人教版八下数学之数据的分析 知识讲解
- 格式:doc
- 大小:366.50 KB
- 文档页数:9
八年级数学《数据的分析》知识点归纳与经典例题1.理解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式'x x a =+,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2];方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
【能力训练】一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:2.甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm,它们的方差依次为S 2甲=0.162,S 2乙=0.058,S 2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是__ __机床。
第二十章数据的分析知识点:数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(x n-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
一、选择题1.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6B.7C. 7.5D. 152.小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为()A.92 B.93 C.96 D.92.73.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B. 中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4.某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是()A.85 B.86 C.92 D.87.95.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()A.4 km/hB. 3.75 km/hC. 3.5 km/hD.4.5 km/h6.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题:(每小题6分,共42分)7.将9个数据从小到大排列后,第个数是这组数据的中位数8.如果一组数据4,6,x,7的平均数是5,则x = .9.已知一组数据:5,3,6,5,8,6,4,11,则它的众数是,中位数是 . 10.一组数据12,16,11,17,13,x的中位数是14,则x = .11.某射击选手在10次射击时的成绩如下表:则这组数据的平均数是,中位数是,众数是 .12.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为 .13.为了了解某立交桥段在四月份过往车辆承载情况,连续记录了6天的车流量(单位:千辆/日):3.2,3.4,3,2.8,3.4,7,则这个月该桥过往车辆的总数大约为辆.第二十章数据的分析知识点:选用恰当的数据分析数据知识点详解:一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
松阳中学八年级数学复习数据的分析知识点1.加平均数:若在一数字中,出次,出次,⋯ ,出次,那么叫做、、⋯、的加平均数。
其中,、、⋯ 、分是、、⋯、它的的理解 :反映了某个数据在整个数据中的重要程度。
的表示方法:比、百分比、数(人数、个数、次数等)。
2.中位数:将一数据按照由小到大(或由大到小)的序排列,如果数据的个数是奇数,于中位置的数就是数据的中位数;如果数据的个数是偶数,中两个数据的平均数就是数据的中位数。
3.众数:一数据中出次数最多的数据就是数据的众数。
4.平均数中位数众数的区与系相同点平均数、中位数和众数三个量的相同之主要表在:都是来描述数据集中的量;都可用来反映数据的一般水平;都可用来作一数据的代表。
不同点它之的区,主要表在以下方面。
1)、定不同平均数:一数据的和除以数据个数所得到的商叫数据的平均数。
中位数:将一数据按大小序排列,在最中位置的一个数叫做数据的中位数。
众数:在一数据中出次数最多的数叫做数据的众数。
2)、求法不同平均数:用所有数据相加的和除以数据的个数,需要算才得求出。
中位数:将数据按照从小到大或从大到小的序排列,如果数据个数是奇数,于最中位置的数就是数据的中位数;如果数据的个数是偶数,中两个数据的平均数是数据的中位数。
它的求出不需或只需的算。
众数:一数据中出次数最多的那个数,不必算就可求出。
3)、个数不同在一数据中,平均数和中位数都具有惟一性,但众数有不具有惟一性。
在一数据中,可能不止一个众数,也可能没有众数。
4)、代表不同平均数:反映了一数据的平均大小,常用来一代表数据的体“平均水平”。
中位数:像一条分界,将数据分成前半部分和后半部分,因此用来代表一数据的“中等水平”。
众数:反映了出次数最多的数据,用来代表一数据的“多数水平”。
三个量反映有所不同,但都可表示数据的集中,都可作数据一般水平的代表。
