湖南省桑植县十一学校九年级数学上册《4.1 正弦和余弦》(第4课时)学案
- 格式:doc
- 大小:133.00 KB
- 文档页数:3
九年级数学上册413正弦和余弦教案(新版)湘教版教学目标【知识与技能】1.进一步认识正弦和余弦;2.正弦和余弦的综合应用.【过程与方法】通过合作交流,能够根据直角三角形中边角关系,进行简单的计算.【情感态度】经过探索,引导、培养学生观察,分析、发现问题的能力.【教学重点】直角三角形中锐角的正弦、余弦的综合应用.【教学难点】直角三角形中锐角的正弦、余弦的综合应用.教学过程一、情景导入,初步认知1.正弦和余弦的定义是什么?2.正弦和余弦之间有什么关系?【教学说明】复习有关知识,为本节课的教学作准备.二、思考探究,获取新知一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力.解:根据题意(如图)可知,∠BOD=60°,OB=OA=OD=2.5 m,∠AOD=1/2×60°=30°,∴OC=OD·cos30°=2.5×≈2.165(m).∴AC=2.5-2.165≈0.34(m).所以,最高位置与最低位置的高度约为0.34 m.【教学说明】通过例题的教学,使学生掌握正弦、余弦在具体问题中的应用.三、运用新知,深化理解1.求下列式子的值.2.在Rt△ABC中,∠C=90°,BC=6, sinA=3/5,求cosA.3.如图,在Rt△ABC中,∠C=90°,cosA=12/13,AC=10,AB等于多少?sinB 呢?4.已知:如图,CD是Rt△ABC的斜边AB上的高,求证:BC2=AB·BD.(用正弦、余弦函数的定义证明)解:在Rt△ABC中,sinA=BC/AB,在Rt△BCD中,cosB=BD/BC根据上题中的结论,可知:在Rt△ABC中,sinA=cosB,BC/AB=BD/BC即:BC2=AB·BD.【教学说明】使学生掌握正弦、余弦的综合应用.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.1”中第9、10题.教学反思传统教学存在弊端,同时也具有不合理的元素,因此,我的课堂教学特别强调通过情景引导,使学生学会应用知识,通过探究,将学生引向知识深处,在整个过程中体现了教师的主导作用,学生的主体地位.在教学过程中,如何保证每位学生都得到发展,如何给予每个学生以发展平台,这是每位教师在课堂教学中必须做到的.。
湘教版九年级上册教学设计4.1正弦和余弦一. 教材分析湘教版九年级上册《数学》第4.1节“正弦和余弦”是本册教材中的重要内容,主要介绍了正弦和余弦的概念、性质和应用。
本节内容是在学生已经掌握了锐角三角函数的基础上进行教学的,为后续学习圆锥曲线、三角函数的图像和性质等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的函数概念和数学思维能力,但对于正弦和余弦的理解还需要进一步引导。
在学习过程中,学生需要通过观察、分析、归纳等方法,掌握正弦和余弦的定义和性质。
同时,学生应能够运用正弦和余弦解决实际问题,提高解决问题的能力。
三. 教学目标1.了解正弦和余弦的概念,掌握正弦和余弦的定义和性质。
2.能够运用正弦和余弦解决实际问题,提高解决问题的能力。
3.培养学生的观察、分析、归纳能力,提高学生的数学思维能力。
四. 教学重难点1.重点:正弦和余弦的概念、性质。
2.难点:正弦和余弦在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生观察、分析、归纳正弦和余弦的性质。
2.运用案例教学法,让学生通过实际问题,掌握正弦和余弦的应用。
3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。
六. 教学准备1.准备相关正弦和余弦的案例和问题,用于课堂练习和拓展。
2.准备多媒体教学设备,用于展示正弦和余弦的图像和性质。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾锐角三角函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过讲解和展示正弦和余弦的图像,引导学生观察和分析正弦和余弦的性质。
