高中物理竞赛热力学
- 格式:ppt
- 大小:1.41 MB
- 文档页数:76
热力学第二定律 热传递方式一、热力学第二定律表述1:热量只能自发的从高温物体转移至低温物体。
如果想让热量由低温物体转移到高温物体,一定会引起其他变化(需要做功)。
热传递的方向性表述2:不可能从单一热源取热,把它全部变为功而不产生其他任何影响机械能、内能转化的方向性(能量耗散)表述3:有序到无序,熵增加第一类永动机:不需要动力的机器,它可以源源不断的对外界做功违反能量守恒定律第二类永动机:从单一热库吸收热量,全部用于做功。
违反热力学第二定律:机械能与内能的转化具有方向性,机械能可以转化内能,但内能却不能全部转化为机械能而不引起其它变化。
二、卡诺循环当高温热源和低温热源的温度确定之后,所有热机中,按照卡诺循环运行的热机效率是最高的。
(证明略)卡诺循环由两个等温过程和两个绝热过程组成。
从高温热源等温吸热Q 1,对外做功,并向低温热源散热Q 2。
两个绝热过程中,没有热传递,做功等于内能变化,为相反数。
2i W nR T =∆ 两个等温过程中,热量交换加上做功等于0,因此,在高温热源吸热:21111ln V Q W nRT V =-= 在低温热源放热:42223lnV Q W nRT V =-= 利用绝热过程的状态方程:2233PV PV γγ=,即 112132V nRT V nRT γγ--= 4411PV PV γγ=,即 114211V nRT V nRT γγ--= 有上述公式可得卡诺热机的效率,即最大效率:121211Q Q T T Q T η--== 如果将上述过程反过来,叫做逆卡诺循环,即在外界做功W 的帮助下,从低温热源吸热Q 2,向高温热源散热Q 1。
例如空调、冰箱都有这种功能。
(但现实中的空调、冰箱不一定满足逆卡诺循环的条件)。
对于逆卡诺循环,常用制冷系数进行描述:221212Q T Q Q T T ω==--例1、有一卡诺致冷机,从温度为-10℃的冷藏室吸取热量,而向温度为20℃的物体放出热量。
高中物理竞赛-热力学讲义一、理想气体1、理想气体宏观定义:严格遵守气体实验定律的气体。
微观特征:a 、分子本身的大小比起它们的间距可以忽略,分子不计重力势能;b 、除了短暂的碰撞过程外,分子间的相互作用可以忽略——意味着不计分子势能;c 、分子间的碰撞完全是弹性的。
*理想气体是一种理想模型,是实际气体在某些条件约束下的近似,如果这些条件不满足,我们称之为实际气体,如果条件满足不是很好,我们还可以用其它的模型去归纳,如范德瓦尔斯气体、昂尼斯气体等。
2、气体实验三定律在压强不太大,温度不太低的条件下,气体的状态变化遵从以下三个实验定律 a 、玻意耳-马略特定律:一定质量气体温度不变时,P 1V 1 = P 2V 2或PV = 恒量 b 、查理定律:一定质量气体体积不变时,11T P = 22T P 或T P= 恒量c 、盖·吕萨克定律:一定质量气体压强不变时,11T V = 22T V 或T V= 恒量3、理想气体状态方程:一定质量的理想气体,111T V P = 222T V P 或T PV= 恒量理想气体状态方程可以由三个试验定律推出,也可以由理想气体的压强微观解释和温度微观解释推导得出。
a 、推论1:111T P ρ = 222T Pρ,此结论成功地突破了“质量一定”的条件约束,对解某些特殊问题非常有效。
b 、克拉珀龙方程:原方程中,将“恒量”定量表达出来就成为PV = νRT ,其中ν为气体的摩尔数,这个结论被成为克拉珀龙方程。
它的优点是能使本来针对过程适用的方程可以应用到某个单一的状态。
c 、推论2:气体混合(或分开)时,111T V P + 222T VP + … + n nn T V P ⇔TPV,这个推论很容易由克拉珀龙方程导出。
d 、道尔顿分压定律:当有n 种混合气体混合在一个容器中时,它们产生的压强等于每一种气体单独充在这个容器中时所产生的压强之和。
