2018高考数学(文)(人教新课标)大一轮复习课件:第十一章 统计 11.3
- 格式:ppt
- 大小:3.32 MB
- 文档页数:31
第一节排列、组合本节主要包括2个知识点:1.两个计数原理;排列、组合问题.突破点(一)两个计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.两个计数原理的比较能用分类加法计数原理解决的问题具有以下特点:(1)完成一件事有若干种方法,这些方法可以分成n类.(2)用每一类中的每一种方法都可以完成这件事.(3)把各类的方法数相加,就可以得到完成这件事的所有方法数.[例1](1)在所有的两位数中,个位数字大于十位数字的两位数共有________个.(2)如图,从A 到O 有________种不同的走法(不重复过一点).(3)若椭圆x 2m +y 2n =1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.[解析] (1)法一:按个位数字分类,个位可为2,3,4,5,6,7,8,9,共分成8类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个,则共有1+2+3+4+5+6+7+8=36个两位数.法二:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.(2)分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.(3)当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.[答案] (1)36 (2)5 (3)20[易错提醒](1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.分步乘法计数原理(1)完成一件事需要经过n 个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.[例2] (1)从-1,0,1,2这四个数中选三个数作为函数f (x )=ax 2+bx +c 的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).(2)如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A ,B ,C ,D ,E ,F ,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.[解析](1)一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b=0,同理可知共有3×2=6个偶函数.(2)因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.[答案(1)186(2)63[易错提醒](1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.两个计数原理的综合问题数原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求解.分类的关键在于做到“不重不漏”,分步的关键在于正确设计分步的程序,即合理分类,准确分步.[例3](1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个(2)某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F 6名教师中安排4人分别上一节课,第一节课只能从A、B两人中安排一个,第四节课只能从A、C两人中安排一人,则不同的安排方案共有________种.(3)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.[解析](1)由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).(2)①第一节课若安排A,则第四节课只能安排C,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有4×3=12种安排方案.②第一节课若安排B,则第四节课可由A或C上,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有2×4×3=24种安排方案.因此不同的安排方案共有12+24=36(种).(3)区域A有5种涂色方法,区域B有4种涂色方法,区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×1×4+5×4×3×3=260种涂色方法.[答案(1)B(2)36(3)260[方法技巧]使用两个计数原理进行计数的基本思想对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.能力练通抓应用体验的“得”与“失”1.[考点二]某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504B.210C.336D.120解析:选A分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.2.[考点二]教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有() A.10种B.25种C.52种D.24种解析:选D由一层到二层、由二层到三层、由三层到四层、由四层到五层各有2种走法,故共有2×2×2×2=24种不同的走法.3.[考点一]已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16 C.13 D.10解析:选C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.[考点一]我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112.共计3+6+3+3=15个“六合数”.5.[考点三]如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有________种.解析:按区域1与3①区域1与3同色:先涂区域1与3,有4种方法,再涂区域2,4,5(还有3种颜色),有3×2×1=6种方法.所以区域1与3涂同色时,共有4×6=24种方法.②区域1与3不同色:先涂区域1与3,有4×3=12种方法,第二步,涂区域2有2种涂色方法,第三步,涂区域4只有一种方法,第四步,涂区域5有3种方法.所以这时共有12×2×1×3=72种方法.故由分类加法计数原理,不同的涂色方法的种数为24+72=96.答案:966.[考点三]有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种(用数字作答).