光伏组件故障研究分析
- 格式:doc
- 大小:1.50 MB
- 文档页数:23
光伏组件故障分析光伏组件是太阳能发电系统的核心部件,它负责将太阳光能转化为电能。
然而,在使用过程中,光伏组件可能会出现各种故障,例如温度过高、光照不均匀、灰尘积累等。
这些故障都会导致光伏组件的发电效率降低,甚至影响到整个发电系统的正常运行。
因此,对光伏组件的故障进行及时分析和处理至关重要。
首先,温度过高是光伏组件故障的常见原因之一、高温会导致光伏组件的屏幕温度升高,进而降低组件的发电效率。
导致高温的原因可能有很多,包括高环境温度、组件正常工作时的热量、组件间隙不足以散热等。
针对这个问题,可以采取增加散热装置、增加组件间隙、降低组件温度等措施来解决。
其次,光照不均匀也是光伏组件故障的常见原因。
光伏组件只有在有足够的太阳光照下才能正常发电,如果光照不均匀,部分组件的发电效率会受到影响。
导致光照不均匀的原因可能有树木遮挡、建筑物阻挡等。
解决这个问题的方法可以是优化组件布局,避免遮挡物对组件的影响。
另外,灰尘积累也是光伏组件故障的常见原因之一、随着时间的推移,光伏组件表面会积累一层灰尘。
这些灰尘会遮挡太阳光的入射,导致组件的发电效率降低。
解决这个问题的方法可以是定期清洁组件表面,保持其干净。
此外,光伏组件还可能存在接触不良、连接器松动、线路断开等故障。
这些故障会导致光伏组件无法正常工作,影响发电效率。
解决这些问题的方法可以是定期检查组件的连接线路,确保其牢固可靠。
另外,有条件的话,可以使用红外热像仪来检测组件的故障。
总之,光伏组件故障分析对于太阳能发电系统的正常运行至关重要。
在分析故障时,我们需要找出故障的原因,并采取相应的措施来解决。
对于温度过高的问题,我们可以增加散热装置和组件间隙,降低组件的温度。
对于光照不均匀的问题,我们可以优化组件布局,避免遮挡物对组件的影响。
对于灰尘积累的问题,我们可以定期清洁组件表面,保持其干净。
对于接触不良、连接器松动、线路断开等问题,我们可以定期检查组件的连接线路,并使用红外热像仪来检测故障。
光伏电站常见故障原因分析
一、光伏电站故障原因
1、光伏电站组件故障
出现故障的光伏组件可以将其现象分为物理性损坏、电气参数异常、
外观异常等类型。
物理性损坏主要包括组件封装锈蚀、损坏,结构破裂;
电气参数异常包括正常组件的端边开路率偏高,正向和反向短路电流异常;外观异常包括组件的白斑和黑点,外部环境如尘埃等的影响,这些问题会
对电站的性能产生影响。
2、气象因素造成的故障
气象因素会对光伏电站造成故障,如太阳辐射受到阴影或是遮蔽,或
是突发大风,大雨,这些都会影响风机和光伏组件的正常运行,从而影响
整个电站的输出性能。
3、电气配电系统故障
正确的配电系统是光伏电站安全运行的基础,将会产生不同类型的连
接故障,如线路断路、跨线、短路,这些故障会影响整个光伏电站的输出
效率。
4、逆变器故障
逆变器是将直流电转换为交流电的装置,是光伏电站的重要组成部分,在光伏电站正常运行时,如果逆变器存在故障,将导致光伏电站的正常运
行受影响。
故障主要有温度、输出功率异常,开关回路故障。
5、控制系统故障
控制系统是电力系统的重要组成部分,是电站的关键技术组成部分,由控制程序和控制器组成。
光伏组件常见的故障
1. 热斑:热斑是指在光伏组件中由于部分电池片受到遮挡或损坏,导致该部分电池片产生过热现象。
热斑会降低光伏组件的输出功率,并可能引起电池片的老化和损坏。
2. 隐裂:隐裂是指在电池片内部出现的细微裂纹,通常无法直接观察到。
隐裂会降低电池片的转换效率,并可能导致电池片的开路或短路。
3. 功率衰减:随着时间的推移,光伏组件的输出功率可能会逐渐下降,这称为功率衰减。
功率衰减的原因可能包括电池片的老化、灰尘和污垢的积累、以及温度和湿度等环境因素的影响。
4. 旁路二极管失效:旁路二极管用于保护光伏组件免受反向电流的损害。
如果旁路二极管失效,可能会导致光伏组件在反向电流时受到损坏。
5. 连接失效:光伏组件之间的连接可能会出现松动、腐蚀或断开等问题,导致组件之间的电流传输受阻或中断。
6. 玻璃破裂:光伏组件的玻璃表面可能会因为受到冲击、温度变化或其他原因而破裂。
玻璃破裂会影响组件的绝缘性能和机械强度。
7. 接线盒故障:接线盒是光伏组件的电气连接部分,如果接线盒出现故障,如密封不良、接线松动或腐蚀等,可能会导致电气连接失效。
为了确保光伏组件的正常运行,需要定期进行检查和维护,及时发现和处理潜在的故障。
此外,在安装和使用光伏组件时,应遵循相关的安装和操作规范,以减少故障的发生。
分布式户用光伏电站维护及故障分析报告
一、维护情况。
自上次维护以来,我们对分布式户用光伏电站进行了定期的维
护和检查。
主要包括清洁光伏板面、检查光伏组件连接线路、检查
逆变器运行情况等。
在维护过程中,发现了部分光伏板表面有灰尘
和污垢,及时进行了清洁。
同时,对连接线路进行了检查,发现了
一些松动的接头,及时进行了紧固。
逆变器运行情况良好,未发现
异常情况。
二、故障分析。
在维护过程中,我们也对光伏电站的运行情况进行了分析。
通
过监测数据发现,部分光伏板出现了发电量下降的情况。
经过进一
步的检查和分析,发现是部分光伏板表面受到了污垢的影响,导致
光伏板的发电效率下降。
我们将对这些光伏板进行更加细致的清洁,以提高发电效率。
另外,我们还发现了一些连接线路的老化和损坏情况,这可能
会对光伏电站的安全运行产生影响。
我们将对这些连接线路进行更
换和修复,以确保光伏电站的安全运行。
三、改进措施。
为了提高光伏电站的维护效率和运行稳定性,我们将采取以下改进措施:
1. 增加维护频次,定期对光伏电站进行清洁和检查,确保光伏板表面的清洁度和连接线路的完好性。
2. 定期对光伏电站的运行数据进行分析,及时发现和处理光伏板发电量下降的情况,确保光伏电站的发电效率。
3. 对连接线路进行定期的检查和维护,及时发现和处理老化和损坏情况,确保光伏电站的安全运行。
通过以上改进措施的实施,我们相信可以提高分布式户用光伏电站的维护效率和运行稳定性,为客户提供更加可靠的清洁能源供应。
光伏组件短路的原因
光伏组件是一种将太阳能转化为电能的装置,具有环保、可再生等优点,在如今的能源转型中发挥着重要作用。
然而,就像其他电子设备一样,光伏组件也会出现故障。
其中,短路是一种常见的故障现象。
