AD9850中文文档
- 格式:pdf
- 大小:1.78 MB
- 文档页数:12
第13章DDS芯片AD9850/AD9851的设计13.1 硬件设计信号源作为现代电子产品设计和生产中的重要工具,必须满足高精度、高速度、高分辨率等要求。
本章基于DDS ( Direct Digital Synthesis ,直接数字频率合成)技术,采用AD9850 DDS芯片,采用F169单片机作为控制芯片,实现一种了简易信号发生器的设计,该信号发生器具有输出频率范围宽,可以输出正弦和方波两种波形,与键盘结合易于实现全数字化的设计。
13.1.1 AD9850 DDS芯片简介随着数字技术的飞速发展,用数字控制方法从一个参考频率源产生多种频率的技术,即直接数字频率合成(DDS)技术异军突起。
美国AD公司推出的高集成度频率合成器AD9850便是采用DDS技术的典型产品之一。
AD9850采用CMOS工艺,其功耗在3.3V左右。
供电时仅为155mW,扩展工业级温度范围为-40~80℃,采用28脚SSOP表面封装形式。
AD9850的引脚排列如图13-1所示:LSB D0FQ-UD CLKIN AGND AVDDRSET QOUT QOUTBD4D5D6D7 MSBDGNDDVDORESETIOUTIOUTBAGNDAVDODACBL(NC)VINPVINN图13-1 AD9850的引脚图图13-2中层虚线内是一个完整的可编程DDS系统,外层虚线内包含了AD9850的主要组成部分。
图13-3为其组成框图。
图13-2 AD9850组成原理AD9850内含可编程DDS 系统和高速比较器,能实现全数字编程控制的频率合成[22]。
可编程DDS 系统的核心是相位累加器,它由一个加法器和一个N 位相位寄存器组成,N 一般为24~32。
每来一个外部参考时钟,相位寄存器便以步长M 递加。
相位寄存器的输出与相位控制字相加后可输入到正弦查询表地址上。
正弦查询表包含一个正弦波周期的数字幅度信息,每一个地址对应正弦波中0°~360°范围的一个相位点。
一种基于AD9850的全数控函数信号发生器设计引言 (2)1问题的提出 (2)一、产品的调研 (2)二、简介 (3)三、项目的功能定义 (3)四。
产品的适用人群及使用要求 (3)五、产品的关键技术点 (3)AD9850简介 (4)AD9850原理 (4)控制字与时序 (5)简介 (5)1系统设计方案 (7)2 DDS的基本原理 (7)3硬件电路设计 (8)3.1DDS信号产生电路 (8)3硬件电路设计 (8)3.1DDS信号产生电路 (8)3.2键盘输入接口及LCD接口电路 (9)3.3信号幅度数控预置电路 (10)3.4积分电容自动切换控制电路 (11)2单片机与AD9850的接口 (11)3系统设计 (12)3.1输入 (12)3.2输出 (12)3.3算法 (12)结束语本 (12)4系统软件设计 (14)4.1主程序 (14)4.2键盘扫描子程序 (15)4.3信号频率数字预置子程序 (15)5结束语 (16)4结论 (18)引言信号源是电子产品测量与调试、部队设备技术保障等领域的基本电子设备。
随着科学技术的发展和测量技术的进步,普通的信号发生器已无法满足目前日益发展的电子技术领域的生产调试需要。
而DDS技术是一种新兴的直接数字频率合成技术,具有频率分辨率高、频率切换速度快、切换相位连续、输出信号相位噪声低、可编程、全数字化易于集成、体积小、重量轻等优点,因而在雷达及通信等领域具有广泛的应用前景。
本作品设计由AD9850作为核心部件,STC89C52RC单片机作为控制部件的信号发生器。
该系统体积小、稳定性好、精度高,适用于尖端的通信系统和精密的高精度仪器以及高频无线传输系统等。
一、问题的提出正弦信号源在实验室和电子工程设计中有着十分重要的作用,而传统的正弦信号源根据实际需要一般价格昂贵,经调查发现高频的信号发生器价格都是高的吓人,而且低频输出时性能不好且不便于自动调节,工程实用性较差。
本文的设计以较低的成本制作正弦信号发生器,可用作核磁共振中引发磁场测量仪的激励一般的正弦信号,也可作为调制用的教学演示信号源。
SET GNDGND+1.1VOne Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • 781/329-4700 • World Wide Web Site: Rev. A | Page 1 of 2AN-423应用笔记R SET 引脚处的电压为(内部)控制放大器反馈环路的一部分,不得以外部方式予以更改。
R SET 调制电路(图2)以Q1为可变电阻,以R2为固定限流电阻,以防Q1过度开启。
当Q1工作于截止频率附近时,C1可以抑制噪声。
R1则可降低输入阻抗,从而进一步抑制噪声。
Q1上为完全调制AD9850输出所必需的输入电压约为1.5 v p-p ,直流失调约为2.3 v ,见图4。
直接数字频率合成器AD9850的幅度调制作者:Richard Cushing ,应用工程师本应用笔记将提供一种对AD9850 DDS 的输出电流进行电压控制或幅度调制的方法,其中以一种增强型MOSFET 取代R SET 固定电阻;并利用一种宽频RF 变压器将DDS DAC 输出结合起来,以产生一种对称的AM 调制包络。
速率超过50 kHz 时实现合理线性度的调制是可能的。
AD9850 DDS 的输出电流(最大20mA)一般通过从RSET(引脚12)输入到接地的一个固定电阻设定。
DAC 输出为单极性且互补(180度相位差)。
采用增强型MOSFET 符合单电源理念。
这种设计较为简单,并可尽量减少器件数量。
将I OUT 和I OUTB DAC 输出结合于一个中心抽头型宽频RF 变压器之中可产生一个对称的调制包络,如图1(A)所示。
图1(B)所示为不结合两个输出而仅仅采用一个输出的效应——非对称幅度调制。
两种配置均采用同一信号进行调制。
图2. R SET 改变图1. 对称(A)和非对称(B)幅度调制包络To I OUT OUTB PIN 20*MINI-CIRCUITS BROADBAND RF TRANSFORMERGNDGNDGNDGNDGND GNDAN-423Rev. A | Page 2 of 2©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. 下面的图4展示了10 kHz 调制包络及其至Q1栅极的相关输入信号。
●模拟器件天地 AD9850 125MHz DDS 频率合成器的原理及应用北京航空航天大学1-12信箱(100083) 郭荣祥 郭吉祥摘 要:介绍了美国ADI 公司采用先进的DDS 技术新推出的高集成度频率合成器AD 9850的主要特性、工作原理、应用电路和应用考虑。
关键词:直接数字频率合成(DDS ) 频率合成器 时钟发生器 锁相环(PLL )1 概述频率合成器是从一个或多个参考频率中产生多种频率的器件。
这种器件已经用了几十年,尤其是在通信系统中已得到广泛应用。
传统的频率合成器,通常从一排晶体振荡器产生的各种频率通过开关进行频率混合。
也有的采用众所周知的锁相环(PL L )技术实现频率合成。
随着数字技术在仪器仪表和通信系统的广泛应用,用数字控制方法从一个参考频率源产生多种频率,即直接数字合成技术(DD S)异军突起。
本文试图介绍世界流行的美国AD I 公司生产的A D 9850频率合成器正是应用这种D DS 技术的典型热门产品之一,其基本结构框图见图1。
·图1DDS 基本结构框图OUT输出f DACLPFN 位正弦查询表地址计数器c时钟f 在图1中,正弦查询表是一个可编程只读存储器(P RO M ),存有一个或多个完整周期的正弦波数据,在时钟f C 驱动下,地址计数器逐步经过PRO M 存储器的地址,地址中相应的数字信号输出到N 位数模转换器(D AC)的输入端,D AC 输出的模拟信号,经过低通滤波器(L PF),可得到一个频谱纯净的正弦波。
在图1系统中,输出频率无法进行编程控制,实际中常用的可编程DD S 系统如图2所示。
该DDS 系统的核心是相位累加器,它由一个加法器和一个N 位相位寄存器组成,N 一般为24~32位。
每来一个时钟f C ,输出频率图2可编程控制DDS 系统时钟fc相位截断13~15位幅度截断相位累加器N 位OUT f DACLPFN 位正弦查询表N位相位寄存器N 位频率控制字M相位控制字微控制器相位寄存器以步长M 增加。
基于AD9850的信号发生器设计摘要介绍ADI 公司出品的AD9850 芯片,给出芯片的引脚图和功能。
并以单片机AT89S52 为控制核心设计了一个串行控制方式的正弦信号发生器的可行性方案,给出了单片机AT89S52 与AD9850 连接电路图和调试通过的源程序以供参考。
直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快等优点,在雷达及通讯等领域有着广泛的应用前景。
系统采用AD9850为频率合成器,以单片机为进程控制和任务调度的核心,设计了一个信号发生器。
实现了输出频率在10Hz~1MHz围可调,输出信号频率稳定度优于10-3的正弦波、方波和三角波信号。
正弦波信号的电压峰峰值Vopp能在0~5V围步进调节,步进间隔达0.1v,所有输出信号无明显失真,且带负载能力强。
该电路设计方案正确可行,频率容易控制,操作简单灵活,且具有广阔的应用前景。
关键词:信号发生器;直接数字频率合成;AD9850芯片;AT89S52单片机AbstractOn the basis of direct digital synthesis(DDS)principle, a signal generator was designed , using AT89S52 single chip machine as control device and adopting AD9850 type DDS device .Hardware design parameters were given .The system can output sine wave ,square wave with wide frequency stability and good waveform .The signal generator has stronger market competitiveness , with wide development prospect ,in frequency modulation technology and radio communication technology fields.Key words: signal generator ;direct digital synthsis;AD9850;AT89S52目录第一章绪论 (1)1.1背景 (1)1.2问题的提出 (2)1.3论证方案 (2)1.4总体设计框图 (3)第二章 DDS技术产生信号的基本原理 (5)2.1DDS简介 (5)2.2频率预置与调节电路 (5)2.3累加器 (6)2.4控制相位的加法器 (6)2.5控制波形的加法器 (6)2.6波形存储器 (6)2.7D/A转换器 (7)2.8低通滤波器 (7)2.9数字波形合成的理论分析 (8)第三章芯片的简介 (9)3.1AD9850结构与性能 (9)3.2AD9850的控制字与控制时序 (11)3.3 AT89S52结构与性能 (12)3.4 24C02结构与性能 (15)3.5MAX232的结构与性能 (16)3.6RT1602结构与性能 (17)第四章主要硬件的总体设计 (19)4.1AD9850与单片机的接口电路 (19)4.2 LCD与单片机的连接 (20)第五章软件部分设计 (21)第六章用到的数学原理 (24)6.1数学原理 (24)6.2算法比较和选择 (26)6.2.1采样回放法 (26)6.2.2查表法 (27)6.2.3泰勒级数展开法 (27)6.2.4数字正弦振荡器法 (27)6.2.5递推数列法 (28)第七章电路原理图的绘制 (31)7.1一般步骤 (31)7.2原理图的绘制 (31)结束语 (32)致 (33)第一章绪论1.1背景在电子技术领域中,也就是所谓的信号源号源有很多种,包括正弦波信号源、函数发生器、脉冲发生器、扫描发生器、任意波形发生器、合成的信号源等,经常要用一些信号作为测量基准信号或输入信号。