解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8突破点(二)排列、组合问题1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质4.排列与组合的比较解决排列问题的主要方法(1)解决“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看做一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.[例1](1)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为() A.324 B.648 C.328 D.360(2)市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数为()A.48 B.54 C.72 D.84(3)用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.[解析](1)首先应考虑是否含“0”.当含有0,且0排在个位时,有A29=9×8=72个三位偶数,当0排在十位时,有A14A18=4×8=32个三位偶数.当不含0时,有A14·A28=4×8×7=224个三位偶数.由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).(2)先把3名乘客进行全排列,有A33=6种排法,排好后,有4个空,再将1个空位和余下的2个连续的空位插入4个空中,有A24=12种排法,则共有6×12=72种候车方式.(3)首先排两个奇数1,3,有A22种排法,再在2,4中取一个数放在1,3排列之间,有C12种排法,然后把这3个数作为一个整体与剩下的另一个偶数全排列,有A22种排法,即满足条件的四位数的个数为A22C12A22=8.[答案](1)C(2)C(3)8组合问题的常见题型及解题思路(1)常见题型:一般有选派问题、抽样问题、图形问题、集合问题、分组问题等.(2)解题思路:①分清问题是否为组合问题;②对较复杂的组合问题,要搞清是“分类”还是“分步”,一般是先整体分类,然后局部分步,将复杂问题通过两个计数原理化归为简单问题.[例2](1)某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85 B.86 C.91 D.90(2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是()A.60 B.63 C.65 D.66(3)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.[解析](1)法一(直接法):由题意,可分三类考虑:第1类,男生甲入选,女生乙不入选的方法种数为:C13C24+C23C14+C33=31;第2类,男生甲不入选,女生乙入选的方法种数为:C14C23+C24C13+C34=34;第3类,男生甲入选,女生乙入选的方法种数为:C23+C14C13+C24=21.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.法二(间接法):从5名男生和4名女生中任意选出4人,男、女生都有的选法有C49-C45-C44=120种;男、女生都有,且男生甲与女生乙都没有入选的方法有C47-C44=34种.所以男生甲与女生乙至少有1人入选的方法种数为120-34=86.(2)因为1,2,3,…,9中共有4个不同的偶数和5个不同的奇数,要使取出的4个不同的数的和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故有C45+C44+C25C24=66种不同的取法.(3)第一类,含有1张红色卡片,不同的取法有C14C212=264(种).第二类,不含有红色卡片,不同的取法有C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法共有264+208=472(种).[答案(1)B(2)D(3)472[方法技巧]有限制条件的组合问题的解法组合问题的限制条件主要体现在取出元素中“含”或“不含”某些元素,或者“至少”或“最多”含有几个元素:(1)“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型.考虑逆向思维,用间接法处理.分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有整体均分、部分均分和不等分三种,无论分成几组,都应注意只要有一些组中元素的个数相等,就存在均分现象.[例3] (1)教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.(2)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为________.(3)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] (1)先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故将6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种不同的分派方法.(2)分两步完成:第一步,将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第二步,将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种.(3)将6名教师分组,分三步完成: 第1步,在6名教师中任取1名作为一组,有C 16种分法;第2步,在余下的5名教师中任取2名作为一组,有C 25种分法;第3步,余下的3名教师作为一组,有C 33种分法.根据分步乘法计数原理,共有C 16C 25C 33=60种分法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.[答案 (1)90 (2)36 (3)360[方法技巧] 分组分配问题的三种类型及求解策略能力练通 抓应用体验的“得”与“失”1.[考点一]A ,B ,C ,D ,E ,F 六人围坐在一张圆桌周围开会,A 是会议的中心发言人,必须坐在最北面的椅子上,B ,C 二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )A .60种B .48种C .30种D .24种解析:选B 由题知,可先将B ,C 二人看作一个整体,再与剩余人进行排列,则不同的座次有A 22A 44=48种.2.[考点一]有5列火车分别准备停在某车站并行的5条轨道上,若快车A 不能停在第3道上,货车B 不能停在第1道上,则5列火车不同的停靠方法数为( )A .56B .63C .72D .78解析:选D 若没有限制,5列火车可以随便停,则有A 55种不同的停靠方法;快车A停在第3道上,则5列火车不同的停靠方法为A 44种;货车B 停在第1道上,则5列火车不同的停靠方法为A 44种;快车A 停在第3道上,且货车B 停在第1道上,则5列火车不同的停靠方法为A 33种.