六年级数学下册 6.2 幂的乘方与积的乘方复习教学设计 鲁教版五四制
- 格式:doc
- 大小:46.00 KB
- 文档页数:3
6.2.1 《幂的乘方》【学习目标】 1、了解幂的乘方的运算性质,会进行幂的乘方运算;2、能利用幂的乘方的性质解决一些实际问题.【学习重点】 理解幂的乘方的运算性质,会进行幂的乘方运算.【学习难点】 幂的乘方与同底数幂的乘法运算性质之间的联系和区别.【学习过程】一、学习准备1、 知识回顾幂的乘法法则:同底数幂相乘,底数不变,指数相加.即n m a a ⋅= 。
(m 、n 是 数)2、计算:=⋅m m aa ; =⋅⋅333a a a . 二、解读教材1、探索幂的乘方的运算法则做一做:根据乘方的意义及同底数幂的乘法填空,并观察有什么规律?(1)62333332322222)2(===⋅=⨯+; (2)63222222232555555)5(===⋅⋅=⨯++; (3)12433333333343)(a a aa a a a a ===⋅⋅⋅=⨯+++ (4)根据以上规律,猜想: n m a )(= 个n m m m a a a ⋅⋅⋅⋅⋅⋅⋅=a个+++n m ...m m =)(a .幂的乘方法则:幂的乘方,底数不变,指数相乘。
即: mn n m aa =)( (m 、n 为正整数) 常见错误:853)(a a =, 1553a a a =⋅错误原因:把幂的乘法和乘方混淆。
对比:853a a a =⋅(乘法),1553)(a a =(乘方)。
说明:幂的乘方中,底数、指数可以是数,也可以是字母,也可以是单项式和多项式。
2、幂的乘方的计算类型1——指数是数,底数是数或单项式例1 ,计算:(1)53)10(; (2)43)(b ;解 : (1)53)10(=15531010=⨯; (2)124343)(b b b ==⨯即时练习1:1、填空。
(1)=22)2( ; (2)=⋅2322 ; (3)=63)7( ;(4)(m 2)5= ; (5)=73)(m ; (6)=⋅24a a ; 2、判断下列计算是否正确,并简要说明理由。
2020年六年级数学下册 6.2.1《幂的乘方》教案鲁教版五四制教学目标知识与技能:1.会推导幂的乘方法则,并还能运用幂的乘方性质进行有关计算。
2.幂的乘方与同底数幂的乘法的正确区分。
过程与方法通过对现实事物如正方体的体积的认识初步了解幂的乘方的形式,体会幂的乘方的应用价值。
情感﹑态度与价值观通过师生共同交流,学生自主发言,渗透数学知识解决实际问题,激发学生学习的兴趣,帮学生树立自信心。
学情介绍从学生的认知规律看,他们已经学习了乘方的意义﹑幂的意义以及同底数幂的乘法,幂的乘方其实就是以上的结合,从教学中引导学生讨论交流。
内容分析本节课是在前面学习的基础上进一步学习幂的乘方,让学生体会乘方运算是一种比乘法还要高级的运算,提高学生学习兴趣。
教学重难点重点:幂的乘方法则的理解和应用。
难点:幂的乘方与同底数幂的乘法运算性质的区分。
教学过程一﹑复习1﹑学生叙述同底数幂的乘法运算法则,并用字母表示。
2﹑=(m ﹑ n 都是正整数)用语言叙述为:同底数幂相乘,底数不变,指数相加。
3﹑复习练习⑴×=____ ⑵×=_____⑶×=____ ⑷···=_____二﹑知识准备1﹑一个正方体的棱长是10cm,则它的体积是多少?=10×10×102﹑一个正方体的棱长是cm,则它的体积是多少?3﹑100个相乘怎么表示?又该怎么计算呢?=××…×(100个)4﹑猜一猜=····(乘方的意义)= (同底数幂的乘法法则)= (乘法的意义)三﹑新授1﹑猜一猜= (m,n为正整数)推导:= ····(n个)= (n个m)=结论:幂的乘方的运算法则:= (m,n为正整数)用语言叙述:幂的乘方,底数不变,指数相乘。
2﹑师生共同完成。
(1) (2)(3)(4)-附送:2020年六年级数学下册 6.2.2《积的乘方》学案鲁教版五四制学习目标:⒈探索积的乘方的运算性质,进一步体会和巩固幂的意义。
六年级数学下册 6.2 幂的乘方与积的乘方教案
3 鲁教版五四制
点难点教学重点:幂的乘方与积的乘方的运算性质的理解与掌握。
教学难点:同底数幂的乘法和幂的乘方的综合应用。
教学资源伴你学导学案 ppt教法与学法简述以合作教学为主展开教学,学生探索发现法,归纳总结。
