f x x a x =++在点0x =处的切线方程是20x y b -+=,则a b +=______.15.如图,单位向量OA ,OB 的夹角为π2,点C 在以O 为圆心,1为半径的弧AB 上运动,则CA CB ⋅的最小值为______.16.过曲线221x y -=与曲线23x y =+的交点的圆的方程为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤17.已知数列{}n a 的前n 项和n S ,且满足:22n n S a =-,*N n ∈.(1)求数列{}n a 的通项公式;(2)若2log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 18.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c o s 2c o s c o s a C b A c A =-. (1)求A ;(2)若a =b c -的取值范围.19.新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病毒.对前所未知、突如其来、来势汹汹的疫情,习近平总书记亲自指挥、亲自部署,强调把人民生命安全和身体健康放在第一位.明确坚决打赢疫情防控的人民战争、总体战、阻击战.当前,新冠肺炎疫情防控形势依然复杂严峻.为普及传染病防治知识,增强学生的疾病防范意识,提高自身保护能力,市团委在全市学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分100分),竞赛奖励规则如下:得分在[)70,80内的学生获三等奖,得分在[)80,90内的学生获二等奖,得分在[]90,100内的学生获一等奖,其它学生不得奖.为了解学生对相关知识的掌握情况,随机抽取了100名学生的竞赛成绩,获得了如下频数分布表.(2)若该市所有参赛学生的成绩X 近似地服从正态分布()264,15N ,若从所有参赛学生中(参赛学生人数特别多)随机抽取3名学生进行座谈,设其中竞赛成绩在64分以上的学生人数为Y ,求随机变量Y 的分布列和数学期望.20.如图,在三棱锥-P ABC 中,AB 是ABC 外接圆的直径,PC 垂直于圆所在的平面,D 、E 分别是棱PB 、PC 的中点.(1)求证:DE ⊥平面PAC ;(2)若二面角A DE C --为π3,4AB PC ==,求AE 与平面ACD 所成角的正弦值. 21.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,A ,B 是其左、右顶点,M 是椭圆上异于A ,B 的动点,且34MA MB k k ⋅=-. (1)求椭圆C 的方程;(2)若P 为直线4x =上一点,P A ,PB 分别与椭圆交于C ,D 两点.①证明:直线CD 过椭圆右焦点2F ;②椭圆的左焦点为1F ,求1CF D 的内切圆的最大面积.22.已知函数()()()212e 2x f x x ax ax a =--+∈R . (1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若0a >,讨论函数()f x 的单调性;(3)当2x ≥时,()0f x ≥恒成立,求a 的取值范围.。
2024年广东省中考数学全真模拟试卷(五)一、单选题1.截至北京时间2020年6月14日9:49,全球累计新冠肺炎确诊病例超过7730000例,7730000用科学记数法可表示为( )A .477310⨯B .677.310⨯C .67.7310⨯D .70.77310⨯ 2.如图是一个正方体的展开图,每个面上都有一个汉字,折叠成正方体后,与“负”相对的面上的汉字是( )A .强B .课C .提D .质3.一个多边形的内角和为360︒,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形4.已知直线m n ∥,将一块含45︒角的直角三角板ABC 按如图方式放置.若225∠=︒,则1∠的度数为( )A .20︒B .30︒C .15︒D .25︒5.如图,某自动感应门的正上方A 处装着一个感应器,离地面的高度AB 为2.5米,一名学生站在C 处时,感应门自动打开了,此时这名学生离感应门的距离BC 为1.2米,头顶离感应器的距离AD 为1.5米,则这名学生身高CD 为( )米.A .1.3B .14C .1.5D .1.66.已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是A .215cm πB .215cmC .220cm πD .220cm7.在Rt ABC V 中,90C ∠︒=,BAC ∠的角平分线AD 交BC 于点D ,74BC BD =,=,则点D 到AB 的距离是( )A .3B .4C .5D .78.下列说法正确的是( )A .“三角形的外角和是360°”是不可能事件B .调查某批次汽车的抗撞击能力适合用全面调查C .了解北京冬奥会的收视率适合用抽样调查D .从全校1500名学生中抽取100名调查了解寒假阅读情况,抽取的样本容量为1500 9.如图,在边长为4的等边△ABC 中,D 是BC 边上的中点,以点A 为圆心,AD 为半径作圆与AB ,AC 分别交于E ,F 两点,求¶EF的长为( )A B C D .10.如图,矩形ABCD 中,4AB =,8BC =,点E 在BC 边上,连接EA ,EA EC =.将线段EA 绕点A 逆时针旋转90︒,点E 的对应点为点F ,连接CF ,则cos ACF ∠的值为( )A .23BC D二、填空题11.因式分解:22b b -=.12.二次项系数为2,且两根分别为11x =,212x =的一元二次方程为.(写成20ax bx c ++=的形式)13.某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打折.14.小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为.15.如图所示,在平行四边形ABCD 中,8BC =,5AB =,BE 平分ABC ∠交AD 于点E ,则DE =.三、解答题16.(1)解方程:2172402x x -+=; (2)若A B C D Y 的两条对角线长恰好是(1)中方程的两个解,求该平行四边形AB 边的取值范围.17.抛物线顶点坐标是()2,1-且经过点()5,8C .(1)求该抛物线的解析式;(2)求该抛物线与坐标轴的交点坐标.18.【实践探究】新华学校开设“木工、烹饪、种植、茶艺、布艺”五门特色劳动校本课程.学校要求每名学生必须选修且只能选修一门课程,为保证课程的有效实施,学校随机对抽取了500名学生选择课程情况调查,并将调查结果绘制成如下不完整的统计图.【问题解决】请根据统计图提供的信息,解答下列问题:(1)补全条形统计图,并在扇形统计图中,求出“种植”所对应的圆心角为多少度;(2)若该校有1800名学生,请估计该校选择劳动课程为布艺的有多少人;(3)在劳动课程中表现优异的小明和小华被选中与其他学生一起参加劳动技能展示表演,展示表演分为3个小组,他们俩若随机分到这三个小组中,请用列表或画树状图的方法求出小明和小华两人恰好分在同一组的概率.19.如图,在ABCD Y 中,12AD =,6AB =.(1)用尺规作图法作ADC ∠的平分线DN ,交BC 于点M ,交AB 的延长线于点N .(标明字母,保留作图痕迹,不要求写作法)(2)在(1)的条件下,求BN 的长.20.创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购购买2个A 型垃圾桶和3个B 型垃圾桶共需要420元,购买5个A 型垃圾桶和1个B 型垃圾桶共需要400元.(1)求每个A 型垃圾桶和每个B 型垃圾桶各为多少元;(2)若需购买A ,B 两种型号的垃圾桶共200个,总费用不超过15200元,至少需购买A 型垃圾桶多少个?21.综合与实践:主题:制作一个无盖长方形盒子.步骤1:按照如图所示的方式,将正方形纸片的四个角剪掉四个大小相同的小正方形. 步骤2:沿虚线折起来,就可以做成一个无盖的长方体盒子.【问题分析】(1)如果原正方形纸片的边长为a ,剪去的正方形的边长为b ,则折成的无盖长方体盒子的高、底面积、容积分别为______、______、______、______(请你用含a ,b 的代数式来表示).【实践探索】(2)如果20cm a =,剪去的小正方形的边长按整数值依次变化,即分别取1cm ,2cm ,3cm ,4cm ,5cm ,6cm ,7cm ,8cm ,9cm ,10cm 时,折成的无盖长方体的容积分别是下表数据,请求出m 和n 分别是多少?【实践分析】(3)观察绘制的统计表,你发现,随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积如何变化?并分析猜想当剪去图形的边长为多少时,所得的无盖长方体的容积最大,此时最大容积是多少?22.如图,AB 是O e 的直径,点C 是半圆AB 的中点,点D 是O e 上一点,连接CD 交AB 于E ,点F 是AB 延长线上一点,且EF DF =.(1)求证:DF 是O e 的切线;(2)连接BC BD AD、、,若1tan2C=,3DF=,求Oe的半径.23.如图1,在平面直角坐标系xOy中,点A的坐标为(5,0),点B在第一象限内,且使得AB = 4,OB = 3.(1)试判断△AOB的形状,并说明理由;(2)在第二象限内是否存在一点P,使得△POB是以OB为腰的等腰直角三角形,若存在,求出点P的坐标:若不存在,请说明理由;(3)如图2,点C为线段OB上一动点,点D为线段BA上一动点,且始终满足OC = BD.求AC + OD的最小值.。
初等数学模拟试卷5(题后含答案及解析)题型有:1.D.α1+2α2,α2+2α3,α3+2α1.正确答案:A解析:(α1-α2)+(α2-α3)+(α3-α1)=0,所以向量组α1-α2,α2-α3,α3-α1线性相关,故应选(A).至于(B)、(C)、(D)的线性无关性可以用(β1,β2,β3)=(α1,α2,α3)C的方法来处理.知识模块:初等数学8.设有向量组α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10),则该向量组的极大线性无关组是A.α1,α2,α3.B.α1,α2,α4.C.α1,α2,α5.D.α1,α2,α4,α5.正确答案:B 涉及知识点:初等数学9.设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则A.αm不能由(I)线性表示,也不能由(Ⅱ)线性表示.B.αm不能由(I)线性表示,但可由(Ⅱ)线性表示.C.αm可由(I)线性表示,也可由(Ⅱ)线性表示.D.αm可由(I)线性表示,但小可由(Ⅱ)线性表示.正确答案:B解析:因为β可由α1,α2,...,αm线性表示,故可设β=k1α1+k2α2+...+km αm.由于β小能由α1,α2,...,αm-1线性表示,故上述表达式巾必有km≠0.因此αm=1/km(β-k1α1-k2α2-...-km-1αm-1).即αm可由(Ⅱ)线性表示,可排除(A)、(D).若αm可由(I)线性表示,设αm=l1α1+l2α2+...+lm-1αm-1则β=(k1+kml1)α1+(k2+kml2)α2+…+(km-1+km-1lm-1)αm-1.与题设矛盾,故应选(B).知识模块:初等数学10.设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A 的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是A.P-1αB.PTαC.PαD.(P-1)Tα正确答案:B解析:因为A是实对称矩阵,故(P-1AP)T=PTAT(P-1)T=PTA(PT)-1.那么,由Aα=λα知(P-1AP)T(PTα)=[PTA(PT)-1](PTα)=PTAα=A(PTα).所以应选(B).知识模块:初等数学11.设A、B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则A.λE-A=λE-B.B.A与B有相同的特征值和特征向量.C.A与B都相似于一个对角矩阵.D.对任意常数t,tE-A与tE-B相似.正确答案:D 涉及知识点:初等数学12.考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性质Q,则有A.②→③→①.B.③→②→①.C.③→④→①.D.③→①→④.正确答案:A 涉及知识点:初等数学13.设有三元方程xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐甬数z=z(x,y).B.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=(x,y).C.可确定两个具有连续偏导数的隐函数x=z(y,z)和z=z(x,y).D.可确定两个具有连续偏导数的隐函数z=x(y,z)和y=y(x,z).正确答案:D 涉及知识点:初等数学14.设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是A.若fx’(x0,y0)=0,则fy’(x0,y0)=0.B.若fx’(x0,y0)=0,则fy’(x0,y0)≠0.C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0.D.若fx’(x0,y0)≠0,则fy’(x0,y0)≠0.正确答案:D 涉及知识点:初等数学15.设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是A.f(0)>1,f”(0)>0.B.f(0)>1,f”(0)<0.C.f(0)<1,f”(0)>0.D.f(0)<1,f”(0)<0.正确答案:A 涉及知识点:初等数学填空题16.设n阶矩阵A的元素全为1,则A的n个特征值是___________.正确答案:λn-nλn-1 涉及知识点:初等数学17.设A为2阶矩阵,α1,α2为线性无关的2维列向量.Aα1=0,A α2=2α1+α2,则A的非零特征值为_________.正确答案:1解析:用定义.由Aα1=0=0α1,A(2α1+α2)=Aα2=2α1+α2,知A的特征值为1和0.因此A的非0特征值为1.或者,利用相似,有A(α1,α2)=(0,2α1+α2)=(α1,α2) 知识模块:初等数学18.若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为正确答案:2解析:矩阵A=βαT的秩为1. 知识模块:初等数学19.设A,B为同阶方阵,如果A,B相似,试证A,B的特征多项式相等;正确答案:若A,B相似,那么存在可逆矩阵P,使P-1AP=B,故丨λE-B 丨=丨λE-P-1AP丨=丨P-1AEP-P-1AP丨=丨P-1(λE-A)P丨=丨P-1丨丨λE-A 丨丨P 丨=丨λE-A丨.涉及知识点:初等数学20.已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=___________.正确答案:2解析:二次型xTAx经正交变换化为标准形时,标准形平方项的系数就是二次型矩阵A的特征值,所以6,0,0是A的特征值.知识模块:初等数学21.如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是正确答案:B 涉及知识点:初等数学22.曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.正确答案:(x-1)/1=(y+2)/(-4)=(z-2)/6. 涉及知识点:初等数学23.设生产函数为Q=ALαKβ,其巾Q是产出量,L是劳动投入量,K 是资本投入量,而A、α、β均为大于零的参数,则Q=1时K关于L的弹性为________.正确答案:-α/β涉及知识点:初等数学24.曲面z=x2+y2与平面2z+4y-z=0平行的切平面方程是___________.正确答案:2x+4y-z=5.涉及知识点:初等数学25.设(a×b).c=2,[(a+b)×(b+c)].(c+a)=____________.正确答案:4. 涉及知识点:初等数学26.设一平面经过原点及(6,-3,2),且与平面4x-y+2z=8垂直,则此平面方程为___________.正确答案:2x+2y-3z=0. 涉及知识点:初等数学27.设z=z(x,y)是由x2-6xy+10y2-2yz-z2+18=0确定的函数,z=z(x,y)的极值点_____________和极值___________.正确答案:(9,3),-3 涉及知识点:初等数学28.二元函数f(x,y)=x2(2+y2)+ylny的极值__________.正确答案:-e-1 涉及知识点:初等数学29.函数f(x,Y)=xe-(x2+y2)/2的极值___________.正确答案:-e-1/2 涉及知识点:初等数学解答题30.设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.正确答案:证法一:(定义法) 若有一组数k,k1,k2,…,kt,使得kβ+k1(β+α1)+k2(β+α2)+…kt(β+αt)=0,则因α1,α2,...,αt是Ax=0的解,知Aαi=0(i=1,2,…,t),涉及知识点:初等数学。