故符合要求的5列火车不同的停靠方法数为A 55-2A 44+A 33=120-48+6=78.3.[考点三]某局安排3名副局长带5名职工去3地调研,每地至少去1名副局长和1名职工,则不同的安排方法总数为( )A .1 800B .900C .300D .1 440解析:选B 分三步:第一步,将5名职工分成3组,每组至少1人,则有⎝⎛⎭⎫C 35C 12C 11A 22+C 15C 24C 22A 22种不同的分组方法;第二步,将这3组职工分到3地有A 33种不同的方法;第三步,将3名副局长分到3地有A 33种不同的方法.根据分步乘法计数原理,不同的安排方案共有⎝⎛⎭⎫C 35C 12C 11A 22+C15C 24C 22A 22·A 33A 33=900(种),故选B. 4.[考点二]如图所示,要使电路接通,则5个开关不同的开闭方式有________种.解析:当第一组开关有一个接通时,电路接通有C12·(C13+C23+C33)=14种方式;当第一组两个都接通时,电路接通有C22(C13+C23+C33)=7种方式,所以共有14+7=21种方式.答案:215.[考点二]有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有________种不同的选派方法.解析:设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C,则选派2名参赛同学的方法可以分为以下4类:第一类:A中选1人参加象棋比赛,B中选1人参加围棋比赛,选派方法为C12·C13=6种;第二类:C中选1人参加象棋比赛,B中选1人参加围棋比赛,选派方法为C14·C13=12种;第三类:C中选1人参加围棋比赛,A中选1人参加象棋比赛,选派方法为C14·C12=8种;第四类:C中选2人分别参加两项比赛,选派方法为A24=12种;由分类加法计数原理,不同的选派方法共有6+12+8+12=38(种).答案:38[全国卷5年真题集中演练——明规律]1.(2016·全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9解析:选B分两步:第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.2.(2016·全国丙卷)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个解析:选C当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C14=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C13=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任意一个为0均可,有C12=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C13=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.3.(2012·新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有() A.12种B.10种C.9种D.8种解析:选A2名教师各在1个小组,给其中1名教师选2名学生,有C24种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有A22种方案,故不同的安排方案共有C24A22=12种,选A.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.(2016·四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48C.60 D.72解析:选D奇数的个数为C13A44=72.2.世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数有()A.12种B.10种C.8种D.6种解析:选D因为甲、乙两人被分配到同一展台,所以可以把甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上进行全排列,即有A33种分配方法,所以甲、乙两人被分配到同一展台的不同分法的种数有A33=6种.3.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个解析:选B各位数字之和是奇数,则这三个数字中三个都是奇数或两个偶数一个奇数,所以符合条作的三位数有A33+C13A33=6+18=24(个).4.如图所示的几何体由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.解析:先涂三棱锥P-ABC的三个侧面,然后涂三棱柱ABC-A1B1C1的三个侧面,共有3×2×1×2=12种不同的涂色方案.答案:12[练常考题点——检验高考能力]一、选择题1.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:选D在8个数中任取2个不同的数可以组成A28=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).2.如图所示,在A、B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种解析:选C按照焊接点脱落的个数进行分类.若脱落1个,则有(1),(4),共2种情况;若脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种情况;若脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种情况;若脱落4个,有(1,2,3,4),共1种情况.综上共有2+6+4+1=13种焊接点脱落的情况.3.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数是()A.12 B.6C.8 D.16解析:选A 若第一门安排在开头或结尾,则第二门有3种安排方法,这时共有C 12×3=6种安排方案;若第一门安排在中间的3天中,则第二门有2种安排方法,这时共有C 13×2=6种安排方案.综上可得,不同的考试安排方案共有6+6=12(种).4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A .24B .48C .72D .96解析:选B 据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可,此时共有A 22A 24种摆放方法;当1本物理书放在2本语文书一侧时,共有A 22A 12C 12C 13种不同的摆放方法,由分类加法计数原理可得共有A 22A 24+A 22A 12C 12C 13=48种摆放方法.5.