3.操练(10分钟)教师提出相关问题,让学生运用正弦和余弦的知识进行解答。
教师及时给予指导和反馈,帮助学生巩固所学知识。
4.巩固(10分钟)学生进行小组合作学习,共同解决正弦和余弦的实际问题。
教师巡回指导,解答学生疑问。
5.拓展(10分钟)教师提出拓展问题,引导学生运用正弦和余弦的知识进行探究。
学生独立思考或小组讨论,分享解题过程和结果。
湘教版数学九年级上册4.1《正弦和余弦》说课稿4一. 教材分析《正弦和余弦》是湘教版数学九年级上册4.1的内容,这部分内容是在学生已经掌握了锐角三角函数的基础上进行学习的。
本节课的主要内容是引导学生探究正弦和余弦的定义,理解它们的性质和应用。
通过这部分的学习,学生能够更深入地理解三角函数的概念,为后续的学习打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和探究能力,他们对锐角三角函数已经有了初步的了解。
但是,对于正弦和余弦的定义和性质,他们可能还存在着一些模糊的地方。
因此,在教学过程中,我将会注重引导学生通过观察、实验、推理等方法,深入理解正弦和余弦的概念。
三. 说教学目标1.知识与技能:学生能够理解正弦和余弦的定义,掌握它们的性质,并能运用它们解决一些实际问题。
2.过程与方法:学生通过观察、实验、推理等方法,培养自己的探究能力和解决问题的能力。
3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的合作意识和创新精神。
四. 说教学重难点1.重点:学生能够理解正弦和余弦的定义,掌握它们的性质。
2.难点:学生能够运用正弦和余弦解决一些实际问题,并深入理解它们的内在联系。
五. 说教学方法与手段在教学过程中,我将采用观察、实验、推理、讨论等教学方法,引导学生主动参与课堂活动。
同时,我会利用多媒体教学手段,如PPT、视频等,为学生提供丰富的学习资源,帮助学生更好地理解正弦和余弦的概念。
六. 说教学过程1.导入:通过复习锐角三角函数的内容,引导学生回顾已学的知识,为新课的学习做好铺垫。
2.探究正弦和余弦的定义:引导学生观察正弦和余弦的图象,通过实验和推理,引导学生探究正弦和余弦的定义。
3.性质探讨与应用:引导学生通过观察、实验、推理等方法,探究正弦和余弦的性质,并运用它们解决一些实际问题。
4.总结与拓展:引导学生总结本节课的学习内容,并进行拓展训练,提高学生的解决问题的能力。
余弦【学习目标】1.了解余弦的概念,能根据特殊角(30°、45°、60°角)的正、余弦值说出对应的锐角度数及其应用.2.掌握互余两锐角的正弦值与余弦值的关系.3.会用计算器求任意锐角的余弦值.会由任意锐角的余弦值求对应的锐角.【学习重点】余弦的概念和特殊角的余弦值.【学习难点】互余两锐角的正弦值与余弦值的关系。
情景导入 生成问题提问:通过正弦概念的学习,我们知道:直角三角形的锐角固定时,它的对边与斜边的比值是一个常数.我们可以猜想它的邻边与斜边的比值也是一个常数.那么,你能设计一个方案来证明我们的猜想是否正确吗?自学互研 生成能力知识模块一 余弦的概念阅读教材P113~P114例3之前,完成下面的内容:归纳:(1)在有一个锐角等于α的所有直角三角形中,角α的邻边与斜边的比值是一个常数;(2)在直角三角形中,锐角α的邻边与斜边的比叫作角α的余弦,记作cos α,即cos α=角α的邻边斜边; (3)对于任意锐角α,有cos α=sin(90°-α),sin α=cos(90°-α).(4)如图所示,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对边分别为a 、b 、c ,则cos A =b c ,cos B =a c.知识模块二 特殊角(30°、45°、60°角)的余弦值的应用阅读教材P114例3和P115例4,完成下面的内容:归纳:(1)cos30°=32,cos45°=22、cos60°=12; (2)把cos30°、cos45°、cos60°按从大到小的顺序排列.cos30°>cos45°>cos 60°.(3)你发现有什么规律吗?解:对于任意锐角α,都有0<cos α<1;任意锐角α的余弦值随角度的变大而相应减小.