5)、特点不同平均数:与每一个数据都有关,其中任何数据的都会相引起平均数的。
人教版初中数学八年级下册《数据的分析》说课稿一. 教材分析人教版初中数学八年级下册《数据的分析》这一章节,是在学生已经掌握了统计学的基本知识,如平均数、中位数、众数等概念的基础上进行的一章。
这一章节的主要内容有:数据的收集、整理、描述和分析。
其中,数据的收集和整理是数据分析的基础,描述是数据分析的手段,分析是数据分析的目的。
本章节的教材内容丰富,既有理论的介绍,又有大量的实践操作,能够让学生在理论学习与实践操作中掌握数据分析的方法和技巧。
二. 学情分析八年级的学生已经具备了一定的数学基础,对统计学的基本概念有一定的了解。
但是,他们对数据分析的方法和技巧的掌握还不够熟练,需要通过大量的实践操作来提高。
此外,学生对数据的收集和整理的能力也参差不齐,需要教师进行针对性的指导。
三. 说教学目标1.知识与技能:使学生掌握数据的收集、整理、描述和分析的方法和技巧。
2.过程与方法:培养学生的数据收集、整理和分析的能力,提高他们的实践操作能力。
3.情感态度与价值观:培养学生对数据的敏感性,使他们能够从数据中发现问题,解决问题。
四. 说教学重难点1.教学重点:数据的收集、整理、描述和分析的方法和技巧。
2.教学难点:数据分析的方法和技巧的运用。
五. 说教学方法与手段1.教学方法:采用讲授法、实践法、讨论法等教学方法,让学生在理论学习与实践操作中掌握数据分析的方法和技巧。
2.教学手段:利用多媒体教学,如PPT、网络资源等,丰富教学内容,提高学生的学习兴趣。
六. 说教学过程1.导入:通过一个实际的问题,引发学生对数据的关注,激发他们的学习兴趣。
2.理论讲解:讲解数据的收集、整理、描述和分析的方法和技巧。
3.实践操作:让学生进行实践操作,运用所学的知识和技巧进行数据的收集、整理、描述和分析。
4.讨论交流:让学生分享自己的操作过程和心得,进行讨论交流,互相学习和提高。
5.总结提升:对所学的内容进行总结,强化学生的记忆,提升他们的数据分析能力。
人教版初二下册数学第20章《数据的分析》讲义第25讲数据分析(有答案)1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:nx x x n +⋅⋅⋅++21 .当所给数据1x ,2x ,…,n x 中各个数据的重要水平相反时,普通运用该公式计算平均数.2、加权平均数: 假定n 个数1x ,2x ,…,n x 的权区分是1w ,2w ,…,n w ,那么 nn n w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数.当所给数据1x ,2x ,…,n x 中各个数据的重要水平〔权〕不同时,普通选用加权平均数计算平均数. 权的意义:权就是权重即数据的重要水平.罕见的权:1〕数值、2〕百分数、3〕比值、4〕频数等。
将一组数据依照由小到大〔或由大到小〕的顺序陈列,〔1〕假设数据的个数是奇数,那么处于中间位置的数就是这组数据的中位数; 〔2〕假设数据的个数是偶数,那么中间两个数据的平均数就是这组数据的中位数.在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.一组数据中出现次数最多的数据就是这组数据的众数.可以是一个也可以是多个.当一组数据中有较多的反双数据时,众数往往是人们所关心的一个量.平均数、中位数、众数的区别:平均数:能充沛应用一切数据,但容易受极端值的影响;中位数:计算复杂,它不易受极端值的影响,但不能充沛应用一切数据;众数:当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.1、极差: 一组数据中的最大数据与最小数据的差叫做这组数据的极差.2、方差:各个数据与平均数之差的平方的平均数,记作2s .用〝先平均,再求差,然后平方,最后再平均〞失掉的结果表示一组数据偏离平均值的状况,这个结果叫方差,计算公式是:()()()[]2222121x x x x x x n s n -+⋅⋅⋅+-+-=方差〔2s 〕越大,数据的动摇性越大,方差越小,数据的动摇性越小.①当一组数据同时加上一个数a 时,其平均数、中位数、众数也添加a ,而其方差不变; ②当一组数据扩展k 倍时,其平均数、中位数和众数也扩展k 倍,其方差扩展2k 倍. 3、规范差:规范差是方差的算术平方根.()()()n x x x x x x s n 22221-+⋅⋅⋅+-+-=依据数据的剖析选择最优方案:〔1〕、数据的代表; 〔2〕、数据的动摇考点1、算术平均数例1、一组数据7,8,10,12,13的平均数是〔 〕A 、7B 、9C 、10D 、12例2、8个数的平均数12,4个数的平均为18,那么这12个数的平均数为〔 〕A、12B、13C、14D、15例3、我市如今一手抓防治非典,一手抓经济开展,下表是利群超市5月份一周的利润状况记载:依据上表,你估量利群超市往年5月份的总利润是〔〕A、6.51万元B、6.4万元C、1.47万元D、5.88万元例4、x1,x2,x3,3,4,7的平均数是6,那么x1+x2+x3=______.例5、一组数据7,a,8,b,10,c,6的平均数为4。