2024年高考数学全真模拟试卷五(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos 50cos 70sin 50cos160︒︒+︒︒=()A .BC .12-D .12【答案】C【解析】cos50cos70sin 50cos160︒︒+︒︒()cos 50cos 70sin 50cos 9070=︒︒+︒︒+︒cos50cos70sin 50sin 70=︒︒-︒︒()1cos 5070cos1202=︒+︒=︒=-.故选C.2.如图,已知集合{}2log 1,{1}A xx B x x =<=<∣∣,则阴影部分表示的集合为()A .()1,2B .[)1,2C .(]0,1D .()0,1【答案】B【解析】因为{}{}2log 102,{1}A x x x x B x x =<=<<=<∣∣∣,所以{}01A B xx =<< ∣,(){}12A A B x x ⋂=≤<∣ð,即阴影部分表示的集合为[)1,2,故选B3.已知443243210()x m a x a x a x a x a +=++++,若0123481++++=a a a a a ,则m 的取值可以为()A .2B .1C .1-D .2-【答案】A【解析】令1x =,有()443210118m a a a a a ++++==+,即2m =或4m =-.故选A.4.已知ABC 的内角,,A B C 的对边分别为,,a b c ,且3a =,cos (2)cos a B c b A =-,则ABC 面积的最大值为()A B .2C .94D .92【答案】A【解析】因为cos (2)cos a B c b A =-,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =-,即()sin 2sin cos A B C A +=,sin 2sin cos C C A =,又()0,πC ∈,sin 0C ≠,故1cos 2A =;由()0,πA ∈,解得π3A =;由余弦定理,结合3a =,可得2219cos 22b c A bc+-==,即2292b c bc bc +=+≥,解得9bc ≤,当且仅当3b c ==时取得等号;故ABC 的面积11sin 922S bc A bc ==⨯3b c ==时取得等号.即ABC 故选A.5.已知点()3,0A ,点P 是抛物线2:4C y x =上任一点,F 为抛物线C 的焦点,则1PA PF +的最小值为()A B C D 【答案】A【解析】由题意得()1,0F ,抛物线C 的准线方程为=1x -,设(),P x y ,则1PF x =+,PA =12PAPF x =++.令2x μ+=,则2x μ=-,由0x ≥,得2μ≥,所以1PAPF ==+,令1λμ=,则102λ<≤,所以1PA PF =+,故当317λ=,即113x =时,1PA PF +取得最小值17.故选A .6.如图,现有棱长为6cm 的正方体玉石缺失了一个角,缺失部分为正三棱锥1A EFG -,且,,E F G 分别为棱11111,,A A A B A D 靠近1A 的四等分点,若将该玉石打磨成一个球形饰品,则该球形饰品的体积的最大值为()A .3πcm 2B .336πcmC .3πcm 2D .372πcm【答案】B【解析】由题意1113 2A E A F AG===,设点1A到平面EFG的距离为d,而2 EF EG FG=== 122EFGS=⨯=11E AGF A EFGV V--=,得113331322223⨯⨯⨯⨯=,解得2d=,棱长为6的正方体的正方体的内切球的半径为3,棱长为6的正方体体对角线的长度为因为3,所以所求球形体积最大时即为棱长为6的正方体的正方体的内切球,则该球形饰品的体积的最大值为334π336πcm3⨯=.故选B.7.已知椭圆2222:1(0)x yC a ba b+=>>的左、右顶点分别为,A B,左焦点为,F P为椭圆上一点,直线AP与直线x a=交于点,M PFB∠的角平分线与直线x a=交于点N,若PF AB⊥,MAB△的面积是NFB面积的72倍,则椭圆C的离心率是()A.18B.17C.16D.13【答案】B【解析】根据题意可得()()(),0,,0,,0A aB a F c--,则2AB a=,FB a c=+,又PF AB⊥可得90PFB∠= ,设P点坐标为()0,P c y-,如下图所示:将()0,P c y-代入椭圆方程可得()220221c ya b-+=,解得2bya=;可得()22PAbbaka c a a c==--,直线PA方程为()()2by x aa a c=+-,联立()()2by x aa a cx a⎧=+⎪-⎨⎪=⎩,解得22,bM aa c⎛⎫⎪-⎝⎭,即()(),2M a a c+易知PFB∠的角平分线倾斜角为45 ,斜率为1k=,直线FN方程为y x c=-,联立y x cx a=+⎧⎨=⎩,解得(),N a a c+;所以MAB △的面积为()()1222MAB S AB BM a a c a a c ==⋅+=+ ,NFB 面积为()21122NFB S FB BN a c ==+ ;即()()()227172224a a c a c a c +=⨯+=+,即()724a a c =+,可得7a c =;所以离心率17c e a ==.故选B 8.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01g =-B .若()12024f =,则20241()2024n f n ==∑C .函数()21f x -的图像关于直线12x =对称D .()()111g g +-=-【答案】D【解析】对于A ,令0x y ==,可得()()()()()000000f f g g f =-=,得()00f =,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,所以()01g =,故A 错误;对于D ,因为()01g =,令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故D 正确;对于B ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即()()()12f x f x f x =-+-+,有()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()12024f =,所以()22024f -=,所以()()222024f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()202411232024n f n f f f f ==++++∑ ()()()()020********f f f f =++==,故B 错误;对于C ,取()2πsin3f x x =,()2πcos 3g x x =,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,所以()()2π21sin213f x x -=-,又()0sin 00f ==,所以函数()21f x -的图像不关于直线12x =对称,故C 错误;故选D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在复平面内,复数112z =对应的点为A ,复数211z z =-对应的点为B ,下列说法正确的是()A .121z z ==B .2121z z z ⋅=C .向量AB对应的复数是1D .12AB z z =- 【答案】AD【解析】因为112z =,所以212z =-,所以11,,,22A B ⎛⎛- ⎝⎭⎝⎭,121z z ==,A 正确;22121111222z z ⎡⎤⎛⎫⎛⎫⎫⎛⎫⎢⎥⋅=--=--=- ⎪⎪⎪ ⎪ ⎪⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,B 错误;由上可得()1,0AB =- ,对应复数为1-,C 错误;1211i i 12222z z ⎛⎫-=---= ⎪ ⎪⎝⎭,1AB = ,D 正确.故选AD10.已知二面角A CD B --的大小为2π3,AC CD ⊥,BD CD ⊥,且1CD =,2AC BD +=,则()A .ABD △是钝角三角形B .异面直线AD 与BC 可能垂直C .线段AB 长度的取值范围是⎡⎣D .四面体A BCD -【答案】AC【解析】对于选项A :由题意可知,0BD CD ⋅= ,二面角A CD B --的大小为2π3,AC CD ⊥,BD CD ⊥,所以2π,3CA DB = ,所以()2πcos 03DA DB DC CA DB CA DB CA DB ⋅=+⋅=⋅=< ,所以ADB ∠是钝角,即ABD △是钝角三角形,故A 正确;对于选项B :由题意知,0BD CD ⋅= ,0AC CD ⋅=,2π,3CA DB = ,1CD = ,所以()()22πcos 103AD BC AC CD BD CD AC BD CD AC BD ⋅=+⋅-=⋅-=-< ,所以异面直线AD 与BC 不可能垂直,故B 错误;对于选项C :由题意可知,0BD CD ⋅= ,0AC CD ⋅=,1CD = ,所以()222222AB AC CD DBAC CD DB AC DB =++=+++⋅ 221AC DB AC DB =+++()21AC DBAC DB =+-+.设AC x =,由2AC BD +=,得2BD x =-,其中02x <<,所以()2222514AB x x x =-+=-+ ,所以245AB ≤< ,则线段AB 长度的取值范围是⎡⎣,故C 正确;对于选项D :如图,过点A 作平面BCD 的垂线,垂足为E ,则πsin3AE AC =⋅,由题意,可知四面体A BCD -的体积为11πsin 323CD BD AC ⨯⨯⨯⨯⨯21212212AC BD AC BD +⎛⎫=⋅≤⨯= ⎪⎝⎭,当且仅当1AC BD ==时,等号成立,故D 错误.故选AC.11.已知函数()()212cos1tan 2xf x x =-+,则下列说法正确的是()A .π2是()f x 的一个周期B .()f x 的值域是⎡⎣C .若()f x 在区间π,4t ⎛⎫- ⎪⎝⎭上有最小值,没有最大值,则t 的取值范围是π0,4⎛⎤⎝⎦D .若方程()f x a =在区间ππ,42⎛⎫- ⎪⎝⎭上有3个不同的实根()123123,,x x x x x x <<,则()()12332x x x f x ++的取值范围是π44⎛⎫⎪ ⎪⎝⎭【答案】BC【解析】因为()()()212cos1tan cos 1tan sin cos 2xf x x x x x x =-+=+=+,由题意可知:()f x 的定义域为π|π,2A x x k k ⎧⎫=≠+∈⎨⎬⎩⎭Z ,关于原点对称,且()()()()sin cos sin cos f x x x x x f x -=-+-=+=,可得()f x 为偶函数,对于选项A :因为π0,2A A ∈∉,可知π2不是()f x 的一个周期,又因为()()()()πsin πcos πsin cos f x x x x x f x +=+++=+=,可知π是()f x 的一个周期,故A 错误;对于选项B :当π0,2x ⎡⎫∈⎪⎢⎣⎭,则sin 0,cos 0x x ≥>,可得()πsin cos 4f x x x x ⎛⎫=+=+ ⎪⎝⎭,因为π0,2x ⎡⎫∈⎪⎢⎣⎭,则ππ3π,444x ⎡⎫+∈⎪⎢⎣⎭,可知:当ππ44x +=,即0x =时,()f x ;当ππ42x +=,即π4x =时,()f x 取到最大值1;所以()f x ⎡∈⎣,结合偶函数和周期性可知()f x 的值域是⎡⎣,故B 正确;对于选项C :因为π,4x t ⎛⎫∈- ⎪⎝⎭,由选项B 可知:π04t <≤,故C 正确;对于选项D :方程()f x a =的实根即为()y f x =与y a =的交点横坐标,作出()f x 在ππ,42⎛⎫- ⎪⎝⎭的图象,如图所示:由题意结合图象可知:(12233πππ,0,,,242a x x x x x ⎛⎫∈+=+=∈ ⎪⎝⎭,则()()12333ππ2sin 24x x x f x x ⎛⎫++=+ ⎪⎝⎭,因为3ππ,42x ⎛⎫∈ ⎪⎝⎭,则3ππ3π,424x ⎛⎫+∈ ⎪⎝⎭,可得3πsin ,142x ⎫⎛⎫+∈⎪ ⎪⎪⎝⎭⎝⎭,所以()()12333πππ2sin ,2442x x x f x x ⎛⎫⎛⎫++=+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,故D 错误;故选BC.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()1,0a = ,()1,1b = ,若a b λ+ 与b垂直,则λ=.【答案】12-【解析】因为()1,0a = ,()1,1b = ,所以()1,a b λλλ+=+ ,又a b λ+ 与b垂直,所以()10a b b λλλ+⋅=++= ,解得12λ=-.13.举重比赛的规则是:挑战某一个重量,每位选手可以试举三次,若三次均未成功则挑战失败;若有一次举起该重量,则无需再举,视为挑战成功,已知甲选手每次能举起该重量的概率是23,且每次试举相互独立,互不影响,设试举的次数为随机变量X ,则X 的数学期望()E X =;已知甲选手挑战成功,则甲是第二次举起该重量的概率是.【答案】139;313【解析】依题意随机变量X 的可能取值为1、2、3,则()213P X ==;()22221339P X ⎛⎫==-⨯= ⎪⎝⎭;()2213139P X ⎛⎫==-= ⎪⎝⎭,所以随机变量X 的概率分布为X123P232919所以随机变量X 的期望为()221131233999E X =⨯+⨯+⨯=.记“第i 次举起该重量”分别为事件,1,2,3i A i =,“甲选手挑战成功”为事件B ,则()3123226()111327P B P A A A ⎛⎫=-=--= ⎪⎝⎭,()()()21212222()1339P A B P A A P A P A ⎛⎫===-⨯= ⎪⎝⎭,所以()()()223|13P A B P A B P B ==,所以甲选手挑战成功,则甲是第二次举起该重量的概率为313.14.已知对任意()12,0,x x ∈+∞,且当12x x <时,都有:()212112ln ln 11a x x x x x x -<+-,则a 的取值范围是.【答案】(],2-∞【解析】因为对任意()12,0,x x ∈+∞,且当12x x <时()212112ln ln 11a x x x x x x -<+-恒成立,所以21212112ln ln x x a x a x x x x x --<-+恒成立,所以21211211ln ln a x a x x x x x -<-+-恒成立,所以22112111ln ln a x x a x x x x -+<-+恒成立①,令()()1ln ,0,f x a x x x x∞=-+∈+,由①式可得()()21f x f x <,所以()f x 在()0,∞+上单调递减,所以()2210x ax f x x-+'=-≤在()0,∞+上恒成立,所以210x ax -+≥在()0,∞+上恒成立,所以1a xx ≤+在()0,∞+上恒成立,又12x x +≥=,当且仅当1x x=,即1x =时取等号,2a ∴≤.三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)已如曲线()()22ln ,f x ax x x b a b =+-+∈R 在2x =处的切线与直线210x y ++=垂直.(1)求a 的值;(2)若()0f x ≥恒成立,求b 的取值范围.【解析】(1)由于210x y ++=的斜率为12-,所以()22f '=,(2分)又()221f x ax x '=+-,故()224122f a '=+-=,解得12a =。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足(34i)2i z +=+,则z 的虚部为A .25B .225C .15-D .1-2.已知集合{}{}20,1,2,10A B x x ==∈<N ,则A B = A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,3}3.已知甲、乙、丙、丁、戊五位同学高一入学时年龄的平均数、中位数均为16,方差为0.8,则三年后,下列判断错误的是A .这五位同学年龄的平均数变为19B .这五位同学年龄的中位数变为19C .这五位同学年龄的方差仍为0.8D .这五位同学年龄的方差变为3.84.某圆锥体积为1,用一个平行于圆锥底面的平面截该圆锥得到一个圆台,若圆台上底面和下底面半径之比为12,则该圆台体积为A .78B .34C .12 D .2 5.若函数()y f x =满足对x ∀∈R 都有()(2)0f x f x +-=,且()y f x =为R 上的奇函数,当(1,1)x ∈-时,()4sin()6f x x π=,则3()log f x x =的零点个数为 A .2B .3C .4D .5 6.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC 的面积为A .3 BC D .37.已知实数0,0x y >>,满足32(2)e 3e y x x y -+=,若不等式12m x y+≥对任意的正实数x y 、恒成立,那么实数m 的最大值为A .53B .73C .3D .83 8.已知04a <<,02b <<,03c <<,且216ln ln 4a a =,24ln ln 2b b =,29ln ln 3c c =,则.A .c b a >>B .c a b >>C .a c b >>D .b c a >>二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()sin()(0)6f x x πωω=+>的图象与直线y =1的交点中,距离最近的两点间的距离为π,则 A .ω=2B .函数f (x )在[-4π,4π]上单调递增C .6x π=是f (x )的一条对称轴D .f (x )在[0,π]上存在唯一零点1112π 10.已知n x ⎛ ⎝的展开式中共有7项,则 A .所有项的二项式系数和为64B .所有项的系数和为1C .二项式系数最大的项为第4项D .有理项共4项 11.已知抛物线C :2x my =的焦点为()0,1F ,点A ,B 为C 上两个相异的动点,则A .抛物线C 的准线方程为1y =-B .设点()2,3P ,则AP AF +的最小值为4C .若A ,B ,F 三点共线,则AB 的最小值为2D .若60AFB ∠=︒,AB 的中点M 在C 的准线上的投影为N ,则MN AB ≤12.三棱锥A BCD -各顶点均在表面积为20π的球体表面上,2,120AB CB ABC ∠===,90BCD ∠=,则A .若CD AB ⊥,则2CD =B .若2CD =,则CD AB ⊥C .线段AD D .三棱锥A BCD -三、填空题:本题共4小题,每小题5分,共20分.13.曲线3()33f x x x =-+在点(2,)P t 处的切线方程为___________.14.若双曲线()2222:10,0x y C a b a b-=>>的一个焦点F 关于其一条渐近线的对称点P 在双曲线上,则双曲线的离心率为___________.15.已知抛物线()220y px p =>的焦点为F ,准线为l ,点A 在x 轴负半轴且2AF p =,B 是抛物线上的一点,BC 垂直l 于点C ,且2BC p =,AB 分别交l ,CF 于点D ,E ,则EF DF=_________. 16.已知Rt ABC 中,3AB =,4AC =,5BC =,I 是ABC 的内心,P 是IBC 内部(不含边界)的动点.若AP AB AC λμ→→→=+(λ,R μ∈),则λμ+的取值范围是___________.四、解答题(本题共6小题,共70分,其中第16题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤。