下面将从不同角度解析光伏组件短路的原因。
一、材料质量问题
光伏组件是由多个太阳能电池片组成的,而电池片的材料质量直接影响着组件的性能。
如果电池片材料存在缺陷,例如表面存在微小的裂纹或缺陷,那么在光照下,这些缺陷可能会导致电流短路,使整个组件失效。
二、制造工艺不当
光伏组件的制造过程复杂,需要经过多道工序。
如果制造工艺不当,例如焊接过程中接触不良、焊点接触不牢固等问题,都可能导致光伏组件出现短路。
此外,组件背板的安装过程中,如果安装不稳固或存在短路风险的接触,也可能引起短路现象。
三、环境因素影响
光伏组件通常安装在户外,长时间暴露在恶劣的环境中。
例如,高温、潮湿、腐蚀性气体等因素都会对组件产生一定的影响。
如果组件的密封性不好,容易受到湿气侵入,导致电池片内部发生短路。
此外,如果组件表面积聚了大量灰尘或污垢,也会导致电流短路。
四、人为操作失误
在光伏组件的安装和维护过程中,如果操作不当或维护不及时,也可能引发短路问题。
例如,安装时未正确连接电缆,或者在维护过程中未及时清洁组件表面,都可能导致短路。
光伏组件短路的原因多种多样,涉及材料质量、制造工艺、环境因素和人为操作等多个方面。
为了减少光伏组件短路的发生,我们应该选购质量可靠的组件,确保制造工艺的合规和环境的良好保护,同时加强对组件的安装和维护,以提高光伏系统的可靠性和稳定性。
德令哈电站光伏组件至汇流箱故障分析总结一、光伏组件常见故障分析:1、树枝遮蔽光伏组件造成热板效应烧毁组件。
热斑效应:在一定条件下,一串联支路中被遮蔽的光伏组件,将被当做负载消耗其他有光照的光伏组件所产生的能量,被遮蔽的光伏组件内阻增大发热的现象。
2、光伏组件接线盒变形、扭曲、开裂、老化及烧毁。
可能原因:密封不严,导致接线盒渗水,造成短路。
3、光伏组件连接接头烧坏。
可能原因:光伏组件接头接点松脱,接触不良,引起直流拉弧现象,导致接触部分温度急剧升高(持续的电弧会产生1000-3000℃的高温),烧坏接头。
二、汇流箱常见故障分析:1、汇流箱下部防水端子未将电缆固定紧,引起电缆接头松动,造成拉弧烧端子。
可能原因:光伏组件只有白天发电,在发电时接触点间会发热而膨胀,晚上不发电温度降低,接触点间会收缩,产生向下的收缩力。
2、汇流箱保险烧坏。
可能原因:及时隔离出现短路故障的光伏串(短路故障时直流电产生电弧会烧毁电缆及电气设备),保险额定电流=1.56光伏串短路电流,保险熔断电流=1.35保险额定电流(保险在此熔断电流下1小时内必须熔断)。
3、汇流箱防反二极管烧坏。
可能原因:通过汇流箱防反二极管的电流长时间超过其额定电流,过热烧坏。
(汇流箱防反二极管的作用:防止组串之间产生环流)三、光伏支路上无电流通过的原因分析(以20块光伏板组成的光伏串为例):1、拉开汇流箱正、负极保险,用万用表测开路电压,若电压在600V-700V之间,可判断出该光伏支路无断开点;若电压为0V,可判断该支路有断开点(一般为组件连接接头烧坏);若电压大于0V小于600V,可判断该支路中有部分组件被短路。
2、拉开汇流箱正、负极保险,用万用表分别测正、负极对地电压,若正、负极瞬时电压均在30V-40V之间且逐步降至0V,可判断正、负极均无接地;若正极在600V-700V之间,负极为0V,可判断负极接地(此时测负极对地的通断,显示为通);若负极在600V-700V之间,正极为0V,可判断正极接地(此时测正极对地的通断,显示为通)。
光伏组件短路的原因
光伏组件短路是一种常见的故障,它可能会导致光伏系统的能量转换效率降低甚至损坏组件。
下面我将从几个不同的角度来探讨光伏组件短路的原因。
光伏组件短路可能是由于材料缺陷引起的。
在光伏组件的制造过程中,如果材料存在缺陷,比如金属导线的接触不良或半导体材料的质量问题,那么组件就容易发生短路。
这些材料缺陷可能是由于制造过程中的不当操作或原材料的质量问题引起的。
光伏组件短路可能是由于环境因素引起的。
例如,当光伏组件暴露在恶劣的天气条件下,如强风、暴雨或冰雹时,可能会损坏组件的外部保护层,导致短路。
此外,如果光伏组件没有得到适当的维护和清洁,灰尘、污渍等也可能导致短路。
光伏组件短路还可能与设计或安装问题有关。
例如,如果光伏组件的电缆连接不正确或连接不牢固,就会导致短路。
光伏组件短路还可能与运行过程中的损耗有关。
例如,当光伏组件长时间工作时,由于电流的过载或温度过高,可能导致材料的老化和损坏,从而引发短路。
此外,光伏组件中的电子元件或电路板也可能由于长时间使用而发生故障,导致短路。
总结起来,光伏组件短路的原因包括材料缺陷、环境因素、设计或安装问题以及运行过程中的损耗。
了解这些原因可以帮助我们更好
地预防和解决光伏组件短路问题,提高光伏系统的稳定性和可靠性。
光伏运维组件损坏情况报告范文尊敬的领导:本人受命进行光伏组件损坏情况调查,现将详细报告如下:一、调查概况本次调查主要针对我公司光伏电站内光伏组件的损坏情况进行全面检查。
光伏电站总装机容量为50MW,共安装单晶硅组件20万块、薄膜组件10万块。
调查时间为2022年1月10日至1月15日。
二、损坏情况统计通过实地查看和记录,初步统计出光伏组件损坏数量如下:1. 单晶硅组件损坏2,304块,占比1.15%;主要损坏类型为玻璃破裂和背板断裂。
2. 薄膜组件损坏1,521块,占比1.52%;主要损坏类型为玻璃破裂和电池层剥落。
三、损坏原因分析经过调查,我们认为导致组件损坏的主要原因有:1. 电站运维保养不到位,部分组件长期积灰,阻碍热量散发,加速组件损坏。
2. 极端天气如冰雹、台风等,造成部分组件机械损坏。
3. 部分组件质量问题,玻璃强度不足,背板接触不良等。
4. 部分组件使用时间过长,性能衰减,发生故障。
四、处理措施针对上述组件损坏情况,我们建议采取以下措施:1. 加强电站运维工作,特别是雨季及风季前的预防维护,清洗组件、检查连接、加固安装等。
2. 对损坏严重的组件进行及时更换,必要时进行批量更换。
3. 加强质量控制,对重要故障组件进行质量追溯和核查。
4. 优化电站监控系统,在极端天气来临前采取防护措施。
5. 合理安排组件更换周期,旧组件达到使用年限后及时更新。
请领导审阅,并提出修改意见。
我们将持续监测组件运行状态,妥善处理损坏组件,保障电站发电效率。
如果有任何疑问,请随时指示。
光伏运维部张××2022年1月20日。
光伏组件和汇流箱常见故障处理