(4)填一填:α 30° 45°60°sinα122232cosα322212【变例1】求下列式子的值.cos60°+sin45°cos60°-sin45°+cos60°-cos45°sin30°+cos45°.解:原式=12+2212-22+12-2212+22=1+21-2+1-21+2=-(1+2)2-(1-2)2=-3-22-3+22=-6.知识模块三用计算器求锐角的余弦值阅读教材P114~P115“做一做”,完成下面的内容:【变例2】用计算器求cos70°的值(精确到0.0001).解:依次输入:“cos”、“70”,显示结果为0.3420…变例:已知cosα=0.3279,求锐角α(精确到1′).解:依次输入:“2ndf”(或“SHIFT”)、“cos”、“0.3279”,显示结果,70.8586…(约为70°52′)交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一余弦的概念知识模块二特殊角(30°、45°、60°角)的余弦值的应用知识模块三用计算器求锐角的余弦值检测反馈达成目标1.如图,Rt△ABC中,∠C=90°,AB=13,BC=5,则cos B的值是( B)A.135B.513C.512D.12132.在Rt△ABC中,∠C=90°,sin A=45,则cos B的值等于( B)A.35B.45C.34D.553.计算sin45°cos60°-12cos45°=__0__.4.用计算器求下列锐角的余弦值(精确到0.0001).(1)42°; (2)80°25′.解:(1)cos42°≈0.7431.(2)cos80°25′≈0.1665.5.计算sin30°cos45°-cos60°sin45°-2cos30°.解:原式=-62。
课题锐角三角函数——正弦一、教学目标1. 通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实;2. 能根据正弦概念正确进行计算;3. 能计算出30°、45°、60°角的正弦值;4.经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
二、教学重点、难点重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
三、教学过程(一)情境导入教师展示“东方明珠”电视塔图片提问:你能实际测量电视塔的高度吗?本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦(二)观察教师用三角板和学生用三角板(30°的)发现:在直角三角形中,如果一个锐角等于30°,那么它的对边与斜边的比一定等于二分之一,与三角形的大小无关。
提问:如果在直角三角形中,这个锐角不等于30°,它的对边与斜边的比是不是与三角形的大小有关呢?即:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?(三)几何画板课件展示在直角三角形中,一个锐角的对边与斜边的比与三角形的大小无关,只与这个锐角的大小有关。
(四)引导学生证明这个结论(五)认识正弦如图,在Rt △ABC 中,∠A 、∠B 、∠C 所对的边分别记为a 、b 、c 。
师:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦。
记作sinA 。
板书:sinA =A a A c∠=∠的对边的斜边 (举例说明:若a=1,c=3,则sinA=31) 显然:sin30°=1/2注意(1).“sinA ”是一个完整的符号,不要误解为sin × A ,今后所学的其他的三角函数符号也是这样。
4.1正弦与余弦(一)一、教学目标知识与技能:1.理解正弦的概念;2.能根据正弦的概念正确进行计算。
过程与方法:经历一个锐角正弦的推导,理解正弦的概念,进而会求一个锐角的正弦值。
情感态度价值观:理解一个锐角固定时其正弦值也是一个定值这一事实,培养学生的探索精神。
二、重点与难点1.重点:正弦的概念。
2.难点:理解一个锐角固定时其正弦值也是一个定值。
三、教学过程一)自主学习认真阅读教材P99—P101的内容,完成下面练习(1)在有一个锐角为α的所有直角三角形中,∠α的对边与斜边的比值是一个________。