初中八年级数学下册第26讲:中位数和众数一:知识点讲解知识点一:中位数➢定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数➢意义:中位数是刻画一组数据“中等水平”的一个代表,反映了一组数据的集中趋势,一组数据的中位数是唯一的➢求法:1.把数据由小到大(或由大到小)排列2.确定这组数据的个数3.当数据是奇数个时,取最中间的一个数作为中位数;当数据是偶数个时,取最中间两个数的平均数作为中位数例1:求数据2、3、14、16、7、8、10、11、13的中位数例2:10名工人某天生产同一种零件的个数是15、17、14、10、15、19、17、16、14、12。
求这一天10名工人生产零件的中位数。
知识点二:众数➢定义:一组数据中出现次数最多的数据称为这组数据的众数➢意义:众数是刻画一组数据“大多数水平”的重要代表,在我们日常生活中,经常用众数来解决一些实际问题➢求法:众数是出现次数最多的数据,而不是出现次数,若一组数据中有两个或两个以上数据出现的次数并列最多,则这些数据都是众数,故众数可能不止一个。
例3:一组数据2、3、x、5、7的平均数是4,则这组数据的众数是。
知识点三:平均数、中位数和众数的综合➢平均数✧优点:平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数。
✧缺点:在计算平均数时,所有的数据都参与运算,所以它易受极端值的影响。
➢中位数✧优点:中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势。
✧缺点:不能充分地利用各数据的信息。
➢众数✧优点:众数考察的是各数据所出现的频数,其大小只与部分数据相关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题。
✧缺点:当各数据重复出现的次数大致相等时,它往往就没有什么特别意义。
2019年最新研究数据分析的解题策略一、平均数:1、加权平均数:若n 个数n x x x x ...,,,321的权分别是n a a a a ,...,,,321,则有na x a x a x a x x n n ++++=...222211叫这n 个数的加权平均数。
2、当权为1时,就是我们小学学的算术平均数:若n 个数n x x x x ...,,,321的权1...321=====n a a a a ,则有nx x x x x n ++++=...221叫这n 个数的算术平均数。
注:实际上小学学的就是加权平均数,只不过权都是1.3、权的表现形式:百分数、频数、频率、个数、人数、比例等都代表权。
4、一个小组的组中值=2最小值最大值+(两端点数的平均数);小组中的极差=最大值-最小值。
5、若数据n x x x x 、、、、...321的平均数是x ,则新数据b ax b ax b ax b ax ++++4321...、、、、的平均数是b x a +。
6、权可反映数据的相对“重要程度”,要突出某个数据,只需赋予较大的权,权的差异对结果产生直接影响。
7、比赛打分情况:求平均数,需要去掉最高分和最低分,再求平均数,才是平均分。
8、常用样本平均数估计总体平均数。
主要是:利用已知的数据求出平均数,再根据题要求,按月、总数等类似于权一样的数据,就可以得出整体平均数,即可继续依题意解题。
9、平均数和加权平均数:①都反映一组数据的集中趋势的“特征数”②因权不同,加权平均数更能反映数据真实性。
10、平均数描述的是一组数据平均水平,受极端值影响很大,数据中任何一个数据变动都会影响平均数的变动。
二、中位数:1、求法:①将n 个数由小到大(由大到小)排序,相同数排在一起,不可算作一个数据。
②当n 为奇数时,第21+n个为中位数,当n 为偶数时,第2n 个和第⎪⎭⎫ ⎝⎛+12n 个数的平均数为中位数。
2、中位数描述数据集中趋势,代表数据值大小的“中点”,不易受极端值影响,但不可利用所有数据信息。
八年级数学下册第二十章数据的分析基础知识点归纳总结单选题1、一组数据:3,2,1,5,2的中位数和众数分别是()A.1和2B.1和5C.2和2D.2和1答案:C分析:根据众数是出现次数最多的数据可求得众数,将所给数据从小到大排列,中位数是最中间位置的数据即可求得中位数.解:该组数据中2出现次数最多,所以众数为2,将所给数据从小到大排列为1,2,2,3,5,最中间位置的数为2,所以中位数为2,故选:C.小提示:本题考查中位数、众数,熟练掌握中位数和众数的求法是解答的关键.2、某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:,则该班四项综合得分(满分100)为()A.81.5B.82.5C.84D.86答案:B分析:根据加权平均数的定义计算可得.解:80×40%+90×25%+84×25%+70×10%=82.5(分)故选:B小提示:本题主要考查平均数,解题的关键是掌握算术平均数和加权平均数的定义.3、在一次素养比赛中,6位学生的成绩分别为65分,65分,80分,85分,90分,90分,统计时误将一位学生的成绩65分记成了60分,则其中不受影响的统计量是()A.平均数B.中位数C.众数D.方差答案:B分析:利用已知条件可知统计时误将一位学生的成绩65分记成了60分,平均数和方差都要变,可对A,D作出判断;同时众数也要变化,可对C作出判断;此时的中位数不变,可对B作出判断.解:∵6位学生的成绩分别为65分,65分,80分,85分,90分,90分,统计时误将一位学生的成绩65分记成了60分,∴众数要变,故C不符合题意;平均数与每个数有关,因此平均数也要变,故A不符合题意;方差与每个数据有关,数据变了方差也要变化,故D不符合题意;中位数是82.5,不会变化,故B符合题意;所以答案是:B.