1.自身破坏或损坏
①晶硅片的摩擦损坏、碰撞损坏:检查太阳能板的表面,看是否有摩
擦受伤或者碰撞受伤,太阳能电池板的碰撞损坏(太阳能电池片和玻璃直
接贴合),会影响整板的终端电压,短路电流也会减少,从而影响太阳能
组件的总输出功率,偷走系统效率和可靠性,因此应尽快修复;
②易损件的损坏:太阳能电池板需要使用密封胶密封,如果密封胶发
生损坏,会导致太阳能电池板损坏。
此外,太阳能组件不推荐使用极性反接,正极和负极要仔细区分,避免出现短路,从而导致太阳能组件的损坏。
2.部件的损坏
①绝缘性能差:如果太阳能电池板有存在绝缘性能差的现象,会影响
太阳能电池板的正常工作,可以检查绝缘纸的破损、太阳能纤维、接头等,如果有绝缘性能差的情况,就要及时处理。
光伏电站常见故障原因分析光伏电站是利用太阳能发电的装置,由于其依赖太阳能的供应,所以在运行过程中可能会遇到各种故障。
以下是光伏电站常见故障原因的分析。
1.组件故障:光伏电站中的太阳能组件是电站的核心组成部分,如果组件出现故障,就会导致光伏发电的效率下降甚至停止发电。
组件故障的原因可能是因为太阳能组件老化、电池片损坏、连接线路断开等。
2.逆变器故障:逆变器是将直流电转换为交流电的设备,如果逆变器出现故障,就无法将太阳能电池板产生的直流电转换为交流电供应给电网。
逆变器故障的原因可能是因为内部元件损坏、过热、线路接触不良等。
3.电池组故障:光伏电站中的电池组是存储电能的设备,如果电池组出现故障,就无法储存太阳能发电所产生的电能。
电池组故障的原因可能是因为电池老化、电池放电过度、电池损坏等。
4.输电线路故障:输电线路将光伏电站产生的电能输送到电网,如果输电线路出现故障,就无法正常将电能输送出去。
输电线路故障的原因可能是因为线路老化、线路短路、线路接触不良等。
5.天气因素:光伏电站的发电效率会受到天气因素的影响,例如阴天、雨天、大风等恶劣天气会导致太阳能电池板接收太阳能较少,从而降低发电效率。
6.环境因素:光伏电站通常会建在户外,会受到环境因素的影响,例如尘土、鸟类粪便、树叶积累等会影响太阳能电池板的发电效果。
7.人为操作错误:人为因素也是光伏电站故障的常见原因之一,例如操作不当、误操作、设备维护不及时等。
人为操作错误可能导致组件损坏、线路断开、设备烧坏等故障。
针对以上故障原因,我们可以采取以下措施来避免和修复故障:1.定期检查维护:定期对光伏电站进行检查和维护,及时发现并解决组件、逆变器、电池组等设备的故障。
2.选择优质设备:选择品质可靠的太阳能组件、逆变器等设备,减少设备故障的可能性。
3.加强环境管理:确保光伏电站周围环境的卫生清洁,及时清理尘土、鸟类粪便等杂物。
4.提高操作技术:培训和提高操作人员的技术水平,减少人为操作错误导致的故障。
光伏常见故障及其解决方法光伏发电系统是一种利用太阳能转化为电能的装置。
随着光伏技术的不断发展,光伏发电系统在各个领域得到了广泛应用。
然而,在实际运行中,光伏发电系统常常会出现一些故障,影响其正常运行和发电效率。
本文将介绍光伏常见故障及其解决方法。
1. 组件故障:光伏组件是光伏发电系统的核心部件,负责将太阳能转化为电能。
常见的组件故障包括组件破损、老化、温度过高等。
解决方法是定期检查组件表面是否有裂纹或腐蚀现象,并及时更换老化或损坏的组件。
2. 逆变器故障:逆变器是光伏发电系统中将直流电转换为交流电的设备。
常见的逆变器故障包括逆变器损坏、故障代码显示等。
解决方法是定期检查逆变器运行状态,及时清理逆变器散热器,并根据故障代码进行维修或更换。
3. 连接线路故障:光伏发电系统中的电缆和连接器是电能传输的重要组成部分。
常见的连接线路故障包括线路断裂、接触不良等。
解决方法是定期检查连接线路的接触情况,及时修复断裂或更换接触不良的连接器。
4. 遮挡物影响:遮挡物是指遮挡光伏组件表面的物体,如树木、建筑物等。
遮挡物会降低光伏组件的接收阳光的面积,影响发电效率。
解决方法是及时修剪树木,避免建筑物的阴影对光伏组件的影响。
5. 清洁问题:光伏组件表面的灰尘、污垢会影响光的透过率,降低发电效率。
解决方法是定期清洁光伏组件表面,保持其光亮度。
6. 雪灾影响:在寒冷地区,积雪会覆盖光伏组件表面,影响发电效率。
解决方法是及时清除积雪,保持光伏组件表面干净。
7. 电压问题:光伏发电系统中的电压波动会影响系统的稳定性和发电效率。
解决方法是安装电压稳定器,控制电压在合理范围内。
8. 防雷问题:雷电天气会对光伏发电系统造成损害。
解决方法是安装避雷装置,保护光伏发电系统免受雷击。
9. 盗窃问题:光伏发电系统的组件和设备价值较高,容易引起盗窃。
解决方法是加强安全防护措施,如安装监控设备、加固围墙等。
10. 电池故障:光伏发电系统中的电池是储存电能的设备。
光伏电站运行数据分析与故障诊断技术研究随着可再生能源的快速发展,光伏电站作为一种清洁、可持续的能源发电方式得到了广泛应用。
然而,由于光伏电站规模庞大、设备复杂,其运行数据分析和故障诊断面临着诸多挑战。
为了保障光伏电站的高效运行和故障的及时排除,研究光伏电站运行数据分析与故障诊断技术显得尤为重要。
一、光伏电站运行数据分析1.1 数据采集与处理光伏电站运行数据的采集与处理是进行数据分析的基础。
通过对光伏电站各个组件及系统的监测设备进行布设和数据采集,可以实时获取光伏电站的运行数据。
采集到的数据可包括光伏组件的发电量、温度、辐照度等,以及逆变器、变压器、电缆和开关等设备的运行状态数据。
数据处理是为了从大量的数据中提取有价值的信息。
通过数据预处理、特征提取和特征选择等手段,可以对运行数据进行清洗,去除异常值和噪声,并提取出具有代表性的特征。
常用的数据处理方法包括滤波、标准化、降维等。
1.2 数据分析方法光伏电站运行数据的分析方法包括统计分析、数据挖掘和机器学习等。
统计分析通过描述性统计、相关性分析和趋势预测等手段,对光伏电站的运行状况进行整体把握。
数据挖掘可以发现数据中的隐藏模式和关联规律,如聚类、分类、关联规则挖掘等。
机器学习是一种基于数据的自动建模方法,可以通过训练样本建立模型,并对未知数据进行预测和分类,如支持向量机、人工神经网络和决策树等。
1.3 数据分析应用通过运行数据分析,可以实现对光伏电站的运行状态进行实时监测和评估。
根据分析结果,可以及时发现异常现象和故障,进行预警和预防,减少停机时间和维修成本。