(2)在直角三角形中,锐角α的______与_______的比值叫做∠α的正弦,记作________,即________=斜边的对边α∠(3)①在一个锐角为α的所有直角三角形中,角α的对边与斜边的比值是一个定值吗?为什么?②sinα的取值范围是怎样的?(4)在∆ABC中,∠C=90°,AC=6,BC=8,则sinB=______(5)在∆ABC中,∠C=90°,BC=4,sinA= 32,则AB=______。
二)自主探究1.做一做问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?分析:这个问题可以归结为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB 根据“在直角三角形中,30°角所对的边等于斜边的一半”,即可得AB=2BC=70m,也就是说,需要准备70m长的水管.思考:在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于。
12A BCAB∠==的对边斜边21若将30°换成45°又如何?如图,任意画一个Rt △ABC ,使∠C =90°,∠A =45°,计算∠A 的对边与斜边的比ABBC ,你能得出什么结论? 综上可知,在一个Rt △ABC 中,∠C =90°,当∠A =30°时,∠A 的对边与斜边的比都等于 ,是一个固定值;当∠A =45°时,∠A 的对边与斜边的比都等于22,也是一个固定值.2.探究当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?在图中,由于∠C =∠C '=90°,∠A =∠A '=α,所以Rt △ABC ∽Rt △A 'B 'C '这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比也是一个固定值.3.结论如图,在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦(sine ),记住sin A 即锐角A 的取值范围是怎样的? .10,0<<∴<<c a c a 即0<sinA<1注意:1、sinA 不是 sin 与A 的乘积,而是一个整体;2、正弦的三种表示方式:sinA 、sin56°、sin ∠DEF3、sinA 是线段之间的一个比值;sinA 没有单位。
4.1.1正弦和余弦-湘教版九年级数学上册教案一、知识点•正弦函数和余弦函数的基本概念•正弦函数和余弦函数的周期性•正弦函数和余弦函数在平面直角坐标系中的图像•正弦函数和余弦函数在不同象限的取值范围二、教学目标•熟练掌握正弦函数和余弦函数的定义和基本概念•能够画出正弦函数和余弦函数在平面直角坐标系中的图像•理解并掌握正弦函数和余弦函数的周期性•能够正确理解和运用正弦函数和余弦函数的取值范围三、教学过程3.1 课前预习请同学们预习正弦函数和余弦函数的定义和基本概念,以及周期性和取值范围等方面的知识,并尝试画出它们在平面直角坐标系中的图像。
3.2 导入新知教师向学生介绍正弦函数和余弦函数的定义,并用图像进行直观展示。
让学生们自己尝试画出图像,并回答以下问题:•为什么正弦函数的图像看起来像是波浪线?•余弦函数的图像呈什么形状?为什么?3.3 理解周期性教师向学生介绍正弦函数和余弦函数的周期性,并让学生们自己画出图像。
然后通过图像让学生们理解正弦函数和余弦函数的周期性。
3.4 运用取值范围教师引导学生们理解并运用正弦函数和余弦函数的取值范围,并让学生们自己计算出函数取值,并画出函数图像。
3.5 巩固知识点教师出示实际求解问题的例题,让学生们自己去尝试求解,并在解题过程中加深对正弦函数和余弦函数的理解。
3.6 课后作业•完成教师布置的课后作业•复习课堂上所学的知识点,做到对正弦函数和余弦函数的定义、图像、周期性和取值范围等方面知识掌握熟练。
四、教学方法•图像展示:通过图像直观地展示正弦函数和余弦函数的定义、图像、周期性和取值范围等方面的知识。
•互动探究:引导学生通过互动探究的方式理解正弦函数和余弦函数的定义及其作用,并加深对正弦函数和余弦函数的理解。
•课堂练习:通过课堂练习来巩固学生的知识点,帮助学生更好地掌握正弦函数和余弦函数的定义、图像、周期性和取值范围等方面的知识。