通案内容设计个案内容设计教学内容目标定向:经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义发展推理能力和有条理的表达能力了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。
二、自学尝试针对上述学习目标,自主完成习题教师巡视并给予方法指导。
三、小组合作:以小组为单位,订正答案四、交流展示:请小组推荐代表发言。
其他小组评价并补充或提出不同意见。
每次小组发言人轮换,让更多同学有发言机会。
教师记录各小组课堂积分。
五、点拨引领:根据学生展示点评情况教师进行归纳提升,学生想不到的思路、方法,教师进行点拨引领。
复习:
1、同底数幂的乘法运算法则
2、幂的乘方运算法则
3、积的乘方运算法则,积的乘方运算的你运用
二、练习
1、计算:表示、
2、计算:(x)= 、
3、计算:(y)+(y)= 、
4、计算:、
5、、(在括号内填数)
6、计算:⑴;⑵ ⑶ ⑷计算:
(2)
8、、已知:,求的值、、若,,,比较a、b、c的大小、板书设计课外作业布置必做选作教后心得。
幂的乘方与积的乘方导学案学习目标:1、学习探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2、学习幂的乘方的运算性质,学会运用“幂的乘方”法则进行运算。
3、熟练掌握幂的乘方法则和同底数幂相乘的法则的区别及这两个法则的混合运用。
学习过程:一、 复习巩固、交流预习 (10分)1.同底数幂的乘法法则(表达式)(1)7233⨯ = (2)3=m a ,4=n a ,n m a +2 =2、幂32的三次方怎么表示?3、试一试(1) 42)6( (2) 32)(a (3) 2)(m a二、互助探究(10分)1、根据乘方的意义及同底数幂的乘法填空:(1) (23)2=23×23= ;(2) (32)3= × × = ;(3) (a 3)5= × × × = 。
观察结果中幂的指数与原式中幂的指数及乘方的指数,猜想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?3、猜想:n m a )(=幂的乘方的意义(表达式)语言描述:三、分层提高(15分)1.、判断下面计算是否正确?如果有错误请改正:(1) (x 3)3 = x 6 ; (2)a 6 · a4 = a 24. 2.计算:(1) (103)3 ; (2) -(a2)5 ;(3) (x3)4· x2 ; (4) [(-x)2 ]33.若2a=3, 2b=5, 2c=30,试用a,b表示出c.四、总结归纳(3分)1、幂的乘方性质用语言表达为______________________________.2、同底数幂相乘与幂的乘方的区别:前者是指数_______,后者是指数____.五、巩固反馈(7分)1、计算: (1) (-a)2 ·(a2)2;(2) x·x4–x2·x3 .(3) -p·(-p)4 ;(4) (x4)-(x3)8.= cm3;甲球的半径是乙2.、乙球的半径为 3 cm, 则乙球的体积V乙球的10倍,则甲球的体积V= cm3 . 甲球体积 =甲乙球体积3、若84=2x, 求x的值.。
2019年六年级数学下册 6.2 幂的乘方与积的乘方复习教学设计鲁教版五四制附送:2019年六年级数学下册 6.2 幂的乘方与积的乘方导学案1 鲁教版五四制【学习目标】体会幂的意义,会用同底数幂的乘法性质进行计算,并能解决一些实际问题【学习重点】同底数幂的乘法性质及其运算【学习难点】同底数幂的乘法性质的灵活运用;探索幂的乘方性质过程中发展推理能力和有条理的表达能力【导学过程】一、自主学习:⒈乘方的意义:表示个相乘,写成式子就是;表示个与个相乘,写成式子就是。
2、计算(1)(2)(3)(4)3、一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?通过计算,我们得到两个正方体的体积分别是(102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?二、探索新知:1、做一做:(1) =(2) =(3) =(4) =观察比较:上面计算的结果与原式比较,底数和指数各有什么关系?2、猜一猜根据“做一做”,你能否求出下面的结果?=3、是幂的形式,因此我们把这样的运算叫做幂的乘方你能否根据“想一想”,得出幂的乘方的运算法则?幂的乘方运算法则。