模拟器件 COMS 工艺,125MHZ 完整的DDS 频率合成器特点125M 时钟频率片内高性能DAC 转换器和高速比较器 DAC SFDR > 50 dB @ 40 MHz AOUT 32位频率控制字简单的控制接口:串行或并行装载模式可进行相位调节3.3V 或5V 单电源供电低功耗:380 mW @ 125 MHz (5 V)155 mW @ 110 MHz (3.3 V)省电模式超小型28引脚SSOP 封装 应用频率/相位——方便的正弦波合成 针对数字通信的时钟恢复和锁存电路 数控ADC 编码发生器 灵活的本机振荡器应用概述AD9850是一款高度集成的设备,采用先进的DDS 技术,结合内部高速,高性能的D / A 转换器和比较器,以构成一个完整的,数字可编程频率合成器和时钟发生器。
当连接到一个准确的时钟源时,AD9850产生一个频谱纯净,频率/相位可编程的模拟输出正弦波。
这个正弦波可以直接使用作为频率源,或者它可以被转变为方波作为精准时钟发生器使用。
AD9850先进的高速DDS 内核提供了一个32位的频率调谐字,这使得其在外部125MHZ 参考时钟的输入下,分辨率可达0.0291HZ 。
AD9850的电路架构使得其产生的最高输出频率为其参考的基准时钟频率的一半(或62.5兆MHZ ),而且其输出频率是数控可变的,速率高达72.310 次每秒。
该器件还提供了5位的相位控制字,从而使其输出信号的相位该变量可以为180°,90°,45°,22.5°,11.25°,以及它们的任意组合。
AD9850还包含一个高速比较器,该比较器可以输入经过滤波(外部)的片内DAC 产生的信号以生成一个低抖动方波输出。
这使得该芯片可以作为精准的时钟信号源。
AD9850的频率调谐,控制和相位调制字是通过一个并行字节或方式载入到芯片内部的。
并行载入格式由五个8位的控制字组成。
REV.EInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.aCMOS, 125 MHzComplete DDS SynthesizerAD9850FUNCTIONAL BLOCK DIAGRAMCLOCK OUTOUTSETREF CLOCK IN MASTER RESETFREQUENCY, PHASE, AND CONTROLDATA INPUTGENERAL DESCRIPTIONThe AD9850 is a highly integrated device that uses advanced DDS technology coupled with an internal high speed, high performance, D/A converter and comparator, to form a com-plete digitally programmable frequency synthesizer and clock generator function. When referenced to an accurate clock source, the AD9850 generates a spectrally pure, frequency/phase-programmable, analog output sine wave. This sine wave can be used directly as a frequency source or converted to a square wave for agile-clock generator applications. The AD9850’s innovative high speed DDS core provides a 32-bit frequency tuning word, which results in an output tuning resolution of 0.0291 Hz, for a 125 MHz reference clock input. TheAD9850’s circuit architecture allows the generation of output frequencies of up to one-half the reference clock frequency (or 62.5 MHz), and the output frequency can be digitally changed (asynchronously) at a rate of up to 23 million new frequencies per second. The device also provides five bits of digitallycontrolled phase modulation, which enables phase shifting of its output in increments of 180°, 90°, 45°, 22.5°, 11.25° and anycombination thereof. The AD9850 also contains a high speed comparator that can be configured to accept the (externally)filtered output of the DAC to generate a low jitter square wave output. This facilitates the device’s use as an agile clock gen-erator function.The frequency tuning, control, and phase modulation words are loaded into the AD9850 via a parallel byte or serial loading format. The parallel load format consists of five iterative loads of an 8-bit control word (byte). The first byte controls phase modulation, power-down enable, and loading format; bytes 2–5comprise the 32-bit frequency tuning word. Serial loading is accomplished via a 40-bit serial data stream on a single pin. The AD9850 Complete-DDS uses advanced CMOS technology to provide this breakthrough level of functionality and performance on just 155 mW of power dissipation (+3.3 V supply).The AD9850 is available in a space saving 28-lead SSOP, sur-face mount package. It is specified to operate over the extended industrial temperature range of –40°C to +85°C.FEATURES125 MHz Clock RateOn-Chip High Performance DAC and High Speed ComparatorDAC SFDR > 50 dB @ 40MHz A OUT 32-Bit Frequency Tuning WordSimplified Control Interface:Parallel Byte or Serial Loading FormatPhase Modulation Capability+3.3 V or +5 V Single Supply Operation Low Power:380 mW @ 125 MHz (+5 V)155 mW @ 110 MHz (+3.3 V)Power-Down FunctionUltrasmall 28-Lead SSOP PackagingAPPLICATIONSFrequency/Phase–Agile Sine-Wave Synthesis Clock Recovery and Locking Circuitry for Digital CommunicationsDigitally Controlled ADC Encode Generator Agile Local Oscillator ApplicationsOne Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/329-4700World Wide Web Site: Fax: 781/326-8703© Analog Devices, Inc., 1999AD9850BRS ParameterTemp Test LevelMin Typ MaxUnitsCLOCK INPUT CHARACTERISTICS Frequency Range +5 V Supply FullIV 1125MHz +3.3 V SupplyFull IV 1110MHz Pulsewidth High/Low +5 V Supply +25°C IV 3.2ns +3.3 V Supply +25°CIV4.1nsDAC OUTPUT CHARACTERISTICS Full-Scale Output Current R SET = 3.9 k Ω+25°C V 10.24mA R SET = 1.95 k Ω+25°C V 20.48mA Gain Error+25°C I –10+10% FS Gain Temperature Coefficient Full V 150ppm/°C Output Offset+25°C I 10µA Output Offset Temperature Coefficient Full V 50nA/°C Differential Nonlinearity +25°C I 0.50.75LSB Integral Nonlinearity+25°C I 0.51LSB Output Slew Rate (50Ω, 2 pF Load)+25°C V 400V/µs Output Impedance +25°C IV 50120k ΩOutput Capacitance +25°C IV 8pF Voltage Compliance+25°C I 1.5V Spurious-Free Dynamic Range (SFDR):Wideband (Nyquist Bandwidth)1 MHz Analog Out +25°C IV 6372dBc 20 MHz Analog Out +25°C IV 5058dBc 40 MHz Analog Out +25°C IV 4654dBc Narrowband40.13579 MHz ± 50 kHz +25°C IV 80dBc 40.13579 MHz ± 200 kHz+25°C IV 77dBc 4.513579 MHz ± 50 kHz/20.5 MHz CLK +25°C IV 84dBc 4.513579 MHz ± 200 kHz/20.5 MHz CLK +25°C IV 84dBc COMPARATOR INPUT CHARACTERISTICS Input Capacitance +25°C V 3pF Input Resistance +25°C IV 500k ΩInput Current+25°C I –12+12µA Input Voltage Range +25°C IV 0V DD V Comparator Offset*Full VI 3030mV COMPARATOR OUTPUT CHARACTERISTICS Logic “1” Voltage +5 V Supply Full VI +4.8V Logic “1” Voltage +3.3 V Supply Full VI +3.1V Logic “0” VoltageFull VI +0.4V Propagation Delay, +5 V Supply (15 pF Load)+25°C V 5.5ns Propagation Delay, +3.3 V Supply (15 pF Load)+25°C V 7ns Rise/Fall Time, +5 V Supply (15 pF Load)+25°C V 3ns Rise/Fall Time, +3.3 V Supply (15 pF Load)+25°C V 3.5ns Output Jitter (p-p)+25°C V 80ps CLOCK OUTPUT CHARACTERISTICS Clock Output Duty Cycle (Clk Gen. Config.)