小提示:本题考查了平均数;中位数;方差;众数等知识,掌握平均数、方差、中位数、众数的含义是解题的关键.4、在一次15人参加的歌唱比赛中,预赛成绩各不同要取前8名参加决赛杨超越已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这15名选手成绩的()A.平均数B.众数C.方差D.中位数答案:D分析:15人成绩的中位数是第8名的成绩,杨超越要想知道自己是否能进入决赛,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:共有15名学生参加预赛,取前8名,所以杨超越需要知道自己的成绩是否进入前8,我们把所有同学的成绩按大小顺序排列,第8名的成绩是这组数据的中位数,所以她知道这组数据的中位数,才能知道自己是否进入决赛,故选D.小提示:本题考查了统计量的选择,熟练掌握中位数的意义是解本题的关键.5、为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差分析:分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,x 甲=2+6+7+7+85=6, S 甲2=15×[(2−6)2+(6−6)2+(6−7)2+(6−7)2+(8−6)2]=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,x 乙=2+3+4+8+85=5, S 乙2=15×[(2−5)2+(3−5)2+(4−5)2+(8−5)2+(8−5)2]=6.4, 所以只有D 选项正确,故选D.小提示:本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.6、一组数据为5,6,7,7,10,10,某同学在抄题的时候,误将其中的一个10抄成了16,那么该同学所抄的数据和原数据相比,不变的统计量是( )A .极差B .平均数C .中位数D .众数答案:C分析:根据中位数、平均数、众数、极差的定义和计算方法判断即可解:将一组数据为5,6,7,7,10,10,中的一个10抄成了16,不影响找第3、4位的两个数,因此中位数不变,故选:C .小提示:考查平均数、众数、中位数的意义和计算方法,理解各个统计量的意义是正确解答的前提.7、北京今年6月某日部分区县的高气温如下表:则这10个区县该日最高气温的众数和中位数分别是( ).分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中32是出现次数最多的,故众数是32;把数据按从小到大的顺序排列后,处于这组数据中间位置的数是32、32,那么由中位数的定义可知,这组数据的中位数是32.故选:A.小提示:本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、二次根式√2x+4中的x的取值范围是()A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2答案:D分析:根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.由题意,得2x+4≥0,解得x≥-2,故选:D.小提示:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.9、若x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,则x1,x2,…,x30的平均数为()A.12(a+b)B.130(a+b)C.13(a+2b)D.14(a+4b)答案:C分析:根据平均数的定义进行计算即可求解.因为x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,根据平均数的定义,x1,x2,…,x30的平均数=10a+20b30=13(a+2b).小提示:本题考查平均数,掌握平均数的定义是解决此题的关键.10、如果x1与x2的平均数是5,那x1−1与x2+5的平均数是()A.4B.5C.6D.7答案:D分析:根据x1与x2的平均数是5,求出x1+x2=10,再根据平均数的计算公式求出答案.解:∵x1与x2的平均数是5,∴x1+x1=2×5=10,∴x1−1与x2+5的平均数是x1−1+x2+52=x1+x2+42=7,故选:D.小提示:此题考查了平均数的计算公式,熟记公式是解题的关键.填空题11、某地10家电商6月份的销售额如下表所示,销售额的中位数为 _______万元.分析:根据中位数的定义进行解答即可.解:∵10家电商6月份的销售额为:1,2,2,2,2,3,3,3,11,11,∴中位数为第5个数和第6个数的平均数,即中位数为2+32=2.5(万元),所以答案是:2.5.小提示:本题考查了中位数,解题的关键是掌握中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.12、为庆祝中国共产党建党100周年,某校开展主题为《党在我心中》的绘画、书法、摄影等艺术作品征集活动,从八年级5个班收集到的作品数量(单位:件)分别为50,40,30,70,60,则这组数据的平均数是_________.