即 P = P 1 + P 2 + P 3 + … + P n二、分子动理论1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)2、物质内的分子永不停息地作无规则运动固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0),少数可以脱离平衡位置运动。
十年真题-热学复赛1.34届复赛7如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程正循环指沿图中箭头所示的循环,其中自A到B为直线过程,自B到A为等温过程.双原子理想气体的定容摩尔热容为R,R为气体常量.1求直线AB过程中的最高温度;2求直线AB过程中气体的摩尔热容量随气体体积变化的关系式,说明气体在直线AB过程各段体积范围内是吸热过程还是放热过程,确定吸热和放热过程发生转变时的温度T c;3求整个直线AB过程中所吸收的净热量和一个正循环过程中气体对外所作的净功.解析:1直线AB过程中任一平衡态气体的压强p和体积V满足方程=此即p=p0-V①根据理想气体状态方程有:pV=νRT②由①②式得:T==+③由③式知,当V=V0时,④气体达到直线AB过程中的最高温度为:T max=⑤2由直线AB过程的摩尔热容C m的定义有:dQ=νC m dT⑥由热力学第一定律有:dU=dQ-pdV⑦由理想气体内能公式和题给数据有:dU=νC V dT=νRdT⑧由①⑥⑦⑧式得:C m=C V+=R+⑨由③式两边微分得:=⑩由⑩式带入⑨式得:C m=由⑥⑩ 式得,直线AB过程中,在V从增大到的过程中,C m>0,>0,故>0,吸热在V从增大到的过程中,C m<0,<0,故>0,吸热在V从增大到V0的过程中,C m>0,<0,故<0,放热由式可知,系统从吸热到放热转折点发生在V=V c=处由③式和上式得:T c==3对于直线AB过程,由⑥⑩式得:dQ=νCm dV=pdV=pdV将上式两边对直线过程积分得,整个直线AB过程中所吸收的净热量为:Q直线==p0=p0V0直线AB过程中气体对外所做的功为:W直线==p0V0等温过程中气体对外所做的功为:W等温===-ln2一个正循环过程中气体对外所做的净功为:W=W直线+W等温=p0V0参考评分:第1问10分,①②式各3分,④⑤式各2分;第2问20分,⑥⑦⑧⑨⑩ 式各2分;第3问10分,式各2分.2.33届复赛2秋天清晨,气温为℃,一加水员到实验园区给一内径为、高为的圆柱形不锈钢蒸馏水罐加水.罐体导热良好.罐外有一内径为的透明圆柱形观察柱,底部与罐相连连接处很短,与大气相通,如图所示.加完水后,加水员在水面上覆盖一层轻质防蒸发膜不溶于水,与罐壁无摩擦,闭了罐顶的加水口.此时加水员通过观察柱上的刻度看到罐内水高为.1从清晨到中午,气温缓慢升至℃,问此时观察柱内水位为多少假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略.2从密闭水罐后至中午,罐内空气对外做的功和吸收的热量分别为多少求这个过程中罐内空气的热容量.已知罐外气压始终为标准大气压p0=×105pa,水在℃时的密度为ρ0=×103kg·m-3,水在温度变化过程中的平均体积膨胀系数为×10-4K-1,重力加速度大小为g=s2,绝对零度为-℃.解析:1清晨加完水封闭后,罐内空气的状态方程为p0V0=nRT0①至中午时由于气温升高,罐内空气压强增大,设此时罐内空气的压强、体积和温度分别为p、V1、T1,相应的状态方程为:p1V1=nRT1②1此时观察柱和罐内水位之差为:Δh=++③式中右端第三项是由原罐内和观察柱内水的膨胀引起的贡献,l0=为早上加水后观察柱内水面的高度,S1=πm2,S2=4π×10-4m2分别为罐、观察柱的横截面积.由力平衡条件有:p1=p0+ρ1gΔh1④式中ρ1=是水在温度为T1时的密度.⑤联立①②③④⑤式得:ρ1gS′Δh2+p0S1+λρ1gV0-p0V0=0⑥式中S′=,λ=1-κT1-T0⑦解⑥得:Δh==⑧另一解不合题意,舍去.由③⑤⑦⑧式和题给数据得:V1-V0=S′Δh-κT1-T0S1l0=-由上式和题给数据得,中午观察柱内水位为:l1=Δh-+l0=⑨2先求罐内空气从清晨至中午对外所做的功.