三、巩固练习:1、判断题,错误的说明理由并予以改正。
(1)()(2)()(3)()(4)()2、计算:(1) ; (2) ; (3) ;(4) ; (5) ; (6) .【课堂反馈】一、选择题:1.若a为有理数,则的值为( )A.有理数B.正数C.零或负数D.正数或零2.计算的结果是( )A.-B.C.-D.3.= ( )A. B. C. D.4. 已知,则a、b、c的大小关系是( )A.b>c>aB.a>b>cC.c>a>bD.a<b<c 计算:1.+;⑵⑶;⑷.小学教育资料好好学习,天天向上!第5 页共5 页。
6.2幂的乘方与积的乘方 幂的乘方【学习目标】1、经历探索幂的乘方的运算性质的过程,体会幂的乘方的意义,能准确写出幂的乘方运算公式;2、能熟练运用幂的乘方的运算性质解决一些实际问题。
【学习重点】幂的乘方的运算性质与其应用【学习过程】一、复习回忆、引入新课。
1. 111010m n +-⨯=________,456(6)-⨯-=______.2. 234x x xx +=________,25()()x y x y ++=_________________.6.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a5m +1 7.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5=(6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5=8.a 4·_________=a 3·_________=a 9二、自主学习、合作交流。
认真阅读课本25—26页内容,解答以下问题:1.填空:()22224266666⋅⋅⋅=〔依据: 〕22226+++= 〔依据: 〕=_______。
2.仿照上题计算:①()32a ②()2m a3.尝试计算:()n m a自我检测:请仿照例题计算:①()34a ②()53a三、学生展示、教师点拨。
1、以下计算是否正确?如有错误,应如何改正?〔1〕532x )x (= 〔2〕632a a a =⋅2、计算:5223)y ()(y ⋅3.〔1〕m x )(2- 〔2〕y y ⋅32)( 〔3〕4362)()(2a a -4.测例题。
6.2 幂的乘方与积的乘方(第1课时)【学习目标】1.通过具体题目,了解幂的乘方的运算性质,会进行幂的乘方运算;2.能利用幂的乘方的性质解决一些实际问题。
【学教过程】自主合作与探究学习1、填空题(1)a4·a4=_______;a4+a4=_______ (2) b2·b·b7=________。
(3)103·_______=1010 2. 判断下列计算是否正确,并改正(1) a·a2=a2;( ) ________ (2) a3·a3=a9;( ) _______(3)a3+a3=a6.( ) _______交流展示1、自主探索,感知新知22表示_______个___________相乘.(23)2表示_________个__________相乘.a2表示_________个___________相乘.(a3)2表示_________个________相乘.2、推广形式,得到结论①(am)n表示_______个________相乘=________×________×…×_______×_______=__________即(am)n= ______________(其中m、n都是正整数)②.通过上面的探索活动,发现了什么?幂的乘方,底数_______ ___ ,指数______ ____.3、运用新知【课堂回顾】1.幂的乘方的运算法则。
2.注意的问题【课堂检测】1.判断题,错误的予以改正。
(1)a5+a5=2a10 ()(2)(x3)3=x6 ()(3)(-3)2·(-3)4=(-3)6=-36 ()(4)[(m-n)3]4-[(m-n)2]6=0 ()2.若xm·x2m=2,求x9m的值。