浙教版2022-2023学年九年级上学期期末数学模拟测试卷(五)考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列事件中,是必然事件的是()A.购买1张彩票,中奖B.任意画一个三角形,其内角和是180°C.随意翻到一本书的某页,这页的页码是奇数D.射击运动员射击一次,命中靶心2.如图,BC是⊙O的弦,D是BC上一点,DO交⊙O于点A,连接AB,OC,若∠A=20°,∠C=30°,则∠AOC的度数为()A.100°B.105°C.110°D.120°(第2题)(第3题)(第4题)(第5题)3.如图,若DE∥FG∥BC,AD=DF=FB,则S△ADE∶S四边形DFGE∶S四边形FBCG=()A.2∶6∶9B.1∶3∶5C.1∶3∶6D.2∶5∶84.如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a=()A.-2B.−√22C.−√23D.−125.如图,边长为1的小正方形网格中,点A、B、C、E在格点上,连接AE、BC,点D在BC上且满足AD⊥BC,则∠AED的正切值是()A.12B.2C.√52D.√556.如图,在直角梯形ABCD中,∠ABC=90∘,AB=8,AD=3,BC=4,点P为边AB上一动点,若ΔPAD与ΔPBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个(第6题)(第7题)(第9题)(第10题)7.如图,在半径为√13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6 ,A E=1,则CD的长是()A.2√6B.2√10C.2√11D.4√38.已知点A(a-2b,2-4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为() A.(-3,7)B.(-1,7)C.(-4,10)D.(0,10)9.如图,A,B,C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是()A.∠OBA=∠OCA B.四边形OABC内接于⊙OC.AB=2BC D.∠OBA+∠BOC=90°10.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A.154B.253C.203D.254二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.从2名男生和2名女生中任选2名学生参加志愿者服务,那么选出的2名学生中至少有1名女生的概率是 .12.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,AF 平分∠BAC ,交DE 于点G ,交BC 于点F .若∠AED =∠B ,且AG :GF =3:2,则DE :BC = .(第12题) (第13题) (第14题) (第15题)13.如图,△BPC 内接于⊙O ,点PA ⊥BC ,AP=1,BP= √2 ,PC=3,则弧PC 的长是14.如图,在 ▱ABCD 中, AD =5,AB =12,sinA =45.过点D 作 DE ⊥AB ,垂足为E ,则sin∠BCE = .15.如图,过以AB 为直径的半圆O 上一点C 作CD ⊥AB 于点D.已知cos ∠ACD = 35,BC =6,则AC = .16.我们把二次函数y=ax 2+bx+c 的各项系数的平方和叫做魅力值,记作M=a 2+b 2+c 2,已知二次函数y=ax 2+bx+c (a>0)的图像经过点A (1,2)与点B (2,c+10),且与x 轴有两个不同的交点,则M 的取值范围三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤. 17.计算(1)cos30°−tan60°⋅cos45°cos30°(2)cos60°−2sin 245°+32tan 230°−sin30°18.现有红球和黄球若干个,每个球除颜色外其余都相同.将3个红球和6个黄球放入一个不透明的袋子中.(1)将袋子中的球搅匀后任意摸出1个球,摸到红球的概率是多少?(2)如果再拿5个球放入袋子中并搅匀,使得从中任意摸出1个球,摸到红球和黄球的可能性大小相等,那么应放入几个红球,几个黄球?19.如图,在Rt △ABC 中,∠ACB =90°,点D 为AB 边的中点,以CD 为直径作⊙O ,分别与AC ,BC ,AB 交于点E ,F ,G. (1)求证:AE =CE ;(2)若CE =4,CF =3,求DG 的长.20.已知:如图,在梯形ABCD 中,AD//BC ,∠BCD=90º,对角线AC 、BD 相交于点E ,且AC ⊥BD .(1)求证:;(2)点F是边BC上一点,联结AF,与BD相交于点G.如果∠BAF=∠DBF,求证:.21.某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一段固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此目标P的仰角∠POC=∠GON.请说明两个角相等的理由.(2)实地测量如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K处测得顶端P的仰角∠POQ= 60∘,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米;求树高PH. (√3≈1.73,结果精确到0.1米)(3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P距离地面高度PH(如图④),同学们讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米;求PH(用α、β、m表示).22.已知:如图,在△ABC中,AC=AB=10,BC=16,动点P从A点出发,沿线段AC运动,速度为1个单位/s,时间为t秒,P点关于BC的对称点为Q.(1)当t=2时,则CN的长为;(2)连AQ交线段BC于M,若AM=2MQ,求t的值;(3)若∠BAQ=3∠CAQ时,求t的值.23.如图,抛物线y= 12x2+mx+n与直线y=﹣12x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(1)求抛物线的解析式和tan∠BAC的值;(2)在(1)条件下:Ⅰ.P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P 使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.Ⅱ.设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒√2个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?24.如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P⌢上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.的弦CD⊥AB,Q为BC(1)若m=3.①求证:∠OAD=60°;②求BQDH的值;(2)用含m的代数式表示BQDH,请直接写出结果;(3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.。
一、选择题1.设集合M ={}|x x 2-x -6<0,N ={}x |2x ≥4,则M ⋂N =().A.∅B.(]-2,2C.[]2,3D.[)2,32.设复数z 满足1+z 1-z=i ,则|z |=().A.1B.2C.3D.23.某统计部门对四组数据进行统计分析后,获得如图1(1)(2)(3)(4)所示的散点图,关于相关系数的比较,其中正确的是().图1A.r 4<r 2<0<r 1<r 3B.r 2<r 4<0<r 1<r 3C.r 2<r 4<0<r 3<r 1D.r 4<r 2<0<r 3<r 14.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的图象大致是().A. B.C. D.5.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值为().A.-4 B.-2C.0 D.26.正方体ABCD -A 1B 1C 1D 1中E 为棱BB 1的中点(如图2),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的左视图为().7.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ()3,0,过点F 的直线交椭圆E 于A ,B 两点.若AB的中点坐标为()1,-1,则E 的方程为().A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1 D.x 218+y 29=18.函数f (x )=cos 2x +a sin x 在区间(π6,π2)上是减函数,则a 的取值范围是().A.(2,4)B.(]-∞,2C.(]-∞,4D.[)4,+∞9.某校高三年级有男生220人,学籍编号为1,2,...,220;女生380人,学籍编号为221,222, (600)为了解学生学习的心理状态,按学籍编号采用系统抽样的方法从这600名学生中抽取10人进行问卷调查(第一组采用简单随机抽样,抽到的号码为10),再从这10名学生中随机抽取3人进行座谈,则这3人中既有男生又有女生的概率是().A.15B.310C.710D.4510.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x ,y ;再统计x ,y 两数能与1构成钝角三角形三边的数对()x ,y 的个数m ;最后再根据统计数m 估计π的值,假如统计结果是m =35,那么可以估计π的值约为().梅涛图2A. B.C.D.56A.227B.4715C.5116D.19611.已知数列{}a n 满足a 1=1,a n ∙a n +1=2n (n ∈N *),则S 2019等于().A.22019-1B.3×21010-3C.21011-3D.3×21010-212.已知f ()x =ln ()x 2+1-x ,不等式f ()a x 2+1+f ()x 2+2≤0对x ∈R 成立,则a 的取值范围为().A.[)-2,+∞B.[)2,+∞C.(]-∞,2 D.(]-∞,-2二、填空题13.∫-11e ||x d x 值为.14.已知等比数列{}a n 的前n 项和为S n ,且S n =32+a ∙3n ,则S 6S 3=.15.抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线y 2-x 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =.16.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图3A 所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士•帕斯卡的著作(1655年)介绍了这个三角形,近年来,国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”,如图3A .17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”,如图3B .在杨辉三角中,相邻两行满足关系式:C rn+C r +1n=Cr +1n +1,其中n 是行数,r ∈N .请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是.图3三、解答题(一)必考题17.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin A cos B sin B cos A=2c -b b .(1)求A ;(2)设AC =2,点D 在AB 上,且AD =3DB ,若△BCD 的面积为3,求BC 的长.18.某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;方案甲::员工最多有两次抽奖机会,每次抽奖的中奖率为45.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.方案乙::员工连续三次抽奖,每次中奖率均为25,每次中奖均可获奖金400元.(1)求某员工选择方案甲进行抽奖所获奖金X (元)的分布列;(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?19.如图4,在四棱锥S -ABCD中,底面ABCD 是直角梯形,AD ∥BC ,AB ⊥BC ,△SAB 是等边三角形,侧面SAB ⊥底面ABCD ,AB =23,BC =3,AD =1,点M 、点N 分别在棱SB 、棱CB 上,BM =2MS ,BN =2NC ,点P 是线段MN 上的任意一点.(1)求证:AP ∥平面SCD ;(2)求二面角S -CD -B 的大小.20.已知动圆P 经过点N ()1,0,并且与圆M :(x +1)2+y 2=16.相切.(1)求点P 的轨迹C 的方程;(2)设G ()m ,0为轨迹C 内的一个动点,过点G 且斜率为k 的直线l 交轨迹C 于A ,B 两点,当k 为何值时?ω=|GA |2+|GB |2是与m 无关的定值,并求出该值定值.21.设函数f (x )=ax 2ln x +b (x -1),曲线y =f (x )过点(e ,e 2-e +1),且在点(1,0)处的切线方程为y =0.(1)求a ,b 的值;(2)证明:当x ≥1时,f (x )≥(x -1)2;图457(3)若当x ≥1时,f (x )≥m (x -1)2恒成立,求实数m的取值范围.(二)选考题22.在直角坐标系xOy 中,曲线C 1:ìíîx =t cos α,y =t sin α,(t 为参数,且t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求||AB 最大值.23.已知函数f (x )=|x -2a |-|x -a |,a ∈R .(Ⅰ)若f (1)>1,求a 的取值范围;(Ⅱ)若a <0,对∀x ,y ∈(-∞,a ],都有不等式f (x )≤|y +2020|+|y -a |恒成立,求a 的取值范围.参考答案与解析一、选择题1-12DACAA CDBDD CA 二、填空题13.2e -2;14.28;15.23;16.1C 1n +1C r n =1C 1n +2C r n +1+1C 1n +2C r +1n +1.三、解答题(一)必考题17.解:(1)∵sin A cos B sin B cos A=2c -b b ,∴sin A cos B sin B cos A =2sin C -sin B sin B,∴sin A cos B cos A=2sin C -sin B ,∴sin A cos B =2sin C cos A -sin B cos A ,∴sin A cos B +sin B cos A =2sin C cos A ,∴sin ()A +B =2sin C cos A ,∴sin C =2sin C cos A ,又∵C ∈()0,π,∴sin C ≠0,∴cos A =12,且A ∈()0,π,∴A =π3.(2)∵AD =3DB ,∴S △ABC =4S △BDC ,∵S △BDC =3,∴S △ABC =43=2,∴12bc sin A =43,即12×2c =43,∴c =8,∴a 2=b 2+c 2-2bc cos A ,∴a 2=64+4-2×8×2cos π3,∴a =213.18.解:(1)P ()X =0=15+45×12×15=725,P ()X =500=45×12=25,P ()X =1000=45×12×45=825.所以某员工选择方案甲进行抽奖所获金X (元)的分布列为:X P725500251000825(2)由(1)可知,选择方案甲进行抽奖所获得奖金X 的均值E ()X =500×25+1000×825=520,若选择方案乙进行抽奖中奖次数ξ~B æèöø3,25,则E ()ξ=3×25=65,抽奖所获奖金X 的均值E ()X =E ()400ξ=400E ()Eξ=480,故选择方案甲较划算.19.解:(1)连接AM ,AN ,由BM =2MS ,得MN ∥SC ,MN ∥平面SCD ,且NC =13BC =1=AD ,又AD ∥BC ,则四边形ABCD 为平行四边形,故AN ∥DC ,AN ∥平面SCD ,又MN ⋂AN =N ,面AMN ∥面SCD ,又AP ⊆面AMN ,∴AP ∥平面SCD .(2)如图5,以AB 中点O 为原点,AB 中垂线为z 轴,直线BC 为x 轴,过O 与BC 平行的直线为y 轴,建立空间直角坐标系,则面BCD 的其中一个法向量为 n 1=(0,0,1),设面SCD 的一个法向量n 2=(x ,y ,z ),又S (0,0,3),D (3,1,-3),C (-3,3,0),所以 SD =(3,1,-3), CD =(23,-2,0),ìíî SD ⋅n 2=0, CD ⋅ n 2=0,⇒ìíîïï3x +y -3z =0,3x -2y =0,令y =1得, n 23),则|cos < n 1, n 2>|=| n 1⋅ n 2|| n 1|| n 2|=||||||||||231⋅43=12,故二面角S -CD -B 的大小为π3.图55820.解:(1)由题设得:|PM |+|PN |=4,∴点P 的轨迹C 是以M ,N 为焦点的椭圆,∵2a =4,2c =2,∴b =a 2-c 2=3,∴椭圆方程为x 24+y 23=1;(2)设A (x 1,y 1),B (x 2,y 2),G (m ,0)(-2<m <2),直线l :y=k (x -m ),由ìíîïïy =k ()x -m ,x 24+y 23=1,得(3+4k 2)x 2-8k 2mx +4k 2m 2-12=0,x 1+x 2=8mk 24k 2+3,x 1∙x 2=4k 2m 2-124k 2+3,∴y 1+y 2=k ()x 1-m +k ()x 2-m =6mk 4k 2+3.y 1∙y 2=k 2()x 1-m ()x 2-m =3k 2()m 2-44k 2+3.∴||GA |2+GB |2=(x 1-m )2+y 12+(x 2-m )2+y 22=()k 2+1-6m 2()4k 2-3+24()3+k 2()4k2+32.∵ω=|GA 2|2的值与m 无关,∴4k 2-3=0,解得k =.此时ω=|GA |2+|GB |2=7.21.解:(1)由题意可知,f ()x =ax 2ln x +b ()x -1定义域为x >0,即x ∈()0,∞,f ′()x =2ax ln x +ax +b ,(x >0),∵f ′()1=a +b =0,f ()e =ae 2+b ()e -1=a ()e 2-e +1=e 2-e +1,∴a =1,b =-1.(2)f ()x =x 2ln x -x +1,设g ()x =x 2ln x +x -x 2,()x ≥1,g ′()x =2x ln x -x +1,由()g ′()x ′=2ln x +1>0,g ′()x 在[)1,+∞上单调递增,∴g ′()x ≥g ′()1=0,g ()x 在[)1,+∞上单调递增,g ()x ≥g ()1=0.∴f ()x ≥()x -12.(3)设h ()x =x 2ln x -x -m ()x -12+1,()x ≥1,h ′()x =2x ln x +x -2m ()x -1-1,由(2)中知x 2ln x ≥()x -12+x -1=x ()x -1,x ln x ≥x -1,∴h ′()x ≥3()x -1-2m ()x -1=()3-2m ()x -1,当3-2m ≥0即m ≤32时,h ′()x ≥0,所以h ()x 在[)1,+∞单调递增,∴h ()x ≥h ()1=0,成立.当3-2m <0即m >32时,h ′()x =2x ln x +(1-2m )(x-1)(h ′()x )′=2ln x +3-2m ,令()h ′()x ′=0,得x 0=e 2m -32>1,当x ∈[]1,x 0时,h ′()x 单调递减,则h ′()x <h ′()1,所以h ()x 在[)1,x 0上单调递减,所以h ()x <h ()1=0,不成立.综上,m ≤32.(二)选考题22.解:(Ⅰ)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23.联立ìíîx 2+y 2-2y =0,x 2+y 2-23x =0,解得{x =0,y =0,或ìíîïïx y =32,所以C 2与C 1交点的直角坐标为(0,0)和32).(Ⅱ)曲线C 1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A 得到极坐标为(2sin α,α),B 的极坐标为.所以||AB =||2sin α-23cos α=4||||||sin(α-π3),当α=5π6时,||AB 取得最大值,最大值为4.23.解:(Ⅰ)由题意知,f (1)=|1-2a |-|1-a |>1,若a ≤12,则不等式化为1-2a -a +a >1,解得a <-1;若12<a <1,则不等式化为2a -1-(1-a )>1,解得a >1,即不等式无解;若a ≥1,则不等式化为2a -1+1-a >1,解得a >1,综上所述,a 的取值范围是(-∞,-1)⋃(1,+∞);(Ⅱ)由题意知,要使得不等式f (x )≤|y +2020|+|y -a |恒成立,只需[f (x )]max ≤[|y +2020|+|y -a |]min ,当x ∈(-∞,a ]时,|x -2a |-|x -a |≤-a ,[f (x )]max =-a ,因为|y +2020|+|y -a |≥|a +2020|,所以当(y +2020)(y -a )≤0时,[|y +2020|+|y -a |]min =|a +2020|,即-a ≤|a +2020|,解得a ≥-1010,结合a <0,所以a 的取值范围是[-1010,0].59。