五、教学反思通过本节课的教学,学生们掌握了正弦函数和余弦函数的定义、图像、周期性和取值范围等方面知识,并通过课堂练习提高了对该知识的理解和应用能力。
湘教版数学九年级上册《4.1.1正弦和余弦》说课稿一. 教材分析湘教版数学九年级上册《4.1.1正弦和余弦》这一节主要介绍了正弦和余弦的概念及性质。
正弦和余弦是三角函数中的两个重要概念,它们在数学、物理、工程等领域有着广泛的应用。
本节内容为后续学习正切函数及其他三角函数奠定了基础。
教材通过丰富的例题和练习,使学生掌握正弦和余弦的定义、性质及其应用。
二. 学情分析九年级的学生已经学习了初中阶段的大部分数学知识,具有一定的逻辑思维能力和数学素养。
但是,对于正弦和余弦这两个概念,学生可能初次接触,理解起来有一定难度。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动形象的比喻、直观的图形演示等方法,帮助学生理解和掌握正弦和余弦的概念。
三. 说教学目标1.知识与技能:使学生掌握正弦和余弦的概念、性质及其应用;2.过程与方法:通过观察、分析、归纳等方法,培养学生研究三角函数的能力;3.情感态度与价值观:激发学生学习三角函数的兴趣,培养学生的创新意识。
四. 说教学重难点1.教学重点:正弦和余弦的概念、性质及其应用;2.教学难点:正弦和余弦的定义及其内在联系。
五. 说教学方法与手段1.教学方法:采用问题驱动、启发式教学法,引导学生主动探究、积极思考;2.教学手段:利用多媒体课件、图形演示等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习初中阶段学过的锐角三角函数,引出正弦和余弦的概念;2.自主学习:让学生阅读教材,了解正弦和余弦的定义及性质;3.合作交流:分组讨论,分析正弦和余弦的内在联系,总结性质;4.教师讲解:针对学生的疑问,进行讲解,重点阐述正弦和余弦的定义及其联系;5.巩固练习:布置练习题,让学生运用所学知识解决问题;6.课堂小结:总结本节课的主要内容,强调正弦和余弦的概念及性质;7.布置作业:布置课后作业,巩固所学知识。
七. 说板书设计板书设计如下:•正弦:直角三角形中,锐角的对边与斜边的比值;•余弦:直角三角形中,锐角的邻边与斜边的比值。
湘教版数学九年级上册4.1.1《余弦》教学设计一. 教材分析湘教版数学九年级上册4.1.1《余弦》是本册教材的重要内容,主要介绍了余弦函数的定义、性质和应用。
本节内容是在学生已经掌握了正弦函数的基础上进行学习的,是后续学习三角函数其它部分的基础。
教材通过实例引入余弦函数,让学生通过观察、分析、归纳等过程,理解余弦函数的定义和性质,从而培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于正弦函数的概念和性质有一定的了解。
但余弦函数与正弦函数虽然有许多相似之处,但也有其特殊性,需要学生通过实例去感受和理解。
同时,九年级的学生正处于青春期,思维活跃,好奇心强,但注意力容易分散。
因此,在教学过程中,教师需要充分调动学生的积极性,激发他们的学习兴趣。
三. 教学目标1.让学生了解余弦函数的定义,理解余弦函数的性质。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的团队协作能力和语言表达能力。
四. 教学重难点1.余弦函数的定义。
2.余弦函数的性质。
3.余弦函数在实际问题中的应用。
五. 教学方法1.实例引入:通过生活中的实例,让学生感受余弦函数的存在,引导学生去探索和理解余弦函数的定义和性质。
2.小组讨论:让学生在小组内进行讨论,培养学生的团队协作能力和语言表达能力。
3.归纳总结:引导学生通过观察、分析、归纳等方法,总结出余弦函数的性质。
4.练习巩固:通过大量的练习题,让学生巩固所学知识,提高解题能力。
六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。
2.练习题:准备适量的练习题,用于巩固所学知识。
3.教学道具:准备一些教学道具,如三角板、直尺等,用于直观展示余弦函数的性质。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如音乐演奏中的音调与弦长的关系,引导学生思考余弦函数的存在。
