四年级奥数题鸡兔同笼问题习题及答案B
- 格式:docx
- 大小:480.32 KB
- 文档页数:5
四年级奥数题及答案-鸡兔同笼
导语:鸡兔同笼问题往往用假设的办法来解答,即假设全是鸡或全是兔,,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?
答案与解析:鸡兔同笼问题往往用假设的办法来解答,即假设全是鸡或全是兔,,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2*35=70(只),与实际相比,减少了94-70=24(只)。
减少的原因是把一只兔子当做一只鸡时,要减少4-2=2(只)脚。
所以兔有24\2==12(只),鸡有35-12=23(只)。
小学奥数--鸡兔同笼(含答案解析)1.将文章中的选择题和解答题分开,方便阅读。
2.删除了第一题和第五题中的选项,因为没有必要。
3.改写了第一题和第二题的问题,使其更加清晰。
4.修改了第三题和第七题的答案,因为原来的答案是错误的。
5.修改了第六题的选项,因为原来的选项是重复的。
6.删除了第十一题和第十四题,因为它们的问题不清晰,难以理解。
7.修改了部分题目的语言,使其更加易懂。
选择题:1.一只笼子里有鸡和兔子,从上面数有29个头,从下面数有92只脚,那么笼子中有多少只鸡?答案:17解析:设鸡的数量为x,兔子的数量为y,则有x+y=29,2x+4y=92.解得x=17,y=12.因此,笼子中有17只鸡。
2.有鸡和兔子20只,共有46只脚,其中鸡有多少只?答案:15解析:设鸡的数量为x,兔子的数量为y,则有x+y=20,2x+4y=46.解得x=15,y=5.因此,鸡有15只。
3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿。
蛐蛐和蜘蛛各有多少只?答案:4,6解析:设蛐蛐的数量为x,蜘蛛的数量为y,则有x+y=10,6x+8y=68.解得x=4,y=6.因此,蛐蛐有4只,蜘蛛有6只。
XXX四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有多少人?答案:8解析:设男生的数量为x,女生的数量为y,则有x+y=12,5x+4y=56.解得x=8,y=4.因此,男生有8人。
5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了几个小孩?答案:5解析:设小孩的数量为x,大人的数量为y,则有5x+10y=45.解得x=5,y=2.因此,这两个大人带了5个小孩。
6.一次数学竞赛XXX得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做扣2分,XXX答对多少题?答案:18解析:设小华答对的题数为x,则有5x-2(20-x)=86.解得x=18.因此,XXX答对了18题。
四年级下册鸡兔同笼问题练习题(附答案及解析)嘿,大家好!今天我要给大家分享的是四年级下册的鸡兔同笼问题练习题,附上答案和解析。
这可是数学中的经典问题,不仅能锻炼我们的思维能力,还能让我们在解题过程中感受到数学的乐趣。
首先,我们先来回顾一下鸡兔同笼问题的基本概念。
鸡兔同笼问题是指在一个笼子里关着一些鸡和兔子,已知笼子里动物的总数和脚的总数,要求我们计算出鸡和兔子各有多少只。
举个例子,假设笼子里有10只动物,脚的总数是28只。
那么,我们要如何计算出鸡和兔子各有多少只呢?下面,我就给大家展示一个具体的解题过程。
【例题】一个笼子里有10只动物,脚的总数是28只。
请问笼子里有多少只鸡和多少只兔子?首先,我们设鸡的数量为x,兔子的数量为y。
那么,我们可以根据题目条件列出以下方程组:x + y = 10 (动物总数)2x + 4y = 28 (脚的总数)接下来,我们来解这个方程组。
从第一个方程中,我们可以得到 x = 10 y。
将x的表达式代入第二个方程中,得到:2(10 y) + 4y = 2820 2y + 4y = 282y = 8y = 4现在我们知道了兔子的数量是4只。
再将y的值代入x的表达式中,得到:x = 10 4x = 6所以,笼子里有6只鸡和4只兔子。
怎么样,这个解题过程是不是很简单呢?其实,只要我们掌握了鸡兔同笼问题的解题思路,类似的题目都可以迎刃而解。
下面,我给大家准备了几个类似的练习题,大家一起来试试吧!【练习题1】一个笼子里有8只动物,脚的总数是32只。
请问笼子里有多少只鸡和多少只兔子?【练习题2】一个笼子里有12只动物,脚的总数是48只。
请问笼子里有多少只鸡和多少只兔子?【练习题3】一个笼子里有15只动物,脚的总数是60只。
请问笼子里有多少只鸡和多少只兔子?好了,今天的分享就到这里。
希望大家通过这些练习题,能够更好地掌握鸡兔同笼问题的解题方法。
加油哦!。
四年级下册鸡兔同笼问题练习题(附答案及解析).doc1、鸡兔同笼, 共100个头, 320只脚, 鸡有 ( ) 只, 兔 ( ) 只。
2、小明计算20道竞赛题,做对一道得5分,做错一道倒扣3分,结果小明考得60分,小明做对了( )道题。
3、松鼠妈妈采松子。
晴天每天可以采20个,雨天每天可以采12个。
它一连几天采了112个松子,平均每天采14个。
这几天中有 ( )天下雨。
4、个体户王小二承接了建筑公司一项运输1200块玻璃的业务,并签了合同。
合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了扣除一块的运费外,还要赔偿25元。
王小二把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元。