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为( )A .13B .24C .18D .72解析:选D 可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C 34种不同的选法;第二步, 在调查时,“住房”安排的顺序有A 13种可能情况;第三步,其余3个热点调查的顺序有A 33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C 34A 13A 33=72.6.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有( )A .12种B .20种C .40种D .60种解析:选C 五个元素没有限制全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得这样的排列数有A 55A 33×2=40种.二、填空题7.某班组织文艺晚会,准备从A ,B 等 8 个节目中选出 4 个节目演出,要求A ,B 两个节目至少有一个选中,且A ,B 同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为________.解析:当A ,B 节目中只选其中一个时,共有C 12C 36A 44=960 种演出顺序;当A ,B 节目都被选中时,由插空法得共有C 26A 22A 23=180 种演出顺序,所以一共有1 140种演出顺序.答案:1 1408.4位同学参加某种形式的竞赛,竞赛规则规定:选甲题答对得100分,答错得-100分,选乙题答对得90分,答错得-90分,若4位同学的总分为0分,则这4位同学不同得分情况的种数是________.解析:由于4位同学的总分为0分,故4位同学选甲、乙题的人数有且只有三种情况:①甲:4人,乙:0人;②甲:2人,乙:2人;③甲:0人,乙:4人.对于①,需2人答对,2人答错,共有C24=6种情况;对于②,选甲题的需1人答对,1人答错,选乙题的也如此,有C24C12C12=24种情况;对于③,与①相同,有6种情况,故共有6+24+6=36种不同的得分情况.答案:369.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种不同分法.答案:9610.有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1,2,3,4,5,6,从中任取3个标号不同的球,这3个球颜色互不相同且所标数字互不相邻的取法种数为________.解析:所标数字互不相邻的取法有135,136,146,246,共4种.3个球颜色互不相同有A34=4×3×2=24种取法,所以这3个球颜色互不相同且所标数字互不相邻的取法有4×24=96(种).答案:96三、解答题11.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.解:(1)先选后排,可以是2女3男,也可以是1女4男,先选有C35C23+C45C13种情况,后排有A55种情况,则符合条件的选法数为(C35C23+C45C13)·A55=5 400.(2)除去该女生后,先选后排,则符合条件的选法数为C47·A44=840.(3)先选后排,但先安排该男生,则符合条件的选法数为C47·C14·A44=3 360.。
1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型中,事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).3.几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=MN作为所求概率的近似值.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( ×)1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D .1 答案 B解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东)在区间[0,2]上随机地取一个数x ,则事件“-1≤121log ()2x +≤1”发生的概率为( )A.34B.23C.13D.14 答案 A解析 由-1≤121log ()2x +≤1,得12≤x +12≤2,∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率 P =32-02-0=34.3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.(2017·济南月考)一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是( ) A.π180 B.π150 C.π120 D.π90 答案 C解析 屋子的体积为5×4×3=60(立方米),捕蝇器能捕捉到的空间体积为18×43π×13×3=π2(立方米).故苍蝇被捕捉的概率是π260=π120.5.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________. 答案 π4解析 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.题型一 与长度、角度有关的几何概型例1 (1)(2016·全国甲卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B.58 C.38 D.310(2)(2017·太原调研)在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为________. 答案 (1)B (2)13解析 (1)至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, 所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.本例(3)中,若将“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3, P (BM <1)=11+3=3-12.思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)(2016·全国乙卷)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)B (2)16解析 (1)如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.