上海市十一校2024届学业水平考试数学试题模拟卷(五)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()e ln mxf x m x =-,当0x >时,()0f x >恒成立,则m 的取值范围为( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e e⎛⎫ ⎪⎝⎭C .[1,)+∞D .(,e)-∞2.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.下列不等式正确的是( ) A .3sin130sin 40log 4>> B .tan 226ln 0.4tan 48<< C .()cos 20sin 65lg11-<<D .5tan 410sin 80log 2>>4.若数列{}n a 为等差数列,且满足5383a a a ++=,n S 为数列{}n a 的前n 项和,则11S =( ) A .27B .33C .39D .445.如图,已知三棱锥D ABC -中,平面DAB ⊥平面ABC ,记二面角D AC B --的平面角为α,直线DA 与平面ABC 所成角为β,直线AB 与平面ADC 所成角为γ,则( )A .αβγ≥≥B .βαγ≥≥C .αγβ≥≥D .γαβ≥≥6.若函数()xf x e =的图象上两点M ,N 关于直线y x =的对称点在()2g x ax =-的图象上,则a 的取值范围是( )A .,2e ⎛⎫-∞ ⎪⎝⎭B .(,)e -∞C .0,2e ⎛⎫ ⎪⎝⎭D .(0,)e7.已知函数()(1)(2)x ef x m x x e -=---(e 为自然对数底数),若关于x 的不等式()0f x >有且只有一个正整数解,则实数m 的最大值为( )A .32e e+B .22e e +C .32e e -D .22e e -8.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离9.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .113 B .4 C .133D .510.在三棱锥S ABC -中,4SB SA AB BC AC =====,6SC =则三棱锥S ABC -外接球的表面积是( )A .403πB .803πC .409πD .809π11.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥,则m α⊥C .若m β⊥,n β⊥,n α⊥,则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 12.执行如图所示的程序框图若输入12n =,则输出的n 的值为( )A .32B .2C .52D .3二、填空题:本题共4小题,每小题5分,共20分。
江苏省九年级中考数学模拟试卷(五)(考试时间:120分钟总分:130分)一、选择题(本题共10小题;第1~8题每小题3分,第9~10题每小题4分,共32分)下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的.1.下列计算正确的是( )A.2-2=-4 B.2-2=4 C.2-2=14D.2-2=-142.把多项式x2-4x+4分解因式的结果是()A.(x+2)2 B.(x-2)2 C.x(x-4)+4 D.(x+2)(x-2)3.观察统计图(见图1),下列结论正确的是()A.甲校女生比乙校女生少B.乙校男生比甲校男生少C.乙校女生比甲校男生多D.甲、乙两校女生人数无法比较4.函数y=kx+b(k≠0)与y=kx(k≠0)在同一坐标系中的图像可能是( )5.某城市计划经过两年的时间,将城市绿地面积从现在的144万m2提高到225万m2,则每年平均增长( )A.15% B.20% C.25% D.30%6.下面四个几何体中,俯视图为四边形的是( )7.100名学生进行20s跳绳测试,测试成绩统计如下表:则这次测试成绩的中位数m满足( )A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>708.不等式组213351xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是( )9.如图2所示,△ABC ≌△ADE 且∠ABC =∠ADE ,∠ACB =∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC =DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有 ( )A .1个B .2个C .3个D .4个10.如图3所示,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D(5,4),AD =2.若动点E 、F 同时从点O 出发,E 点沿折线OA →AD →DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点时停止,它们运动的速度都是1个单位长度/s .设E运动x s 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图像大致为 ( )二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.11.用四舍五入法,精确到0.1,对5.649取近似值的结果是_______.12.当x =-2时,代数式2531x x --的值是_______.13.如图4所示,在△ABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B =120°,则∠ANM =_______.14.如图5所示,A 是硬币圆周上一点,硬币与数轴相切于原点(A 与原点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A'重合,则点A'对应的实数是_______.15.如图6所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是_______.16.直线y =ax (a>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则4x 1y 2-3x 2y 1=_______. 17.如图所示,在梯形ABCD 中,AD ∥BC ,∠C =90°,BE 平分∠ABC 且交CD 于E ,E 为CD 的中点,EF ∥BC 交AB 于F ,EG ∥AB交BC 于G ,当AD =2,BC =12时,四边形BGEF 的周长为_______.18.对于二次函数y =x 2-2mx -3,有下列说法:①它的图像与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m =1;③如果将它的图像向左平移3个单位后过原点,则m =-1;④如果当x =4时的函数值与当x =时的函数值相等,则当x =时的函数值为-3. 其中正确的说法是_______.(把你认为正确说法的序号都填上)三、解答题(本题共11小题;共76分,解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:()03tan603π-︒--. 20.(本小题5分)解不等式组()213215x x +⎧<⎪⎨⎪-≤⎩,并把解集在数轴上表示出来.21.(本小题5分)已知a =2-1,b =2+1,求代数式a 3b +ab 3的值.22.(本小题6分)在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?23.(本小题6分)如图所示,在△ABC 中,AB =AC =10,BC =8.用尺规法作出BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.24.(本小题8分)如图所示,曲线C 是函数y =6x在第一象限内的图像,抛物线是函数y =-x 2-2x +4的图像.点P n (x ,y)(n =1,2,…)在曲线C 上,且x 、y 都是整数.(1)求出所有的点P n (x ,y).(2)在P n 中任取两点作直线,求所有不同直线的条数.(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率. (24题)(25题)25.(本小题6分)如图所示,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D .飞机在A 处时,测得山头C 、D 在飞机的前方,俯角分别为60°和30°.飞机飞行了6 km 到B 处时,往后测得山头C 的俯角为30°,而山头D 恰好在飞机的正下方.求山头C 、D 之间的距离.26.(本小题8分)如图所示,一次函数y =kx +b 的图像与x 、y轴分别交于点A(2,0)、B(0,4).(1)求该函数的解析式.(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.27.(本小题8分)如图所示,已知等边△ABC,以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点D作DF_l AC,垂足为点F.(1)判断DF与⊙O的位置关系,并证明你的结论.(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为4,求FH的长.(结果保留根号)28.(本小题9分)某市政府为落实保障性住房政策,已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到202X年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到202X年底,这两年中投入资金的平均年增长率(只需列出方程).(2)设(1)中方程的两根分别为x1、x2,且mx21-4m2x1x2+mx22的值为12,求m的值.29.(本小题10分)如图所示,在平面直角坐标系Oxy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=45.(1)求过A、C、D三点的抛物线的解析式.(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围.(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.参考答案一、选择题1.C 2.B 3.D 4.A 5.C 6.D 7.B 8.C 9.D 10.C 二、填空题11.5.6 12.5 13.60°14.π15.15416.-3 17.28 18.①④三、解答题19.-120.-32≤x<1解集在数轴上的表示如答图所示:21.622.甲、乙工程队单独完成任务分别需要4天、6天.23.22124.(1)P1(1,6)、P2(2,3)、P3(3,2)、P4(6,1).(2)6条.(3)1 325.山头C、D21.26.(1).y=-2x+4.(2)P的坐标为(0,1) 27.(1)相切(2)FH33 28.(1)10.5.(2)m=-6或m=129.(1)y=-23x2+23x+4(2)当y1 <y2时,-2<x<5.(3)34312教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
绝密★启用前2021年中考数学模拟星耀卷(五)考试范围:初中数学;考试时间:120分钟;共120分第I卷(选择题)一、单选题(每题3分,共30分)1.老师在“六城同创”活动中设计了以下几幅log o,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可求解.【详解】解:A、是中心对称图形,但不是轴对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项错误;故选:B【点睛】本题主要考查轴对称图形和中心对称图形的概念和特点,解题的关键是熟练掌握轴对称图形和中心对称图形的概念和特征进行判断.2.目前我国疫苗研发工作处于全球领先地位,其中灭活疫苗和腺病毒载体疫苗,两种技术路线共4个疫苗进入了三期临床.预计到今年年底,中国新冠疫苗的年产能可达到610000000剂.数据610000000用科学计数法表示正确的是()A .76110⨯B .86.110⨯C .96.110⨯D .86110⨯【答案】B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:610000000=86.110⨯. 故选:B .【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.某班级有20个女同学,22个男同学,班上每个同学的名字都写在一张小纸条上放入一个盒子搅匀如果老师随机地从盒子中取出1张纸条,则下列命题中正确的是( ) A .抽到男同学名字的可能性是50%B .抽到女同学名字的可能性是50%C .抽到男同学名字的可能性小于抽到女同学名字的可能性D .抽到男同学名字的可能性大于抽到女同学名字的可能性 【答案】D【分析】运用概率公式对各项进行逐一判断即可.【详解】解:A 、错误,抽到男同学名字的可能性是22÷(22+20)≈52%; B 、错误,抽到女同学名字的可能性是48%;C 、错误,由于抽到男同学的概率大,所以抽到男同学名字的可能性大于抽到女同学名字的可能性;D 、正确,由AB 可知抽到男同学名字的可能性大于抽到女同学名字的可能性. 故选:D .【点睛】本题考查概率的有关知识,需注意可能性的求法.4.在平面直角坐标系xoy 中,将抛物线22y x = 先向左平移3个单位长度,再向下平移4个单位长度,所得到的抛物线的表达式为( ) A .22(3)4y x =--B .22(3)4y x =++C .22(3)4y x =-+D .22(3)4y x =+-【答案】D 【分析】根据图象平移变换规则:左加右减,上加下减,据此解答即可. 【详解】解:∵抛物线22y x = 先向左平移3个单位长度,再向下平移4个单位长度,∴所得到的抛物线的表达式为22(3)4y x =+-, 故选:D . 【点睛】本题考查二次函数的图象与几何变换-平移,熟练掌握图象平移变换规则:左加右减,上加下减是解答的关键.5.等腰三角形的一个外角是80︒,则其底角是( )A .100︒B .10040︒︒或C .40︒D .不能确定【答案】C【分析】分两种情况讨论:顶角的外角是80°时,底角的外角是80°时,求出其三角形的内角即可得到结论;【详解】解:当顶角的外角是80°时,则顶角100°,底角为(180°-100°)÷2=40°,当底角的外角是80°时,底角为100°,不符合三角形的内角和, 故选:C .【点睛】本题考查等腰三角形性质、三角形外角性质、三角形内角和等知识点,画出图形熟练运用相关性质解题是关键.6.若关于x 的一元一次不等式组12x x m <≤⎧⎨>⎩有解,则m 的取值范围为( )A .2m <B .2m ≤C .1m <D .12m ≤<【答案】B 【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可. 【详解】解:∵不等式组12x x m <≤⎧⎨>⎩有解,∴m <2, 故选B . 【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.一次函数y kx b =+与y kbx =(k ,b 为常数,且kb≠0),它们在同一坐标系内的图象可能为( )A.B.C.D.【答案】C【分析】根据一次函数和正比例函数图象的性质逐项分析即可.【详解】A、一次函数:k>0,b<0,则kb<0,正比例函数应经过二、四象限,故错误;B、一次函数:k<0,b>0,则kb<0,正比例函数应经过二、四象限,故错误;C、一次函数:k<0,b>0,则kb<0,正比例函数应经过二、四象限,故正确;D、一次函数:k>0,b>0,则kb>0,正比例函数应经过一、三象限,故错误;故选:C.【点睛】本题考查一次函数与正比例函数的图象与性质,熟记函数图象的基本性质是解题关键.8.现在定义两种新运算,“▲”、“★”,对于任意两个整数,a▲b=a+b﹣1,a★b=a×b﹣1,则7★(﹣3▲5)的结果是()A.﹣6B.48C.6D.﹣48【答案】C【分析】根据新定义的两种运算按运算顺序进行计算即可.【详解】解:7★(﹣3▲5) =7★(-3+5-1) =7★1 =7×1-1 =6. 