运输过程中损坏了 ( ) 块。
5、100名师生绿化校园,老师每人栽3棵树,学生每2人栽1棵,总共栽树100棵。
老师栽树( )棵,学生栽树( )棵。
6、 30枚硬币由2分和5分组成,共值9角9分, 2分硬币 ( ) 枚, 5分硬币( )枚。
7、某校数学竞赛,共有20道填空题,评分标准是每做对一题得5分,做错一题倒扣3分,某题没做该题得0分。
小英结果得了69分,那小英有()题没做。
8、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀,现在这三种昆虫18只,共有118只脚和20对翅膀。
蜘蛛有()只,蜻蜓有( )只,蝉有( )只。
9、甲、乙两人进行射击比赛,约定每中一发记20分,脱靶一发扣12分,两人各打10发,共得208分,其中甲比乙多64分,甲中了 ( ) 发,乙中了( )发。
10、鸡、兔共有脚96只,若将鸡、兔互换,则有脚84只,鸡有()只,兔有( )只。
附答案:1、40 602、 153、 64、 125、60 406、17 137、3.(100-69)/(5+3)=31/8 31-8*2=15 15/5=3所以有3道题没答8. 5 7 69、 8 610、 12 18。
《数学广角──鸡兔同笼》同步试题一、选择1.鸡和兔一共有12只,数一数脚有36只,其中兔有()只。
A.3 B.4 C.5 D.6考查目的:采用列表法或假设法解决“鸡兔同笼”问题。
答案:D。
解析:列表法:假设法:假设全是鸡,则兔子的只数为(36-12×2)÷(4-2)=12÷2=6(只)。
2.有10元人民币和5元人民币共15张,合计120元,其中10元的人民币有()张。
A.12 B.10 C.9 D.8考查目的:找准实际问题中的数量关系,巩固解决“鸡兔同笼”问题的解题策略。
答案:C。
解析:在这个实际问题中,10元人民币和5元人民币的总数量15相当于“鸡兔同笼”问题中的头数,人民币的总价值120元相当于“鸡兔同笼”问题中的脚数。
3.10张乒乓球桌上一共有32名同学在进行比赛,进行单打比赛的桌子有()张。
A.3 B.4 C.5 D.6考查目的:利用假设法寻找实际问题中的数量关系,巩固假设法解决“鸡兔同笼”问题。
答案:B。
解析:在这个问题中,乒乓球桌的数量10相当于“鸡兔同笼”问题中的头数,同学数量32相当于脚数。
假设全是双打桌,则应该有10×4=40(名)同学,实际上少40-32=8(名)同学。
因为每张单打桌比每张双打桌少4-2=2(名)同学,所以单打桌有8÷2=4(张)。
4.篮球比赛中,3分线外投中一球得3分,3分线内投中一球得2分。
在一场比赛中,李明总共投中9个球,得了20分,他投中()个2分球。
A.2 B.4 C.5 D.7考查目的:巩固解决“鸡兔同笼”问题的方法,加深对“鸡兔同笼”问题本质的理解。
答案:D。
解析:在这个问题中,3分球与2分球的投球总数9相当于“鸡兔同笼”问题中的头数,所得总分20相当于“鸡兔同笼”问题中的脚数。
可以假设投中的球都是3分球,也可以假设投中的球都是2分球。
5.李明用气枪打球,打中一枪可得5分,如果未打中倒扣2分。
他打了20枪,一共得了51分。
四年级下册鸡兔同笼问题练习题附答案及解析【题目】四年级下册鸡兔同笼问题练习题附答案及解析鸡兔同笼问题是一个数学中经典的问题,针对这个问题,本文将提供一些四年级下册鸡兔同笼的练习题,并附上答案及解析,帮助孩子们提高解决问题的能力和思维逻辑。
一、选择题1. 一共有10只兔子和30只鸡,他们共有多少只脚?A. 400只B. 500只C. 600只D. 700只答案及解析:B. 500只。
根据题目可知,每只兔子有4只脚,每只鸡有2只脚。
所以,10只兔子共有40只脚,30只鸡共有60只脚。
将两者相加得到总脚数:40 + 60 = 100。
故共有500只脚。
2. 一共有12只兔子和36只鸡,他们共有多少只脚?A. 512只B. 608只C. 704只D. 800只答案及解析:C. 704只。
同样地,根据题目可知,每只兔子有4只脚,每只鸡有2只脚。
所以,12只兔子共有48只脚,36只鸡共有72只脚。
将两者相加得到总脚数:48 + 72 = 120。
故共有704只脚。
二、填空题1. 有8只兔子和22只鸡,他们共有个_________。
答案及解析:240。
同样地,每只兔子有4只脚,每只鸡有2只脚。
所以,8只兔子共有32只脚,22只鸡共有44只脚。
将两者相加得到总脚数:32 + 44 = 76。
每只动物共有2只耳朵,所以8只兔子共有16只耳朵。
将脚和耳朵的数量相加:76 + 16 = 92。
每只动物还有一个头,所以总数再加1:92 + 1 = 93。
最后,将93乘以8只兔子:93 × 8 = 744。
故共有744个。
三、解答题1. 有18只动物,共有52只脚和106只耳朵,请问其中有多少只兔子和鸡分别是多少?答案及解析:假设兔子的数量为x,鸡的数量为18 - x(18只动物减去兔子的数量)。
根据题目可知,每只兔子有4只脚,每只鸡有2只脚。
所以,总脚数可以表示为:4x + 2(18 - x) = 52。
化简得到2x +36 - 2x = 52,解得x = 8。
小学四年级下学期数学鸡兔同笼练习题及答案1.鸡兔同笼,共有30个头和86只脚,求鸡兔各有多少只?2.有20张5元和10元的人民币,一共是175元,求5元和10元的人民币各有多少张?3.XXX买了圆珠笔和钢笔共15枝,圆珠笔每枝1.5元,钢笔每枝4.5元,共花了49.5元,求圆珠笔和钢笔各买了多少枝?4.鸡兔同笼,共有35个头和94条腿,求鸡兔各有多少只?5.在一个停车场内,汽车和摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,求汽车和摩托车各有多少辆?6.XXX买了8分邮票和4分邮票共100张,共付出6.8元,求XXX买了这两种邮票各多少张?7.在知识竞赛中,有10道判断题,每答对一道题得两分,答错一道题要倒扣一分。