(2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型 命题点1 与平面图形面积有关的问题例2 (2016·全国甲卷)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n 答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn ,∴π=4mn,故选C.命题点2 与线性规划知识交汇命题的问题例3 (2016·武汉模拟)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACDS △OAB=2-142=78.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(1)(2016·昌平模拟)设不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x ≤4,y ≥-2表示的平面区域为D .在区域D内随机取一个点,则此点到直线y +2=0的距离大于2的概率是( ) A.413 B.513 C.825 D.925(2)(2015·福建)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于()A.16B.14C.38D.12 答案 (1)D (2)B解析 (1)作出平面区域D ,可知平面区域D 是以A (4,3),B (4,-2),C (-6,-2)为顶点的三角形区域.当点在△AEF 区域内时,点到直线y +2=0的距离大于2. ∴P =S △AEF S △ABC =12×6×312×10×5=925.(2)由图形知C (1,2),D (-2,2),∵S 四边形ABCD =6,S 阴=12×3×1=32,∴P =326=14.题型三 与体积有关的几何概型例4 (1)(2016·贵州黔东南州凯里一中期末)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,则称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A.18 B.16 C.127 D.38(2)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率是( ) A.78 B.34 C.12 D.14 答案 (1)C (2)A解析 (1)由题意知小蜜蜂的安全飞行范围为以这个正方体的中心为中心,且棱长为1的小正方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞行的概率为P =127.(2)当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件去求.(2016·哈尔滨模拟)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.答案 23解析 如图,三棱锥S -ABC 与三棱锥S -APC 的高相同,要使三棱锥S -APC 的体积大于V3,只需△APC 的面积大于△ABC 的面积的13.假设点P ′是线段AB 靠近点A 的三等分点,记事件M 为“三棱锥S -APC 的体积大于V3”,则事件M 发生的区域是线段P ′B . 从而P (M )=P ′B AB =23.12.几何概型中的“测度”典例 (1)在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________.(2)在长为1的线段上任取两点,则这两点之间的距离小于12的概率为( )A.14B.12C.34D.78 错解展示解析 (1)∵∠C =90°,∠CAM =30°,∴所求概率为3090=13.(2)两点之间线段长为12时,占长为1的线段的一半,故所求概率为12.答案 (1)13 (2)B现场纠错解析 (1)因为点M 在直角边BC 上是等可能出现的,所以“测度”是长度.设直角边长为a ,则所求概率为33a a =33.(2)设任取两点所表示的数分别为x ,y , 则0≤x ≤1,且0≤y ≤1.由题意知|x -y |<12,所以所求概率为P =1-2×12×12×121=34.答案 (1)33(2)C 纠错心得 (1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“测度”是面积.1.(2016·佛山模拟)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96,以此实验数据为依据可以估计出椭圆的面积约为( )A .16.32B .15.32C .8.68D .7.68 答案 A解析 设椭圆的面积为S ,则S4×6=300-96300,故S =16.32.2.(2016·南平模拟)设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( )A.15B.25C.35D.45 答案 C解析 方程有实数根,则Δ=p 2-4≥0,解得p ≥2或p ≤-2(舍去), 故所求概率为P =5-25-0=35,故选C.3.(2016·四川宜宾筠连中学第三次月考)如图所示,在边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D.13 答案 B解析 正方形中随机撒一粒豆子,它落在阴影区域内的概率P =S 阴影S 正方形.又∵S 正方形=4,∴S 阴影=83,故选B.4.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A.1-2πB.12-1πC.2πD.1π 答案 A解析 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC . 不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整体图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.5.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形,所以△ABD 为钝角三角形的概率为1+26=12.6.欧阳修的《卖油翁》中写到:“(翁)乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是________.答案49π解析 依题意,所求概率为P =12π·(32)2=49π.7.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.8.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.9.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为______.答案 12+1π解析 半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.10.