+25°CIV50 ± 10%REV. E–2–(V S= +5 V ؎ 5% except as noted, RSET = 3.9 k ⍀)AD9850–SPECIFICATIONSAD9850AD9850BRSParameter Temp Test Level Min Typ Max Units CMOS LOGIC INPUTS (Including CLKIN)Logic “1” Voltage, +5 V Supply+25°C I 3.5V Logic “1” Voltage, +3.3 V Supply+25°C I 3.0V Logic “0” Voltage+25°C I0.4V Logic “1” Current+25°C I12µA Logic “0” Current+25°C I12µA Input Capacitance+25°C V3pF POWER SUPPLY (A OUT = 1/3 CLKIN)+V S Current @:62.5 MHz Clock, +3.3 V Supply Full VI3048mA110 MHz Clock, +3.3 V Supply Full VI4760mA62.5 MHz Clock, +5 V Supply Full VI4464mA125 MHz Clock, +5 V Supply Full VI7696mAP DISS @:62.5 MHz Clock, +3.3 V Supply Full VI100160mW110 MHz Clock, +3.3 V Supply Full VI155200mW62.5 MHz Clock, +5 V Supply Full VI220320mW125 MHz Clock, +5 V Supply Full VI380480mWP DISS Power-Down Mode+5 V Supply Full V30mW +3.3 V Supply Full V10mW NOTES*Tested by measuring output duty cycle variation.Specifications subject to change without notice.TIMING CHARACTERISTICS*(V S = +5 V ؎ 5% except as noted, R SET = 3.9 k⍀)AD9850BRSParameter Temp Test Level Min Typ Max Unitst DS(Data Setup Time)Full IV 3.5nst DH(Data Hold Time)Full IV 3.5nst WH(W_CLK min. Pulsewidth High)Full IV 3.5nst WL(W_CLK min. Pulsewidth Low)Full IV 3.5nst WD(W_CLK Delay After FQ_UD)Full IV7.0nst CD(CLKIN Delay After FQ_UD)Full IV 3.5nst FH(FQ_UD High)Full IV7.0nst FL(FQ_UD Low)Full IV7.0nst CF(Output Latency from FQ_UD)Frequency Change Full IV18CLKIN Cycles Phase Change Full IV13CLKIN Cycles t FD(FQ_UD Min. Delay After W_CLK)Full IV7.0nst RH(CLKIN Delay After RESET Rising Edge)Full IV 3.5nst RL(RESET Falling Edge After CLKIN)Full IV 3.5nst RS(Minimum RESET Width)Full IV5CLKIN Cycles t OL(RESET Output Latency)Full IV13CLKIN Cycles t RR(Recovery from RESET)Full IV2CLKIN Cycles Wake-Up Time from Power-Down Mode+25°C V5µsNOTES*Control functions are asynchronous with CLKIN.Specifications subject to change without notice.REV. E–3–AD9850–4–REV. EABSOLUTE MAXIMUM RATINGS*Maximum Junction Temperature . . . . . . . . . . . . . . . +165°C V DD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . –0.7 V to +V S Digital Output Continuous Current . . . . . . . . . . . . . . . 5 mA DAC Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C Operating Temperature . . . . . . . . . . . . . . . . .–40°C to +85°C Lead Temperature (Soldering 10 sec) . . . . . . . . . . . . +300°C SSOP θJA Thermal Impedance . . . . . . . . . . . . . . . . . . 82°C/W*Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure of absolute maximum rating conditions for extended periods of time may affect device reliability.EXPLANATION OF TEST LEVELSTest Level I –100% Production Tested.III –Sample Tested Only.IV –Parameter is guaranteed by design and characterizationtesting.V –Parameter is a typical value only.VI –All devices are 100% production tested at +25°C.100% production tested at temperature extremes for military temperature devices; guaranteed by design and characterization testing for industrial devices.CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection.Although the AD9850 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper E SD precautions are recommended to avoid performance degradation or loss of functionality.Application Note : Users are cautioned not to apply digital input signals prior to power-up of this device. Doing so may r esult in a latch-up condition.ORDERING GUIDEModel Temperature Range Package Description Package Option AD9850BRS–40°C to +85°CShrink Small Outline (SSOP)RS-28AD9850–5–REV. ETable I.Lead Function DescriptionsPin No.Mnemonic Function4–1,D0–D78-Bit Data Input. This is the 8-bit data port for iteratively loading the 32-bit frequency and 8-bit phase/28–25control word. D7 = MSB; D0 = LSB. D7 (Pin 25) also serves as the input pin for the 40-bit serial data word.5, 24DGND Digital Ground. These are the ground return leads for the digital circuitry.6, 23DVDD Supply Voltage Leads for digital circuitry.7W_CLK Word Load Clock. This clock is used to load the parallel or serial frequency/phase/control words.8FQ_UD Frequency Update. On the rising edge of this clock, the DDS will update to the frequency (or phase)loaded in the data input register, it then resets the pointer to Word 0.9CLKIN Reference Clock Input. This may be a continuous CMOS-level pulse train or sine input biased at 1/2V supply. The