此外,光伏电站的运行数据还可以用于优化发电效率、制定运维策略和评估设备性能等方面。
二、光伏电站故障诊断技术研究2.1 故障诊断方法光伏电站故障诊断方法包括基于规则的专家系统、模型驱动的故障诊断和数据驱动的故障诊断等。
基于规则的专家系统依据专家知识和经验,通过规则库进行故障诊断。
模型驱动的故障诊断基于光伏电站的数学模型,通过建立模型与实际运行数据进行比对,来确定故障的发生位置和类型。
光伏组件常见故障及检测摘要:随着近年来光伏组件价格的急剧下降,光伏发电站建设成本也下降了很多,促进了光伏发电产业迅速发展。
在光伏发电站不断普及的同时,一些产品质量问题也逐渐突显出来,其中光伏组件寿命能否达到25年成为大家非常关心的问题。
为此我们通过对光伏电站调研,分析光伏组件容易出现的问题。
研究结果表明,光伏组件功率下降的原因一方面是组件质量问题,另一方面是光伏系统设计或运行环境等因素造成的。
以下向大家介绍光伏组件出现的常见故障及其检测方法。
关键词:光伏组件;故障;检测;变色;隐裂0引言光伏组件常见的故障有受光面变色、隐裂、热斑、机械损伤、旁路二极管故障和功率衰减。
由于这些质量问题隐藏在光伏板内部,或在光伏电站运营一段时间后才发生,在光伏板进场验收时难以识别,需借助专业设备进行检测,通过检测发现问题,不断强化运维管理,尽可能使光伏板在最优的环境中运行。
1、光伏组件受光面变色光伏组件受光面变色的现象一般出现在运行了几年后的光伏电站中,晶体硅组件和非晶硅薄膜组件受光面变色最常见的是封装材料变色,它使得到达光伏组件片表面的太阳辐照强度减少,造成组件输出功率稍有下降。
造成变色的原因主要有封装材料质量问题和环境因素(高温和高湿)。
2、隐裂隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,可能导致开路性破坏。
隐裂还可能会导致热斑效应。
隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或运输过程中剧烈的抖动都有可能造成电池片的隐裂。
光伏组件在出厂前会进行电致发光(Electroluminescence,EL)检测,所使用的仪器为EL检测仪。
该仪器利用晶体硅的电致发光原理,利用高分辨率CCD 相机拍摄组件的近红外图像,获取并判定组件的缺陷。
EL检测仪能够检测光伏组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。
3、蜗牛蚊(闪电纹)蜗牛纹是近年来才发现的现象,主要表现在组件上表面的银栅线变色,蜗牛纹不会发生在室内的组件上,只会发生在户外放了3-5个月的组件上,这些纹路会慢慢变粗,当变粗到一定宽度时就几乎不会再变粗了。
光伏电站组件常见故障分析及处理出了新的要求。
需要高水平的管理和维护技术,以及时有效地解决电厂运行中的故障,为确保光伏电站安全稳定运行,提高电站性能,光伏电站建设周期仅需几个月,后续运行维护周期长达20-25年。
在日常运行维护过程中,对光伏组件的缺陷采取有效的处理措施是非常重要的,我已经从事了一家大型光伏电站的运行维护工作五年。
在这方面,本文件以大型光伏电站组件的常见缺陷为出发点,具体分析电站组件的常见缺陷,并提出解决方案,为光伏电站的运行维护提供参考。
关键字:光伏组件;常见故障;处理措施前言:光伏组件是将太阳能转化为电能的直接载体,是光伏发电系统的重要组成部分。
其发电能力直接影响光伏阵列的生产性能,最终影响光伏发电能力。
如果光伏组件故障不能及时有效排除,可能导致组件损坏,在严重情况下会导致火灾和安全事故。
分析光伏组件在运行过程中可能存在的缺陷并制定预防措施是改进设备使用的重要手段,也是确保电厂安全稳定运行的重要基石光伏发电。
1简述光伏发电的原理光伏发电是一种利用半导体界面的光伏效应将光能直接转化为电能的技术。
该技术的关键部件是太阳能电池。
单个太阳能电池可以串联封装和保护,形成大面积的光伏组件。
多个光伏组件串联在光伏串中,并联在一个汇流箱上形成光伏串联。
太阳能通过光伏组件组成的光伏阵列将太阳光转换为直流电,通过三相逆变器以三相交流电的形式转换,经升压变压器升级后接入电网。
2光伏发电厂简介一座总容量120mW的大型光伏电站位于丘陵地带,占地面积约7200亩,光伏电站选用255(多晶)、265(单晶)、270(单晶)和275(单晶)光伏组件。
22块光伏板串联形成一个光伏模块,连接到直流汇流防雷智能保护(16进1出),6个汇流箱连接到500kW集成逆变器的直流侧,逆变器将交流电流中的电流能量反转,并将其发送至35kV组合箱式变压器的低压侧。
经箱变升级至35kV 后,送至呼叫站更换。
经召回变压器升级至110kV后,接入电网。
光伏组件故障检测与诊断技术研究随着全球对可再生能源需求的不断增加,光伏发电逐渐成为一种主要的清洁能源,然而,光伏组件在长期使用过程中难免会产生故障,这不仅影响发电效率,还可能导致系统崩溃。
因此,光伏组件故障检测与诊断技术成为研究的热点。
一、光伏组件故障检测技术1. 热成像技术热成像技术是目前常用的光伏组件故障检测方法之一。
它通过测量光伏组件表面的热量分布,从而检测出可能存在的故障点。
这种技术不需要对光伏组件进行接触式检测,具有非侵入性和快速性的优点。
然而,热成像技术只能检测表面故障,难以察觉内部故障。
2. 电学参数测量技术电学参数测量技术通过测量光伏组件的电流和电压参数来判断其状态。
这种方法可以快速检测光伏组件的输出功率是否偏低,从而判断是否存在故障。
然而,电学参数测量技术对环境条件的要求较高,受到温度、辐射等因素的影响较大。
3. 光谱响应法光谱响应法是一种通过测量光伏组件在不同波长下的响应来检测故障的方法。
根据光伏组件的光谱响应特性,可以判断出可能存在的故障类型。
光谱响应法具有高精度和灵敏度的优点,可以准确检测出光伏组件的故障类型。
二、光伏组件故障诊断技术1. 图像处理技术图像处理技术在光伏组件故障诊断中起到关键作用。
通过获取光伏组件的热像图或电学参数图像,并对图像进行分析和处理,可以判断出故障点的位置和类型。
图像处理技术可以提高诊断的准确性和效率。
2. 人工智能技术人工智能技术在光伏组件故障诊断中具有广阔的应用前景。
通过建立故障样本库,利用机器学习算法对故障样本进行分析和训练,可以实现对光伏组件故障的自动诊断和判断。
人工智能技术的引入可以大大提高诊断的精度和速度。