XXX答了全部题目,但最后只得了14分,求他答错了几道题?8.某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。
已知每10个暖瓶的运费为5元,损坏一个暖瓶不但不给运费还要赔10元,运后结算时,运输队共得1350元的运费。
求损坏了多少暖瓶?9.鸡兔同笼,共有20个头和62只脚,求鸡兔各有几只?10.XXX买了2元和5元邮票一共34张,用去98元钱。
求XXX买了2元和5元的邮票各多少张?11.全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?12.在一个停车场上,停了汽车和摩托车一共32辆。
其中汽车有4个轮子,摩托车有3个轮子,总共有108个轮子,求汽车和摩托车各有多少辆?13.XXX举行数学竞赛,共10题,做对一题得10分,做错一题倒扣两分。
XXX得了52分,求他做错了几道题?14.100名师生绿化校园,老师每人栽3棵树,学生每两人栽1棵树,共栽树100棵。
求老师和同学各栽树多少棵?15.XXX有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一题扣3分。
这三名同学都答了全部题目,XXX得74分,XXX得22分,XXX得87分,他们三人共答对多少题?5.鸡兔同笼,设鸡有x只,兔有y只。
小学奥数趣味学习《鸡兔同笼问题》典型例题及解答兔同笼问题是古典的算术问题。
已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
数量关系:第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)解题思路和方法:解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例题1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例题2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。
把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。
【奥数系列训练】(含答案)鸡兔同笼【奥数系列训练】(含答案)——鸡兔同笼请填入正确答案:【题目1】一个大笼子里关了一些鸡和兔子。
数它们的头,一共有36个;数它们的腿,共100条。
则鸡有多少只,兔有多少只?【题目2】王老师用40元钱买来20枚邮票,全是1元和5元的。
求这两种邮票分别买了多少枚和多少枚。
【题目3】兔妈妈上山采蘑菇,晴天,每天能採30个,雨天,每天能採12个.它从4月10号开始,到4月29号,中间没休息,一共採了510个蘑菇。
那么,晴天是多少天?雨天有多少天?【题目4】肖老师带51名学生去公园里划船。
他们一共租了44条船,其中有大船和小船,每条大船坐6人,小船4人。
每条都坐满了人。
他们租的大船有几条,小船有几条?【题目5】一辆汽车参加车赛,9天共行了5000公里。
已知它晴天每天行688公里,雨天平均每天行390公里。
在比赛期间,有几个晴天?有几个雨天?【题目6】有大小两种塑料桶共60只。
每个大桶装水5公斤,每个小桶只能装水2公斤。
又知大桶一共比小桶多装26公斤。
则大桶有多少只,小桶有多少只?【题目7】用单价为6元/公斤的两种水果糖,配制成单价为6元/公斤的混合型糖15公斤。
有的原来单价11元/公斤的糖取了几公斤?【题目8】一百个和尚吃一百个馒头,大和尚一人吃三个,小和尚三人吃一个。
大和尚有多少个?小和尚有多少个?【题目9】孙老师带领99名同学种100棵树,他先种了一棵示范后,安排男同学一人种两棵,女生每两人种一棵。
植树的男生有多少人?而女生有多少人?【题目10】某化工厂甲、乙两车间共110人,现在要求甲车间每8人选出一名代表,乙车间每6人选出一名代表。
两车间一共选出了16名代表。
则甲车间有多少名工人,乙车间有多少名工人?【参考答案】1.【解答】鸡22只,兔子14只。
可先假设这36个全是鸡,那么应该只有36×2=72条腿。
而实际上有100条腿,这是因为兔子有4条腿,比鸡多2条。
四年级下册鸡兔同笼问题练习题(附答案及解析)四年级下册鸡兔同笼问题练习题(附答案及解析)一、问题描述:在一个笼子里,鸡和兔子一共有35个头,94只脚。
问鸡和兔子各有多少只?二、问题分析:这是一个经典的鸡兔同笼问题,我们可以运用代数解法或者穷举法来求解。
本文将介绍两种解法,并提供相应的答案和解析。
三、代数解法:设鸡的数量为x,兔子的数量为y。
根据题目中的条件,可以列出以下两个方程:1. x + y = 35 (总头数为35个)2. 2x + 4y = 94 (总脚数为94只)利用这两个方程,我们可以解出鸡和兔子的数量。
下面是求解的步骤:1. 将方程1乘以2,得到2x + 2y = 70。
2. 将得到的等式与方程2相减,消去x的项,得到2y = 24,进一步化简得到y = 12。
3. 将y的值代入方程1,得到x = 23。
因此,根据代数解法,鸡的数量为23只,兔子的数量为12只。
四、穷举法:穷举法是通过尝试所有可能的情况来求解问题。
在这个问题中,我们可以从鸡和兔子的总数量开始尝试,逐渐减少其中一个种类的数量,直到满足题目中的头数和脚数条件。
具体的步骤如下:1. 假设鸡的数量为0,兔子的数量为35。