rising edge of this clock initiates operation.10, 19AGND Analog Ground. These leads are the ground return for the analog circuitry (DAC and comparator).11, 18AVDD Supply Voltage for the analog circuitry (DAC and comparator).12R SETThis is the DAC’s external R SET connection. This resistor value sets the DAC full-scale output current. For normal applications (F S I OUT = 10 mA ), the value for R SET is 3.9 k Ω connected to ground. The R SET /I OUT relationship is: I OUT = 32 (1.248 V/R SET ).13QOUTB Output Complement. This is the comparator’s complement output.14QOUT Output True. This is the comparator’s true output.15VINN Inverting Voltage Input. This is the comparator’s negative input.16VINPNoninverting Voltage Input. This is the comparator’s positive input.17DACBL (NC)DAC Baseline. This is the DAC baseline voltage reference; this lead is internally bypassed and shouldnormally be considered a “no connect” for optimum performance.20IOUTB The Complementary Analog Output of the DAC.21IOUT Analog Current Output of the DAC.22RESETReset. This is the master reset function; when set high it clears all registers (except the input register) and the DAC output will go to Cosine 0 after additional clock cycles—see Figure 19.PIN CONFIGURATIONSD3D7 MSB/SERIAL LOAD D6D5D4D2D1LSB D0RESETDVDDDGND DGND DVDD W CLK FQ UD CLKINAGND AGND IOUTB IOUTAVDD R SET QOUTB QOUT AVDD VINNVINP DACBL (NC)NC = NO CONNECTRBW # 100Hz START 0HzVBW 100HzATN # 30dB SWP 762 secSTOP 62.5MHz Figure 1.SFDR, CLKIN = 125 MHz/f OUT = 1 MHzRBW # 300Hz START 0HzVBW 300Hz ATN # 30dBSWP 182.6 sec STOP 62.5MHzFigure 2.SFDR, CLKIN = 125 MHz/f OUT= 41 MHzCh 1 500mV ⍀M 20.0ns Ch 1 1.58V D 500ps Runs AfterFigure 3.Typical Comparator Output Jitter, AD9850Configured as Clock Generator w/42 MHz LP Filter (40 MHz A OUT /125 MHz CLKIN)AD9850–Typical Performance Characteristics–6–REV. ERBW # 300Hz START 0HzVBW 300HzATN # 30dB SWP 182.6 secSTOP 62.5MHzFigure 4.SFDR, CLKIN = 125 MHz/f OUT = 20 MHzRBW # 3Hz CENTER 4.513579MHzVBW 3Hz ATN # 20dBSWP 399.5 sec SPAN 400kHzFigure 5.SFDR, CLKIN = 20.5 MHz/f OUT = 4.5 MHzOFFSET FROM 5MHz CARRIER – Hz–––––––––––100100k1kd B c10k Figure 6. Output Residual Phase Noise (5 MHz A OUT /125 MHz CLKIN)AD9850–7–REV. ECh1 1.00V ⍀ M 1.00ns Ch 1 1.74V Figure parator Output Rise Time (5 V Supply/15 pF Load)CLKIN – MHz140204060801001206852S F D R – d B66605856546462Figure 8.SFDR vs. CLKIN Frequency (A OUT = 1/3 of CLKIN)FREQUENCY OUT – MHz9080304010S U P P L Y C U R R E N T – m A203070605040Figure 9.Supply Current vs. A OUT Frequency (CLKIN = 125/110 MHz for 5 V/3.3 V Plot)Ch1 1.00V ⍀ M 1.00ns Ch 1 1.74VFigure parator Output Fall Time (5 V Supply/15 pF Load)CLOCK FREQUENCY – MHz0140204060801001209010S U P P L Y C U R R E N T –m A80504030207060Figure 11.Supply Current vs. CLKIN Frequency (A OUT = 1/3 of CLKIN)DAC I OUT – mA205S F D R – d B1015Figure 12.SFDR vs. DAC I OUT (A OUT = 1/3 of CLKIN)AD9850–8–REV. E5-POLE ELLIPTICALFigure 13.Basic AD9850 Clock Generator Application with Low-Pass FilterFigure 14.AD9850 Clock Generator Application in a Spread-Spectrum Receivera.Frequency/Phase –Agile Local Oscillatorb.Frequency/Phase –Agile Reference for PLLREFRFc.Digitally-Programmable ”Divide-by-N “ Function in PLLFigure 15.AD9850 Complete-DDS Synthesizer in Frequency Up-Conversion ApplicationsTHEORY OF OPERATION AND APPLICATIONThe AD9850 uses direct digital synthesis (DDS) technology, in the form of a numerically controlled oscillator, to generate a frequency/phase-agile sine wave. The digital sine wave is con-verted to analog form via an internal 10-bit high speed D/Aconverter, and an onboard high speed comparator is provided to translate the analog sine wave into a low jitter TTL/CMOS-compatible output square wave. DDS technology is an innova-tive circuit architecture that allows fast and precise manipulation of its output frequency under full digital control. DDS also enables very high resolution in the incremental selection of output frequency; the AD9850 allows an output frequency resolution of 0.0291 Hz with a 125 MHz reference clock ap-plied. The AD9850’s output waveform is phase-continuous when changed.The basic functional block diagram and signal flow of theAD9850 configured as a clock generator is shown in Figure 16.The DDS circuitry is basically a digital frequency divider function whose incremental resolution is determined by the frequency of the reference clock divided by the 2N number of bits in the tuning word. The phase accumulator is a variable-modulus counter that increments the number stored in it each time itreceives a clock pulse. When the counter overflows it wraps around, making the phase accumulator’s output contiguous.The frequency tuning word sets the modulus of the counter that effectively determines the size of the increment (∆ Phase) that gets added to the value in the phase accumulator on the next clock pulse. The larger the added increment, the faster the ac-cumulator overflows, which results in a higher output fre-quency. The AD9850 uses an innovative and proprietary algorithm that mathematically converts the 