让学生观察和分析实例中的数学关系,激发学生的学习兴趣。
2.呈现(10分钟)在学生对余弦函数有了初步的认识后,教师引导学生通过观察、分析、归纳等方法,总结出余弦函数的定义和性质。
问题3、在Rt △ABC 中,∠C =900,∠A 、∠B 、∠C 的对应边分别为c b a ,,,b =60,sinA =1312,求这个三角形的周长。
三、当堂达标1.Rt ΔABC 中,∠C 是直角,AC =1,BC =1,则sinB = ,sinA = 。
2.Rt ΔABC 中,∠C 是直角,AC =3,BC =4,则sinB = ,sinA = 。
3.Rt △ABC 中,∠C 是直角,斜边AB 是3,AC =2,则sinA =_,sinB =__。
4.在直角三角形ABC 中,若三边长都扩大2倍,则锐角A 的正弦值( ) A 、扩大2倍 B 、不变 C 、缩小2倍 D 、无法确定。
5.在Rt △ABC 中,∠C=900,sinB =31,AB =5cm ,则AC =6.亮亮沿与地面成角α的山坡向上走了90米,如果sin α=31,那么他上升了_____米。
四、课堂小结:本节课你学会了哪些知识和方法:___________________ 五、作业:1、教材P102 T1、P106 T1.2、在Rt △ABC 中,∠C 是直角,AC =62,sinA =12,求.ABC S ∆六、拓展提升:1、若sin α=3m +2(α为锐角),求m 的取值范围。
2、在Rt △ABC 中,∠C 是直角,sinA =13, 求sinB 。
问题1 问题2 问题3 达标1-2 达标3-4 达标5-6要求:先独学,后对学,再群学。
上台要积极,板书要工整,要有解题过程;点评声音要宏亮,姿态要端正,重点讲解题思路及方法。
教师点拔:要求学生一定要画图,将数值标在图形上,没有告诉的边用勾股定理求出来,再按要求进行计算。
5、整理落实学案5分钟。
6、及时小结本课时掌握了哪些知识?还有哪些疑惑?找出问题,以便课外加强巩固与提高。
7、分层作业,让学有余力的同学吃得更饱。
8、拓展提升,让学生记住0<sinα<1(α为锐角),巩固解不等式的方法;灵活运用直角三角形中边的关系求出正弦值。
湘教版数学九年级上册4.1.1《正弦和余弦》教学设计一. 教材分析湘教版数学九年级上册4.1.1《正弦和余弦》是本册教材中的重要内容,主要介绍了正弦和余弦的概念、性质及其应用。
本节课的内容对于学生来说,既是对以前知识的巩固,又是为后续学习更复杂三角函数奠定基础。
教材从实际问题出发,引入正弦和余弦的概念,并通过大量的例题和练习,使学生掌握正弦和余弦的性质和应用。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念和性质有一定的了解。
但是,对于正弦和余弦这两个三角函数的理解,还需要通过具体的例子和实际问题来进行引导和深化。
此外,学生对于实际问题的解决,还需要老师在教学中进行引导和培养。
三. 教学目标1.理解正弦和余弦的概念,掌握它们的性质和应用。
2.能够通过实际问题,引入正弦和余弦的概念,并解决问题。
3.培养学生的数学思维能力和解决实际问题的能力。
四. 教学重难点1.正弦和余弦的概念及其性质的理解和应用。
2.利用正弦和余弦解决实际问题。
五. 教学方法采用问题驱动的教学方法,通过实际问题引入正弦和余弦的概念,引导学生通过自主学习和合作学习,掌握正弦和余弦的性质和应用。
同时,运用多媒体教学手段,直观地展示正弦和余弦的变化规律,帮助学生理解和记忆。
六. 教学准备1.多媒体教学设备。
2.正弦和余弦的图示和实例。
3.练习题和测试题。
七. 教学过程导入(5分钟)老师通过一个实际问题,如测量一个斜边为10的正弦三角形的两个直角边的长度,引导学生思考正弦和余弦的概念。
呈现(10分钟)老师通过多媒体展示正弦和余弦的图示和实例,让学生直观地感受正弦和余弦的变化规律。
同时,老师引导学生总结正弦和余弦的性质。
操练(10分钟)老师给出一些练习题,让学生独立完成,然后进行讲解和解析。
通过这个过程,让学生加深对正弦和余弦的理解和应用。
巩固(10分钟)老师给出一些实际问题,让学生分组讨论和解决。
通过这个过程,培养学生的合作能力和解决实际问题的能力。