3.若a2n=3,求(a3n)4的值。
4.已知am=2,an=3,求a2m+3n的值.5.若x=-2,y= 3,求x2·x2n(yn+1)2的值.【课后巩固】基础题:1.若(x2)n=x8,则m=_________. 2.若[(x3)m]2=x12,则m=_________。
六年级数学下册 6.2.2 积的乘方教学设计鲁教版五四制6、2、2 积的乘方教学目标1、会进行积的乘方运算,进而会进行混合运算、2、经历探索积的乘方运算法则的过程,明确积的乘方是通过乘方的意义和乘法的交换律以及同底数幂的运算法则推导而得来的、3、通过积的乘方法则的探究及应用,继续体会从特殊到一般的认知规律,从一般到特殊的应用规律、教学重点积的乘方运算法则及其应用、教学难点各种运算法则的灵活运用、学情分析教学准备多媒体教学过程:结合学科特点,体现单元组教学环节,学习内容,时间预测,教师活动,学生活动,自主学习设计,问题探究,单元组合作,同层竞争,人人参与,精讲足练,联系实际,点拨升华,集体备课个人备课一、个性学习:课本27-28页思考下面问题1、同底数幂的乘法法则、幂的乘方法则:2、计算:(1)(-5)(-5)2 (-5)3 (2)(a+b)3 (a+b)5 (3)-a(-a)33、计算:(1)(53)2 (2)(a3)2+3二、同层展示(5分钟)同层比较个性学习内容的质量和数量三、小组合作(15分钟)1、同质交流:2、异质帮扶:3、提出疑难问题:四、师生探究(10分钟)1、组间帮扶解决2、解决学生提出的疑难问题:3、讲解本节重难点:针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题:思考以下几个问题:1、问题一:1、已知一个正方体的棱长为2103cm,•你能计算出它的体积是多少吗?列式为:2、问题二:体积应是V=(2103)3cm3,这个结果是幂的乘方形式吗?底数是,其中一部分是103幂,但总体来看,底数是、因此(2103)3应该理解为、如何计算呢?五、课堂检测:(10分钟)1、计算:(1)(2b)3 (2)(2a3)2 (3)(-a)3(4)(-3x)4 (5)(-5b)3 (6)(-2x3)4填空题: (2a2b)2 = (-3xy2)3 = (-a2bc3)2 =2、选择题:1、下列计算正确的是()A、(xy)3=x3yB、(2xy)3=6x3y3C、-3x2)3=27x5D、(a2b)n=a2nbn2、若(ambn)3=a9b12,那么m,n的值等于()、A、m=9,n=4B、m=3,n=4C、m=4,n=3D、m=9,n=6六、小结与作业(5分钟)必做:选做:小结:学科知识构建与板书设计经历探索积的乘方运算法则的过程,明确积的乘方是通过乘方的意义和乘法的交换律以及同底数幂的运算法则推导而得来的、反思与重建。
《积的乘方》教材分析幂的乘方积的乘方是整式乘除与因式分解这章中继同底数幂乘法的又一种幂运算。
从数的相应运算入手,类比过渡到“式”的运算,从中探索,归纳“式”的运算性质。
使原有知识得到扩充,自然地引入到整式运算,为整式运算打下基础和提供依据。
这节课无论从其内容还是从所处地位都十分重要的,是后继学习整式乘除与因式分解的桥梁。
学情分析学生已学习了同底数幂的乘法,这为本节课的学习打下了基础. 通过六年级上册的学习,学生已经初步具备了发现问题,分析、合作、讨论、解决问题的能力。
根据这节课的内容特点、学生认知规律,本课采取引导探索发现法来组织教学。
让学生在探索中发现、形成、应用和拓展新知识,让学生在活动的过程中体验学习的快乐,培养学生之间相互合作、相互交流的能力,为今后的学习、生活、工作打下基础。
教学目标1经历探索积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力; 2了解积的乘方的运算性质,并能解决一些实际问题。
3经历观察、猜想、证明等数学活动,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点;4培养学生逆向思维的能力;5在探索的过程中,体验解决问题策略的多样性,学会与人合作,并能与人交流思维的过程和结果; 教学重难点了解积的乘方的运算性质,并能解决一些实际问题教学过程一、问题引入:1、3352⨯等于什么?怎样计算?在归纳、整理学生对问题1的不同做法的基础上,挑起学生在对下面的两个问题上的认知冲突,引导学生探索问题。