三、光伏组件故障检测与诊断技术的发展趋势1. 非接触式检测技术的发展目前的故障检测技术主要是通过对光伏组件的接触式检测,这种方法存在一定的局限性。
未来,随着非接触式检测技术的发展,可以更加准确地探测光伏组件的故障点,提高故障诊断的效率和精度。
光伏组件及汇流箱常见故障处理
一、光伏组件故障处理
1、外观检查:光伏组件中晶硅片上可能会出现一些暗斑或者金属粒子等,这些物质可会影响到光伏组件的效率,需要在安装前及安装后定期进行检查、清洗。
2、电压检查:光伏组件能够正常发电,必须保证来自光伏组件的电压和工作电压一致;另外,应该检查光伏组件内部的短路电压、开路电压及内阻。
3、功率检查:通常可以利用光伏测试仪,进行功率检查,例如检查光伏组件的短路功率和最小功率;另外,可以针对每一组光伏组件进行测试,测量最大功率,以及排布模式的变换后的最大功率。
4、传导性检查:光伏组件的传导性是很重要的,安装质量也会影响传导性的测试结果,如果传导性较差,就会影响整体效率,需要更换光伏组件或者重新安装。
5、绝缘性检查:绝缘检查需要检查光伏组件绝缘电阻是否正常,使用绝缘测试仪进行测试,在有害环境中,绝缘电阻应该保持在1000MΩ以上,如果低于1000MΩ,就需要更换光伏组件或者重新安装。
6、功能检查:在检查过光伏组件后,还应该进行功能检查,比如检查光伏组件的正反馈功能、恒频/变频功能等,以确保光伏组件可以正常工作。
二、汇流箱故障处理。
光伏组件故障分析报告1 引言1.1 光伏组件概述光伏组件,又称太阳能电池板,是光伏发电系统中的核心部件,其作用是将太阳光能转化为电能。
光伏组件主要由硅电池片、玻璃、EVA胶膜、背板、边框等部分组成。
在过去的几十年里,随着光伏技术的不断发展和成熟,光伏组件的转换效率得到了显著提高,成本也在逐渐降低,光伏发电已成为全球新能源的重要组成部分。
我国光伏产业经过多年的发展,已形成了从硅料生产、电池片制造、组件组装到系统集成的完整产业链。
然而,在光伏组件的长期运行过程中,各种故障问题也逐渐凸显出来,对光伏发电系统的稳定性和发电效率产生了影响。
1.2 故障分析的目的和意义对光伏组件进行故障分析,旨在找出故障产生的原因,为故障诊断、防范和维护提供依据。
故障分析的目的和意义如下:1.提高光伏发电系统的稳定性和可靠性,降低故障率。
2.延长光伏组件的使用寿命,降低运维成本。
3.提高光伏发电效率,增加发电收益。
4.为光伏组件的设计、制造和安装提供改进方向。
通过对光伏组件故障的深入分析,有助于推动我国光伏产业的健康发展,提高光伏发电在能源结构中的比重,为实现能源转型和可持续发展贡献力量。
2 光伏组件故障类型及原因2.1 故障类型光伏组件的故障类型多样,主要包括以下几种:1.电池片损坏:电池片是光伏组件的核心部分,其损坏主要包括隐裂、破片、电极脱落等。
2.电路问题:如接线盒内部接线松动、接触不良,或电缆老化导致电阻增大等。
3.封装材料老化:长期受紫外线、温度变化等影响,EVA胶膜、背板等材料会出现老化、变色、龟裂等现象。
4.热斑效应:由于电池片自身或外部阴影导致局部温度升高,影响组件性能。
5.PID效应(潜在诱导性降解):由于组件长期在湿度较大环境下工作,导致电池片出现性能下降。
2.2 故障原因光伏组件故障的原因可以分为以下几类:1.内在因素:–电池片质量:电池片在生产过程中可能存在微裂纹、掺杂不均等问题。
–组件设计:设计不合理,如电池片间距过小,可能导致热膨胀时电池片相互挤压。
一.接线盒光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电流。
光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。
目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部分组件质量问题来自于接线盒自身的设计和品质。
作为光伏组件制造商的配套企业,接线盒制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全的保护。
所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。
常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限公司(简称“华阳检测”,于 2009 年 12 月获得了 CNAS 实验室认可,认可范围包括光伏组)件、光伏材料共 119 项检测能力。
公司自 2008 年开始进行接线盒检测(依据标准:VDE0126-5:2008),讫今共完成 30 家接线盒供应商、50 多款接线盒的检测和质量分析,获得了大量的检测数据。
结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼热丝试验。
接线盒测试常见失败项目统计图:一、户外组件因接线盒问题引起的故障图片接线盒引线端子烧毁接线盒烧毁引起组件背板烧焦组件碎裂二、接线盒在认证测试中常见失败项目及原因分析1.接线盒 IP65 防冲水测试防水性能是接线盒性能的重要指标。
认证测试中,先进行老化预处理测试,然后进行防冲水测试,再通过外观结构检查和工频耐压测试进行评判。
测试能否顺利通过,取决于接线盒的密封保护程度,而接线盒的密封保护直接影响到成品组件的防触电保护和漏电防护的等级。
就目前常规构造的接线盒而言,其设计和材料的缺陷已在认证测试中显露无疑。
图 1 IP65 防冲水测试测试图片接线盒防冲水测试失败的主要现象大致分为以下几种:⑴、接线盒密封盒体内大量积水;⑵、接线盒盒体与背板材料不匹配;⑶、接线盒的密封螺母开裂失效;⑷、接线盒在老化预处理测试中盒体变形;⑸、接线盒密封圈老化预处理测试后失效,或其他原因。
光伏电站组件常见故障分析及处理摘要:近些年,我国光伏装机容量不断壮大,光伏行业的迅速发展对电站运维人员技术水平也有了新的要求,需要高水准的运维技术,及时有效解决电站运行过程中出现的故障,才能保证光伏电站安全稳定运行,提高电站收益率。
光伏电站建设周期只需要短短几个月,而后期运行维护时间长达20-25年,针对日常运维过程中光伏组件出现的故障,采取有效的处理措施极为重要。