故答案为C .【点睛】本题主要考查了新定义运算和有理数的四则运算,理解并应用有理数的四则混合运算法则是解答本题的关键.9.广汽新能源汽车公司已经在长沙建成投产,随着市场对新能源汽车的需求越来越大,为了满足市场需求,该厂更新了生产线,加快了生产速度,现在平均每月比更新技术前多生产300台新能源汽车,现在生产5000台新能源汽车所需时间与更新生产线前生产4000台新能源汽车所需时间相同.设更新技术前每月生产x 台新能源汽车,依题意得( )A .40005000300x x =+ B .40005000300x x =- C .40005000300x x =- D .40005000300x x=+ 【答案】A【分析】设更新技术前每月生产x 台新能源汽车,更新技术后每月生产()300x +台新能源汽车,根据工作时间=工作总量÷工作效率结合现在生产5000台新能源汽车所需时间与更新技术前生产4000台新能源汽车所需时间相同,即可得出关于x 的分式方程,此题得解. 【详解】解:更新技术前每月生产x 台新能源汽车,更新技术后每月生产()300x +台新能源汽车, 依题意,得:40005000300x x =+. 故选:A .【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.如图,以点O 为圆心,AB 为直径的半圆经过点C ,若C 为弧AB 的中点,若4AB =,则图中阴影部分的面积是( )A .πB .22π+C .2D .2π+【答案】A【分析】根据AB 是O 的直径,C 为弧AB 的中点,得到AOC BOC ≅,即可得解;【详解】★AB 是O 的直径,C 为弧AB 的中点,∴CO AB ⊥,114222AO BO AB ===⨯=, ∴90AOC BOC ∠=∠=︒, ∴AOC BOC ≅,∴阴影部分的面积2902360ππ=⨯⨯=; 故答案选A .【点睛】本题主要考查了扇形面积的计算,结合垂径定理和三角形全等计算是解题的关键.第II 卷(非选择题)二、填空题(每题3分,共18分)11.计算:11(1)3-⎛⎫-+= ⎪⎝⎭______;【答案】4【分析】先算乘方,再把结果相加.【详解】解:原式=1+3=4,故答案为4.【点睛】本题考查整数指数幂的运算,熟练掌握零指数幂和负整数指数幂的计算方法是解题关键.12.若21202a b⎛⎫-++=⎪⎝⎭,则()2019ab=_____.【答案】1-【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【详解】解:∵|a﹣2|+(b+12)2=0,∴a-2=0,b+12=0,∴a=2,b=-12,∴(ab)2019=[2×(﹣12)]2019=﹣1.故答案为:-1.【点睛】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP=2,则CD =_____.【答案】【分析】先根据AB=12求出OP的长,连接OC,在Rt△OPC中,利用勾股定理即可求出PC的长,进而可得出CD的长.【详解】解:连接OC,∵AB=12∴OB=16 2AB=又BP=2∴OP=OB-PB=6-2=4在Rt△OPC中,PC===∵OB过圆心,OB⊥CD∴CD=2PC=2×故选:C【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.如图,在Rt ABC中,∠ACB=90°,CD⊥AB于D,若AD=2,BD=8,则CD =______,AC=_____【答案】4【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB于D,易证得△ACD∽△CBD,然后由相似三角形的对应边成比例,求得CD的长,然后利用勾股定理,求得AC的长.【详解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD,∴AD:CD=CD:BD,∴CD4,在Rt△ACD中,AC故填:4,【点睛】此题考查了相似三角形的判定与性质以及勾股定理,难度适中,注意掌握数形结合思想的应用.15.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?【答案】这个苗圃园垂直于墙的一边长为12米.【分析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可.【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =, ★30218x -≤, ★6x ≥, ★12x =.答:这个苗圃园垂直于墙的一边长为12米.【点睛】本题考查了长方形的周长公式的运用,长方形的面积公式的运用,一元二次方程的解法的运用,解答时根据长方形的面积公式建立方程是关键,注意实际应用中的取值范围.16.如图,已知B A 、分别在反比例函数9,ky y x x=-=上,当AO BO ⊥时,:3:4BO AO =,则k =_____.【答案】16【分析】过点A、B分别作AC⊥x轴,BD⊥x轴,设点B9,aa⎛-⎫⎪⎝⎭,则有,9aOD a BD=-=-,然后由题意易得△BOD∽△OAC,进而根据相似三角形的性质可得OC、AC的值,最后问题可求解.【详解】解:过点A、B分别作AC⊥x轴,BD⊥x轴,如图所示:∴∠BDO=∠OCA=90°,∴∠DBO+∠DOB=90°,∵BO⊥AO,∴∠BOD+∠AOC=90°,∴∠DBO=∠COA,∴△BOD∽△OAC,∵:3:4BO AO=,∴34 BD OD BOOC AC AO===,设点B 9,a a ⎛-⎫ ⎪⎝⎭, ∴,9aOD a BD =-=-, ∴312,4OC AC a a =-=-, ∴点A 124,3a a⎛⎫-- ⎪⎝⎭,∴124163a k a ⎛⎫=-⨯-= ⎪⎝⎭; 故答案为16.【点睛】本题主要考查反比例函数的图像与性质及相似三角形的性质与判定,熟练掌握反比例函数的图像与性质及相似三角形的性质与判定是解题的关键. 三、解答题(72分) 计算:(每题4分,共8分)(12-(2)先化简,再求值:22169211x x x x x -++⎛⎫-÷ ⎪+-⎝⎭,其中x =2; 【答案】(1)2(2)13x x -+,15. 【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】(1)原式()()()()2211111(3)x x x x x x +--+-=⋅++,()21221(3)x x x x -=+-+⋅+,()213(3)x x x -=+⋅+,13x x -=+, 当x =2时,原式211235-==+.(2)解:原式42=+--2=.【点睛】本题考查了二次根式混合运算,熟练掌握二次根式的运算法则是解决本题的关键. 18.解方程组和不等式(组):(每题4分,共8分)(1)解方程组453212x y x y -=⎧⎨+=⎩(2)解不等式组:()()()26352141x x x x ⎧->+⎪⎨--≤+⎪⎩【答案】(1)23x y =⎧⎨=⎩;(2)4x <-【分析】(1)利用加减消元法解方程组即可;(2)首先分别解出两个不等式组,然后取共同部分即可得出答案.【详解】(1)453212x y x y ①②-=⎧⎨+=⎩①×2+②得1122x =,解得2x =,将2x =代回①中得45y ⨯-=,解得3y =,∴方程组的解为23x y =⎧⎨=⎩;(2)()()()26352141x x x x ⎧->+⎪⎨--≤+⎪⎩①②解①得,4x <-, 解②得,15x ≤,∴不等式组的解集为4x <-.【点睛】本题主要考查解方程组及不等式组,掌握解方程组及不等式组的方法是解题的关键. 19.(7分)自我校深化课程改革以来,初中数学校本课程开设了:A .利用影长求物体高度;B ,制作视力表;C .设计遮阳棚;D .池塘里有多少条鱼.四类数学实践活动选修课,供学生们选择,其中九年级11班和12班的两个班的同学将选择结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共______名学生选修了数学实践活动课,扇形统计图中B 所对应的扇形的圆心角为______度;(2)补全条形统计图;(3)选修C 类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人来帮助学校设计遮阳棚,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.答案】(1)60名,144°;(2)15人,图见解析;(3)23. 【分析】(1)用C 类别人数除以其所占百分比可得总人数,用360°乘以C 类别人数占总人数的比例即可得;(2)总人数乘以A 类别的百分比求得其人数,用总人数减去A ,B ,C 的人数求得D 类别的人数,据此补全图形即可;(3)画树状图展示12种等可能的结果数,再找出所抽取的两人恰好是1名女生和1名男生的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生人数为1220%60÷=(名), 则扇形统计图中B 所对应的扇形的圆心角为2436014460︒⨯=︒. (2)A 类别人数为6015%9⨯=(人),则D 类别人数为()609241215-++=(人),(3)画树状图为:共有12种等可能的结果数,其中所抽取的两人恰好是1名女生和1名男生的结果数为8,所以所抽取的两人恰好是1名女生和1名男生的概率为82123=. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.20.(7分)已知:如图,等腰三角形ABC 中,AC BC =,90ACB ∠=︒,直线l 经过点C (点A 、B 都在直线l 的同侧),AD l ⊥,BE l ⊥,垂足分别为D 、E .(1)求证:ADC CEB △≌△;(2)请判断DE 、BE 、AD 三条线段之间有怎样的数量关系,并证明. 【答案】(1)见解析;(2)DE AD BE =+,证明见解析 【分析】(1)根据题意找出三角形全等条件证明即可; (2)由(1)中结论等量代换即可得出结果DE AD BE =+. 【详解】(1)证明:∵AD l ⊥,BE l ⊥,90ACB ∠=︒, ∴90ADC ACB CEB ∠=∠=∠=︒,1809090DCA ECB ∠+∠=︒-︒=︒,∴DAC ECB ∠=∠, 在ADC 和CEB △中,ADC CEB DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()≌ADC CEB AAS . (2)DE AD BE =+ 证明:ADC CEB △≌△ ∴AD CE = DC EB = ∵DE CE DC =+ ∴DE AD BE =+【点睛】此题考查三角形全等的证明,涉及到角角边及全等三角形的性质,熟练掌握“一线三垂直”模型,是解题的关键.21.(8分)如图,点F 在平行四边形ABCD 的对角线AC 上,过点F 、B 分别作AB 、AC 的平行线相交于点E ,连接BF ,已知ABF FBC DAC ∠=∠+∠.(1)求证:四边形ABEF 是菱形; (2)若6BE =,10AD =,1tan 2CBE ∠=,求AC 的长.【答案】(1)证明见解析;(2)4AC =【分析】(1)根据三角形外角的性质可得∠AFB=∠FBC+∠FCB ,再根据ABF FBC DAC ∠=∠+∠可证AB=AF ,由一组临边相等的平行四边形是菱形可得结论;(2)作DH ⊥AC 于点H ,根据平行四边形的性质可得1tan 2tan 1tan 2CBE ∠=∠=∠=,在Rt★ADH 和Rt★DCH 中依次解直角三角形即可求得AH 和HC ,从而求得AC . 【详解】(1)证明:∵EF ∥AB ,BE ∥AF ,∴四边形ABEF 是平行四边形. ∵四边形ABCD 为平行四边形, ★AD//BC★ ★★DAC=★FCB★ ★★ABF=★FBC+★DAC ★ ★★ABF=★FBC+★FCB★ ∵∠AFB=∠FBC+∠FCB , ∴∠ABF=∠AFB , ∴AB=AF , ∴▱ABEF 是菱形;(2)解:作DH ⊥AC 于点H ,S∵BE ∥AC , ∴∠1=∠CBE ,∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB=CD , ★★2=★1,∴1tan 2tan 1tan 2CBE ∠=∠=∠=, Rt★ADH 中,设DH=x ,则tan 2AH DH CBD x =÷∠=,根据勾股定理22(2)100x x +=,解得2x x ==(舍掉负值),即AH DH == ★四边形ABEF 为菱形, ★CD=AB=BE=6,在Rt★DCH 中,根据勾股定理222DH HC CD +=,即 2226HC +=,解得4HC =(舍掉负值),∴4AC AH HC =+=.【点睛】本题主要考查了菱形的性质及判定定理,锐角三角函数、勾股定理等.(1)中掌握菱形的判定定理,并能结合题意灵活运用是解题关键;(2)能正确构造辅助线,构造直角三角形是解题关键. 22.(10分)如图,AB 为O 的直径,弦CD 平分ACB ∠交AB 于E ,P 为AB 延长线上一点且PC PE =. (1)求证:PC 为O 的切线;(2)若10AE =,DE =O 的半径及PC 的长.【答案】(1)证明见解析;(2)8R =,PC 的长为15.【分析】(1)连接OC ,OD ,先由已知可证⊥OD AB ,从而证得90D DEO ∠+∠=︒,再等量代换即可得到90OCD PCE D DEO ∠+∠=∠+∠=︒,从而证得OC PC ⊥,结论得证;(2)设O 的半径为R ,根据勾股定理列出方程求出2R =或8R =,又因OE OB <,故8R =,设PC PE x ==,则2OP PE OE x =+=+.根据勾股定理列出方程解得15x =,即PC 的长为15.【详解】解:(1)证明:连接OC 、OD★CD 平分ACB ∠,★AD BD =即半径OD 平分弧ADB ,★⊥OD AB ,(垂径定理的推论)所以90D DEO ∠+∠=︒而OC OD =,PC PE =,★D OCD ∠=∠,PEC PCE ∠=∠,又★DEO PEC ∠=∠,★DEO PCE ∠=∠.90OCD PCE D DEO ∠+∠=∠+∠=︒,即OC PC ⊥,而OC 为O 的半径, ★PC 为O 的切线(2)解:设O 的半径为R ,则10OE AE OA R =-=-在Rt DEO △中:222OD OE DE +=即:()(22210R R +-= 解得:2R =或8R =而OE OB <即10R R -<解得5R >,★8R =,即O 的半径为8,★102OE R =-=,设PC PE x ==,2OP PE OE x =+=+.在Rt POC △中:222PC OC OP +=即:()22282x x +=+解得:15x =即PC 的长为15.【点睛】本题考查了切线的判断和勾股定理的应用等知识,掌握相关知识是解题的关键. 23.(10分)疫情期间,口罩成为人们一种自我保护的必备品.某药房购进并销售甲、乙、丙三种口罩,已知购进的批发价和售出的零售价如下表:(1)药房第一次仅购进甲,乙口罩,费用共991元,且乙的数量比甲的数量少3盒,求购进的甲,乙口罩盒数.(2)第一次购进的口罩售完后,药房把销售收入(销售收入=零售价x 销售数量)全部用于购进甲、乙、丙三种口罩,购进的甲、乙口罩盒数相等,甲口罩的批发价比原来提高了20%,乙口罩的批发价比原来降低%a .①如果药房第二次购进的甲、乙口罩分别花费为216元,243元,求a 的值.②在a 值不变的前提下,如果药房购进的甲、乙、丙口罩总盒数为m 盒,甲种口罩数量为n盒,甲种口罩供货商仅能提供100到150盒,求满足条件的购进方案有哪几种?哪种方案所获利润最大,并求出最大值?【答案】(1)第一次购入乙口罩197盒,甲口罩200盒;(2)①10;②购进方案有甲口罩购买100盒和150盒,方案1获利最大,最大值为2010元.【分析】(1)设第一次购入乙口罩x 盒,甲口罩(x+3)盒,根据购进甲、乙口罩费用共991元列方程求解即可;(2)根据题意可求出第二次购进甲口罩的数量,即可得乙口罩的数量以及批发价,从而可得a 的值;②确定丙口罩的购买数量可得2种购买方案,计算出利润进行比较即可.【详解】解:设第一次购入乙口罩x 盒,甲口罩(x+3)盒,根据题意得,2(3)3991x x ++=解得,x=197,197+3=200(盒)所以,第一次购入乙口罩197盒,甲口罩200盒;(2)销售收入为:2003+1975=1585⨯⨯(元)设所获利润为W ,①购进甲口罩的数量为:2162(120%)90÷⨯+=(盒)所以,乙口罩购进90盒,乙口罩的批发价为:24390 2.7÷=(元)则3(1%) 2.7a ⨯-=解得,a=10②在a 值不变的前提下,即甲口罩批发价为2.4元,乙口罩为每盒2.7元,则出售一盒甲口罩获利0.6元,出售一盒乙口罩获利2.3元,出售一盒丙口罩获利8元, 第一次销售收入全部用来购进口罩,丙口罩批发价为每盒5元,则购买丙口罩用的钱为整数,设购买甲口罩和乙口罩共用y 元,甲口罩和乙口罩盒数相等,即:(2.4 2.7) 5.ln(y n n =+=为整数),100150n ≤≤,则n 的取值可能为100,110,120,130,140,150,当n 取110,120,130,140时,丙口罩的购买数量为15855y -不为整数, 所以,共有2种购买方案:方案1,甲口罩和乙口罩各购进100盒,则购入丙口罩的数量为:1585 5.11002155-⨯=(盒) 利润10.6100 2.310082152010W =⨯+⨯+⨯=(元 )方案2,甲口罩和乙口罩各购进150盒,则购入丙口罩的数量为:1585 5.11501645-⨯=(盒) 利润20.6150 2.315081641747W =⨯+⨯+⨯=(元 )∴12W W >综上所述,购进方案有甲口罩购买100盒和150盒,方案1获利最大,最大值为2010元.【点睛】本题考查一元一次方程的应用以及方案的选择,解题的关键是理解题意、搞清楚进价、销售量、利润之间的关系.24.(12分)如图,在直角坐标系中,点A 的坐标为(-2,0),连结0A ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(注意:本题中的结果如果有根号均保留根号)【答案】(1)(1);(2)2y x x=+;(3)存在,(-1【分析】(1)根据A点坐标,可得到OA、OB的长,过B作BD⊥x轴于D,由于∠BOD=60°,通过解直角三角形,即可求得B点的坐标;(2)根据A、O、B三点坐标,即可利用待定系数法求出该抛物线的解析式;(3)由于A、O关于抛物线的对称轴对称,若连接BA,那么直线BA与抛物线对称轴的交点即为所求的C点,可先求出直线AB的解析式,联立抛物线的对称轴方程即可求出C点的坐标.【详解】解:(1)过B作BD⊥x轴于D∵A (-2,0),∴OA=OB=2Rt △OBD 中,∠BOD=60°,OB=2,∴∠OBD=30°,∴OD=1,BD=3故B (1,3);(2)∵A (-2,0),O (0,0),且抛物线过点A ,点C ,∴设抛物线的解析式为y=a (x -0)(x+2),代入点B (1)()()1012a =-⨯+得, 因此2x ; (3)如图,抛物线的对称轴是直线x=-1,∵A 、O 两点关于直线x=-1对称,∴当点C 位于对称轴与线段AB 的交点时,OC+CB 的值最小也就是AB 的长,此时OC+BC+OB 即△BOC 的周长最小;设直线AB 为y=kx+b ,所以20k b k b ⎧+⎪⎨-+⎪⎩=,解得3k b ⎧⎪⎪⎨⎪⎪⎩,因此直线AB 为, 当x=-1时,y=3, 因此点C 的坐标为(-1,3).。