通过计算可得,鸡和兔子的总脚数为140,与题目中的脚数条件不符,因此排除此种情况。
2. 假设鸡的数量为1,兔子的数量为34。
通过计算可得,鸡和兔子的总脚数为138,与题目中的脚数条件不符,因此排除此种情况。
3. ...继续逐渐减少鸡的数量,直到满足题目中的脚数条件。
通过不断尝试,最终可以得出鸡的数量为23只,兔子的数量为12只,与代数解法的结果一致。
五、答案及解析:根据两种解法的计算,鸡的数量为23只,兔子的数量为12只。
代数解法通过建立方程组,通过代数方法求解得出结果。
它的优点是计算准确、简便快捷,适用于各种复杂的问题。
但对于一些年级较低的学生来说,可能会比较难理解和掌握。
穷举法则是通过尝试所有可能的情况,直到找到符合条件的解。
七、鸡兔同笼问题(B)之邯郸勺丸创作年级 ______班 _____ 姓名 _____得分 _____1. 鸡兔同笼,共有头100个,足316只,那么鸡有_______只,兔有______只.2.小明花了4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分.他买了_______张贺年卡,_______张明信片.3.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了________题.4.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡______只.兔有_______只.5.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有_______个,小和尚有_______个.6.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有_______个,5分有________个.7.有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有_______盒,铅笔有_______盒.8.鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有______只,鸡有______只.9.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了______只.10.有2角,5角和1元人民币20张,共计12元,则1元有_______张,5角有______张,2角有_______张.二、分析与解答题:1.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?2.大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?3.小毛介入数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的一样多.问小毛做对几道题 ?4.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?———————————————答案——————————————————————1.鸡有42只,兔有58只.兔: (316-100⨯2)÷(4-2)=58(只), 鸡: 100-58=42(只).2. 明信片有9张,贺年卡有5张.明信片: (35⨯14-400)÷(35-25)=9(张)贺年卡: 14-9=5(张).3.15题.20-(5⨯20-60)÷(5+3)=15(题).4. 鸡有14只,兔有18只.因鸡和兔互换,脚数减少100-92=8(只),所以原来的兔比鸡多8÷(4-2)=4(只),这4只兔子共有4⨯4=16只脚.因此,相等的鸡和兔共有脚100-16=84(只).由于兔和鸡的脚数有6只,所以鸡有84÷6=14(只),兔有14+4=18(只).5. 大和尚25人,小和尚75人.小和尚: 3⨯[(3⨯100-100)÷(3⨯3-1)=75(人),大和尚: 100-75=25(人).6.2分币17枚,5分币13枚.2分: (5⨯30-99)÷(5-2)=17(枚)5分: 30-17=13(枚).7. 钢笔12盒,铅笔15盒.钢笔: (12⨯27-300)÷(12-10)=12(盒),铅笔: 27-12=15(盒).8. 鸡76只,兔24只.兔: (248-52⨯2)÷(2+4)=24(只),鸡: 24+52=76(只).9.5个.(20⨯250-4400)÷(100+20)=5(只).10.1元7张,5角8张,2角5张.2角的张数必须是5的倍数,因此只能是5张. 5角和1元共15张,合计11元.5角: (150-110)÷(10-5)=8(张), 1元: 20-8-5=7(张).二、分析与解答题:1. 男生15人,女生35人.男生: (120-5-2⨯50)÷(3-2)=15(人).女生: 50-15=35(人)2. 大油瓶20个,小油瓶40个.大油瓶: (100-0.5⨯60)÷(4-0.5)=20(个).小油瓶: 60-20=40(个).3. 14道.因为做错的和没做的一样多,就假定这两种情况都倒扣1分.所以没做或做错的有(5⨯20-64)÷(5+1)=6(道),做对的有20-6=14(道).4. 蜘蛛5只,蜻蜓7只,蝉6只.蜘蛛: (118-6⨯18)÷(8-6)=5(只),那么6条腿的虫应有: 18-5=13(只).蜻蜓: (20-1⨯13)÷(2-1)=7(只).蝉: (2⨯13-20)÷(2-1)=6(只).。
鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1、鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?2 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?2、小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?3、小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?4、小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
问:两种硬币各多少枚?6、45人去划船,一共乘坐7只船,其中每只大船坐7人,每只小船坐5人。
求大船和小船的只数。
7、46名同学去公园划船,共乘坐9只船,其中大船坐6人,小船坐4人。
大船和小船各有几只?8、六(1)班42个同学向2008年北京奥运会捐款。
其中12人每人捐2元,其余同学每人捐5元或10元,一共捐了229元。
求捐5元和10元的同学各有多少人?鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?22 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?3小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?4小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?5小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
鸡兔同笼问题是一个经典的应用题,用于训练逻辑思维和代数解方程的能力。
下面是一些鸡兔同笼问题练习题:1. 一共有47个头和122个脚,问笼中有多少只鸡和兔?2. 一共有96只脚和38个头,问笼中有多少只鸡和兔?3. 一共有100只鸡和兔,它们的头数和脚数一共有272个,问笼中有多少只鸡和兔?4. 一共有35只鸡和兔,它们的头数和脚数一共有94个,问笼中有多少只鸡和兔?5. 一共有26只鸡和兔,它们的头数和脚数一共有72个,问笼中有多少只鸡和兔?6. 一共有50只鸡和兔,它们的头数和脚数一共有140个,问笼中有多少只鸡和兔?7. 一共有67只鸡和兔,它们的头数和脚数一共有186个,问笼中有多少只鸡和兔?8. 一共有90只鸡和兔,它们的头数和脚数一共有248个,问笼中有多少只鸡和兔?解答:1. 设笼中有x只鸡和y只兔,根据题意可列出方程组:x + y = 472x + 4y = 122解得:x = 23, y = 24笼中有23只鸡和24只兔。
2. 设笼中有x只鸡和y只兔,根据题意可列出方程组:x + y = 382x + 4y = 96解得:x = 14, y = 24笼中有14只鸡和24只兔。
3. 设笼中有x只鸡和y只兔,根据题意可列出方程组:x + y = 1002x + 4y = 272解得:x = 56, y = 44笼中有56只鸡和44只兔。
4. 设笼中有x只鸡和y只兔,根据题意可列出方程组:x + y = 352x + 4y = 94解得:x = 13, y = 22笼中有13只鸡和22只兔。
5. 设笼中有x只鸡和y只兔,根据题意可列出方程组:x + y = 26。
人教版四年级下册数学鸡兔同笼练习题及答案1. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?假设全做对:20×5=100100-64=3636÷=6·错题20-6=14·对题2. 鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?100-86=1414÷2=7·兔100-7×4=7272÷=1·兔:7+12=19鸡:12只3. 自行车越野赛全程20千米,全程被分为0个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?假设全是9千米的路段:9×20=180220-180=4040÷=8·14千米路段20-8=12·9千米路段4. 有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?18÷2=9·兔5、某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?假设全做对:5×20=100100-76=2424÷=4·错题20-4=16·对题6. 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?假设全部在单打:12×2=2434-24=1010÷=5·双打12-5=7·单打7、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?100-80÷2=6060÷3=20鸡:40+2×20=80兔:20只8、红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?135+5+7=147147÷3=4949-5=4449-7=429、刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?假设全是小船:4×10=4041-40=110-1=9小船1只大船10、有鸡兔共20只,脚44只,鸡兔各几只?假设全是鸡:20×2=4044-40=44÷=2·兔20-2=18·鸡11、鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?74-26×2=222222÷=3737+26=63·鸡63-26=37·兔12、六年二班全体同学,植树节那天共栽树180棵.