14-bit truncated value of the phase accumulator to the appropriate COS value.This unique algorithm uses a much reduced ROM look-up table and DSP techniques to perform this function, which contributes to the small size and low power dissipation of the AD9850. The relationship of the output frequency, reference clock, and tuning word of the AD9850 is determined by the formula:f OUT = (∆ Phase × CLKIN )/232where:∆ Phase =value of 32-bit tuning wordCLKIN =input reference clock frequency in MHz f OUT =frequency of the output signal in MHz The digital sine wave output of the DDS block drives the inter-nal high speed 10-bit D/A converter that reconstructs the sineAD9850–9–REV. EFigure 16.Basic DDS Block Diagram and Signal Flow of AD9850The reference clock frequency of the AD9850 has a minimum limitation of 1 MHz. The device has internal circuitry that senses when the minimum clock rate threshold has been exceeded and automatically places itself in the power-down mode. When in this state, if the clock frequency again exceeds the threshold,the device resumes normal operation. This shutdown mode prevents excessive current leakage in the dynamic registers of the device.The D/A converter output and comparator inputs are available as differential signals that can be flexibly configured in anymanner desired to achieve the objectives of the end-system. The typical application of the AD9850 is with single-ended output/input analog signals, a single low-pass filter, and generating the comparator reference midpoint from the differential DAC out-put as shown in Figure 13.Programming the AD9850The AD9850 contains a 40-bit register that is used to program the 32-bit frequency control word, the 5-bit phase modulation word and the power-down function. This register can be loaded in a parallel or serial mode.In the parallel load mode, the register is loaded via an 8-bit bus;the full 40-bit word requires five iterations of the 8-bit word.The W_CLK and FQ_UD signals are used to address and load the registers. The rising edge of FQ_UD loads the (up to) 40-bit control data word into the device and resets the address pointer to the first register. Subsequent W_CLK rising edges load the 8-bit data on words [7:0] and move the pointer to the next register. After five loads, W_CLK edges are ignored until either a reset or an FQ_UD rising edge resets the address pointer to the first register.In serial load mode, subsequent rising edges of W_CLK shift the 1-bit data on Lead 25 (D7) through the 40 bits of program-ming information. After 40 bits are shifted through, an FQ_UD pulse is required to update the output frequency (or phase).The function assignments of the data and control words are shown in Table III; the detailed timing sequence for updating the output frequency and/or phase, resetting the device, and powering-up/down, are shown in the timing diagrams of Figures 18–24.Note:There are specific control codes, used for factory test purposes, that render the AD9850 temporarily inoperable. The user must take deliberate precaution to avoid inputting the codes listed in Table II.wave in analog form. This DAC has been optimized for dynamic performance and low glitch energy as manifested in the low jitter performance of the AD9850. Since the output of the AD9850 is a sampled signal, its output spectrum follows the Nyquist sampling theorem. Specifically, its output spectrum contains the fundamental plus aliased signals (images) that occur at multiples of the Reference Clock Frequency ± the selected output frequency. A graphical representation of the sampled spectrum, with aliased images, is shown in Figure 17.REFERENCE CLOCKFREQUENCYFigure 17. Output Spectrum of a Sampled SignalIn this example, the reference clock is 100 MHz and the output frequency is set to 20 MHz. As can be seen, the aliased images are very prominent and of a relatively high energy level as deter-mined by the sin(x)/x roll-off of the quantized D/A converter output. In fact, depending on the fo/Ref Clk relationship, the first aliased image can be on the order of –3dB below the fun-damental. A low-pass filter is generally placed between the out-put of the D/A converter and the input of the comparator to further suppress the effects of aliased images. Obviously, con-sideration must be given to the relationship of the selected output frequency and the Reference Clock frequency to avoid unwanted (and unexpected) output anomalies.A good rule-of-thumb for applying the AD9850 as a clock generator is to limit the selected output frequency to <33% of Reference Clock frequency, thereby avoiding generating aliased signals that fall within, or close to, the output band of interest (generally dc-selected output frequency). This practice will ease the complexity (and cost) of the external filter requirement for the clock generator application.AD9850–10–REV. ETable II.Factory-Reserved Internal Test Control CodesLoading Format Factory-Reserved Codes Parallel 1) W0 = XXXXXX102) W0 = XXXXXX01Serial1) W32 = 1; W33 = 02) W32 = 0; W33 = 13) W32 = 1; W33 = 1Table III.8-Bit Parallel-Load