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}2.=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.454.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种 D.36种5.设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.36.设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.57.正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3 B.C.1 D.8.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN=45°,则x 0的取值范围是( ) A .[﹣1,1]B .[﹣,]C .[﹣,]D .[﹣,]二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列命题中,是真命题的是( )A .函数()()22231m m f x m m x --=--是幂函数的充分必要条件是2m =B .若:(0,),1ln p x x x ∀∈+∞->,则000:(0,),1ln p x x x ⌝∃∈+∞-≤C .若()()()()62601263222x a a x a x a x +=+++++++,则315a =D .若随机变量ξ服从正态分布()21,N σ,(4)0.79P ξ≤=,则(2)0.21P ξ≤-=10.已知点()()()1,2,5,2,,4A B C k ,若ABC 为直角三角形,则k 的可能取值为( )A .1B .2C .3D .511.已知直线l :20kx y k -+=和圆O :222x y r +=,则( )A .存在k 使得直线l 与直线0l :220x y 垂直B .直线l 恒过定点()2,0C .若4r >,则直线l 与圆O 相交D .若4r =,则直线l 被圆O 截得的弦长的取值范围为(23,8⎤⎦12.已知圆22:(5)(5)16C x y -+-=与直线:240l mx y +-=,下列选项正确的是( )A .直线l 与圆C 不一定相交B .当1615m ≥时,圆C 上至少有两个不同的点到直线l 的距离为1 C .当2m =-时,圆C 关于直线l 对称的圆的方程是22(3)(3)16x y +++=D .当1m =时,若直线l 与x 轴,y 轴分别交于A ,B 两点,P 为圆C 上任意一点,当||32PB =PBA∠最大或最小二、填空题:本题共4小题,每小题5分,共20分.13.(x+a )10的展开式中,x 7的系数为15,则a=14.(5分)函数f (x )=sin (x+φ)﹣2sin φcosx 的最大值为 .15.(5分)偶函数y=f (x )的图象关于直线x=2对称,f (3)=3,则f (﹣1)= .16.(5分)数列{a n }满足a n+1=,a 8=2,则a 1= .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.四边形ABCD 为圆内接四边形,1AD BC ==,3AC =(1)若6DAC ,求AB ; (2)若2AB CD =,求四边形ABCD 的面积.18.已知函数f (x )=excosx ﹣x .(1)求曲线y=f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间[0,]上的最大值和最小值.19如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.20.某学校田径运动会跳远比赛规定:比赛设立及格线,每个运动员均有3次跳远机会,若在比赛过程中连续两次跳不过及格线,则该运动员比赛结束.已知运动员甲跳过及格线的概率为23,且该运动员不放弃任何一次跳远机会.(1)求该运动员跳完两次就结束比赛的概率;(2)设该运动员比赛过程中跳过及格线的总次数为ξ,求ξ的概率分布.21已知双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线方程为y=√2x,右准线方程为x=√33.(1)求双曲线C的标准方程;(2)过点P(0,−1)的直线l分别交双曲线C的左、右两支于点A,B,交双曲线C的两条渐近线于点D,E(D在y 轴左侧).①是否存在直线l,使得OA⊥OB?若存在,求出直线l的方程,若不存在,说明理由;②记△ODE和△OAB的面积分别为S1,S2,求S1S2的取值范围.22.已知函数f(x)=excosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.。
2024年北师大版数学中考仿真模拟试题(五)一、单选题1.河湟剪纸被列入青海省第三批省级非物质文化遗产名录,是青海劳动人民结合河湟文化,创造出独具高原特色的剪纸.以下剪纸图案既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列事件中,是必然事件的是( )A .任意画一个三角形,其内角和是180︒B .任意买一张电影票,座位号是单号C .掷一次骰子,向上一面的点数是3D .射击运动员射击一次,命中靶心3.用配方法解一元二次方程2680x x -+=,配方后得到的方程是( ) A .()2628x +=B .()2628x -=C .()231x +=D .()231x -=4.如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( ).A .1B .23C .13D .195.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是( )A .B .C .D .6.如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB ,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC 长为m ,则大树AB 的高为( )A .()cos sin m αα-B .()sin cos m αα-C .()cos tan m αα-D .sin cos m mαα- 7.如图,等圆1O e 和2O e 相交于A ,B 两点,1O e 经过2O e 的圆心2O ,若122O O =,则图中阴影部分的面积为( )A .2πB .43πC .πD .23π8.如图,矩形OABC 的顶点A ,C 分别在y 轴、x 轴的正半轴上,点D 在AB 上,且14AD AB =,反比例函数()0ky k x=>的图象经过点D 及矩形OABC 的对称中心M ,连接,,OD OM DM .若ODM △的面积为3,则k 的值为( )A .2B .3C .4D .59.如图,在边长为4的正方形ABCD 中,点G 是BC 上的一点,且3BG GC =,DE AG ⊥于点E ,BF DE P ,且交AG 于点F ,则tan EDF ∠的值为( )A .14B .13C .25D .1210.如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),,对称轴为直线2x =.则下列结论正确的有( ) ①0abc <; ②0a b c -+>;③方程20cx bx a ++=的两个根为1211,26x x ==-;④抛物线上有两点()11,P x y 和()22,Q x y ,若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个二、填空题11.将一个三角尺()30A ∠=︒按如图所示的位置摆放,直线a b ∥,若20ABD ∠=︒,则α∠的度数是.12.如图,在ABCD Y 中,60D ∠=︒.以点B 为圆心,以BA 的长为半径作弧交边BC 于点E ,连接AE .分别以点,A E 为圆心,以大于12AE 的长为半径作弧,两弧交于点P ,作射线BP 交AE 于点O ,交边AD 于点F ,则OFOE的值为.13.2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的抛物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点H 距地面20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A '、B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面米.14.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是. 15.如图,在正方形ABCD 中,8AB =,点E 在边AD 上,且4AD AE =,点P 为边AB 上的动点,连接PE ,过点E 作EF PE ⊥,交射线BC 于点F ,则EFPE=.若点M 是线段EF 的中点,则当点P 从点A 运动到点B 时,点M 运动的路径长为.16.如图,在直角坐标系中,A e 与x 轴相切于点,B CB 为A e 的直径,点C 在函数(0,0)ky k x x=>>的图象上,D 为y 轴上一点,ACD V 的面积为6,则k 的值为.三、解答题17.计算:()201π 3.1422cos302-⎛⎫+--︒ ⎪⎝⎭.18.先化简,再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭,其中a 是使不等式112a -≤成立的正整数.19.教室里的投影仪投影时,可以把投影光线CA ,CB 及在黑板上的投影图像高度AB 抽象成如图所示的ABC V ,90BAC ∠=︒.黑板上投影图像的高度120cm AB =,CB 与AB 的夹角33.7B ∠=︒,求AC 的长.(结果精确到1cm .参考数据:sin33.70.55︒≈,cos33.70.83︒≈,tan33.70.67︒≈)20.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).(1)作出ΔABC 关于原点O 成中心对称的ΔA 1B 1C 1.(2)作出点A 关于x 轴的对称点A'若把点A'向右平移a 个单位长度后落在ΔA 1B 1C 1的内部(不包括顶点和边界),求a 的取值范围.21.随着科技的进步,购物支付方式日益增多,为了解某社区居民支付的常用方式(A 微信,B 支付宝,C 现金,D 其他),某学习小组对红星社区部分居民进行问卷调查,根据查结果,绘制成如图统计图.根据统计图表中的信息,解答下列问题:(1)a =______,b =______,在扇形统计图中C 种支付方式所对应的圆心角为______度; (2)本次调查中用现金支付方式的居民里有2名男性,其余都是女性,现从该种支付方式中随机选2名居民参加线上支付方式培训,求恰好都是女性的概率.22.如图,在平面直角坐标系xOy 中,O 为坐标原点,直线2y x =+交y 轴于点A ,交x 轴于点B ,与双曲线()0k y k x=≠在一,三象限分别交于C ,D 两点,12AB BC =,连接CO ,DO .(1)求k 的值; (2)求CDO V 的面积.23.如图,四边形ABCD 内接于O e ,AB 为O e 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O e 的切线. (2)若10BE =,2sin 3BDC ∠=,求O e 的半径. 24.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本). (1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值;(2)设这批淡水鱼放养t 天后的质量为m (kg ),销售单价为y 元/kg .根据以往经验可知:m与t 的函数关系为()2000005010015000(50100)t m t t ⎧≤≤=⎨+<≤⎩;y 与t 的函数关系如图所示.①分别求出当050t ≤≤和50100t <≤时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)25.在矩形ABCD 中,2AB =,AD =E 在边BC 上,将射线AE 绕点A 逆时针旋转90°,交CD 延长线于点G ,以线段AE ,AG 为邻边作矩形AEFG .(1)如图1,连接BD ,求BDC ∠的度数和DGBE的值; (2)如图2,当点F 在射线BD 上时,求线段BE 的长;(3)如图3,当E A E C =时,在平面内有一动点P ,满足PE EF =,连接PA ,PC ,求P A P C +的最小值.26.如图,抛物线21y ax bx c =++的图象经过(6,0)A -,(2,0)B -,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N 两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?。
图1一、单项选择题1.已知集合A ={}x |-1≤x ≤2,B ={}0,2,4,则A ⋂B =().A.{}0,2,4 B.{}0,2C.{}x |0≤x ≤4 D.{}x |-1≤x ≤2或x =42.设i 是虚数单位,z ()1+i =i ,则||z =().A.12B.1C. D.23.在平面直角坐标系中,O为坐标原点,A ()4,3,B ()-1,3,则∠AOB 的余弦值为().A. B.C. D.4.已知a ,b 为两条不同的直线,α,β为两个不同的平面,则下列结论正确的是().A.若α//β,a ⊂α,b ⊂β,则a //bB.若a ⊂α,b ⊂β,a //b ,则α//βC.若α⋂β=a ,b ⊂β,b ⊥a ,则α⊥βD.若α⋂β=l ,α⊥β,a ⊂α,a ⊥l ,a //b ,则b ⊥β5.在五边形ABCDE 中 EB =a ,AD =b,M ,N 分别为AE ,BD 的中点,则MN =().A.32a +12b B.23a+13b C.12a +12b D.34a+14b 6.命题p :关于x 的不等式ax 2+ax -x -1<0的解集为()-∞,-1⋃æèöø1a ,+∞的一个充分不必要条件是().A.a ≤-1B.a >0C.-2<a <0D.a <-27.清明节前夕,某校团委决定举办“缅怀革命先烈,致敬时代英雄”主题演讲比赛,经过初赛,共10人进入决赛,其中高一年级2人,高二年级3人,高三年级5人,现采取抽签方式决定演讲顺序,则在高二年级3人相邻的前提下,高一年级2人不相邻的概率为().A.112B.13C.12 D.348.若不等式m cos x -cos 3x -18≤0对任意x ∈æèöø0,π2恒成立,则实数m 的取值范围是().A.æèùû-∞,-94 B.(]-∞,-2C.æèùû-∞,94 D.æèùû-∞,98二、多选题9.已知0<log 12a <log 12b <1,则下列说法正确的是().A.1>a 2>b 2>14B.2>1a >1b >1C.a b -1>b a -1D.1e>e -b >1e 10.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图1所示,则下列结论正确的是().A.f (x )的最小正周期为2B.把y =f (x )图象上所有点向右平移π12个单位长度后得到函数g (x )=2cos 2x 的图象C.f (x )在区间[π2,11π12]上单调递减D.(π6,0)是y =f (x )图象的一个对称中心11.提丢斯·波得定律是关于太阳系中行星轨道的一个简单的几何学规则,它是在1766年由德国的一位中学老师戴维斯·提丢斯发现的,后来被柏林天文台的台长波得归纳成一条定律,即数列{}a n :0.4,0.7,1.6,2.8,5.2,10,19.6,…,表示的是太阳系第n 颗行星与太阳的平均距离(以天文单位A .U .为单位).现将数列{}a n 的各项乘以10后再减4,得到数列{}b n ,可以发现数列{}b n 从第3项起,每项是前一项的2倍,则下列说法正确的是().A.数列{}b n 的通项公式为b n =3×2n -2B.数列{}a n 的第2021项为0.3×22020+0.4C.数列{}a n 的前n 项和S n =0.4n +0.3×2n -1-0.3D.数列{}nb n 的前n 项和T n =3()n -1∙2n -112.在一张纸上有一圆C :()x +22+y 2=r 2()r >0与点M ()m ,0()m ≠-2,折叠纸片,使圆C 上某一点M ′好与点M 重合,这样的折法每次都会留下一条直线折世世世世世世世世世世世世世世世世世53高考链接痕PQ ,设折痕PQ 与直线M ′C 的交点为T ,则下列说法正确的是().A.当-2-r <m <-2+r 时,点T 的轨迹为椭圆B.当r =1,m =2时,点T 的轨迹方程为x 2-y 23=1C.当m =2,1≤r ≤2时,点T 的轨迹对应曲线的离心率取值范围为[]2,4D.当r =22,m =2时,在T 的轨迹上任取一点S ,过S 作直线y =x 的垂线,垂足为N ,则△SON (O 为坐标原点)的面积为定值三、填空题13.正态分布在概率和统计中占有重要地位,它广泛存在于自然现象、生产和生活实践中,在现实生活中,很多随机变量都服从或近似服从正态分布.在某次大型联考中,所有学生的数学成绩X ~N ()100,225.若成绩低于m +10的同学人数和高于2m -20的同学人数相同,则整数m 的值为_______.14.已知抛物线x 2=4y ,其准线与y 轴交于点P ,则过点P 的抛物线的切线方程为_______.15.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,其中A =π3,b +c =4,M 为线段BC 的中点,则||AM 的最小值为_______.16.已知四棱锥P -ABCD 的底面为正方形,PA =PB =PC =PD ,AB =2,若四棱锥P -ABCD 的体积为43,则以点P 为球心,以2为半径的球的表面与四棱锥侧面PAB 交线的长度约为_______,该四棱锥P -ABCD 外接球的体积为_______.(参考数据tan 35°≈).四、解答题17.在①S 8=72,②S 5=6a 2,③S 6=S 4+a 5这三个条件中任选一个,补充在下面问题中,并完成解答.问题:已知等差数列{a n }的前n 项和为S n ,a 3=6,________.若数列{b n }满足b n =2a n ,求数列{a n +b n }的前n 项和T n .18.已知等差数列{}a n 的前n 项和为S n ,且S 4=S 5=-20.