本人在某大型光伏电站从事运维工作5年,对此,本文以大型光伏电站组件常见故障为切入点,对电站组件常见故障进行了具体的分析,并提出解决方案,为光伏电站的运行维护提供参考。
关键字:光伏组件;常见故障;处理措施前言:光伏组件是将太阳能转化为电能的直接载体,是光伏发电系统重要组成部分,它的发电能力的好坏直接影响光伏阵列的输出性能,最终影响光伏发电系统的发电量。
如果光伏电站正常运行过程中,光伏组件故障不能及时有效地排除,和可能会损坏组件,严重时会引发火灾,造成安全事故。
对光伏组件在运行过程中可能出现的故障进行分析并制定防范措施是提高设备利用率的重要手段,是保障光伏电站安全稳定运行的重要基石。
1.简述光伏发电原理光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。
这种技术的关键元件是太阳能电池。
单个太阳能电池经过串联后进行封装保护可形成大面积的光伏组件,多块光伏组件串联成光伏组串,多个光伏组串并联接入汇流箱形成光伏阵列,太阳能通过光伏组件组成的光伏阵列将太阳光转化成直流电,经三相逆变转换成三相交流电,然后经升压变升压后并入电网。
2. 光伏电站简介某大型光伏电站总容量120MW,占地约7200亩,地处丘陵地带。
该光伏电站选用255(多晶)、265(单晶)、270(单晶)、275(单晶)光伏组件,由22块光伏电池板串联在一起组成一路光伏组件,汇入智能防雷直流汇流箱(16进1出),6台汇流箱接入500kw一体化逆变器直流侧,逆变器将直流电逆变成交流电后经送至35kV组合式箱变低压侧,经箱变升压至35kV后送至升压站开关柜,经升压变再次升压成110kV后并入电网。
光伏组件常见质量问题现象及分析光伏组件常见质量问题现象及分析⽹状隐裂原因1.电池⽚在焊接或搬运过程中受外⼒造成.2.电池⽚在低温下没有经过预热在短时间内突然受到⾼温后出现膨胀造成隐裂现象影响:1.⽹状隐裂会影响组件功率衰减.2.⽹状隐裂长时间出现碎⽚,出现热斑等直接影响组件性能预防措施:1.在⽣产过程中避免电池⽚过于受到外⼒碰撞.2.在焊接过程中电池⽚要提前保温(⼿焊)烙铁温度要符合要求.3.EL测试要严格要求检验.⽹状隐裂EVA脱层原因1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表⾯有异物造成.3.EVA原材料成分(例如⼄烯和醋酸⼄烯)不均导致不能在正常温度下溶解造成脱层4. 助焊剂⽤量过多,在外界长时间遇到⾼温出现延主栅线脱层组件影响:1.脱层⾯积较⼩时影响组件⼤功率失效。
当脱层⾯积较⼤时直接导致组件失效报废预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。
2.加强原材料供应商的改善及原材检验.3. 加强制程过程中成品外观检验4.严格控制助焊剂⽤量,尽量不超过主栅线两侧0.3mm硅胶不良导致分层&电池⽚交叉隐裂纹原因1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表⾯有异物造成.3.边框打胶有缝隙,⾬⽔进⼊缝隙内后组件长时间⼯作中发热导致组件边缘脱层4.电池⽚或组件受外⼒造成隐裂组件影响:1.分层会导致组件内部进⽔使组件内部短路造成组件报废2.交叉隐裂会造成纹碎⽚使电池失效,组件功率衰减直接影响组件性能预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。
2.加强原材料供应商的改善及原材检验.3. 加强制程过程中成品外观检验4.总装打胶严格要求操作⼿法,硅胶需要完全密封5. 抬放组件时避免受外⼒碰撞组件烧坏原因1.汇流条与焊带接触⾯积较⼩或虚焊出现电阻加⼤发热造成组件烧毁组件影响:1.短时间内对组件⽆影响,组件在外界发电系统上长时间⼯作会被烧坏最终导致报废预防措施:1.在汇流条焊接和组件修复⼯序需要严格按照作业指导书要求进⾏焊接,避免在焊接过程中出现焊接⾯积过⼩.2.焊接完成后需要⽬视⼀下是否焊接ok.3.严格控制焊接烙铁问题在管控范围内(375±15)和焊接时间2-3s组件接线盒起⽕原因1.引线在卡槽内没有被卡紧出现打⽕起⽕.2.引线和接线盒焊点焊接⾯积过⼩出现电阻过⼤造成着⽕.3.引线过长接触接线盒塑胶件长时间受热会造成起⽕组件影响:1.起⽕直接造成组件报废,严重可能⼀起⽕灾.预防措施:1.严格按照sop作业将引出线完全插⼊卡槽内2.引出线和接线盒焊点焊接⾯积⾄少⼤于20平⽅毫⽶.3.严格控制引出线长度符合图纸要求,按照sop作业.避免引出线接触接线盒塑胶件.电池裂⽚原因1.焊接过程中操作不当造成裂⽚2.⼈员抬放时⼿法不正确造成组件裂⽚3.层压机故障出现组件类⽚组件影响:1.裂⽚部分失效影响组件功率衰减,2.单⽚电池⽚功率衰减或完全失效影响组件功率衰减预防措施:1.汇流条焊接和返⼯区域严格按照sop⼿法进⾏操作2.⼈员抬放组件时严格按照⼯艺要求⼿法进⾏抬放组件.3.确保层压机定期的保养.每做过设备的配件更换都要严格做好⾸件确认ok后在⽣产.4.EL测试严格把关检验,禁⽌不良漏失.电池助焊剂⽤量过多原因1.焊接机调整助焊剂喷射量过⼤造成2.⼈员在返修时涂抹助焊剂过多导致组件影响:1.影响组件主栅线位置EVA脱层,2.组件在发电系统上长时间后出现闪电纹⿊斑,影响组件功率衰减使组件寿命减少或造成报废预防措施:1.调整焊接机助焊剂喷射量.定时检查.2.返修区域在更换电池⽚时请使⽤指定的助焊笔,禁⽌⽤⼤头⽑刷涂抹助焊剂虚焊、过焊原因1.焊接温度过多或助焊剂涂抹过少或速度过快会导致虚焊2.焊接温度过⾼或焊接时间过长会导致过焊现象.组件影响:1.虚焊在短时间出现焊带与电池⽚脱层,影响组件功率衰减或失效,2.过焊导致电池⽚内部电极被损坏,直接影响组件功率衰减降低组件寿命或造成报废预防措施:1.确保焊接机温度、助焊剂喷射量和焊接时间的参数设定. 并要定期检查,2.返修区域要确保烙铁的温度、焊接时间和使⽤正确的助焊笔涂抹助焊剂.3.加强EL检验⼒度,避免不良漏失下⼀⼯序.焊带偏移或焊接后翘曲破⽚原因1.焊接机定位出现异常会造成焊带偏移现象2.电池⽚原材主栅线偏移会造成焊接后焊带与主栅线偏移3.温度过⾼焊带弯曲硬度过⼤导致焊接完后电池⽚弯曲组件影响:1.偏移会导致焊带与电池⾯积接触减少,出现脱层或影响功率衰减2.过焊导致电池⽚内部电极被损坏,直接影响组件功率衰减降低组件寿命或造成报废3.焊接后弯曲造成电池⽚碎⽚预防措施:1.定期检查焊接机的定位系统.2.