Data/Control Word Functional AssignmentWord data[7]data[6]data[5]data[4]data[3]data[2]data[1]data[0]W0Phase-b4Phase-b3Phase-b2Phase-b1Phase-b0Power-Down Control Control (MSB) (LSB)W1Freq-b31Freq-b30Freq-b29Freq-b28Freq-b27Freq-b26Freq-b25Freq-b24(MSB)W2Freq-b23Freq-b22Freq-b21Freq-b20Freq-b19Freq-b18Freq-b17Freq-b16W3Freq-b15Freq-b14Freq-b13Freq-b12Freq-b11Freq-b10Freq-b9Freq-b8W4Freq-b7Freq-b6Freq-b5Freq-b4Freq-b3Freq-b2Freq-b1Freq-b0(LSB)OLD FREQ (PHASE)NEW FREQ (PHASE)*OUTPUT UPDATE CAN OCCUR AFTER ANY WORD LOAD AND IS ASYNCHRONOUS WITH THE REFERENCE CLOCKDATAW CLKREF CLKCOS OUTFQ UDFigure 18.Parallel-Load Frequency/Phase Update Timing SequenceAD9850COS OUTRESETt RH CLK DELAY AFTER RESET RISING EDGE3.5ns t RLRESET FALLING EDGE AFTER CLK 3.5nst RRRECOVERY FROM RESET 2 CLK CYCLES tRSMINIMUM RESET WIDTH 5 CLK CYCLES t OLRESET OUTPUT LATENCY 13 CLK CYCLESSYMBOL DEFINITION MIN SPECRESULTS OF RESET:– FREQUENCY/PHASE REGISTER SET TO 0– ADDRESS POINTER RESET TO W0– POWER-DOWN BIT RESET TO “0”– DATA INPUT REGISTER UNEFFECTEDFigure 19. Master Reset Timing SequenceDATA (W0)W CLKFQ UDREF CLKDAC STROBEFigure 20.Parallel-Load Power-Down Sequence/Internal OperationDATA (W0)W CLKFQ UDREF CLKFigure 21.Parallel-Load Power-Up Sequence/Internal OperationAD9850DATA (W0)(PARALLEL)W CLK FQ UDARE REQUIRED TO SHIFT IN REQUIRED W32–W34 DATA DATA (SERIAL)REQUIRED TO RESET CONTROL REGISTERSNOTE: FOR DEVICE START-UP IN SERIAL MODE, HARD-WIRE LEAD 2 AT “0”, LEAD 3 AT “1”, AND LEAD 4 AT “1”(SEE FIGURE 23).Figure 22.Serial-Load Enable SequenceFigure 23.Leads 2–4 Connection for Default Serial-Mode OperationDATA–W CLKFQ UDFigure 24.Serial-Load Frequency/Phase Update Sequence Table IV.40-Bit Serial-Load Word Function AssignmentW0Freq-b0 (LSB) W1Freq-b1W2Freq-b2W3Freq-b3W4Freq-b4W5Freq-b5W6Freq-b6W7Freq-b7W8Freq-b8W9Freq-b9W10Freq-b10W11Freq-b11W12Freq-b12W13Freq-b13W28Freq-b28W29Freq-b29W30Freq-b30W31Freq-b31 (MSB)W32ControlW33ControlW34Power-DownW35Phase-b0 (LSB)W36Phase-b1W37Phase-b2W38Phase-b3W39Phase-b4 (MSB) W14Freq-b14W15Freq-b15W16Freq-b16W17Freq-b17W18Freq-b18W19Freq-b19W20Freq-b20W21Freq-b21W22Freq-b22W23Freq-b23W24Freq-b24W25Freq-b25W26Freq-b26W27Freq-b27AD9850DATA (7) –W CLKFQUDFigure 25.Serial-Load Power-Down SequenceDIGITALINV DAC Output Comparator Output Comparator Input Digital InputsFigure 26.AD9850 I/O Equivalent CircuitsPCB LAYOUT INFORMATIONThe AD9850/CGPCB and AD9850/FSPCB evaluation boards (Figures 27–30) represent typical implementations of the AD9850 and exemplify the use of high frequency/high resolu-tion design and layout practices. The printed circuit board that contains the AD9850 should be a multilayer board that allows dedicated power and ground planes. The power and ground planes should be free of etched traces that cause discontinuities in the planes. It is recommended that the top layer of the multi-layer board also contain interspatial ground plane, which makes ground available for surface-mount devices. If separate analog and digital system ground planes exist, they should be con-nected together at the AD9850 for optimum results.Avoid running digital lines under the device as these will couple noise onto the die. The power supply lines to the AD9850should use as large a track as possible to provide a low-impedance path and reduce the effects of glitches on the power supply line.Fast switching signals like clocks should be shielded withground to avoid radiating noise to other sections of the board.Avoid crossover of digital and analog signal paths. Traces on opposite sides of the board should run at right angles to each other. This will reduce the effects of feedthrough through the circuit board. Use microstrip techniques where possible.Good decoupling is also an important consideration. The analog (AVDD) and digital (DVDD) supplies to the AD9850 are independent and separately pinned out to minimize coupling between analog and digital sections of the device. All analog and digital supplies should be decoupled to AGND and DGND,respectively, with high quality ceramic capacitors. To achieve best performance from the decoupling capacitors, they should be placed as close as possible to the device, ideally right upagainst the device. In systems where a common supply is used to drive both the AVDD and DVDD supplies of the AD9850, it is recommended that the system’s AVDD supply be used.Analog Devices, Inc., applications engineering support is avail-able to answer additional questions on grounding and PCB layout. Call 1-800-ANALOGD.Evaluation BoardsTwo versions of evaluation boards are available for the AD9850,which facilitate the implementation of the device for bench-top analysis, and serve as a reference for PCB layout. The AD9850/FSPCB is intended for applications where the device will primarily be used as frequency synthesizer. This version facilitates connection of the AD9850’s internal D/A converter output to a 50Ω spectrum analyzer input; the internal com-parator on the AD9850 DUT is not enabled (see Figure 28 for electrical schematic of AD9850/FSPCB). The AD9850/CGPCB is intended for applications using