平均每个男生栽5棵、每个女生栽3棵;又知女生比男生多4人,该班男生和女生各多少人?180-3×4=168168÷=2121+4=25·女生男生:21人小学四年级数学奥数练习题鸡兔同笼问题第九节鸡兔同笼问题基本公式是:兔数=÷鸡兔同笼问题例题透析11、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是244÷2=122.在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说此题.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了8×4-244=108.每只鸡比兔子少只脚,所以共有鸡÷=4.说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=÷.当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176,比244只脚少了244-176=68.每只鸡比每只兔子少只脚,68÷2=34.说明设想中的“鸡”,有34只是兔子,也可以列出公式兔数=÷.上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.鸡兔同笼问题例题透析2红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=÷=24÷8=3.红笔数=16-3=13. 答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×=240.比280少40.40÷=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”数是3。
12月2日
基础题
1.鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?
提高题
2. 蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现在这三种小虫16只,共有110条腿和14对翅膀。
问,每种昆虫各几只?
拓展题
3. 鸡与兔共有220只脚,若原来所有的鸡都换成兔,所有的兔都换成鸡后,则脚只有212只,求原来鸡兔各有多少头?
12月3日
基础题
1.鸡兔同笼,鸡比兔多10只,但鸡脚却比兔子少60只,问鸡兔各多少只?
提高题
2.螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。
现在这三种动
物37只,共有250条腿和52对翅膀。
每种动物各有多少只?
拓展题
3.某校数学竞赛,共有20道填空题。
评分标准是:每做对1题得5分,做错1题倒扣3
分,没做的一题得0分,小英的得分是69分,那么小英有几题没做?
12月4日
基础题
1.鸡与兔共有110个头,但鸡的脚比兔的脚少20只,求鸡兔各有多少头?
(2)鸡与兔共有110只脚,但鸡的头数比兔的少20个,求鸡兔各有多少头?
提高题
2.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?
拓展题
3.一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?。
鸡兔同笼练习题及答案一、基础题1. 有一个笼子里有鸡和兔,共有头30个,脚90只,请问笼子里有多少只鸡和兔?2. 鸡和兔共40只,脚的总数为112只,求鸡和兔各有多少只?3. 笼子里有鸡和兔共35只,脚的总数为94只,鸡和兔各有多少只?4. 有一个笼子里鸡和兔的总数为50只,脚的总数为160只,求鸡和兔的数量。
5. 笼子里有鸡和兔共45只,脚的总数为130只,鸡和兔各有多少只?二、提高题1. 有两个笼子,第一个笼子里鸡和兔共有20只,脚的总数为56只;第二个笼子里鸡和兔共有25只,脚的总数为70只。
请问两个笼子里分别有多少只鸡和兔?2. 三个笼子里的鸡和兔共有60只,脚的总数为180只,其中第一个笼子里有鸡和兔共15只。
求第一个笼子里鸡和兔的数量。
3. 四个笼子里的鸡和兔共有100只,脚的总数为280只。
如果第一个笼子里鸡的数量是第二个笼子里兔的数量的两倍,求第一个笼子里鸡和兔的数量。
4. 有五个笼子,每个笼子里鸡和兔的总数相同,脚的总数也相同。
已知每个笼子里鸡和兔的总数为12只,脚的总数为40只,求每个笼子里鸡和兔的数量。
5. 两个笼子里的鸡和兔共有50只,脚的总数为150只。
如果第一个笼子里鸡的数量是第二个笼子兔的两倍,求两个笼子里鸡和兔的数量。
三、拓展题1. 有三个笼子,第一个笼子里鸡和兔共有18只,脚的总数为50只;第二个笼子里鸡和兔共有24只,脚的总数为66只;第三个笼子里鸡和兔共有30只,脚的总数为82只。
求三个笼子里鸡和兔的数量。
2. 四个笼子里的鸡和兔共有80只,脚的总数为240只。
已知第一个笼子里鸡的数量是第二个笼子里兔的数量的三倍,求四个笼子里鸡和兔的数量。
3. 有五个笼子,每个笼子里鸡和兔的总数分别为10、15、20、25、30只,脚的总数分别为30、50、70、90、110只。
求每个笼子里鸡和兔的数量。
4. 两个笼子里的鸡和兔共有60只,脚的总数为180只。
如果第一个笼子里兔的数量是第二个笼子鸡的两倍,求两个笼子里鸡和兔的数量。
四年级鸡兔同笼奥数题及答案
鸡兔同笼的例题及答案【1】
鸡和兔共有100只脚,若将鸡换成兔,将兔换成鸡,则共有86只脚,则鸡有多少只?兔有多少只?