解法一早上罐内空气压强p0=×105pa,中午观察柱内水位相对于此时罐内水位升高Δh,罐内空气压强升高了Δp=ρ1gΔh=×103pa⑩因Δp<<p0,认为在准静态升温过程中罐内平均压强=p0+Δp=×105pa罐内空气体积缩小了ΔV=可见<<1,这说明式是合理的.罐内空气对外做功W=ΔV=-×103J解法二缓慢升温是一个准静态过程,在封闭水罐后至中午之间的任意时刻,设罐内空气都处于热平衡状态,设其体积、温度和压强分别为V、T和p.水温为T时水的密度为ρ=⑩将②③④式中的V1、T1和p1换为V、T和p,利用⑩式得罐内空气在温度为T时的状态方程为:p=p0+V1-V0+κT1-T0S1l0=p0+由题设数据和前门计算结果可知,κT-T0<κT1-T0=<=这说式右端分子中与T有关的项不可略去,而右端分母中与T有关的项可略去.于是式:p=p0+V1-V0+κT1-T0S1l0=p0+利用状态方程,上式可改写成p=-从封闭水罐后至中午,罐内空气对外界做的功为W===-=-×103J解法三缓慢升温是一个准静态过程,在封闭水罐后至中午的任意时刻,罐内空气都处于热平衡状态,设其体积、温度和压强分别为V、T和p.水在温度为T时的密度为ρ=⑩将②③④式中的V1、T1和p1换为V、T和p,利用⑩式得罐内空气在温度为T时的状态方程为p=p0+V-V0+κT1-T0S1l0=p0+=p0+S1l0+≈p0++V-V0-S1l01-κT-T0=p0++≈p0++V-V0-S1l01+κT0+PV=p0++V-2V01+κT0+PV=p0++V-2V01+κT0+PV式中应用了κT-T0<κT1-T0=,<=式可改写成p==-+从封闭水罐后至中午,罐内空气对外界做的功为W===-=-×103J现计算罐内空气的内能变化.由能量均分定理知,罐内空气中午相对于清晨的内能改变为:ΔU=nRT1-T0=T1-T0=×104J式中5是常温下空气分子的自由度.由热力学第一定律得罐内空气的吸热为:ΔQ=W+ΔU=×104J从封闭水罐后至中午,罐内空气在这个过程中的热容量为:C==×103J/K参考评分:第1问10分,①②③④⑤⑥⑦⑧式各1分,⑨式2分;第2问10分,⑩ 式各1分,式各2分,式1分.3.32届复赛7如图,1mol单原子理想气体构成的系统分别经历循环过程abcda和abc′a.已知理想气体在任一缓慢变化过程中,压强p和体积V满足函数关系p=fV.1试证明:理想气体在任一缓慢变化过程的摩尔热容可表示为Cπ=C V+,式中,C V和R分别为定容摩尔热容和理想气体常数;2计算系统经bc′直线变化过程中的摩尔热容;3分别计算系统经bc′直线过程中升降温的转折点在p-V图中的坐标A和吸放热的转折点在p-V图中的坐标B;4定量比较系统在两种循环过程的循环效率.解析:1根据热力学第一定律有:dU=δQ+δW①这里对于1mol理想气体经历的任一缓慢变化过程中,δQ、δW和dU可分别表示为δQ=CπdT、δW=-pdV、dU=CVdT②将理想气体状态方程pV=RT两边求导得p+V=R③式中利用了=,根据③式有:=④联立①②③④式得:Cπ=C V+⑤2设bc′过程方程为p=α-βV⑥根据Cπ=C V+可得该直线过程的摩尔热容为:Cπ=C V+⑦式中C V=R是单原子理想气体的定容摩尔热容.对bc′过程的初态3p1,V1和终态p1,5V1有:3p1=α-βV1、p1=α-5βV1⑧由⑧式得:α=p1、β=⑨由⑥⑦⑧⑨式得:Cπ=⑩3根据过程热容的定义有:Cπ=式中,ΔQ是气体在此直线过程中,温度升高ΔT时从外界吸收的热量.由⑩ 式得:ΔT=RΔQΔQ=由式可知,bc′过程中的升降温的转折点A在p-V图上的坐标为AV1,p1由⑩式可知,bc′过程中的吸放热的转折点B在p-V图上的坐标为BV1,p14对于abcda循环过程,ab和bc过程吸热,cd和da过程放热Qab=nC V T b-T a=RT b-RT a=3p1V1Qbc=nC p T c-T b=RT c-RT b=15p1V1式中已知n=1mol,单原子理想气体定容摩尔热容C V=R,定压摩尔热容C V=R气体在abcda循环过程中的效率可表示为循环过程中对外做的功处以总吸热,即ηabcda===对于abc′a循环过程,ab和bB过程吸热,Bc′和c′a过程放热.