加强电池⽚和焊带原材料的来料检验,组件钢化玻璃爆和接线盒导线断裂原因1.组件在搬运过程中受到严重外⼒碰撞造成玻璃爆破2.玻璃原材有杂质出现原材⾃爆.3.导线没有按照规定位置放置导致导线背压坏.组件影响:1.玻璃爆破组件直接报废,2.导线损坏导致组件功率失效或出现漏电连电危险事故预防措施:1.组件在抬放过程中要轻拿轻放.避免受外⼒碰撞.2.加强玻璃原材检验测试,3.导线⼀定要严格按照要求盘放.避免零散在组件上⽓泡产⽣原因1.层压机抽真空温度时间过短,温度设定过低或过⾼会出现⽓泡2.内部不⼲净有异物会出现⽓泡.3.上⼿绝缘⼩条尺⼨过⼤或过⼩会导致⽓泡.组件影响:1.组件⽓泡会影响脱层.严重会导致报废预防措施:1.层压机抽真空时间温度参数设定要严格按照⼯艺要求设定.2.焊接和层叠⼯序要注意⼯序5s清洁,3.绝缘⼩条裁切尺⼨严格要求进⾏裁切和检查.⽓泡产⽣原因1.层压机抽真空温度时间过短,温度设定过低或过⾼会出现⽓泡2.内部不⼲净有异物会出现⽓泡.3.上⼿绝缘⼩条尺⼨过⼤或过⼩会导致⽓泡.组件影响:1.组件⽓泡会影响脱层.严重会导致报废预防措施:1.层压机抽真空时间温度参数设定要严格按照⼯艺要求设定.2.焊接和层叠⼯序要注意⼯序5s清洁,3.绝缘⼩条裁切尺⼨严格要求进⾏裁切和检查.EVA脱层原因1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表⾯有异物造成.3.EVA原材料成分(例如⼄烯和醋酸⼄烯)不均导致不能在正常温度下溶解造成脱层组件影响:1.脱层会导致组件内部进⽔使组件内部短路造成组件失效⾄报废预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。
一.接线盒光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电流。
光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。
目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部分组件质量问题来自于接线盒自身的设计和品质。
作为光伏组件制造商的配套企业,接线盒制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全的保护。
所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。
常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限公司(简称“华阳检测”,于2009 年12 月获得了CNAS 实验室认可,认可范围包括光伏组)件、光伏材料共119 项检测能力。
公司自2008 年开始进行接线盒检测(依据标准:VDE0126-5:2008),讫今共完成30 家接线盒供应商、50 多款接线盒的检测和质量分析,获得了大量的检测数据。
结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼热丝试验。
接线盒测试常见失败项目统计图:一、户外组件因接线盒问题引起的故障图片接线盒引线端子烧毁接线盒烧毁引起组件背板烧焦组件碎裂二、接线盒在认证测试中常见失败项目及原因分析1.接线盒IP65 防冲水测试防水性能是接线盒性能的重要指标。
认证测试中,先进行老化预处理测试,然后进行防冲水测试,再通过外观结构检查和工频耐压测试进行评判。
测试能否顺利通过,取决于接线盒的密封保护程度,而接线盒的密封保护直接影响到成品组件的防触电保护和漏电防护的等级。
就目前常规构造的接线盒而言,其设计和材料的缺陷已在认证测试中显露无疑。
图1 IP65 防冲水测试测试图片接线盒防冲水测试失败的主要现象大致分为以下几种:⑴、接线盒密封盒体内大量积水;⑵、接线盒盒体与背板材料不匹配;⑶、接线盒的密封螺母开裂失效;⑷、接线盒在老化预处理测试中盒体变形;⑸、接线盒密封圈老化预处理测试后失效,或其他原因。
通过对以上测试过程中出现的失败现象进行研究分析,得出以下几点失败原因:(1)、盒体的锁扣设计:锁扣设计成两扣模式可能是导致试验失败的主要原因。
两扣模式使得盒盖受力集中在二点,加上盒盖面积较大,导致其余各点受力很不均匀。
特别是在高温时,其余各点受密封圈热胀、材料受热变软的影响,导致接线盒龇口,影响盒体的密封性,从而在IP65 防水测试中失败(如图2)。
另外,接线盒经过240 小时老化试验后,密封圈虽未脱落,但盒体、盒盖有变型,也会影响到盒体的密封性。
导致盒体大量积水盒体边缘形变图2 防水测试后接线盒变形、大量积水图3 老化试验后盒盖变形影响密封导致积水(2)接线盒密封圈的橡胶材料选择不当:由于密封圈材料的选择不适合,在接线盒经过240小时老化预处理测试后,其延伸率和收缩率降低,密封圈材质硬度升高,降低了盒体与盒盖的密封性能,导致密封圈不能完全密封盒体和盒盖的槽口,致使水流渗入,防冲水测试失败。
(如图4)图4 密封圈老化试验后密封不到位,水流渗入(3)接线盒盒体塑料与太阳能组件密封胶在老化预处理测试后,粘合性失效(如图5)。
图5 接线盒与硅胶粘结失效(4)密封螺母材质选择不当:接线盒在老化预处理测试后,密封螺母发生断裂,也是造成接线盒防冲水失败的原因。
2.接线盒湿热试验湿热试验对于接线盒来说是一个相当严酷的环境试验,接线盒湿热试验失败的主要现象有以下几种:⑴、湿热试验后接线盒盒体碎裂失效;⑵、湿热试验后接线盒盒体和盒盖密封变形;⑶、湿热试验后接线盒与背板脱落;⑷、湿热试验后电气连接不可靠;⑸、湿热试验后接线盒电缆的抗拉扭性能减小,爬电距离、电气间隙减小(6)、其他现象。
接线盒和背板脱落变形图6 湿热试验后接线盒变形图7 湿热试验后接线盒与背板脱落图8 湿热试验后接线盒失效湿热试验失败可能的原因大致有以下几点:(1)、盒体PPO材料的选择不当或用料不纯;(2)、密封螺母开裂导致在湿热之后电缆的抗拉扭性能削弱,或者直接开裂;(3)、接线盒盒体与硅胶不匹配,长时间高温高湿后接线盒与硅胶脱落;(4)、其他原因。
3、接线盒盒体灼热丝测试接线盒盒体750℃灼热丝测试,是接线盒生产商选用接线盒材质的重要测试项目,也是接线盒认证测试中较易失败的项目之一。
测试中,根据盒体材料从开始燃烧到火焰熄灭的时间长短,判定该接线盒是否能适合今后在户外使用。