the device in the clock genera-tor mode. It connects the AD9850’s DAC output to the internal comparator input via a single-ended, 42 MHz low-pass, 5-pole Elliptical filter. This model facilitates the access of the AD9850’s comparator output for evaluation of the device as a frequency- and phase-agile clock source (see Figure 29 for electrical schematic of AD9850/CGPCB).Both versions of the AD9850 evaluation boards are designed to interface to the parallel printer port of a PC. The operating software runs under Microsoft ® Windows and provides a user-friendly and intuitive format for controlling the functionality and observing the performance of the device. The 3.5" floppy provided with the evaluation board contains an executable file that loads and displays the AD9850 function-selection screen.The evaluation board may be operated with +3.3 V or +5 V supplies. The evaluation boards are configured at the factory for an external reference clock input; if the onboard crystal clock source is used, remove R2.All trademarks are the property of their respective holders.。
陕西理工学院毕业设计[摘要]本设计使用51单片机对DDS芯片进行控制,利用DDS造波的方法产生需要的正弦信号.用户可以根据需要对芯片设定一个频率值或相位值,通过单片机传输芯片控制字对芯片输出的频率和相位进行调节,达到用户所要求的信号。
本设计采用模块化设计的方法,不同的模块为实现不同的功能而设计,总体由单片机控制协调工作。
利用51单片机控制DDS芯片造波,具有如下优越性:1.造价低廉。
51系列单片机应用广泛,价格低廉,比较容易购买,DDS芯片价格较单片机稍高,但与价格成百上千的成品信号发生器相比,本设计经济优势显著。
2.电路简单。
本设计利用单片机进行数字化控制,外围元件较少,仅需辅以少量的阻容元件用于电流电压匹配控制以及滤波电路既可。
3.频率控制准确高效。
数字化控制的最大优点即控制准确。
本设计选用的DDS芯片内置32位高速数模转换器,分辨率高,响应快。
[关键词]51单片机;DDS造波;频率;The Design of Sinusoidal Signal Generator Based on SinglechipFan Pengxing[Abstract]: The design use 51series’ singlechip to control DDS chip’s ing DDS method to produce sine signal.The user can set a frequency or phase value freely.To achieve the user request signal,the singlechip need sending a control word to DDS chip,which determines the frequency and phase values.This design uses the modular design method, different modules designed for different functions.Singlechip responsible for coordination of all work.The benefits of DDS method to produce sine signal as follows:1.low cost. The 51 series’singlechip’s application are range,so they have low price and are easy to purchase.The price of DDS chip is slightly higher than singlechip.but to compare with the commodity signal generator which values hundreds even thousands,the advantages of this design is obvious.2.Simple circuit..Benefits which digital control takes is Peripheral element is less.It’s only need a few capacitance and resistance element for crrent and voltage matching and filter.3.Frequency control is accurate and efficient.Frequency control is accurate and efficient.This design using DDS chip with 32 bit high speed D/A converter,which has a high resolution, fast response.[Key words]: 51 singlechip;DDS method to produce signal;Frequency;第 1 页共 64 页目录The Design of Sinusoidal Signal Generator Based on Singlechip (1)引言 (4)1 绪论 (5)1.1单片机在函数信号发生器中的应用 (5)1.2发展现状 (5)1.3项目可行性研究 (5)1.4设计任务和要求 (6)2.方案及工作原理 (6)2.1方案设计 (6)2.1.1方案一 (6)2.1.2 方案二 (6)2.1.3 方案三 (6)2.1.4 方案四 (6)2.2DDS工作原理 (7)2.3DDS移相原理 (7)3.电路设计 (8)3.1设计思路 (8)3.2元件选型 (8)3.3系统总体框图 (8)3.4STC89C52RC单片机 (9)3.5AD9850芯片 (10)3.5.1 AD9850芯片简介 (10)3.5.2 AD9850工作方式介绍 (11)3.5.3相位控制字的计算 (11)3.61602LCD显示屏 (12)3.6.1液晶概述 (12)3.6.2接口信号说明 (12)3.6.3 1602地址说明 (13)3.6.4 1602指令码说明 (13)3.6.5 1602LCD写操作时序图 (13)3.7低通滤波器的设计 (14)3.7.1低通滤波器 (14)3.7.2低通滤波器的选型 (14)3.7.3低通滤波器的设计 (14)3.8总电路原理图 (16)3.9硬件调试 (16)3.10参数测量及误差分析 (20)3.10.1参数测量 (20)3.10.2误差分析 (20)4.软件设计 (21)4.1主程序流程图 (21)4.2源程序 (22)总结 (23)致谢 (24)参考文献 (25)附录 (26)附录A:文献原文 (26)附录B:外文文献翻译; (34)附录C:电路原理图 (41)附录D:元器件清单表。
精心整理第13章DDS 芯片AD9850/AD9851的设计13.1硬件设计信号源作为现代电子产品设计和生产中的重要工具,必须满足高精度、高速度、高分辨率等要求。
本章基于DDS(DirectDigitalSynthesis,直接数字频率合成)技术,采用AD9850DDS 芯片,采用F169单片机作为控制芯片,实现一种了简易信号发生器的设计,该信号发生器具有输出频率范围宽,可以输出正弦和方波两种波形,与键盘结合易于实现全数字化的设计。
(DDS )80℃,采用28图13-3系统的10位后输入到DAC ,DAC 再输出两个互补的电流。
DAC 满量程输出电流通过一个外接电阻set R 调节,调节关系为set I =32(1.148V/RSET),set R 的典型值是3.9K Ω。
将DAC 的输出经低通滤波后接到AD9850内部的高速比较器上即可直接输出一个抖动很小的方波。
其系统功能如图3-3所示。
AD9850在接上精密时钟源和写入频率相位控制字之后就可产生一个频率和相位都可编程控制的模拟正弦波输出,此正弦波可直接用作频率信号源或经内部的高速比较器转换为方波输出[23]。
在125MHz 的时钟下,32位的频率控制字可使AD9850的输出频率分辨率达0.0291Hz ;并具有5位相位控制位,而且允许相位按增量180,45,90,22.5,11.25或这些值的组合进行调整。
精心整理图13-3AD9850的内部结构13.1.2AD9850的控制字与控制时序AD9850有40位控制字,32位用于频率控制,5位用于相位控制。
1位用于电源休眠(Powerdown )控制,2位用于选择工作方式。
这40位控制字可通过并行方式或串行方式输入到AD9850,在并行装入方式中,通过8位总线D0…D7将可数据输入到寄存器,在重复5次之后再在FQ_UD 上升沿把40位数据从输入寄存器装入到频率/相位数据寄存器(更新DDS 输出频率和相位),同时把地址指针复位到第一个输入寄存器。
海纳电子资讯网:www.fpga-arm.com目录摘要 —————————————————————————2 创新之处 ———————————————————————2 关键词 ————————————————————————2 引言 —————————————————————————2 系统工作原理 —————————————————————3 直接数字频率合成 ———————————————————4 DDS 基本原理及性能特点 —————————————————5 采用 DDS 的 AD9851 ———————————————————6 AD9851 的原理 —————————————————————7 AD9851 在信号源中的应用 ————————————————8 AD9851 在本系统的应用电路 ———————————————9 低通滤波器(LPF) ——————————————————10 锁相环频率合成 ———————————————————11 锁相环频率合成 MC145151 在本电路中的应用 ————————12 压控振荡器(VCO) ———————————————————12 缓冲放大器 ——————————————————————13 单片机控制的整体电路 —————————————————14 功率放大 ———————————————————————15 本系统的软件设计 ———————————————————15 总调试 ————————————————————————25 结束语 ————————————————————————25 DDS 短波信号发生器技术指标 ——————————————26 所采用的仪器设备 ———————————————————26 所用软件 ———————————————————————26 参考文献 ———————————————————————26 参考网站 ———————————————————————27www.fpga-ar m1.海纳电子资讯网:www.fpga-arm.comDDS 短波信号发生器摘要: 本文主要介绍的是采用直接数字频率合成的短波信号发生器, 它 主要以微电脑控制部分、直接数字频率合成(DDS)部分、数字锁相 环频率合成部分、背光液晶显示部分、功率放大部分等组成。