由热力学第一定律可得bB过程吸热为:Q bc′=ΔU bB-W bB=nC V T B-T b+p B+3p1V B-V1=所以循环过程abc′a的效率为ηabc′a===由式可知,ηabc′a>ηabcda参考评分:第1问5分,①②③④⑤式各1分;第2问5分,⑥⑦⑧⑨⑩式各1分;第3问7分,式1分,式各2分,式各1分;第4问5分,式各1分.4.31届复赛2一种测量理想气体的摩尔热容比γ=C p/C V的方法Clement-Desormes方法如图所示:大瓶G内装满某种理想气体,瓶盖上通有一个灌气放气开关H,另接出一根U形管作为压强计M.瓶内外的压强差通过U形管右、左两管液面的高度差来确定.初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U形管液面的高度差h i.然后打开H,放出少量气体,当瓶内外压强相等时,即刻关闭H.等待瓶内外温度又相等时,记录此时U形管液面的高度差hf.试由这两次记录的实验数据h i和h f,导出瓶内气体的摩尔热容比γ的表达式.提示:放气过程时间很短,可视为无热量交换;且U形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化→解析:解法一瓶内理想气体经历如下两个气体过程:pi,V0,T0,N i p0,V0,T,N f p f,V0,T0,N f其中,p i,V0,T0,N i、p0,V0,T,N f、p f,V0,T0,N f分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV=NkT,考虑到由于气体初、末态的体积和温度相等,有=①另一方面,设V′是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为p0时的体积,即:p i,V0,T,N i p0,V′,T0,N i此绝热过程满足=②由状态方程有p0V′=N i kT和p0V0=N f kT,所以=③联立①②③式得=④此即γ=⑤由力学平衡条件有p i=p0+ρgh i⑥pf=p0+ρgh f⑦式中,p0+ρgh0为瓶外的大气压强,ρ是U形管中液体的密度,g是重力加速度的大小.由⑤⑥⑦式得γ=⑧利用近似关系式:当x<<1,ln1+x≈x,以及<<1,<<1有γ==⑨参考评分:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab,再通过等容升温过程bc达到末态p i,V1,T0p0,V0,Tp f,V0,T0其中,p i,V1,T0、p0,V0,T、和p f,V0,T0分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程ab:p1γ-1Tγ=pγ-1Tγ①bc:=②由①②式得:=③此即γ=④由力学平衡条件有p i=p0+ρgh i⑤pf=p0+ρgh f⑥式中,p0+ρgh0为瓶外的大气压强,ρ是U形管中液体的密度,g是重力加速度的大小.由④⑤⑥式得⑦利用近似关系式:当x <<1,ln1+x ≈x ,以及<<1,<<1有γ==⑧参考评分:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分. 5.30届复赛6温度开关用厚度均为的钢片和青铜片作感温元件;在温度为20℃时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片.若钢和青铜的线膨胀系数分别为×10-5/度和×10-5/度.当温度升高到120℃时,双金属片将自动弯成圆弧形,如图所示.试求双金属片弯曲的曲率半径.忽略加热时金属片厚度的变化.解析:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为α1和α2,钢片和青铜片温度由T 1=20℃升高到T 2=120℃时的伸长量分别为Δl 1和Δl 2.