【分析】【解法一】:鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让鸡只数和兔只数相等后的脚数:100+7×2=114(条);
鸡的脚数:114÷(2+1)=38(条);
鸡的只数:38÷2=19(只);兔的.只数:19-7=12(只);
【解法二】鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让兔只数和鸡只数相等后的脚数:100-7×4=72(条);
鸡的脚数:72÷(2+1)=24(条);
兔(鸡)的只数:24÷2=12(只);鸡的只数:12+7=19(只);
【解法三】:方程法设鸡有x只,兔有y只;
解方程得:x=12;y=19;
鸡兔同笼的例题及答案【2】
鸡兔同笼,头共46,足共128,鸡兔各几只
【分析】假设只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多4-2=2(只)脚,那么56只脚是我们把56÷2=28只鸡当成了兔子,所以鸡的只数就是28,兔的只数是46-28=18(只).当然,这里我们也可以假设46只全是鸡,小朋友们,请你按此思路做做这道题目!。
小学鸡兔同笼的习题及答案1、某个笼子里有10只鸡和兔,一共有22只脚,请问这个笼子里有几只兔子?2、有一个笼子里面装有鸡和兔子,头数共35个,脚的数目共94只,请问笼子里有多少只鸡?多少只兔子?3、在一个笼子里,鸡和兔的总数为40只,它们的脚一共有100只,请问这个笼子里有几只兔子?4、有一个笼子,里面有若干只鸡和兔子,在数它们的头和脚时,得到了这样的结果:头数比脚数少5,问笼子里有多少只鸡和兔子?5、有一个笼子里关着鸡和兔,它们的头数为50,脚数为140,请问笼子里分别有多少只鸡和兔?6、一个笼子里有36个头,100只脚,问里面共有多少只鸡和多少只兔?7、在一个笼子里有十几只鸡和兔子,把它们全部赶出笼子,数了一下它们的头,数到45个。
请问这个笼子里原来有几只兔子?8、有一个笼子里面装着鸡和兔子,一共有50个头,130只脚,请问笼子里各有多少只鸡和兔子?9、一只鸟笼里关着若干只鸡和兔子,共有54只脚。
如果兔子的数量比鸡的数量多4只,那么这只鸟笼里一共关着多少只动物?10、一个农夫买了一批鸡和兔共80只,花费了240元;后来他又另外买了一批鸡和兔共60只,花费了180元。
他买第一批时,每只鸡和兔的价格都是3元,第二批则为4元。
请问他买来多少只鸡和兔?答案1.答案:笼子里有6只兔子。
2.答案:笼子里有23只鸡和12只兔子。
3.答案:笼子里有20只兔子。
4.答案:笼子里有8只鸡和3只兔子。
5.答案:笼子里有30只鸡和20只兔子。
6.答案:笼子里有22只鸡和14只兔子。
7.答案:笼子里原来有10只兔子。
8.答案:笼子里有40只鸡和10只兔子。
9.答案:笼子里一共有16只动物,其中有6只兔子和10只鸡。
10.答案:农夫买了40只鸡和40只兔(共80只),以及20只鸡和40只兔(共60只)。
四五年级数学奥数题一、四年级奥数题1. 鸡兔同笼问题题目:鸡和兔在同一个笼子里,共有30个头,88只脚。
问鸡和兔各有多少只?解析:假设30只全是鸡,那么脚的总数应该是公式只。
但实际有88只脚,多出来的脚是因为把兔当成鸡了。
每只兔比鸡多公式只脚。
总共多出来的脚数为公式只。
所以兔的数量为公式只。
鸡的数量就是公式只。
2. 平均数问题题目:有5个数的平均数是10,若把其中一个数改为12,这5个数的平均数变为11。
被改动的数原来是多少?解析:原来5个数的总和是公式。
改动后5个数的总和是公式。
总和增加了公式。
因为只有一个数被改为12,所以被改动的数原来是公式。
二、五年级奥数题1. 行程问题(相遇问题)题目:甲、乙两车分别从A、B两地同时相向而行,甲车速度为每小时60千米,乙车速度为每小时40千米,两车在距离中点30千米处相遇。
求A、B两地的距离。
解析:甲车速度比乙车速度快,所以相遇时甲车过了中点又走了30千米,而乙车距离中点还有30千米。
那么甲车比乙车多走了公式千米。
甲车每小时比乙车多走公式千米。
两车相遇所用的时间为公式小时。
A、B两地的距离为公式千米。
2. 数的整除问题题目:在1 100的自然数中,能被3或5整除的数共有多少个?解析:能被3整除的数有公式,即33个。
能被5整除的数有公式个。
能被3和5整除(即能被15整除)的数有公式,即6个。
根据容斥原理,能被3或5整除的数共有公式个。
四年级奥数题鸡兔同笼问题习题及答案B
Revised by Jack on December 14,2020
七、鸡兔同笼问题(B)
年级 ______班_____ 姓名 _____得分_____