在自主探索的基礎上,与同伴交流做法,学生可能的做法: 10001258)555()222(52)1(33=⨯=⨯⨯⨯⨯⨯=⨯555()222(52)2(33⨯⨯⨯⨯⨯=⨯) 1000101010)52()52()52(=⨯⨯=⨯⨯⨯⨯⨯=)555()222()52)(3(33⨯⨯⨯⨯⨯=⨯ 100010)52()52()52()52(33==⨯=⨯⨯⨯⨯⨯=2、怎样计算303052⨯?结果是多少?5303030)555()222(52个⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯=⨯ 301030523010101010525252=⨯⋅⋅⋅⨯⨯=⨯⨯⋅⋅⋅⨯⨯⨯⨯=⨯个个)()()()( 3、怎样计算1717)31(3⨯?结果是多少? )(313131333)31(31717⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯=⨯ 1111)313()313()313(117)313(17=⨯⋅⋅⋅⨯⨯=⨯⨯⋅⋅⋅⨯⨯⨯⨯=⨯个个 师生互动:阐明每一步运算的意义。
鲁教版数学六年级下册6.2《幂的乘方与积的乘方》教学设计一. 教材分析《幂的乘方与积的乘方》是鲁教版数学六年级下册第6.2节的内容。
本节内容是在学生掌握了有理数的乘方的基础上进行的,是进一步深化幂的运算规则,培养学生对幂的运算能力,为学习初中数学打下基础。
本节课的主要内容是让学生掌握幂的乘方与积的乘方的运算法则,并能够灵活运用。
二. 学情分析六年级的学生已经掌握了有理数的乘方,对幂的概念和运算规则有一定的了解。
但是,对于幂的乘方与积的乘方的运算法则,还需要进一步的引导和讲解。
此外,学生的数学思维能力和解决问题的能力有待提高。
三. 教学目标1.理解幂的乘方与积的乘方的运算法则。
2.能够运用幂的乘方与积的乘方的运算法则进行计算。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.幂的乘方与积的乘方的运算法则。
2.灵活运用幂的乘方与积的乘方的运算法则解决问题。
五. 教学方法1.讲解法:对幂的乘方与积的乘方的运算法则进行详细的讲解,让学生理解和掌握。
2.案例分析法:通过具体的案例,让学生理解和运用幂的乘方与积的乘方的运算法则。
3.练习法:通过课堂练习和课后作业,巩固学生对幂的乘方与积的乘方的运算法则的理解和运用。
六. 教学准备1.PPT课件:制作幂的乘方与积的乘方的运算法则的PPT课件。
2.教学案例:准备一些典型的幂的乘方与积的乘方的运算案例。
3.练习题:准备一些幂的乘方与积的乘方的运算练习题。
七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引导学生回顾幂的概念和运算规则。
然后,提出本节课的主要学习内容:幂的乘方与积的乘方。
2.呈现(15分钟)利用PPT课件,展示幂的乘方与积的乘方的运算法则。
通过详细的讲解,让学生理解和掌握运算法则。
3.操练(15分钟)让学生通过课堂练习,运用幂的乘方与积的乘方的运算法则进行计算。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一些典型的案例,让学生运用幂的乘方与积的乘方的运算法则进行计算。
《积的乘方》学习目标:⒈探索积的乘方的运算性质,进一步体会和巩固幂的意义。
⒉发展推理能力和有条理的表达能力,培养综合能力。
⒊掌握并能熟练利用同底数幂的乘法、幂的乘方和积的乘方解决具体问题。
学习重点:积的乘方的运算.学习难点:积的乘方的推导过程的理解和灵活运用.【知识链接】:(1)、同底数幂相乘,底数,指数。
x2·x4= (2)、幂的乘方,底数,指数。
()=3210()=55b()=-mx2 x15=( )3=( )5; x mn=( )m=( )n (3)、计算并比较两式的大小:(2×3)2 22×32(3×5)2 32×52【探究一】:(ab)2= · (乘方的意义)= ·(乘法交换律、结合律)= ()同理:(axy)3= ··= ··=(ab)n个= ·个a 个b=总结:积的乘方,等于把分别乘方,再把所得的结果。