对于钢片r -φ=l +Δl 1①Δl 1=lα1T 2-T 1②式中,d =.对于青铜片r +φ=l +Δl 2③Δl 2=lα2T 2-T 1④联立以上各式得r =d =×102mm⑤参考评分:本题15分.①式3分,②式3分,③式3分,④式3分,⑤式3分.6.29届复赛6如图所示,刚性绝热容器A 和B 水平放置,一根带有绝热阀门和多孔塞的绝热刚性细短管把容器A 、B 相互连通.初始时阀门是关闭的,A 内装有某种理想气体,温度为T 1;B 内为真空.现将阀门打开,气体缓慢通过多孔塞后进入容器B 中.当容器A 中气体的压强降到与初始时A 中气体压强之比为α时,重新关闭阀门.设最后留在容器A 内的那部分气体与进入容器B 中的气体之间始终无热量交换,求容器B 中气体质量与气体总质量之比.已知:1mol 理想气体的内能为u =CT ,其中C 是已知常量,T 为绝对温度;一定质量的理想气体经历缓慢的绝热过程时,其压强p 与体积V 满足过程方程常量=+CR C pV ,其中R 为普适气体常量.重力影响和连接管体积均忽略不计.解析:设重新关闭阀门后容器A 中气体的摩尔数为n 1,B 中气体的摩尔数为n 2,则气体总摩尔数为n =n 1+n 2①把两容器中的气体作为整体考虑,设重新关闭阀门后容器A 中气体温度为T 1′,B 中气体温度为T 2,重新关闭阀门之后与打开阀门之前气体内能的变化可表示为ΔU =n 1CT 1′-T 1+n 2CT 2-T 1②由于容器是刚性绝热的,按热力学第一定律有ΔU =0③令V 1表示容器A 的体积,初始时A 中气体的压强为p 1,关闭阀门后A 中气体压强为αp 1,由理想气体状态方程可知n =④ n 1=⑤由以上各式可解得:T 2=由于进入容器B 中的气体与仍留在容器A 中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A 中的那部分气体经历了一个绝热过程,设这部分气体初始时体积为V 10压强为p 1时,则有p 1=αp 1⑥ 利用状态方程可得=⑦由①②③④⑤⑥⑦式得,阀门重新关闭后容器B 中气体质量与气体总质量之比=⑧参考评分:本题15分.①式1分,②式3分,③式2分,④⑤式各1分,⑥式3分,⑦式1分,⑧式3分.7.28届复赛6如图所示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔与大气相通,大气的压强为P0.用一热容量可忽略的导热隔板N和一绝热活塞M将气缸分为A、B、C三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气.气缸的左端A室中有一电加热器Ω.已知在ArrayA、B室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A、B两室中气体的温度均为T0,A、B、C三室的体积均为V.现通过电加热器对A室中气体缓慢加热,若提供的总热量为Q0,试求B室中气体的末态体积和A室中气体的末态温度.设A、B两室中气体1摩尔的内能为U=RT,式中R为普适气体常量,T为绝对温度在电加热器对A室中气体加热的过程中,由于隔板N是导热的,B室中气体的温度要升高,活塞M将向右移动.当加热停止时,活塞M有可能刚移到气缸最右端,亦可能尚未移到气缸最右端.当然亦可能活塞已移到气缸最右端但加热过程尚未停止.解析:1设加热恰好能使活塞M移到气缸的最右端,则B室气体末态的体积V=2V0①B根据题意,活塞M向右移动过程中,B中气体压强不变,用T B表示B室中气体末态的温度,有=②由①②式得T B=2T0③由于隔板N是导热的,故A室中气体末态的温度T A=2T0④下面计算此过程中的热量Q m.