答案:50分析:根据算术平均数的求法计算即可.解:这组数据的平均数为:50+40+30+70+605=50,所以答案是:50.小提示:本题考查了算术平均数,掌握算术平均数的求法是解题的关键.13、某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分3:3:4的比例确定测试总分,已知小王三项得分分别为88:72:50,则小王的招聘得分为 _____.答案:70.2分分析:根据加权平均数的计算方法进行计算即可.小王的招聘得分为:88×310+72×410+50×310=70.2(分)故答案为70.2分小提示:本题考查加权平均数的意义和计算方法,掌握加权平均数的计算方法是正确计算的前提.14、已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.答案:5.5分析:先判断出x,y中至少有一个是5,再用平均数求出x+y=11,即可得出结论.∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴16(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是12×(5+6)=5.5,故答案为5.5.小提示:本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是5是解本题的关键.15、若四个数据4,5,x,6的平均数是5,那么x的值是________.答案:5分析:根据平均数的定义计算即可.(4+5+x+6)=5,解得:x=5.根据题意知14故答案为5.小提示:本题考查了平均数的定义,解题的关键是根据平均数的定义构建方程解决问题.解答题16、新世纪百货茶江商都统计了30名营业员在某月的销售额,统计图如图,根据统计图中给出的信息,解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时为基本称职,当20≤x<25为称职,当x≥25时为优秀.称职和优秀的营业员共有的人数为.(2)根据(1)中规定,所有称职以上(称职和优秀)的营业员月销售额的中位数为,平均数是多少?(写出计算平均数的解答过程)(3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有一半能获奖,你认为这个奖励标准应定月销售额为多少元合适?并简述其理由.答案:(1)21(2)中位数是22万元,平均数是225万元21(3)这个奖励标准应定月销售额为22万元合适,因为称职以上的营业员月销售额的中位数是22万元,说明销售额达到和超过22万元的营业员占称职营业员的一半,正好使称职以上营业员有一半能获奖分析:(1)根据条形统计图的数据即可求出称职、优秀层次营业员人数;(2)根据中位数和平均数的意义解答即可;(3)如果要使得称职和优秀这两个层次的所有营业员的半数左右能获奖,月销售额奖励标准可以定为称职和优秀这两个层次销售额的中位数,因为中位数以上的人数占总人数的一半左右.(1)由图可知营业员优秀人数为:2+1=3(人),称职人数为:5+4+3+3+3=18(人),所以称职和优秀的营业员共有的人数为:18+3=21(人),所以答案是:21;(2)由(1)知称职以上的营业员人数为:21人所以,月销售额的中位数是第11人的销售额,即22万元,平均数是:(5×20+4×21+3×22+3×23+3×24+2×25+1×26)÷21=225(万元).21所以答案是:22万元;(3)这个奖励标准应定月销售额为22万元合适.因为称职以上的营业员月销售额的中位数是22万元,说明销售额达到和超过22万元的营业员占称职营业员的一半,正好使称职以上营业员有一半能获奖.小提示:本题考查的是条形统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,本题也考查了加权平均数、中位数的认识.17、2021年,我国粮食总产量再创新高.小刘同学登录国家统计局网站,查询到了我国2021年31个省、直辖市、自治区的粮食产量数据(万吨).并对数据进行整理、描述和分析.下面给出了部分信息.a.反映2021年我国31个省、直辖市、自治区的粮食产量数据频数分布直方图如图(数据分成8组:0≤x<1000,1000≤x<2000,2000≤x<3000,3000≤x<4000,4000≤x<5000,5000≤x<6000,6000≤x<7000,7000≤x≤8000):b.2021年我国各省、直辖市、自治区的粮食产量在1000≤x<2000这一组的是:1092 .8,1094.9,1231.5,1270.4,1279.9,1386.5,1421.2,1735.8,1930.3(1)2021年我国各省、直辖市、自治区粮食产量的中位数为______万吨;(2)小刘同学继续收集数据的过程中,发现北京市与河南省的单位面积粮食产量(千克/公顷)比较接近,如下图所示,他将自2016年至2021年北京市与河南省的单位面积粮食产量表示出来:)(单位面积粮食产量=粮食总产量播种面积自2016-2021年间,设北京市单位面积粮食产量的平均值为x A,方差为S A2;河南省单位面积粮食产量的平均值为x B,方差为S B2;则x A______x B,S A2______S B2(填写“”或“<”);(3)国家统计局公布,2021年全国粮食总产量13657亿斤,比上一年增长2.0%.