(1)求数列{}a n 的通项公式;(2)已知数列{}b n 是以4为首项,4为公比的等比数列,若数列{}a n 与{}b n 的公共项为a m ,记m 由小到大构成数列{}c n ,求{}c n 的前n 项和T n .19.如图2,已知圆台O 1O 的下底面半径为2,上底面半径为1,母线与底面所成的角为π3,AA 1,BB 1为母线,平面AA 1O 1O ⊥平面BB 1O 1O ,M 为BB 1的中点,P 为AM 上的任意一点.(1)证明:BB 1⊥OP ;(2)当点P 为线段AM 的中点时,求平面OPB 与平面OAM 所成锐二面角的余弦值.图220.机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让行人”.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让行人”行为统计数据:月份违章驾驶员人数112021053100495580(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程y =b x +a ;(2)预测该路口9月份的不“礼让行人”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查70人,调查驾驶员不“礼让行人”行为与驾龄的关系,得到下表:驾龄不超过1年驾龄1年以上不礼让行人2416礼让行人1614能否据此判断有97.5%的把握认为“礼让行人”行为与驾龄有关?参考公式和数据:k 2=n (ad -bc )2(a +b )(c +d )(b +d )(其中n =a +b +c +d ).P (k 2≥k 0)k 00.152.0720.102.7060.053.8410.0255.0240.0106.63521.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为12,过椭圆的左、右焦点F 1,F 2分别作倾斜角为π3的两条直线,且这两条直线之间的距离为3.54高考链接(1)求椭圆E 的标准方程;(2)如图3,过F 2与坐标轴不垂直的直线l 与椭圆交于A ,B 两点.过点A 作与x 轴垂直的直线与椭圆交于点Q ,求证:直线QB 过定点.图322.已知函数f (x )=e x-1,g (x )=a sin x ,a ∈R .(1)若a =-1,证明:当x ≥0时,f (x )≥g (x );(2)讨论φ(x )=f (x )-g (x )在x ∈[0,π]上零点的个数.参考答案及解析一、单项选择题1-8BCCDC DDA二、多项选择题9.ACD ;10.CD ;11.CD ;12.ACD.三、填空题;14.x -y -1=0,或x +y +1=0;15.3;16.;9π2.四、解答题17.解:选择①,设公差为d ,因为S 8=72,a 3=6,所以ìíî8a 1+28d =72,a 1+2d =6,解得ìíîa 1=2,d =2,所以a n =2n .因为b n =2a n ,所以b n =22n =4n ,a n +b n =2n +4n ,T n =2(1+2+...+n )+41+42+ (4)=n (n +1)+4(1-4n )1-4=43(4n -1)+n (n +1)=4n +13+n 2+n -43.选择②,设公差为d ,因为S 5=6a 2,所以5a 3=6a 2.因为a 3=6,所以a 2=5,所以d =1,所以a n =n +3.因为b n =2a n ,所以b n =2n +3=8×2n ,所以a n +b n =8×2n +n +3,T n =8(21+22+…+2n )+(1+2+…+n )+3n=8×2(1-2n )1-2+n (n +1)2+3n=16(2n -1)+n (n +1)2+3n =2n +4+12n 2+72n -16.选择③,设公差为d ,因为S 6=S 4+a 5,可得S 6-S 4=a 5,即a 6+a 5=a 5,所以a 6=0.因为a 3=6,所以d =-2,所以a n =-2n +12.因为b n =2a n ,所以b n =2-2n +12=212×2-2n ,T n =-2(1+2+…+n )+12n +212×(4-1+4-2+…+4-n )=-n (n +1)+12n +212×(14+142+…+14n )=2123[1-(14)n]-n 2+11n .18.解:(1)设等差数列{}a n 的公差为d ,因为S 4=S 5=-20,所以a 5=S 5-S 4=0.因为S 5=5a 3=-20,所以a 3=-4,所以d =a 5-a35-3=2,所以a n =a 5+()n -5d =2n -10.(2)由题意知b n =4×4n -1=4n .因为a m =2m -10,所以2m -10=4n ,m =4n+102.因此c n =4n +102=4n2+5.所以T n =42+5+422+5+432+5+⋯+4n 2+5=23×4n +5n -23.19.(1)证明:过点B 1作平面AOB 的垂线,垂足为C ,如图4,则C 是OB 的中点,所以BC =1.又∠OBB 1=π3,所以BB 1=2.连接OB 1,因为BB 1=OB =2,所以△OBB 1为等边三角形.因为点M 为BB 1的中点,所以BB 1⊥OM .因为平面AA 1O 1O ⊥平面BB 1O 1O ,平面AA 1O 1O ⋂平面BB 1O 1O =OO 1,且AO ⊥OO 1,AO ⊂平面AA 1O 1O ,所以AO ⊥平面BB 1O 1O .因为BB 1⊂平面BB 1O 1O ,所以AO ⊥BB 1.又因为AO ⋂OM =O ,AO ⊂平面OMA ,OM ⊂平面OMA ,所以BB 1⊥平面OMA .因为OP ⊂平面OMA ,所以BB 1⊥OP .图4(2)解:以O 为坐标原点,OA ,OB ,OO 1所在直55线分别为x 轴、y 轴、z 轴,建立如图4所示的空间直角坐标系A ()2,0,0,B ()0,2,0,B 1()0,1,3,M æèçç0,32,ø,P æèçø1,34, OP =æèçø1,34,,OB =()0,2,0设平面OPB 的一个法向量为n =()x ,y ,z ,则{OP ∙n =0, OB ∙n =0,即ìíîïïx +34y +=0,2y =0,取z =43,得x =-3,y =0,所以n=()-3,0,43,因为BB 1⊥平面OAM ,所以平面OAM 的一个法向量为BB 1=()0,-1,3,所以cos < BB 1,n >=BB 1∙n || BB 1||n 所以平面OAM 与平面OPB 所成锐二面角的余弦值为.20.解:(1)由表中数据知x ˉ=3,y ˉ=100,所以b =1410-150055-45=-9,所以a =y ˉ-b x ˉ=127,故所求回归直线方程为y =-9x +127.(2)由(1)知,令x =9,则y =-9×9+127=46人.(3)假设H 0:“礼让行人”行为与驾龄无关,由表中数据得k 2=70×(24×14-16×16)240×30×40×30=1445≈0.311<2.706,所以没有97.5%的把握认为“礼让行人”行为与驾龄有关.21.(1)解:因为过椭圆E 的左、右焦点倾斜角为π3的两条直线间的距离为3,所以sin π3所以c =1.因为椭圆的离心率为12,所以a =2,所以b =3,故椭圆E 的标准方程为x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),直线l :x =my +1,则Q (x 1,-y 1).因为直线l 与坐标轴不垂直,所以直线QB :y +y 1=y 1+y 2x 2-x 1(x -x 1),所以y =y 1+y 2x 2-x 1x -x 2y 1+x 1y 2x 2-x 1=y 1+y 2m (y 2-y 1)x -2my 1y 2+y 1+y 2m (y 2-y 1),由得ìíîïïx 24+y 23=1,x =my +1,得(3m 2+4)y 2+6my -9=0,所以y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,所以y =-6m(3m 2+4)(y 2-y 1)(x -4),所以直线QB 恒过定点(4,0).22.(1)证明:令F (x )=f (x )-g (x )=e x -1+sin x ,所以F ′(x )=e x +cos x .当x ∈(0,+∞)时,e x >1,cos x ≤1,所以F ′(x )>0.所以F (x )在[0,+∞)上单调递增.又x ∈[0,+∞),所以F (x )≥F (0)=0,所以f (x )≥g (x )在x ∈[0,+∞)上恒成立.(2)解:因为φ(x )=e x -1-a sin x (a ∈R ),所以φ′(x )=e x -a cos x .设h (x )=φ′(x ),h ′(x )=e x +a sin x ,①当a ≤0时,因为x ∈[0,π],所以-a sin x ≥0,而e x -1≥0,所以e x -1-a sin x ≥0,即φ(x )≥0恒成立,所以φ(x )零点个数为1个.②当0<a ≤1时,h ′(x )=e x +a sin x ≥0,所以φ′(x )在[0,π]上单调递增,而φ′(0)=1-a ≥0,所以φ′(x )≥φ′(0)=0,所以φ(x )在[0,π]上单调递增.因为φ(0)=0,所以x =0是唯一零点,此时φ(x )零点个数为1个.③当a >1时,h ′(x )=e x +a sin x ≥0,所以φ′(x )在[0,π]上单调递增,而φ′(0)=1-a <0,φ′(π2)=e π2>0,所以存在x 0∈[0,π],使φ′(x 0)=0,所以当0<x <x 0时,φ(x )单调递减,当x 0<x <π时,φ(x )单调递增,所以当x =x 0时,φ(x )取得最小值φ(x 0).而φ(x 0)<φ(0)=0,φ(π)=e π-1>0,又φ(x )图象是连续不间断的,由零点存在性定理知,φ(x )在(x 0,π)上有唯一零点.因为x =0也是零点,所以φ(x )在[0,π]上有2个零点.综上:当a ≤1时,φ(x )在[0,π]上有1个零点;当a >1时,φ(x )在[0,π]上有2个零点.高考链接56。
浙教版2022-2023学年八年级上学期期末数学模拟测试卷(五)(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【答案】A【解析】由轴对称图形的性质可知:A 选项符合题意,B 、C 、D 都不是轴对称图形; 故答案为:A .2.下列结论中,正确的是( ) A .若a >b ,则1a <1bB .若a >b ,则a 2>b 2C .若a >b ,则1﹣a <1﹣bD .若a >b ,ac 2>bc 2 【答案】C【解析】A 、当a >0>b 时,1a <1b,故本选项错误;B 、当a >0,b <0,a <|b|时,a 2<b 2,故本选项错误;C 、∵a >b ,∴﹣a <﹣b ,∴1﹣a <1﹣b ,故本选项正确;D 、当c=0时,虽然a >b ,但是ac 2=bc 2,故本选项错误. 故选C .3.下列命题中,逆命题错误的是( ) A .两直线平行,同旁内角互补 B .对顶角相等C .直角三角形的两个锐角互余D .直角三角形两条直角边的平方和等于斜边的平方 【答案】B【解析】A 、逆命题是:同旁内角互补,两直线平行,符合题意,故本选项不符合题意; B 、逆命题是相等的角是对顶角,为假命题,故本选项符合题意;C 、逆命题是:若一个三角形两锐角互余,则为直角三角形,符合题意,故本选项不符合题意;D 、逆命题是:若一个三角形两条直角边的平方和等于斜边的平方则为直角三角形,符合题意,故本选项不符合题意. 故答案为:B .4.若点A(2,m)在一次函数y =2x −7的图象上,则点A 到x 轴的距离是( ) A .2 B .−2 C .3 D .−3 【答案】C【解析】∵点A(2,m)在一次函数y =2x −7的图象上,∴A(2,m)满足一次函数的解析式y =2x −7, ∴m =2×2−7=−3,∴点A 到x 轴的距离是|−3|=3. 故答案为:C.5.如图,∠AOB =40°,OC 平分∠AOB ,直尺与OC 垂直,则∠1等于( )A .60°B .70°C .50°D .40°【答案】B 【解析】∵OC 平分∠AOB ,∠AOB=40°,OC ⊥DE , ∴∠AOC=20°,∠ODE=90°, ∴∠3=70°,∵直尺的对边是相互平行, ∴∠2=∠3=70°,∴∠1=∠2=70°. 故答案为:B.6.如图,在Rt △ABC 中,∠C =90°,D 为AC 上一点.若DA =DB =15,△ABD 的面积为90,则AC 的长是( )A .9B .12C .3√14D .24【答案】D【解析】∵△ABD 的面积为90,∠C =90° ∴12AD ·BC =90 ∴BC =90×2AD=12在Rt △ABC 中,CD =√BD 2−BC 2=√152−122=9 ∴AC =AD +CD =24 故答案为:D .7.如图,△ABC 中,AB =AC ,△DEF 为等边三角形,则α、β、γ之间的关系为()A .β=α+γ2B .α=β+γ2C .β=α−γ2D .α=β−γ2【答案】B【解析】∵AB =AC∴∠B =∠C∵△DEF 为等边三角形∴∠DEF =∠EFD =∠EDF =60°∵∠B =∠DEC −∠BDE =∠DEF +∠CEF −∠BDE ,∠C =∠BEF −∠γ=∠α+∠DEF −∠γ∴∠CEF −∠BDE =∠α−∠γ∵∠β+∠EDF +∠BDE =180°,∠α+∠DEF +∠FEC =180°∴∠CEF −∠BDE =∠β−∠α ∴∠α−∠γ=∠β−∠α ∴2∠α=∠β+∠γ∴α=β+γ2故答案为:B8.一次函数 y 1=ax +b 与 y 2=bx +a ,它们在同一坐标系中的大致图象是( )A .B .C .D .【答案】D【解析】A 、由y 1的图象可知,a <0,b >0;由y 2的图象可知,a >0,b >0,两结论相矛盾,故错误; B 、由y 1的图象可知,a <0,b >0;由y 2的图象可知,a =0,b <0,两结论相矛盾,故错误; C 、由y 1的图象可知,a >0,b >0;由y 2的图象可知,a <0,b <0,两结论相矛盾,故错误; D 、由y 1的图象可知,a >0,b <0;由y 2的图象可知,a >0,b <0,正确. 故答案为:D.9.如图,边长为5的大正方形ABCD 是由四个全等的直角三角形和一个小正方形EFGH 组成,连结AF 并延长交CD 于点M.若AH =GH ,则CM 的长为( )A .12B .34C .1D .54【答案】D【解析】过点M 作MN ⊥FC 于点N ,设FA 与GH 交与点K ,如图,∵四边形EFGH 是正方形,∴HE =HG =GF =EF ,AH ∥GF , ∵AH =GH ,∴AH =HE =GF =EF.由题意得:Rt △ABE ≌Rt △BCF ≌Rt △ADH ≌Rt △CDG , ∴BE =CF =AH =DG ,∠BAE =∠DCG. ∴BE =EF =GF =FC. ∵AE ⊥BF , ∴AB =AF ,∴∠BAE =∠FAE , ∴∠DCG =∠FAE , ∵AH ∥GF ,∴∠FAE =∠GFK. ∵∠GFK =∠CFM , ∴∠CFM =∠DCG , ∴MF =MC ,设MF =MC=x ,AD=AF=5,AM=5+x ,DM=5-x 在Rt △ADM 中,AD 2+DM 2=AM 2 52+(5-x )2=(5+x )2 解得x=54∴CM = 54.故答案为:D.10.在Rt △ABC 中,AC=BC ,点D 为AB 中点.∠GDH=90°,∠GDH 绕点D 旋转,DG 、DH 分别与边AC 、BC 交于E ,F 两点.下列结论:①AE+BF=√22AB ;②△DEF 始终为等腰直角三角形;③S 四边形CEDF =18AB 2;④AE 2+CE 2=2DF 2.其中正确的是( )A .①②③④B .①②③C .①④D .②③【答案】A【解析】如图所示,连接CD ,∵AC =BC ,点D 为AB 中点,∠ACB =90°,∴AD =CD =BD =12AB ,∠A =∠B =∠ACD =∠BCD =45°,∠ADC =∠BDC =90°,∴∠ADE +∠EDC =90°,∵∠EDC +∠FDC =∠GDH =90°, ∴∠ADE =CDF .在△ADE 和△CDF 中,∠A =∠DCF ,AD =CD ,∠ADE =∠CDF , ∴△ADE ≌△CDF (ASA ),∴AE =CF ,DE =DF ,S △ADE =S △CDF . ∵AC =BC ,∴AC−AE =BC−CF , ∴CE =BF .∵AC =AE +CE , ∴AC =AE +BF .∵AC 2+BC 2=AB 2,AC =BC ,∴AC = √22AB∴ AE+BF=√22AB ,故①正确;∵DE=DF ,∠GDH=90°,∴△DEF 始终为等腰直角三角形,故②正确; ∵S 四边形CEDF =S △EDC +S △CDF ,∴S 四边形CEDF =S △EDC +S △ADE =12S △ABC ,又∵S △ABC =12AC 2=12(√22AB )2=14AB 2∴S 四边形CEDF =12S △ABC =12×14AB 2=18AB 2,故③正确;∵CE 2+CF 2=EF 2,DE 2+DF 2=EF 2, ∴CE 2+AE 2=EF 2=DE 2+DF 2, 又∵DE =DF ,∴AE 2+CE 2=2DF 2,故④正确;∴正确的有①②③④. 故答案为:A.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若点P (m+3,m+1)在x 轴上,则点P 的坐标为 . 【答案】(2,0)【解析】∵点P (m+3,m+1)在x 轴上, ∴m+1=0, 解得m=﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0). 故答案为:(2,0).12.一次函数y=(m+4)x+m+2的图象不经过第二象限,则整数m = 【答案】-3或-2.【解析】因为一次函数图象不经过第二象限,所以 k >0,b ≤0 ,即 m +4>0,m +2≤0 , 解得: −4<m ≤−2 ,因为m 是整数,所以 m =−3或−2 ,故答案为: −3或−2 .13.如图,AB =AC ,点D 是△ABC 内一点,∠D =110°,∠1=∠2,则∠A = °.【答案】40【解析】∵∠D =110°,∠1=∠2, ∴∠D =180°−∠1−∠DCB =110°, ∴∠1+∠DCB =70°, ∵AB =AC ,∴∠ABC =∠ACB , ∴∠ABD =∠BCD , ∵∠1+∠DCB =70°, ∵∠1=∠2,∴∠ACB =∠2+∠DCB =70°, ∴∠ABC +∠ACB =140°, ∴∠A =180°−140°=40°, 故答案为:40.14.如图,在长方形ABCD 中,AB =3,BC =5,在CD 上取一点E ,连结BE.将△BCE 沿BE 折叠, 使点C 恰好落在AD 边上的点F 处,则CE 的长为 .【答案】53【解析】设CE=x, 则DE=3-x, ∵EF=EC=x, ∵BF=BC=5, 在Rt △BAF 中, AF=√BF 2−AB 2=4, ∴FD=AD-AF=5-4=1, 在Rt △FDE 中,∵EF 2=DE 2+DF 2, ∴x 2=(3-x)2+1, 解得x=53.