在加热过程中,A室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即Q A=RT A-T0⑤由④⑤两式得Q A=RT0⑥B室中气体经历的是等压过程,在过程中B室气体对外做功为W=p0V B-V0⑦B由①⑦式及理想气体状态方程得W B=RT0⑧内能改变为ΔU B=RT B-T0⑨由④⑨两式得ΔU B=RT0⑩根据热力学第一定律和⑧⑩两式,B室气体吸收的热量为Q B=ΔU B+W B=RT0由⑥ 两式可知电加热器提供的热量为Q m=Q A+Q B=6RT0若Q0=Q m,B室中气体末态体积为2V0,A室中气体的末态温度2T0.2若Q0>Q m,则当加热器供应的热量达到Q m时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量Q0-Q m是A、B中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A室中气体末态的温度为T A′,有Q-Q m=RT A′-2T0+RT A′-2T0由两式可求得T A′=+T0B中气体的末态的体积V′=2V0B3若Q0<Q m,则隔板尚未移到气缸最右端,加热停止,故B室中气体末态的体积V B″<2V0.设A、B两室中气体末态的温度为T A″,根据热力学第一定律,注意到A室中气体经历的是等容过程,其吸收的热量Q A=RT A″-T0B室中气体经历的是等压过程,吸收热量Q=RT A″-T0+p0V B″-V0B利用理想气体状态方程,上式变为Q B=RT A″-T0由上可知Q0=Q A+Q B=6RT A″-T0T0所以A室中气体的末态温度T A″=+T0B室中气体的末态体积V″=T A″=V0B参考评分:本题20分.得到Q0=Q m的条件下①④式各1分;式6分,得到Q0>Q m的条件下的式4分,式2分;得到Q0<Q m的条件下的式4分,式2分.8.27届复赛7地球上的能量从源头上说来自太阳辐射到达地面的太阳辐射假定不计大气对太阳辐射的吸收一部分被地球表面反射到太空,其余部分被地球吸收.被吸收的部分最终转换成为地球热辐射红外波段的电磁波.热辐射在向外传播过程中,其中一部分会被温室气体反射回地面,地球以此方式保持了总能量平衡.作为一个简单的理想模型,假定地球表面的温度处处相同,且太阳和地球的辐射都遵从斯忒蕃一玻尔兹曼定律:单位面积的辐射功率J与表面的热力学温度T的四次方成正比,即J=σT4,其中σ是一个常量.已知太阳表面温度T s=×103K,太阳半径R s=×105km,地球到太阳的平均距离d=×108km.假设温室气体在大气层中集中形成一个均匀的薄层,并设它对热辐射能量的反射率为ρ=.1如果地球表面对太阳辐射的平均反射率α=,试问考虑了温室气体对热辐射的反射作用后,地球表面的温度是多少2如果地球表面一部分被冰雪覆盖,覆盖部分对太阳辐射的反射率为α1=,其余部分的反射率处α2=.间冰雪被盖面占总面积多少时地球表面温度为273K.解析:1根据题意,太阳辐射的总功率P S=4πRσT,太阳辐射各向同性的向外传播.设地球半径为r E,可以认为地球所在处的太阳辐射是均匀的,故地球接收太阳辐射的总功率为:P I=σTπr①地球表面反射太阳辐射的总功率为αP I.设地球表面的温度为T E,则地球的热辐射总功率为:P E=4πrσT②考虑到温室气体向地球表面释放的热辐射,则输入地球表面的总功率为P I+βP E.当达到热平衡时,输入的能量与输出的能量相等,有:P I+βP E=αP I+P E③由以上各式得:T E=T S错误未定义书签;④带入数值有:T E=287K⑤2当地球表面一部分被冰雪覆盖后,以α′表示地球表面对太阳辐射的平均反射率,根据题意这时地区表面的平均温度为T E=273K.利用④式可求得:α′=⑥设冰雪覆盖的地表面积与总面积之比为x,则:α′=α1x+α21-x⑦由⑥⑦两式并带入数据得:x=30%⑧参考评分:本题15分.第1问11分,①式3分,②式1分,③式4分,④式2分,⑤式1分;第2问4分,⑥式2分,⑧式3分.9.26届复赛4火箭通过高速喷射燃气产生推力.设温度T1、压强p1的炽热高压气体在燃烧室内源源不断生成,并通过管道由狭窄的喷气口排入气压p2的环境.假设燃气可视为理想气体,其摩尔质量为μ,每摩尔燃气的内能为u=C V TC V是常量,T为燃气的绝对温度.