(2016·湖南衡阳八中月考)随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________. 答案 1-π24解析 由题意作图,如图,则点P 应落在深色阴影部分,S △=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=1-π24.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个,故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}, 满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解 ∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba≤1,即2b ≤a .依条件可知事件的全部结果所构成的区域为 ⎩⎨⎧⎭⎬⎫(a ,b )⎪⎪⎪⎩⎪⎨⎪⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分. 所求概率区间应满足2b ≤a .由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为(163,83),故所求事件的概率为P =12×8×8312×8×8=13.*13.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.。
11.4 统计案例1.回归分析(1)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.(2)线性回归模型用y =bx +a +e 表示,其中a 和b 为模型的未知参数,e 称为____________.(3)在具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中,回归方程的斜率和截距的最小二乘估计公式分别为:121()()ˆ()ˆˆ.ni i i ni i x x y y b x x ay bx ==⎧--⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑, 其中x =1n∑=ni i x 1,y =1n∑=ni iy1, 称为样本点的中心.(4)残差:i eˆ= 称为相应于点(i x ,i y )的残差,残差平方和为 .(5)相关指数R 2= . R 2越大,说明残差平方和 ,即模型的拟合效果 ;R 2越小,残差平方和 ,即模型的拟合效果 .在线性回归模型中,R 2表示解释变量对于预报变量变化的 ,R 2越接近于1,表示回归的效果 .2. 独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为 .(2)像下表所示列出两个分类变量的频数表,称为 .假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2 },其样本频数列联表(称为2×2列联表)为y 1 y 2 总计x 1 a b a+b x 2c d c+d 总计a+cb+da+b+c+d构造一个随机变量K 2=___________, 其中n =a+b+c+d 为样本容量.如果K 2的观测值k ≥k 0,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.我们称这样的k 0为一个判断规则的临界值.按照上述规则,把“两个分类变量之间没有关系”错误地判断为“两个分类变量之间有关系”的概率不超过P (K 2≥k 0).上面这种利用随机变量K 2来判断“两个分类变量有关系”的方法称为___________.自查自纠1. (2) 随机误差 (3)(x ,y )(4)i i yy ˆ- ∑=-ni i iyy12)ˆ( (5)1-∑∑==--ni ini ii yy y 1212)()ˆ( 越小 越好 越大 越差贡献率 越好 2.(1)分类变量 (2)列联表n (ad -bc )2(a +b )(c +d )(a +c )(b +d )独立性检验.相关系数r变大.残差平方和变大.相关指数R2变大.解释变量x与预报变量y的相关性变强观察可知,去掉D(3,10)后,拟合效果更好.此相关系数变大,残差平方和变小,相关指数变大,解释变量与预报变量的相关性变强.故选B2016·长春校级模拟)对两个变量得到一组样本数据:(x1,y1),(x,则下列说法不正确...的是( )若求得相关系数r=-0.89,则y与强的线性相关关系,且为负相关同学甲根据这组数据得到的回归模型1.8,同学乙根据这组数据得到的回归模的残差平方和e2=2.4,则模型1的拟合效果更可以发现,各点并不是基本处于一条直线附近,之间应是非线性相关关系.与已学函数图a xb ˆˆe +=来刻画题中模型更为合理,=b ^x +a ^,题中数据如下表所示:3 4 5 6 7 8 7.309 6.991 6.640 6.288 6.182 5.670 相应的散点图如图所示,从图中可以看出,变换的样本点分布在一条直线附近,因此可以用线性回归由表中数据得b ^≈-0.298,6.527-(-0.298)×5.5≈8.166,故回归直线方程为z ^=-0.298x +8.166.z ˆ=e -0.298x +8.166.【点拨】①对于非线性(可线性化)回归分析,可表中w i=x i,w—=18∑i=18w i.(1)根据散点图判断,y=a+b x与y=c+d x哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于的回归方程;(3)已知这种产品的年利润z与x,y的关系为y-x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n的相关系数为直线l的斜率的相关系数在0到1之间为偶数时,分布在l两侧的样本点的个数过点(x,y)依据最小二乘法的有关概念:样本点的中心,线性回归方程的意义等进行判断,具体分析相关系数用来衡量两个变量之间的相关程度,直线的斜率表示直线的倾斜(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n =a+b+c+d.解:(1)由已知得,抽取的100名学生中,男生60名,女生40名.分数小于110分的学生中,男生有60×0.05=3(人),记为A1,A2,A3;女生有40×0.05 = 2(人),记为B1,B2.从中随机抽取2名学生,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),其中,两名学生恰好为一男一女的可能结果共有6种,它们是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),故所求的概率P=610=3 5.(2)由频率分布直方图可知,在抽取的100名学生中,男生有“数学尖子生”60×0.25=15(人),女生有“数学尖子生”40×0.375=15(人).