即:(ab)n =【巩固练习1】:(2a)3= (-5b)3= -(-3xy 2)3=(-2x 2)4= (-3×105)3=【探究二】:因为:(ab)n =a n b n , 所以:a n b n = .应用:0.252014×42014=(0.25×4)2014=12014=1【巩固练习2】:0.12516×816=( )16=( )16= 已知0212=++-b a 则a 10·b 10= =⨯-20132013)513()135(【综合练习】:1、下列计算正确的是( )A 、()422ab ab =B 、()42222a a -=-C 、()333y x xy =-D 、()333273y x xy =2、下列各式中错误的是( )A 、()123422=B 、()33273a a -=-C 、()844813y x xy =D 、()3382a a -=-3、与()[]2323a -的值相等的是( )A 、1218aB 、12243aC 、12243a -D 、以上结果都不对4、若a m =2,b n =5,则(a 2m b n )2=5、计算:(1) a 2·(-a)3·(-a 2)4 (2) (3x 4y 2)2+(-2x 2y)4(3) 10099)103()313(⨯- (4) 1010)128910()1218191101(⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ΛΛ参考答案:【知识链接】:(1)不变相加 X6(2)不变相乘 106 b25 -x2m x5 x3 x n x m(3)= =【探究一】:ab ab a·a b·b a2 b2 积的乘方 axy axy axy a·a·a x·x·x y·y·y a3x3y3 ab ab ab n a·a…·ab·b…·b n n a n b n 每个因式相乘 a n b n【巩固练习1】:23a3 -53b3 33x3y6 24x8 -331015【探究二】:(ab)n【巩固练习2】:0.125×8 1 1 1 -1【综合练习】:1、D2、D3、B4、4005、(1)-a13 (2)17x8y4 (3)-(4)1。
六年级数学(下)导学案(第六章)6.2幂的乘方与积的乘方(1)【学习目标】1.能说出幂的乘方法则;2.会利用幂的乘方法则的运算性质解决一些实际问题.【知识回顾】1.同底数幂的乘法法则: .2.用字母表示为: .【课前预习】阅读课本第25至26页的内容,思考并解答下列问题.1.幂的乘方法则3.想一想:幂的乘方法则中的可以是多项式吗?【课中实施】见课件知识回顾——引入新课——学习目标——预习诊断——规律探究——规律应用——规律推广——课堂小结——当堂达标【当堂达标】1.(8分)计算 :42)(a 432)(m m ⋅ 5324)(x x x ⋅+ 332522)()(2y y y y ⋅-⋅2.已知 ,3,2==yx a a 求y x a +2 的值.【课后巩固】一、选择题1.下列计算正确的是( ).A. 1642)(x x =B. 1624)(x x =C. 3284)(x x =D. 824x x x =⋅2.计算2552)()(a a --的结果是( )A. 72a -B.10C. 10aD. 102a -3.下列结论中正确的有( )①33)(+++=n m n m x x ;②m 为正奇数时,等式m m 4)4(-=-一定成立;③等式m m 2)2(=-,无论m 为何值都不成立;④三个等式:632623632])([,)(,)(a a a a a a =--=-=-都不成立;A.1个B. 2个C. 3个D. 4个4.已知3,223==b a ,则b a ,的大小关系是( ).A. b a <B. b a >C. b a ≠D. 不确定 5.已知,21||,1||==y x 则23320)(y x x -的值等于( ) A. 4543--或 B. 4543或 C. 43 D. 45-二、填空题6.若x n n a a )()(2=(x n ,都是正整数)则x = ;7.计算3223)()(x x ⋅= .8.若48162=m ,则m = .9. 2752])[(])[(q p q p +⋅+= .三、解答10.已知310,210==b a ,求(1)b a 321010+的值;(2)b a 3210+的值.。