其主要试验过程如下图所示:图9 接线盒支撑带电体部分开始燃烧图10 接线盒支撑带电体部分继续燃烧图11 火焰熄灭的时间根据图9、10、11所示,接线盒支撑带电体部分在进行750°C灼热丝测试时,火焰熄灭时间Te为44.92s,不符合接线盒标准中灼热丝测试的要求。
测试失败的主要原因是,接线盒材质无法承受灼热丝元件在短时间内所造成的热应力,不符合灼热丝测试的要求(没有火焰或是火焰可以在30s内自动熄灭)。
4.接线盒常规测试其他失败项(部分)(1)、工频耐压测试失败,见图12所示。
其失败原因主要为爬电距离/电气间隙不足、环境试验之后绝缘性能受到损害(由于材料方面的原因)。
图12工频耐压测试(2)、接线盒带电部件抗腐蚀强度不足,其原因为金属件铜质选型和表面处理不当。
图13 带电部件抗二氧化硫腐蚀能力不足三、光伏组件接线盒质量改进建议作为光伏组件的配套产品,接线盒所占成本不及电池成本十分之一,但却是决定光伏组件最终能否正常工作的重要部件。
在此,笔者提出接线盒质量改进的几点建议:1、将盒体、盒盖分体,由密封圈密封的设计,改进为盒体、盒盖压接一体式密封处理,加强整个接线盒结构密封性和密封强度。
2、根据目前组件认证、制造、使用的需要,建议接线盒内预留扩展连接座;装配不同规格的二极管可以随时改变接线盒的最大工作电流;根据组件生产工艺在接线盒装配中保留密封胶和灌封胶两种安装方式。
3、考虑在接线盒盒盖设置导气阀以导出盒体内部热量,或在接线盒内部采用薄片状金属端子,增加散热片,以达到降温的作用。
4、通过系列测试,研究不同类型硅胶和不同材质背板材料的相互匹配性,为光伏组件制造商提供接线盒安装、使用、匹配的整套解决方案二.背板1.背板是主要的防护材料,如果只是背板材料破了的话没有伤到电池部分短期没问题。
但是这一点上就开始收到环境腐蚀,EVA会迅速老化破裂或脱离,接着腐蚀电池部分,腐蚀再扩大组件就短路失效了2.鼓包,可能会有TPE脱层的危险,造成湿漏电的不过, 凹坑,凹槽,担心会压破电池片,还有就是外观的影响三.EVA不良表现原因分析处理方案气泡或缺胶现象真空度不足延长抽真空时间检查层压机硅胶板是否破裂检修真空泵、更换真空泵油压力不够增加加压时间,调整压力更换橡胶板加热板局部温度过高定期检查加热板温度校正温度,使之达到均匀增加高温布是之缓冲,保证前期传热助焊剂减少助焊剂使用量助焊剂不匹配,更换助焊剂材料被污染清洁材料裁剪EVA或使用时戴手套、帽子等温度过高盒盖时间控制在30S以内降低温度、增加层压时间加多两层髙温布,进行缓冲EVA厚薄或受潮更换材料、使用两层EVA 控制生产环境、储存环境添加除湿机背板凹凸胶膜收缩缩短抽真空时间降低层压温度EVA换方向放置,交叉使用背板收缩更换背板材料放置不整齐重新放置,在层压前进行检查电池片碎裂压力过大降低压力增加EVA厚度更换硅胶板焊接后有杂质或电池片问题加强焊接后检查更换电池片与背板、玻璃剥离强度不够层压机温度不均匀校正温度固化时间短增加层压时间材料的问题及匹配性差背板表面进行处理更换匹配材料固化温度低提高层压温度材料污染清洗材料(背板、剥离、电池片)EVA收缩现象抽真空时间过长减少抽真空时间EVA生产工艺组件边缘增加EVA增加EVA尺寸储存温度过低裁剪好的EVA放置几个小时使用EVA进行退火处理EVA进行解冻黄变产品配方问题更换材料出现过交联现象降低固化温度或降低固化时间跟背板、硅胶匹配性差更换匹配中性硅胶和耐侯性好的背板材料受污染更换材料、注意环境和清洁交联度不够层压参数增加层压温度或层压时间测试误差选用精确到0.0001g,电子秤增加EVA试验重量到5g电池片移位抽真空的速度过快增加节流阀,缓冲抽空速度EVA收缩过大按照EVA收缩处理组件横纵向摆放错误确定层压机抽真空方向,正确放置组件放置不整齐人员培训四.边框在并网应用的光伏电站中,只可以使用电池片与边框有可靠绝缘的光伏组件。
组件要具有双倍或超强的绝缘措施,同时要充分考虑光伏组件的系统耐压性,以保证即使在光伏系统运行状态下也可以触摸组件表面,不会造成危险。
目前,所有的光伏组件可以达到Ⅱ级防护,在选择时并没有太严格的限制。
苏州欧姆尼克光伏逆变器通过德国各项标准,安全更有保障。
当触摸组件表面时,可能会产生对地的故障电流。
如果组件的绝缘足够好,一般来说很难有这样的电流产生。
但是,故障电流放电的强度会随一些条件的变化而增加,如光伏电池距离缩短(这种情况下透明玻璃或塑料板厚度减少)、接触面积增加等。
比如:由于清洁光伏组件的液体中含有导电物质,会造成导电面积扩大,从而导致意外的故障电流。
在这种情况下虽然无法对危险电流预先检测,但如果发生意外会造成一定的危险。
为了避免由此(类似突然从梯子上掉下来等)产生的安全隐患,也为了避免危险,在建设光伏并网发电系统时,用户应该遵循以下步骤:1)将光伏组件的边框以及其他导电气部分与接地线连接2)在对系统进行维护或对光伏组件进行清理时,断开逆变器与电网的连接五.电池片5.出现铝珠怎么办?如果是印刷过厚,就调整参数,降低板间距,提高印刷压力;如果是绒面过大,提醒制绒改善工艺;如果是浆料不匹配,就改善浆料。
6.出现铝包怎么办?如果是印刷厚度偏薄,就调整参数,提高板间距,降低印刷压力;如果是印刷不均匀,就查看网板和刮条是否有磨损,提醒生产更换,如果都没问题,就是绒面问题,提醒制绒工艺。
7.出现翘曲片怎么办?如果是印刷过厚,调整参数,提高板间距,降低压力;如果是硅片太薄,更换抗弯曲浆料;如果是刮刀没装好,提醒生产重新安装;如果是硅片厚度不均,就是原料问题。
8.出现节点怎么办?如果是网板或刮刀不良,提醒生产更换;如果是参数设置不合理,调整参数,降低压力。
9.出现虚印和断栅怎么办?如果是参数不合理,就调整参数,提高压力,降低板间距。
如果是网孔堵了,擦拭网板;如果是印刷头在行进过程中抖动,与设备协商解决;如果是网板或刮刀磨损或者是浆料不够,就提醒生产人员更换或者添加浆料。
反向电流irev>5.6a;测试光强e范围在950~1050测试温度t在23~27℃串阻rs>0填充因子68六.其余故障1.太阳能电池方阵外电极断路,内部断路,旁路二极管接反,旁路二极管短路,热斑效应,接线盒脱落,导线老化,导线短路、断路,背膜开裂,EVA 与玻璃进水,铝边框开裂,电池玻璃破碎,电池片或电极发黄(电阻增大),电池删线断裂,太阳能电池被遮挡,太阳能电池安装方位不对。