求甲地网友的平均留言条数(保留整数);为了进一步开展调查,从样本中留言条数不足条的网友中随机抽取2人,求至少抽到一名乙地网友的概率;规定“留言条数”不少于70条为“强烈关。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查. ②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样;②系统抽样;③分层抽样B.①简单随机抽样;②分层抽样;③系统抽样C.①系统抽样;②简单随机抽样;③分层抽样D.①分层抽样;②系统抽样;③简单随机抽样 解:由各抽样方法的适用范围可知较为合理的抽样方法是:①用简单随机抽样,②用系统抽样,③用分层抽样.故选A.2.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )解:设样本中的老年教师人数为x ,则3201 600=x900,解得x =180.故选C.3.某市2016年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是( ) A .19B .20C .21.5D .23解:根据茎叶图易求得这组数据的中位数是20.故选B.4.在检验某产品直径尺寸的过程中,将尺寸数据分成若干组,内,将该班所有同学的考试分数分为七个组:,绘制出频率分布直方图如图所示,已知分数低于112分的有18人,则分数不低于120分的人数为( )A .10B .12C .20D .40解:分数低于112分的人对应的频率/组距为0.09,分数不低于120分的人对应的频率/组距为0.05,故其人数为180.09×0.05=10(人).故选A.7.(2014·广东)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生的近视人数分别为( )A.100,10 B.200,10C.100,20 D.200,20解:样本容量为(3 500+4 500+2 000)×2%=200,抽取的高中生人数为2 000×2%=40,由于高中生的近视率为50%,所以抽取的高中生近视人数为40×50%=20.综上知,故选D.8.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如表:附:K2=(a+b)(c+d)(a+c)(b+d)A.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”C.有99%以上的把握认为“需要志愿者提供帮助与性别有关”D.有99%以上的把握认为“需要志愿者提供帮助与性别无关”解:由于K2=500×(40×270-160×30)2 200×300×70×430≈9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.故选C.9.(2016·离石区一模)为了确定加工零件所花费的时间,进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),根据收集到的数据可知x=20,由最小二乘法求得回归直线方程y^=0.6x+48,则y1+y2+y3+y4+y5=( )A.60 B.120 C.150 D.300 解:将x=20代入回归直线方程得y=0.6×20+48=60.所以y1+y2+y3+y4+y5=5y=300.故选D.10.四名同学根据各自的样本数据研究变量x,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且y=2.347x-6.423;②y与x负相关且y=-3.476x+5.648;③y与x正相关且y=5.437x+8.493;④y与x正相关且y=-4.326x-4.578.其中一定不正确...的结论的序号是( )A.①②B.②③C.③④D.①④解:当y与x正相关时,应满足斜率大于0;当y 与x负相关时,应满足斜率小于0,故①④一定不正确.故选D.11.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.众数B.平均数C.中位数D.标准差解:样本数据每个都加2后所得数据的波动情况并没有发生改变,所以标准差不变.故选D.12.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则下列说法正确的是( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 解:由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为s 21=15×=2,s 22=15×=125,C 正确;甲、乙的成绩的极差均为4,D 错.故选C.二、填空题:本大题共4小题,每小题5分,共20分.13.(2016·桂林期末)为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知 根据表中数据,得K 2=50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为__________.解:因为根据表中数据得到K 2≈4.844>3.841,所以认为选修文科与性别有关系出错的可能性为5%.故填5%.14.甲、乙两套设备生产的同类型产品共 4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.解:分层抽样中各层的抽样比相同.样本中甲设备生产的有50件,则乙设备生产的有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品总数为4 800×38=1 800件.故填1 800.15.已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号码.(1)若第1组抽出的号码为2,则所有被抽出的职工号码为____________;(2)分别统计这5名职工的体重(单位:kg ),获得体重数据的茎叶图如图所示,则该样本方差为____________.解:(1)由分组可知,抽号的间隔为8,又第1组抽出的号码为2,所以所有被抽出的职工号码为2,10,18,26,34.(2)由茎叶图知5名职工体重的平均数x =59+62+70+73+815=69,则该样本的方差s 2=15=62.故填2,10,18,26,34;62.16.(2015·江苏模拟)某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推的学生人数是____________.解:由频率分布直方图知,随机抽取的200名学生中成绩小于60分的学生人数是(0.002+0.006+0.012)×10×200=40,设这3 000名学生中该次数学成绩小于60分的学生人数为x ,则40x =2003 000,解得x=600.故填600.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图,观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格).