幂的乘方与积的乘方【教学目标】(一)教学知识点:1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义。
2.了解幂的乘方的运算性质,并能解决一些实际问题。
(二)能力训练要求:1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力。
2.学习幂的乘方的运算性质,提高解决问题的能力。
(三)情感与价值观要求:在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美。
【教学重点】幂的乘方的运算性质及其应用。
【教学难点】幂的运算性质的灵活运用。
【教学过程】(一)提出问题,引入新课:[师]我们先来看一个问题:一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?[生]正方体的体积等于边长的立方。
所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米。
[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考。
[生]可以。
根据幂的意义可知(102)3表示3个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109。
于是我们就求出了V=106立方毫米,V 1=109立方毫米。
我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍。
[生]也就是说体积扩大的倍数,远大于边长扩大的倍数。
[师]是的!我们再来看(102)3,(103)3这样的运算。
102,103是幂的形式,因此我们把这样的运算叫做幂的乘方。
这节课我们就来研究幂的第二个运算性质——幂的乘方。
六年级数学(下)导教案(第六章)6.2幂的乘方与积的乘方(1)【学习目标】能说出幂的乘方法例;会利用幂的乘方法例的运算性质解决一些实质问题. 【知识回首】.同底数幂的乘法法例:..用字母表示为:.【课前预习】阅读课本第25至26页的内容,思虑并解答以下问题. 幂的乘方法例(1)计算a2a2a2==.依据乘方的意义,a2a2a2能够写成( a2)3,因此可得(a2)3==a2.依据上边的结论可知:( a2)na2=,(a m)nam=.(m,n都是正整数)(2)幂的乘方法例:幂的乘方,底数,指数.用字母(a m)(m,n都是正整表示为:n=数).幂的乘方法例的逆用:同底数幂的乘法法例逆运用:a mn==(m,n都是正整数).想想:幂的乘方法例中的a能够是多项式吗?【课中实行】见课件知识回首——引入新课——学习目标——预习诊疗——规律研究——规律应用——规律推行——讲堂小结——当堂达标【当堂达标】1.(8分)计算:(a2)4(m2)3m4(x4)2x3x52(y2)2y5(y2)3y32.已知 a x2,a y3,求a2xy的值.【课后稳固】一、选择题1.以下计算正确的选项是().A.(x2)4x16.(x4)2x16C.(x4)8x32 D.x4x282.计算(a2)5(a5)2的结果是().2a7B.10 C.a10 D.2a10 3.以下结论中正确的有()①(x mn)3x mn3;②m为正奇数时,等式(4)m4m必定建立;③等式(2)m2m,不论m为什么值都不建立;④三个等式:(a2)3a6,(a3)2a6,[(a)2]3a6都不可立;A.1个B.2个C.3个D.4个4 .已知a32,b2,则a,b的大小关系是().A.aB.abC.bD.不确立.已知|x|1,|y|1,则(x20)3x3y2的值等于()3B3或5 C.D5.或..4444二、填空题.若(a2)n(a n)x(n,x都是正整数)则x=;7.计算(x3)2(x2)3=..若28m164,则m=..[(pq)2]5[(pq)7]2=.三、解答10.已知10a2,10b3,求(1)102a103b的值;(2)102a3b的值.。