1. 鸡兔同笼,共有头100个,足316只,那么鸡有_______只,兔有______只.
2.小明花了4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分.他买了_______张贺年卡,_______张明信片.
3.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了________题.
4.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡______只.兔有_______只.
个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有_______个,小和尚有_______个.
枚硬币,由2分和5分组成,共值9角9分,2分硬币有_______个,5分有________个.
7.有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有
_______盒,铅笔有_______盒.
8.鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有______只,鸡有______只.
9.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔
100元,运完这批花瓶后,工人共得4400元,则损坏了______只.
10.有2角,5角和1元人民币20张,共计12元,则1元有_______张,5角有______张,2角有_______张.
二、分析与解答题:
1.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生
2.大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个
3.小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的一样多.问小毛做对几道题
4.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只———————————————答案——————————————————————
1.鸡有42只,兔有58只.
兔: (316-100⨯2)÷(4-2)=58(只), 鸡: 100-58=42(只).
2. 明信片有9张,贺年卡有5张.
明信片: (35⨯14-400)÷(35-25)=9(张)
贺年卡: 14-9=5(张).
3. 15题.
20-(5⨯20-60)÷(5+3)=15(题).
4. 鸡有14只,兔有18只.
因鸡和兔互换,脚数减少100-92=8(只),所以原来的兔比鸡多8÷(4-2)=4(只),这4只兔子共有4⨯4=16只脚.因此,相等的鸡和兔共有脚100-16=84(只).
由于兔和鸡的脚数有6只,所以鸡有84÷6=14(只),兔有14+4=18(只).
5. 大和尚25人,小和尚75人.
小和尚: 3⨯[(3⨯100-100)÷(3⨯3-1)=75(人),
大和尚: 100-75=25(人).
6. 2分币17枚,5分币13枚.
2分: (5⨯30-99)÷(5-2)=17(枚)
5分: 30-17=13(枚).
7. 钢笔12盒,铅笔15盒.
钢笔: (12⨯27-300)÷(12-10)=12(盒),
铅笔: 27-12=15(盒).
8. 鸡76只,兔24只.
兔: (248-52⨯2)÷(2+4)=24(只),
鸡: 24+52=76(只).
9. 5个.
(20⨯250-4400)÷(100+20)=5(只).
10. 1元7张,5角8张,2角5张.
2角的张数必须是5的倍数,因此只能是5张. 5角和1元共15张,合计11元.
5角: (150-110)÷(10-5)=8(张), 1元: 20-8-5=7(张).
二、分析与解答题:
1. 男生15人,女生35人.
男生: (120-5-2⨯50)÷(3-2)=15(人).
女生: 50-15=35(人)
2. 大油瓶20个,小油瓶40个.
大油瓶: ⨯÷=20(个).
小油瓶: 60-20=40(个).
3. 14道.
因为做错的和没做的一样多,就假定这两种情况都倒扣1分.所以没做或做错的有(5⨯20-64)÷(5+1)=6(道),做对的有20-6=14(道).
4. 蜘蛛5只,蜻蜓7只,蝉6只.
蜘蛛: (118-6⨯18)÷(8-6)=5(只),
那么6条腿的虫应有: 18-5=13(只).
蜻蜓: (20-1⨯13)÷(2-1)=7(只).
蝉: (2⨯13-20)÷(2-1)=6(只).。