解:(1)频率为:0.025×10=0.25,频数:60×0.25=15.(2)因为0.015×10+0.025×10+0.03×10+0.005×10=0.75,所以估计这次环保知识竞赛的及格率为0.75.18.(12分)(2016·江西校级月考)为了促进人口的均衡发展,我国从2016年1月1日起,全国统一实施全面放开两孩政策.为了解适龄国民对放开生育二胎政策的态度,某部门选取70后和80后年龄段的人作为调查对象,进行了问卷调查,其中,持“支持生二胎”“不支持生二胎”和“保留意见”态度的人数如表所示:取n 个人,其中持“支持”态度的共36人,求n 的值;(2)在持“不支持”态度的人中,仍用分层抽样的方法抽取5人,并将其看成一个总体,从这5人中任意选取2人,求至少有1个80后的概率.解:(1)所有参与调查的人数为780+120+420+180+200+300=2 000,由分层抽样知n =36900×2 000=80.(2)由分层抽样知抽取的5人中有2个80后(记为甲、乙),3个70后(记为A ,B ,C),则从中任取2个,共有以下10种等可能的基本事件:(甲,乙),(甲,A),(甲,B),(甲,C),(乙,A),(乙,B),(乙,C),(A ,B),(A ,C),(B ,C),其中至少有1个80后的基本事件有(甲,乙),(甲,A),(甲,B),(甲,C),(乙,A),(乙,B),(乙,C)共7种.故至少有1个80后的概率为P =710.19.(12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑=101i ix=80,∑=101i iy=20,∑=101i ii yx =184,∑=1012i ix=720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ;(2)判断变量x 与y 之间是正相关还是负相关; (3)若该居民区某家庭月收入为7千元,预测该家附:线性回归方程y =bx +a 中, b =∑∑==--ni i ni i i x n xyx n y x 1221,a =y -b x ,其中x ,y 为样本平均值,线性回归方程也可写为y ^=b ^x +a ^.解:(1)由题意知n =10,x =1n ∑i =1nx i =8010=8,y =1n ∑i =1ny i =2010=2,又∑=ni ix12-2x n =720-10×82=80,∑=ni i i y x 1-y x n =184-10×8×2=24,由此得b =2480=0.3,a =y -b x =2-0.3×8=-0.4,故所求回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元).20.(12分)(2016·成都校级模拟)记者对某城市的工薪阶层关于“义务献血”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“义务献血”赞成人数统计表(如表):(1)试根据频率分布直方图估计这60人的月收入的中位数和平均数;(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求被选取的2人都不赞成的概率.解:(1)设中位数为x ,由直方图知:10×0.015+10×0.015+(x -35)×0.025=0.5,解得x =43(百元);平均数为(20×0.015+30×0.015+40×0.025+50×0.02+60×0.015+70×0.01)×10=43.5(百元).(2)月收入(单位:百元)在[65,75)的人数为60×10×0.01=6(人),由表格知赞成的人数为2人,这2个人用a 1,a 2表示,则不赞成的人数为4人,这4个人用b 1,b 2,b 3,b 4表示.从这6个人中任选2人有(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4)15种选法,其中被选取的2人都不赞成的有6种,故所求概率为p =615=25. 21.(12分)(2016·银川校级一模)某校高二文科一班主任为了解同学们对某时政要闻的关注情况,在该班进行了一次调查,发现在全班50名同学中,对此事关注的同学有30名,该班在本学期期末考试中政治成绩(满分100分)的茎叶图如图所示.(1)求“对此事不关注者”的政治期末考试成绩的中位数与平均数;(2)若成绩不低于60分记为“及格”,从“对此事不关注者”中随机抽取1人,该同学及格的概率为P 1,从“对此事关注者”中随机抽取1人,该同学及格的概率为P 2,求P 2-P 1的值;(3)若成绩不低于80分记为“优秀”,请以是否优秀为分类变量.①补充下面的2×2列联表:注”与政治期末成绩是否优秀有关系?参考数据:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n=a +b +c +d.解:(1)“对此事不关注者”的20名同学,成绩从低到高依次为:42,46,50,52,53,56,61,61,63,64,66,66,72,72,76,82,82,86,90,94,中位数为64+662=65,平均数为120(42+46+50+52+53+56+61+61+63+64+66+66+72+72+76+82+82+86+90+94)=66.7.(2)由条件可得P 1=20-620=710,P 2=30-530=56,所以P 2-P 1=56-710=215.(3)①补充的2×2列联表如下:50×(12×15-18×5)230×20×17×33=225187≈1.203 2<2.706,所以,没有90%以上的把握认为“对此事是否关注”与政治期末成绩是否优秀有关系.22.(12分)(2016·湖北七校联盟高三2月联考)心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30人,女20人), 给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)能力与性别有关?(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在5~7分钟,女生乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.附表及公式: K 2=(a +b )(c +d )(a +c )(b +d ).解:(1)由表中数据得K 2的观测值k =50×(22×12-8×8)230×20×30×20=509≈5.556>5.024,所以能根据已知判断有97.5%的把握认为视觉和空间能力与性别有关.(2)设甲、乙解答一道几何题的时间分别为x ,y分钟,则基本事件满足的区域为不等式组⎩⎪⎨⎪⎧5≤x ≤7,6≤y ≤8表示的平面区域(如图所示).设事件A 为“乙比甲先解答完此道题”,则满足的区域为x >y (图中阴影部分所示).所以由几何概型P(A)=12×1×12×2=18,即乙比甲先解答完的概率为18.。