在快速流动过程中,对管道内任意处的两个非常靠近的横截面间的气体,可以认为它与周围没有热交换,但其内部则达到平衡状态,且有均匀的压强p、温度T和密度ρ,它们的数值随着流动而不断变化,并满足绝热方程p=C恒量,式中R为普适气体常量,求喷气口处气体的温度与相对火箭的喷射速率.解析:于火箭燃烧室出口处与喷气口各取截面A1和A2,它们的面积分别为S1和S2,由题意,S1>>S2,以其管道内的气体为研究对象,如图所示.设经过很短时间Δt,这部分气体流至截面B1与B2之间,A1B1间、A2B2间的微小体积分别为ΔV1、ΔV2,两处气体密度为ρ1、ρ2,流速为v1、v2.气流达到稳定时,内部一切物理量分布只依赖于位置,与时间无关.由此可知,尽管B1A2间气体更换,但总的质量与能量不变.先按绝热近似求喷气口的气体温度T2.质量守恒给出:ρ1ΔV1=ρ2ΔV2①即A2B2气体可视为由A1B1气体绝热移动所得.事实上,因气流稳恒,A1B1气体流出喷口时将再现A 2B2气体状态.对质量Δm=ρ1ΔV1=ρ2ΔV2的气体,利用理想气体的状态方程:pV=RT②和绝热过程方程p1=p2③可得:T2=T1④再通过能量守恒求气体的喷射速率v2.由①式及ΔV=SΔvt可得:ρ1S1V1=ρ2S2V2⑤再利用①③式知,v1=v2=v2,因S2<<S1,p2<<p1,v2<<v1⑥整个系统经Δt时间的总能量包括宏观流动机械能与微观热运动内能增量ΔE为A2B2部分与A1B1部分的能量差.由于重力势能变化可忽略,在理想气体近似下比高考虑到⑥式有:ΔE=Δmv+C V T2-T1⑦体系移动过程中,外界做的总功为W=p1ΔV1-p2ΔV2⑧根据能量守恒定理,绝热过程满足ΔE=W⑨得:v2=⑩其中利用了②④式.参考评分:本题20分.②式1分,③式2分,④式3分,⑥式1分,⑦式6分,⑧式4分,⑨式1分,⑩式2分.10.25届复赛4图示为低温工程中常用的一种气体、蒸气压联合温度计的原理示意图,M为指针压力表,以V M表示其中可以容纳气体的容积;B为测温泡,处在待测温度的环境中,以V B 表示其体积;E为贮气容器,以V E表示其体积;F为阀门.M、E、B由体积可忽略的毛细血管连接.在M、E、B均处在室温T0=300K时充以压强p0=×105Pa的氢气.假设氢的饱和蒸气仍遵从理想气体状态方程.现考察以下各问题:1关闭阀门F,使E与温度计的其他部分隔断,于是M、B构成一简易的气体温度计,用它可测量25K以上的温度,这时B中的氢气始终处在气态,M处在室温中.试导出B处的温度T和压力表显示的压强p的关系.除题中给出的室温T0时B中氢气的压强P0外,理论上至少还需要测量几个已知温度下的压强才能定量确定T与p之间的关系2开启阀门F,使M、E、B连通,构成一用于测量20~25K温度区间的低温的蒸气压温度计,此时压力表M测出的是液态氢的饱和蒸气压.由于饱和蒸气压与温度有灵敏的依赖关系,知道了氢的饱和蒸气压与温度的关系,通过测量氢的饱和蒸气压,就可相当准确地确定这一温区的温度.在设计温度计时,要保证当B处于温度低于T V=25K 时,B中一定要有液态氢存在,而当温度高于T V=25K时,B中无液态氢.要达到这一目的,V M+V E与V B间应满足怎样的关系已知T V=25K时,液态氢的饱和蒸气压p V=×105Pa.3已知室温下压强p1=×105Pa的氢气体积是同质量的液态氢体积的800倍,试论证蒸气压温度计中的液态气不会溢出测温泡B.解析:1当阀门F关闭时,设封闭在M和B中的氢气的摩尔数为n1,当B处的温度为T时,压力表显示的压强为p,由理想气体状态方程,可知B和M中氢气的摩尔数分别为n1B=①n1M=②式中R为普适气体常量.因n1B+n1M=n1③解①②③式得:=-④或T=⑤④式表明,与成线性关系,式中的系数与仪器结构有关.在理论上至少要测得两个已知温度下的压强,作对的图线,就可求出系数.由于题中已给出室温T0时的压强p0,故至少还要测定另一已知温度下的压强,才能定量确定T与p之间的关系式.2若蒸气压温度计测量上限温度T V时有氢气液化,则当B处的温度T≤T V时,B、M和E中气态氢的总摩尔数应小于充入氢气的摩尔数.