摘要本设计使用51单片机对DDS芯片进行控制,利用DDS造波的方法产生需要的正弦信号,用户可以根据需要对芯片设定一个频率值或相位值,通过单片机传输芯片控制字对芯片输出的频率和相位进行调节,达到用户所需要的信号,本设计采用模块化设计的方法,不同的模块为实现不同的功能而设计,总体由单片机控制协调工作。
利用51单片机控制DDS芯片造波,具有如下优越性:1,造价低廉,51单片机应用广泛,价格低廉,比较容易购买,DDS芯片价格较单片机稍高,但与价格成百上千的成品信号发生器相比,本设计经济优势显著,2,电路简单,本设计利用单片机进行数字化控制,外围元件较少。
3,频率控制准确高效,数字化控制的最大优点即控制准确,分辨率高,响应快。
关键词:DDS 51单片机数字控制目录摘要 (i)目录 (ii)绪论 ............................................................................................................................................. - 1 - 第一章工作原理........................................................................................................................ - 2 -1.1 DDS工作原理............................................................................................................... - 2 - 第二章电路设计........................................................................................................................ - 3 -2.1设计思路........................................................................................................................ - 3 -2.2 元件选型....................................................................................................................... - 3 -2.3 系统总体框图............................................................................................................... - 3 - 第三章元器件介绍.................................................................................................................... - 5 -3.1 STC89C52RC单片机 ................................................................................................... - 5 -3.2 AD9850芯片.............................................................................................................. - 6 -3.3 液晶(LCD1602)介绍............................................................................................... - 7 - 第四章调试................................................................................................................................ - 8 -4.1 硬件调试....................................................................................................................... - 8 -4.2 软件调试..................................................................................................................... - 13 -绪论信号发生器使一种能产生所需要信号的一种仪器。
图2 正电压变负电压电路出。
通常选定R 2=30k Ω(10k Ω<R 2<200k Ω)。
通过改变R 1电阻值即可方便地得到相应的输出电压值。
例如:R 1=258k Ω时,V OU T =12V 。
3.2 正电压变负电压图2所示为正电压变负电压的应用电路。
元件参数的选择与图1相同(注意POL 接V CC ),输出电压同样由R 1、R 2的关系确定:R 1=R 2×|V OU T |V REF(2)式(2)中V REF =1.25V ,同样选定R 2=30k Ω,改变R 1的阻值即可得到相应的输出电压。
例如:R 1=288kΩ时,V OU T =-12V 。
这里需要提请注意:图2所示的电路输出V OU T 只能在-28V ~-V IN 之间变化,要想得到高于-V IN 的负电压,必须将D 2的阴极与输入V IN 相连,再按式(2)计算R 1的阻值从而得到V OU T 。
但这种电路改变同时会使输出电流最大值降低一半,从而降低了负电源的供电能力,因此应尽可能采用图2所示电路得到相应的负电压。
3.3 输出电流选择MAX629提供了一个输出电流选择引脚ISET 。
无论是正电压变负电压或正电压变正电压,都可以改变ISET 与V CC 、GND 的连接,得到最大500mA 、最小250mA 的输出电流。
当电路所需电流低于250mA 时,ISET =GND ,用户即可采用功率较小的电感,输出端的电容也可采用普通电容,这样既节省空间,又降低了成本。
4 结语MAX629既可用于正电压变负电压又可用于正电压变正电压,同时输出电压改变灵活方便,变化范围宽。
具有体积小巧、成本低廉、转换灵活的优点,在需要DC 2DC 转换的控制电路中具有广泛的应用前景。
器件应用基于AD9850的多功能信号源的设计中国人民解放军电子工程学院(合肥230037) 周义建 游志刚 摘 要 文章介绍了美国AD 公司推出的直接数字频率合成芯片AD9850,并给出了一种基于该芯片的多功能信号源的设计方案,该信号源具有结构简单、精度高、控制灵活的特点。
基于AD9850的信号发生器的设计与实现直接数字频率合成技术(DDS)是20世纪末迅速发展起来的一种新的频率合成技术,它将先进的数字处理技术与方法引入信号合成领域,表现出优越的性能和突出的特点。
由于DDS 器件采用高速数字电路和高速D/A转换技术,具有频率转换速度快、频率分辨率高、相位噪声低、频率稳定度高等优点,此外,DDS器件很容易实现对信号的全数字式调制。
因此,直接数字频率合成器以其独有的优势成为当今电子设备和系统频率源的首选器件。
本文介绍了ADI公司出品的AD- 9850芯片,以单片机AT89S52为控制核心完成正弦信号发生器的可行性设计方案,并给出了调试通过的源程序以供参考。
1 AD9850芯片性能及管脚功能 AD9850采用了先进的CMOS工艺,支持5 V和3.3 V两种供电电压,在3.3 V供电时功耗仅为155 mW,扩展工业级温度为-40~+80 oC。
支持并行或串行输入控制接口形式,最大支持时钟频率为125MHz,此时输出的频率分辨率达0.029 1 Hz。
采用28脚SSOP表面封装形式,其管脚功能。
AD9850分为可编程序DDS系统、高性能数/模变换器(DAC)和高速比较器三部分,其中可编程DDS系统包含输入寄存器、数据寄存器和高速DDS三部分。
高速DDS包括相位累加器和正弦查找表,其中相位累加器由一个加法器和一个32位相位寄存器组成,相位寄存器的输出与一个5位的外部相位控制字相加后作为正弦查找表的地址。
正弦查找表包含一个正弦波周期的数字幅度信息,每一个地址对应正弦波中O~360范围的一个相位点。
查找表输出后驱动10 b的DAC转换器,输出两个互补的电流,其幅度可通过外接电阻Rset来调节,输出电流可由Iset=32(1.248 V/Rset)来计算,Rset的典型值为3.9 kΩ。
输出信号经过外部的一个低通滤波器后接到AD9850内部自带的高速比较器,即可产生一个与正弦波同频率且抖动很小的方波。
基于AD9850的多功能信号源设计摘要:AD9850以芯片为多功能信号源频率合成核心,以单片机(89C52)为控制和数据处理核心,实现了正弦波、方波及AM、FM、ASK、FSK、PSK 等调制波形的产生和输出。
结合键盘和显示部分,实现了任意频率值的选择和显示,构成了一个完整实用的信号发生器。
该信号发生器可在10 Hz~40 MHz范围内实现任意频率的输出,步进值和输出幅值可调。
经过对系统的最终测试与实验数据分析表明,该系统具有稳定性好、精度高、且范围宽等优点。
直接数字合成技术(Direct Digital Synthesizer,DDS)是由一个参考频率源产生多种频率的技术,其采用数字信号控制的相位增量,具有频率转换时间短、频率分辨率高、输出相位连续、可编程、全数字化易于集成等优点。
因此,得到了广泛的应用。
本文提出了以直接频率合成芯片AD9850为核心的多功能信号源的设计方案,给出了实现多种信号生成的具体方法。
1 直接数字频率合成原理及构成AD9850是美国AD公司推出的高集成度频率合成器,内含可编程DDS系统和高速比较器,能实现全数字编程控制的频率合成。
可编程DDS系统的核心是相位累加器,其由一个加法器和一个N 位相位寄存器组成。
每来一个时钟脉冲,加法器将频率控制数据与累加寄存器输出的累加相位数据相加,将相加后的结果送至累加寄存器的数据输入端,累加寄存器将加法器在上一个时钟作用后所产生的新相位数据反馈到加法器的输入端,以使加法器在下一个时钟的作用下继续与频率控制数据相加。
这样,相位累加器在参考时钟的作用下进行线性相位累加,当相位累加器累加满量时就会产生一次溢出,完成一个周期性的动作,这个周期就是DDS合成信号的一个频率周期,累加器的溢出频率就是输出的信号频率。
相位寄存器的输出与相位控制字相加后,可输入到正弦查询表地址上。
正弦查询表包含一个正弦波周期的数字幅度信息,每个地址对应正弦波中0°~360°范围的一个相位点。