故答案为:53.15.如图,已知∠A =∠B =90°,AB =6,E ,F 分别是线段AB 和射线BD 上的动点,且BF =2BE ,点G 在射线AC 上,连接EG ,若△AEG 与△BEF 全等,则线段AG 的长为 .【答案】2或6 【解析】①如图:当△GAE ≌△EBF 时:AG=BE ,AE=BF ∵BF =2BE , ∴AE =2BE ,∵AB =AE +BE =3BE =6, ∴BE =2,∴AG =BE =2;②当△GAE ≌△FBE 时,AE=BE ,AG=BF∵AB =AE +BE =2BE =6, ∴BE =3, ∵BF =2BE , ∴AG =2BE =6; 故答案为:2或6.16.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC .若△ABC 的边长为4,AE=2,则BD 的长为 .【答案】2【解析】延长BC 至F 点,使得CF=AE , 由题意可得:△BEF 为正三角形 ∴∠B=∠EFC ,BE=EF ∵ED=EC ,∴∠EDC=∠ECD , ∴∠EDB=∠ECF ,∴△EBD ≌△EFC (AAS ), ∴BD=CF=2, 故答案为:2.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.在平面直角坐标系中,点 A 、 B 的坐标是 (2a −5, a +1) , B(b −1, 3−b) . (1)若点 A 与点 B 关于 x 轴对称,求点 A 的坐标; (2)若 A , B 关于 y 轴对称,求 (4a +b)2 的值. 【答案】(1)解:由题意得, {2a −5=b −1,a +1+3−b =0,解得 {a =8,b =12,∴2a −5=11 , a +1=9 . ∴点 A 的坐标为 (11, 9) .(2)解:由题意得, {2a −5+b −1=0,a +1=3−b ,解得 {a =4,b =−2,∴4a +b =14 , (4a +b)2=196 18.如图,在Rt △ABC 中,∠C=90°.(1)作∠BAC 的平分线AD 交边BC 于点D.(尺规作图,保留作图痕迹,不写作法). (2)在(1)的条件下,若∠BAC=28°,求∠ADB 的度数. 【答案】(1)解:以A 为圆心,以任意长为半径画弧,分别交AC ,AB 于M 、N ,再分别以M 、N 为圆心,以大于MN 长的一半为半径画弧,两者交于点P ,连接AP 并延长与BC 交于D ,即为所求;(2)∵∠C=90°,∠BAC=28°,∴∠B=180°-∠C-∠BAC=62°,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =14∘ ,∴∠ADB=180°-∠BAD-∠B=104°. 19.如图,AB =DC ,AC =DB ,AC 和BD 相交于点O.(1)求证:△ABC ≌△DCB ; (2)求证:∠ABD =∠DCA. 【答案】(1)证明:在△ABC 和△DCB 中, {AB =DC AC =BD BC =CB, ∴△ABC ≌△DCB (SSS )(2)证明:∵△ABC ≌△DCB ,∴∠ABC =∠DCB ,∠ACB =∠DBC , ∴∠ABD =∠DCA20.某水产品市场管理部门规划建造面积为2400m 2的集贸大棚,大棚内设A 种类型和B 种类型的店面共80间,每间A 种类型的店面的平均面积为28m 2,月租费为400元,每间B 种类型的店面的平均面积为20m 2,月租费为360元,全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A 种类型店面的数量范围;(2)该大棚管理部门通过了解业主的租赁意向得知,A 种类型店面的出租率为75%,B 种类型店面的出租率为90%.为使店面的月租费最高,应建造A 种类型的店面多少间? 【答案】(1)解:设A 种类型店面的数量为x 间,则:B 种类型店面的数量为 (80−x) 间, 由题意得:2400×80%≤28x +20(80−x)≤2400×85% , 解得: 40≤x ≤55 ;∴A 种类型店面的数量范围为: 40≤ A 种类型店面的数量 ≤55 ; (2)解:设月租费为w ,由题意得: w =400×75%x +360(80−x)×90% , =−24x +25920 ; ∵k =−24<0 ,∴w 随着x 的增大而减小, ∵40≤x ≤55 ,∴当 x =40 时w 最大;∴应建造A 种类型的店面40间.21.如图,一次函数 y =2x +b 的图像经过点 M(1,3) ,且与 x 轴, y 轴分别交于 A,B 两点.(1)填空: b = ;(2)将该直线绕点 A 顺时针旋转 45∘ 至直线 l ,过点 B 作 BC ⊥AB 交直线 l 于点 C ,求点 C 的坐标及直线 l 的函数表达式. 【答案】(1)1(2)由(1)可知,直线AB的解析式为:y=2x+1,令x=0,则y=1,令y=0,则x=−1 2,∴点A为(−12,0),点B为(0,1),∴OA= 12,OB=1;由旋转的性质,得AB=BC,∵BC⊥AB∴∠ABC=90°,过点C作CD⊥y轴,垂足为D,如图:∵∠BDC=90°,∴∠CBD+∠BCD=∠CBD+∠ABD=90°,∴∠BCD=∠ABD,同理,∠CBD=∠BAO,∵AB=BC,∴△ABO≌△BCD,∴BD=AO= 12,CD=BO=1,∴OD= OB−BD=1−12=12,∴点C的坐标为(1,1 2);设直线l的表达式为y=mx+n,∵直线经过点A、C,则{m+n=12−12m+n=0,解得:{m=13n=16,∴直线l的表达式为y=13x+16.【解析】(1)根据题意,∵一次函数y=2x+b的图像经过点M(1,3),∴3=2×1+b,∴b=1,故答案为:1;22.如图,在△ABC中,BD、CE分别是边AC、AB上的高线.(1)如果BD=CE,那么△ABC是等腰三角形,请说明理由;(2)取F为BC中点,连接点D,E,F得到△DEF,G是ED中点,求证:FG⊥DE;(3)在(2)的条件下,如果∠A=60°,BC=16,求FG的长度.【答案】(1)证明:在△ABC中,BD、CE分别是边AC、AB上的高线,∴∠BDC=∠CEB=90°,在△BCD和△CBE中,{BD=CEBC=CB,∴Rt△BCD≌Rt△CBE(HL),∴∠BCD=∠CBE,∴AB=AC;∴△ABC是等腰三角形.(2)证明:在△ABC中,BD、CE分别是边AC、AB上的高线,∴∠BDC=∠CEB=90°,∵F是BC的中点,∴EF=DF=BF=CF=12BC,∴△DEF为等腰三角形,∵G是ED中点,∴FG⊥DE;(3)解:∵EF=DF=BF=CF=12BC∴∠BEF=∠ABC,∠CDF=∠ACB,∵∠A=60°,∴∠ABC+∠ACB=120°,∴∠BFE+∠CFD=180°−2∠ABC+180°−2∠ACB=360°−2(∠ABC+∠ACB) =120°’∴∠EFD=60°,∴△DEF是等边三角形;∴∠GFD=30°,∵DF=12BC=8,∴DG=12DF=4,∴FG=√DF2−DG2=√82−42=4√3.23.如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D在同一直线上,连接AD,BD.(1)求证:△ACD≌△BCE;(2)探求AD与BE的数量和位置关系(3)若AC=√10,EC=√2求线段AD的长.【答案】(1)证明:∵△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CE=CD,∴∠ACD=∠BCE,∴△ACD ≌△BCE (SAS ),(2)解:AD=BE ,AD ⊥BE ,理由如下:∵△ABC 和△DEC 均为等腰直角三角形,∠DEC =45°=∠CDE ,∵△ACD ≌△BCE (SAS ),∴∠ADC =∠BEC =45°,AD=BE ,∴∠ADE =∠ADC +∠CDE =90°,∴AD ⊥BD .(3)解:如图:过C 作CF ⊥DE 于F ,在等腰直角△CDE 中, EC=√2,∴DE=√CD 2+CE 2=√(√2)2+(√2)2=2又∵CF ⊥DE ,∴CF= EF=12DE=1, ∴BF= √BC 2−CF 2 =3,∴AD=BE=BF+EF=3+1=424.在平面直角坐标系中,直线l 分别于x 轴,y 轴的正半轴交于A ,B 两点,OC 平分∠AOB ,交AB 于点D ,点M 是直线l 上一动点,过M 作OC 的垂线,交x 轴于E ,交y 轴于F ,垂足为H ,设∠OAB =α°,∠OBA =β°,且α2−4αβ+4β2=0.(1)直接写出α,β的值,α= ,β=(2)若M 与A 重合(如图2),求证AD =BF ;(3)①若M 是线段AB 上任意一点(如图3),则AE ,BF ,AD 之间有怎样的数量关系,说明理由. ②若M 不在线段AB 上时,求出AE ,BF ,AD 之间的数量关系。
2023年普通高等学校招生全国统一考试·仿真模拟卷数学(五)注意事项:1.本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}1,2,3,4A =,{}1,3,5,7B =,则A B ⋂的子集共有()A.2个B.3个C.4个D.8个2.已知复数52i2iz =-,则z =()A.1B.35 C.355D.3.在ABC 中,记AB m = ,AC n =u u ur r ,则()CB AB AC ⋅+=u u u r u u u r u u u r ()A.m n- B.22m n+u r r C.22n m-r u r D.22m n-u r r 4.已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为()A.()2,3 B.()3,4 C.(),3-∞ D.()3,+∞5.如图,已知正四棱锥P ABCD -的底面边长和高分别为2和1,若点E 是棱PD 的中点,则异面直线PA 与CE 所成角的余弦值为()A.B.3311C.6D.666.某芯片制造厂有甲、乙、丙三条生产线均生产5mm 规格的芯片,现有25块该规格的芯片,其中甲、乙、丙生产的芯片分别为5块,10块,10块,若甲、乙、丙生产该芯片的次品率分别为0.1,0.2,0.3,则从这25块芯片中任取一块芯片,是正品的概率为()A .0.78B.0.64C.0.58D.0.487.已知()1sinsin 2222x x x f x ⎫=-+⎪⎭.若存在0π,π6x ⎡⎤∈⎢⎥⎣⎦,使不等式()20132f x m m ≤--有解,则实数m 的取值范围为()A.[]0,3 B.(][),03,-∞+∞ C.1,32⎡⎤-⎢⎥⎣⎦D.(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭8.已知(),,1,a b c ∈+∞,且1ln 1e a a ---=,2ln 2e b b ---=,4ln 4e c c ---=,其中e 是自然对数的底数,则()A.a b c <<B.b a c<< C.b<c<aD.c b a<<二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.空气质量指数大小分为五级.指数越大说明污染的情况越严重,对人体危害越大,指数范围[)0,50,[)50,100,[)100,200,[)200,300,[]300,500分别对应“优”“良”“轻度污染”“中度污染”“重污染”五个等级.如图是某市连续14天的空气质量指数趋势图,下面说法正确的是()A.这14天中有5天空气质量指数为“轻度污染”B.从2日到5日空气质量越来越好C.这14天中空气质量的中位数是196.5D.连续三天中空气质量指数方差最小是5日到7日10.密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0—07”,478密位写成“4—78”.若()2sin cos sin 2ααα-=,则角α可取的值用密位制表示可能是()A.10—50B.2—50C.13—50D.42—5011.已知点A ,B 分别是双曲线22:14x C y -=的左,右顶点,点P 是双曲线C 的右支上位于第一象限的动点,记PA 、PB 的斜率分别为1k 、2k ,则下列说法正确的是()A.双曲线CB.双曲线C 的焦点到其渐近线的距离为1C.12k k 为定值14D.存在点P ,使得1212k k +=12.已知()221f x x =+,()4g x x =-,若方程()()()()420f x g x f x g x ax a ---+++=有四个不同的实数根,则满足上述条件的a值可以为()A .1- B.15C.35D.1三、填空题:本题共4小题,每小题5分,共20分.13.若13nx x ⎛⎫- ⎪⎝⎭展开式中各项系数之和为64,则该展开式中含4x 的项的系数为______.14.设甲、乙两个圆柱的底面半径分别为2,3,体积分别为1V ,2V ,若它们的侧面积相等,则12V V 的值是______.15.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何现有这样一个相关的问题:被3除余2且被5除余3的正整数按照从小到大的顺序排成一列,构成数列{}n a ,记数列{}n a 的前n 项和为n S ,则30n S n+的最小值为__________.16.抛物线()2:20C y px p =>的焦点到直线10x y -+=的距离为528,点M 是C 上任意一点,点N 是圆()22:31D x y -+=上任意一点,则MN 的最小值是______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的内角,,A B C 的对边分别为,,a b c ,且()()sin sin sin sin A B A B +-=)sin sin A C C -.(1)求角B 的大小;(2)若BC 边上的高为2b c -,求sin C .18.设等差数列{}n a 的各项均为正数,其前n 项和为n S ,()*141n n n a S a n +=+∈N .(1)求{}n a 的通项公式;(2)设5nn a b ⎡⎤=⎢⎥⎣⎦,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]2.62=.19.某校举办传统文化知识竞赛,从该校参赛学生中随机抽取100名学生,竞赛成绩的频率分布表如下:竞赛成绩[)50,60[)60,70[)70,80[)80,90[)90,100频率0.080.240.360.200.12(1)估计该校学生成绩的平均数(同一组中的数据用该组区间的中点值作代表);(2)已知样本中竞赛成绩在[)50,60的男生有2人,从样本中竞赛成绩在[)50,60的学生中随机抽取3人进行调查,记抽取的男生人数为X ,求X 的分布列及期望.20.如图所示的几何体中,底面ABCD 为直角梯形,//AB CD ,AB AD ⊥,四边形PDCE为矩形,平面PDCE ⊥平面ABCD ,F 为PA 的中点,N 为PC 与DE 的交点,PD =112AB AD CD ===.(1)求证://FN 平面ABCD ;(2)若G 是线段CD 上一点,平面PBC 与平面EFG 所成角的余弦值为6,求DG 的长.21.设椭圆()2222:10x y C a b a b +=>>的左焦点为F ,上顶点为P ,离心率为22,O 是坐标原点,且OP FP ⋅=.(1)求椭圆C 的方程;(2)过点F 作两条互相垂直的直线,分别与C 交于A ,B ,M ,N 四点,求四边形AMBN 面积的取值范围.22.已知函数()()()ln 21f x x m x m m =+-+-∈R .(1)当4m =时,求函数()f x 的单调区间;(2)是否存在正整数m ,使得()0f x ≤恒成立,若存在求出m 的最小值,若不存在说明理由.。
初四数学期末模拟试题(一)(时间:60 分数:100)
一、选择题(4分×9=36分)
1、如图,是某几何体
的三视图及相关数据,则该几何体的侧面积是( )
( )
A .9
B .39
C .18
D .318
3、在Rt ∆ABC 中,
90=∠C ,AC=12,BC=5,则sinA 的值为( ) A
125
B 512
C 1312
D 13
5
4、如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m ,此时小球距离地面的高度为( )
4题
A .5m
B .
m C .
m D .
m
5.已知正n 边形的一个内角为135°,则边数n 的值是( ) 6、已知0≤x 2
≤,那么函数y=-2x 2
+8x-6的最大值是( )
A -10.5
B 2
C -2.5
D -6
7、已知点(-3,y 1),(-5
2
1,y 2),(-131,y 3)在函数y=x 2+6x+5的图像上,则y 1、y 2、
y 3的大小关系是( )
A y 1> y 2> y 3
B y 2> y 1> y 3
C y 2> y 3 > y 1
D y 3 > y 2> y 1 8、函数y=kx 2
-k 和
在同一直角坐标系中图象可能是图中的( )
A
.
B .
C .
D .
9、已知二次函数的图象如图所示,对称轴为直线x=1,则下列结论正确的
是( ) A.
B.方程的两根是
C.
D.当x>0时,y 随x 的增大而减小. 二、填空(4分×4=16分)
10、二次函数y=ax 2
+4x+a 的最大值是3,则a=________ 12、把抛物线y=x 2
+bx+4的图像向右平移3个单位,再向上平移2个单位,所得图像的表达式为y= x 2
-2x+3,则b 的值___________
13、已知锐角a 满足sina>cosa ,则a 取值范围是__________ 三、解答题
14、计算:2sin45 +cos30 ∙tan60
-2)3(-(8分)
15.(8分) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且AB = 26m ,OE ⊥CD 于点E .水位正常时测得OE ∶CD=5∶24。
(1)求CD 的长;
(2)现汛期来临,水面要以每小时4 m 的速度上升,则经过多长时间桥洞会刚刚被灌满?
16、(10分)如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m 。
(1)求∠CAE 的度数;
(2)求这棵大树折断前的高度?(结果精确到个位,参考数据:
,
,
).
17.(10分) 某工厂生产的某种产品按质量分为10个档次.第1档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x 档次的产品一天的总利润为y 元(其中x 为正整数,且1≤x≤10),求出y 关于x 的函数关系式;
(2)当x 为何值时,工厂获得最大利润?最大利润是什么?
18.(12分).如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .
(1)求该抛物线的解析式与顶点D 的坐标;
(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.
O
22题图。