如果继续保持这个增长率,计算2022年全国粮食总产量约为多少亿斤(保留整数).答案:(1)1279.9(2)>,<(3)2022年全国粮食总产量13930亿斤分析:(1)根据中位数的定义计算即可;(2)分别计算出北京和河南的单位面积粮食产量的平均数即可比较平均数大小,方差大小根据图像判断:方差越小越稳定,方差越大波动越大;(3)2022年全国粮食总产量=2021年全国粮食总产量×(1+2.0%),即可得出.(1)解:将2021年我国各省、直辖市、自治区的粮食产量从小到大排列:1092 .8,1094.9,1231.5,1270.4,1279.9,1386.5,1421.2,1735.8,1930.3,一共9个数字,中间的数字1279.9即为中位数,2021年我国各省、直辖市、自治区粮食产量的中位数为:1279.9(2)(6148+6146+6137+6183+6244+6197)≈6176,x A=16(5781+5894+6097+6237+6356+6075)≈6073,x B=16∴x A>x B,由图中可以看出:北京单位面积粮食产量波动小,比较稳定,河南单位面积粮食产量波动大,所以可知S A2<S B2;(3)由题意得:2022年全国粮食总产量=13657×(1+2.0%)=13657×1.02≈13930故2022年全国粮食总产量13930亿斤.小提示:本题考查了中位数的定义,平均数和方差的公式,方差的意义以及增长率问题,牢固掌握各项概念和公式以及正确计算是本题关键.18、某校依据教育部印发的《大中小学劳动教育指导纲要(试行)》指导学生积极参加劳动教育.该校七年级数学兴趣小组利用课后托管服务时间,对七年级学生一周参加家庭劳动次数情况.开展了一次调查研究.请将下面过程补全.①收集数据通过问卷调查,兴趣小组获得了这20名学生每人一周参加家庭劳动的次数,数据如下:3 1 2 24 3 3 2 3 4 3 4 05 5 26 4 6 3②整理、描述数据:整理数据,结果如下:6≤x<8 2③分析数据(1)兴趣小组计划抽取该校七年级20名学生进行问卷调查,下面的抽取方法中,合理的是()A.从该校七年级1班中随机抽取20名学生B.从该校七年级女生中随机抽取20名学生C.从该校七年级学生中随机抽取男、女各10名学生(2)补全频数分布直方图;(3)填空:a=___________;(4)该校七年级现有400名学生,请估计该校七年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数;(5)根据以上数据分析,写出一条你能得到的结论.答案:(1)C(2)补全频数分布直方图见解析;(3)3(4)160人(5)七年级一周参加家庭劳动的次数偏少,故学校应该加强学生的劳动教育.(答案不唯一)分析:(1)根据抽样调查的要求判断即可;(2)根据频数分布表的数据补全频数分布直方图即可;(3)根据中位数的定义进行解答即可;(4)用样本的比估计总体的比进行计算即可;(5)根据平均数、中位数和众数的意义解答即可.(1)解:∵抽样调查的样本要具有代表性,∴兴趣小组计划抽取该校七年级20名学生进行问卷调查,合理的是从该校七年级学生中随机抽取男、女各10名学生,故选:C(2)解:补全频数分布直方图如下:(3)解:∵被抽取的20名学生每人一周参加家庭劳动的次数从小到大排列后为:0 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 6 6 ,排在中间的两个数分别为3、3,∴中位数a=3+3=3,2所以答案是:3;(4)解:由题意可知,被抽取的20名学生中达到平均水平及以上的学生人数有8人,=160(人),400×820答:该校七年级学生每周参加家庭劳动的次数达到平均水平及以上的学生为160人;(5)解:根据以上数据可知,七年级一周参加家庭劳动的次数偏少,故学校应该加强学生的劳动教育.(答案不唯一)小提示:此题考查条形统计图、中位数、众数、用样本估计总体等知识,解答本题的关键是明确题意,利用数形结合的思想来解答.。
数据的分析【学习目标】1. 了解加权平均数的意义和求法,会求实际问题中一组数据的平均数,体会用样本平均数估计总体平均数的思想.2. 了解中位数和众数的意义,掌握它们的求法.进一步理解平均数、中位数和众数所代表的不同的数据特征.3. 了解极差和方差的意义和求法,体会它们刻画数据波动的不同特征.体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.4. 从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度. 【要点梳理】【高清课堂 数据的分析 知识要点】 要点一、算术平均数和加权平均数一般地,对于n 个数123n x x x x 、、、…,我们把()1231n x x x x n⋅⋅⋅++++叫做这n 个数的算术平均数,简称平均数,记作x .计算公式为()1231n x x x x x n=⋅⋅⋅++++. 要点诠释:平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.(1)当一组数据较大时,并且这些数据都在某一常数a 附近上、下波动时,一般选用简化计算公式x x a '=+.