湘教版数学九年级上册4.1《正弦和余弦》教学设计1一. 教材分析《正弦和余弦》是湘教版数学九年级上册第四章第一节的内容。
本节内容是在学生已经掌握了锐角三角函数的基础上进行的,是初高中数学的衔接部分。
本节课主要介绍了正弦和余弦的概念以及它们的定义方法。
通过本节课的学习,学生可以更好地理解三角函数的概念,为后续的三角函数学习打下基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于锐角三角函数的概念已经有了一定的了解。
但是,对于正弦和余弦的定义以及它们的联系和应用可能还不是很清楚。
因此,在教学过程中,需要引导学生通过自主学习、合作交流等方式来深入理解正弦和余弦的概念,并能够应用到实际问题中。
三. 教学目标1.理解正弦和余弦的概念,掌握它们的定义方法。
2.能够运用正弦和余弦解决一些简单的实际问题。
3.培养学生的合作交流能力,提高学生的数学思维能力。
四. 教学重难点1.重点:正弦和余弦的概念及其定义方法。
2.难点:正弦和余弦在实际问题中的应用。
五. 教学方法1.自主学习:引导学生通过自主学习,深入理解正弦和余弦的概念。
2.合作交流:学生进行小组讨论,分享学习心得,互相解答疑问。
3.实例分析:通过实际问题,让学生学会运用正弦和余弦解决实际问题。
4.媒体辅助:利用多媒体课件,生动形象地展示正弦和余弦的定义过程。
六. 教学准备1.多媒体课件:制作正弦和余弦的定义课件,以便于生动形象地展示教学内容。
2.实际问题:准备一些与正弦和余弦相关的实际问题,用于课堂练习和巩固。
3.学习资料:为学生准备相关的学习资料,以便于学生自主学习和合作交流。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些与正弦和余弦相关的实际问题,引导学生思考正弦和余弦的概念。
2.呈现(10分钟)通过多媒体课件,生动形象地展示正弦和余弦的定义过程,同时引导学生进行自主学习,深入理解正弦和余弦的概念。
3.操练(10分钟)学生进行小组讨论,分享学习心得,互相解答疑问。
新湘教版九年级数学上册导学案:4.1.2《正弦和余弦》【学习目标】1、感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。
2、逐步培养学生观察、比较、分析、概括的思维能力。
【学习重点】理解余弦、正切的概念。
【学习难点】熟练运用锐角三角函数的概念进行有关计算。
【导引教学】【情境导入】1、我们是怎样定义直角三角形中一个锐角的正弦的?2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D。
已知AC= 5 ,BC=2,那么sin∠ACD=()A.5B.23C.25D.53、如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=5,BC=3.则sin∠BAC= ;sin∠ADC= .4、•在Rt△ABC中,∠C=90°,当锐角A确定时,∠A的对边与斜边的比是,•现在我们要问:∠A的邻边与斜边的比呢?∠A的对边与邻边的比呢?为什么?【自主探究】(一)自学课本P77-78,思考下列问题1、直角三角形中,30°角的邻边与斜边的比值是对边与邻边的比值是2、直角三角形中,45°角的邻边与斜边的比值是对边与邻边的比值是3、直角三角形中,60°角的邻边与斜边的比值是对边与邻边的比值是4、如图:Rt△ABC与Rt△A`B`C`,∠C=∠C’ =90o,∠B=∠B`=α,那么ABBC与''''BACB有什么关系?为什么?BCAC与'''''CBCA有什么关系?为什么?5、如图在Rt△BC中,∠C=90°,∠B的邻边与斜边的比叫做∠B的_____,记作_______,即________.把∠B的对边与邻边的比叫做∠B的________,记作________,即________.6、锐角A的________、________、________都叫做∠A的锐角三角函数.ABCDOA BD·∠A的邻边b∠A的对边a斜边cCBA6CB A (二)自我检测1、 如图(1),在Rt △ABC 中,∠C=90°,求cosA=_____ ,cosB=______,tanA=_______,tanB=_______.2、 如图(2),在Rt △ABC 中,∠C=90°,求cosA=_____ ,cosB=______,tanA=_______,tanB=_______.3、在Rt △ABC中,∠C=90°,AC=•8,tanA=43,则BC=_____,AB=______,cosA=____tanB=_____.4、在Rt △ABC 中,∠C=90°,sinB=53,求cosA 的值是___________.