其中x '为新数据的平均数,a 为取定的接近这组数据的平均数的较“整”的数. (2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动.所以平均数容易受到个别特殊值的影响. 若n 个数12n x x x 、、…的权分别是12n w w w 、、…、,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数.要点诠释:(1)相同数据i x 的个数i w 叫做权,i w 越大,表示i x 的个数越多,“权”就越重. 数据的权能够反映数据的相对“重要程度”.(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算.要点二、中位数和众数1.中位数的概念:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半.2.众数的概念:一组数据中出现次数最多的数据称为这组数据的众数. 要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个;如果所有数据出现的次数都一样,那么这组数据就没有众数. (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数.要点三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要. 区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述. 要点四、极差、方差和标准差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值.要点诠释:极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定.方差是反映一组数据的整体波动大小的特征的量.方差2s 的计算公式是:()[]222212)(...)(1x x x x x x nS n -++-+-=要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变.(3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.方差的算术平方根叫做这组数据的标准差,用符号s 表示,即:;标准差的数量单位与原数据一致.要点五、极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示一组数据离散程度的特征数.区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差. 要点六、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差.要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.【典型例题】类型一、利用概念求平均数、中位数、众数1、(2015春•东莞期末)一家鞋店在一段时间内销售了某种女鞋20双,各种尺码鞋的销售量如表:(1(2)如果你是老板,去鞋厂进货时哪个尺码的鞋子可以多进一些.为什么? 【思路点拨】(1)直接利用平均数公式求出即可,再利用中位数以及众数的定义得出答案; (2)利用众数的意义得出答案. 【答案与解析】 解:(1)这组数据的平均数是:=(23.5×3+24×4+24.5×4+25×7+25.5+26)=24.55,中位数是:24.5,众数是25;(2)去鞋厂进货时25尺码型号的鞋子可以多进一些,原因是这组数据中的众数是25,故销售的女鞋中25尺码型号的鞋卖的最好.【总结升华】此题主要考查了众数、中位数的定义以及平均数求法,正确掌握中位数的定义是解题关键.举一反三:【高清课堂 数据的分析 例8】【变式】若数据3.2,3.4,3.2,x ,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.【答案】3.2;3.5; 解:由题意3.43.5, 3.62x x +==,所以众数是3.2,平均数是3.5.类型二、利用三数——平均数、众数、中位数解决问题2、某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5:3:2的比例确定每人的成绩,谁将被录用,说明理由. 【思路点拨】(1)运用求平均数公式()1231n x x x x n⋅⋅⋅++++即可求出三人的平均成绩,比较得出结果;(2)将三人的成绩按比例求出测试成绩,比较得出结果. 【答案与解析】解:(1)甲的平均成绩为:(85+70+64)÷3=73,乙的平均成绩为:(73+71+72)÷3=72, 丙的平均成绩为:(73+65+84)÷3=74, ∴ 候选人丙将被录用.(2)甲的测试成绩为:(85×5+70×3+64×2)÷(5+3+2)=76.3,乙的测试成绩为:(73×5+71×3+72×2)÷(5+3+2)=72.2, 丙的测试成绩为:(73×5+65×3+84×2)÷(5+3+2)=72.8,∴ 候选人甲将被录用.【总结升华】5、3、2即各个数据的“权”,反映了各个数据在这组数据中的重要程度,按加权平均数来录用. 举一反三:【高清课堂 数据的分析 例10】【变式】小王在八年级第一学期的数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?【答案】解:小王平时测试的平均成绩897885843x ++==(分). 所以8410%9030%8760%87.610%30%60%⨯+⨯+⨯=++(分). 答:小王该学期的总评成绩应该为87.6分. 【高清课堂 数据的分析 例11】3、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分. (1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为a ,中位数为b ,求a b +的值. 【答案与解析】解:(1)设该班得80分的有x 人,得90分的有y 人.根据题意和平均数的定义,得257330,763050260570780901003,x y x y +++++=⎧⎨⨯=⨯+⨯+⨯+++⨯⎩ 整理得13,89109,x y x y +=⎧⎨+=⎩ 解得8,5.x y =⎧⎨=⎩即该班得80分的有8人,得90分的有5人.(2)因为80分出现8次且出现次数最多.所以a =80,第15、16两个数均为80分,所以b =80,则a b +=80+80=160.【总结升华】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系. 举一反三:【变式】某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计图表如图所示的统计图.(1)求a 的值;(2)求这50名学生每人一周内的零花钱额的众数和平均数. 【答案】解:(1) a =50-15-20-5=10.(2)众数是15.平均数为150(5×10+10×15+15×20+20×5)=12. 类型三、极差、方差与标准差4、某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).(1)a =_____;=_______;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.【思路点拨】(1)根据他们的总成绩相同,得出a =30-7-7-5-7=4,进而得出=30÷5=6;(2)根据(1)中所求得出a 的值进而得出折线图即可;(3)①观察图,即可得出乙的成绩比较稳定;②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 【答案与解析】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a =30-7-7-5-7=4, =30÷5=6,故答案为:4,6; (2)如图所示:;(3)①观察图,可看出乙的成绩比较稳定, 故答案为:乙;2222221=7676676=1.65s ⎡⎤-++-+-+-⎣⎦乙()(5-6)()(4)() 由于2s乙<2s 甲,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 【总结升华】此题主要考查了方差的定义以及折线图和平均数的意义,根据已知得出a 的值进而利用方差的意义比较稳定性即可. 举一反三:【高清课堂 数据的分析 例12】【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩.类型四、统计思想5、(2016•广陵区二模)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a= %,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是 个、 个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名? 【思路点拨】(1)用1减去其他天数所占的百分比即可得到a 的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.【答案与解析】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣20%=25%,设引体向上6个的学生有x人,由题意得=,解得x=50.条形统计图补充如下:(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5故答案为:5,5.(3)×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.【总结升华】本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.举一反三:【变式】4月23日是“世界读书日”,向阳中学对在校学生课外阅读情况进行了随机问卷调查,共发放100份调查问卷,并全部收回.根据调查问卷,将课外阅读情况整理后,制成(1)被调查的学生月平均阅读册数为本;(2)被调查的学生月阅读册数的中位数是;(3)在平均数、中位数这两个统计量中,更能反映被调查学生月阅读的一般水平;(4)若向阳中学共有学生1600人,求四月份该校学生共阅读课外书籍多少本?【答案】解:(1)平均阅读册数为:=2.3(本);(2)∵共有100名学生,∴第50和51为同学的阅读量的平均数为中位数:=2;(3)在平均数、中位数这两个统计量中,中位数更能反映被调查学生月阅读的一般水平;(4)2.3×1600=3680(本).。