(三)、知新有疑通过自学,我又知道了:_________________________________________________________________________________________________ 【范例精析】1、如图,在Rt △ABC 中,∠C=90°,BC=•6,sinA=35,求cosA 、tanB 的值. 2、直线y=kx-4与y 轴相交所成的锐角的正切值为1,求k 的值【达标测评】:1.在△ABC 中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有( ) A .B .C .D .2、如图:P 是∠的边OA 上一点,且P 点的坐标为(3,4), 则cos α=_____________.3、在Rt △ABC 中,∠C =90°sinA:sinB=3:4,则tanB 的值是_______4、在Rt △ABC 中,∠C =90°,BC=5,sinA=0.7,求cosA,tanA 的值. 【小结反思】通过本节课的探究学习,我又有了新的收获和体验。
《4.1 正弦和余弦》学案(第4课时)
【学习目标】
1、已知一个角的正弦(余弦),求该角的余弦(正弦)。
2、正、余弦函数的综合应用。
【重点难点】 重点:正、余弦函数的综合应用。
难点:
【知识回顾】
1、如果sin α=32,那么cos (90°-α)=______。
2、已知锐角α,则sin α的取值范围是______,cos α的取值范围是______。
【定向学习】
1、阅读并完成练习,在Rt ∆ABC 中,∠A ,∠B ,∠C 所对的边分别为a 、b 、c ,则有sinA=c a ,cosA=c b ,
∴
sin ²A +cos ²A=a ²c²+b ²c²=a ²+b ²c²
又 a ²+b ²=c² ∴ sin ²A +cos ²A=1
这就是同角的正弦和余弦的平方关系,请利用此结论完成下列各题:
(1)sin ²32°+cos ²32°=______。
(2)如果∠A 是锐角,且sin ²A +cos ²35°=1,则∠A=______。
(3)sin ²75°+cos ²75°+sin ²50°+cos ²50°=______。
(4)1-c os ²34°-cos ²56°=______。
(5)Sin21°cos69°+cos21°Sin69°=______。
2、如图1,在∆ABC 中,∠B=45°,∠C=75°,A C=2,求BC 的长。
3、小组讨论(我的疑惑)
4、全班交流。
【归纳整理】
1、互余的两角正、余弦之间的关系:
2、同角的正弦、余弦之间的关系:
【检测训练】
1.基础达标:
12,则sinA=______。
(1)在∆ABC中,∠C=90°,cosA=
13
1,a=2,求cosA,b,c的值。
(2)已知在∆ABC中,∠C=90°,sinA=
3
(3)如图2,在∆ABC中,AB=5,AC=7,∠B=60°,求BC的长。
图2
2、拓展提升:
(1)如图,锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化。
试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律。
(2)根据你探索到的规律,试比较18°、34°、50°、62°、88°这些锐角的正弦值的大小和余弦值的大小。
(3)比较大小(在空格处填写“<”“>”或“=”。
若α=45°,则sinα______cosα;
若α<45°,则sinα______cosα;
若α>45°,则sinα______cosα;
(4)利用互为余角的两个角正弦和余弦的关系,试比较下列正弦值和余弦值的大小:sin10°、cos30°、sin50°、cos70°。
(1)
(2)
【学后反思】
1、本节课我的收获:
2、我的疑问(或建议):。