由理想气体状态方程可知充入氢气的总摩尔数n=⑥2假定液态氢上方的气态氢仍可视为理想气体,则B中气态氢的摩尔数为n2B=⑦在⑦式中,已忽略了B中液态氢所占的微小体积.由于蒸气压温度计的其它部分仍处在室温中,其中氢气的摩尔数为n2M+n2E=⑧根据要求有:n2B+n2M+n2E≤n2⑨解⑥⑦⑧⑨各式得:V M+V E≥V B⑩带入相关数据得:V M+V E≥18V B11.25届复赛7在地面上方垂直于太阳光的入射方向,放置一半径R=、焦距f=的薄凸透镜,在薄透镜下方的焦面上放置一黑色薄圆盘圆盘中心与透镜焦点重合,于是可以在黑色圆盘上形成太阳的像.已知黑色圆盘的半径是太阳像的半径的两倍.圆盘的导热性极好,圆盘与地面之间的距离较大.设太阳向外辐射的能量遵从斯特藩—玻尔兹曼定律:在单位时间内在其单位表面积上向外辐射的能量为W=σT4,式中σ为斯特藩—玻尔兹曼常量,T为辐射体表面的的绝对温度.对太而言,取其温度t s=×103℃.大气对太阳能的吸收率为α=.又设黑色圆盘对射到其上的太阳能全部吸收,同时圆盘也按斯特藩—玻尔兹曼定律向外辐射能量.如果不考虑空气的对流,也不考虑杂散光的影响,试问薄圆盘到达稳定状态时可能达到的最高温度为多少摄氏度解析:按照斯特藩-波尔兹曼定律,在单位时间内太阳表面单位面积向外发射的能量为W=σT①S其中σ为斯特藩-波尔兹曼常量,T S为太阳表面的绝对温度.若太阳的半径为R S,则单位时间内整个太阳表面向外辐射的能量为P S=4πR W S②单位时间内通过以太阳为中心的任意一个球面的能量都是P S.设太阳到地球的距离为r SE,考虑到地球周围大气的吸收,地面附近半径为R的透镜接收到的太阳辐射的能量为P=πR21-α③凸透镜将把这些能量会聚到置于其后焦面上的薄圆盘上并被薄圆盘全部吸收.另一方面,因为薄圆盘也向外辐射能量.设圆盘的半径为R D,温度为T D,注意到薄圆盘有两个表面,故圆盘在单位时间内辐射的能量为P D=2πRσT④显然,当P D=P⑤即圆盘单位时间内接收到的能量与单位时间内辐射的能量相等时,圆盘达到稳定状态,其温度达到最高.由①②③④⑤各式得:T D=T S⑥依题意,薄圆盘半径为太阳的像的半径R的2倍,即R D=R2.由透镜成像公式知:=⑦于是有:R D=2f⑧把⑧式带入⑥式得:T D=T S⑨带入已知数据,注意到T S=+t S K,T D=×103K⑩即有:t D=T D-=×103℃。
1. 熟练结合气态方程与热力学第一定律解题2. 对典型热力学过程重点计算知识点睛一.热力学第一定律对于理想气体等值过程的应用等容过程 等容过程的特征是气体体积保持不变,V ∆=0在等容过程中,气体与外界交换的热量等于气体内能的增量:Q V m C T M =∆.V C 称做定容摩尔比热容,V i C R =2,i 为分子的自由度,对于单原子分子气体,i =3;对于双原子分子气体,i =5;而对于多原子分子气体i =6.R 为摩尔气体常数,8.31J/(mol K)R =g .等压过程 等压过程的特征是气体压强保持不变,0p ∆=,m W p V R T M ∆=∆=∆g ,,在等压变化过程中气体与外界交换的热量为222p m i m m i m Q E p V R T R T R T C T M M M M +=∆+∆=∆+∆=∆=∆g g g .p C 称做定压摩尔比热容,p V C C R =+,而2pV C i C iγ+==称为比热容比.对于单原子分子气体,53γ=;而双原子分子气体,75γ=;多原子分子气体则有86γ=.V C 、p C 及γ均只与气体分子的自由度有关而与气体温度无关.等温过程 等温过程的特征是气体温度保持不变,0T ∆=,由于理想气体的内能取决于温度,故0E ∆=,由热力学第一定律可知在等温变化过程中气体与外界交换的热量为W Q ∆=∆绝热过程 气体在不与外界发生热交换的条件下所发生的状态变化称做绝热过程,其特点是0Q =,由热力学第一定律可得V m W E C T M =∆=∆.绝热过程特征PV γ=C (不变量),此称泊松方程本讲提示第3讲 热力学综合自由扩散 气体向真空区域扩散的过程叫自由扩散,此过程由于没有受力者,所以虽然气体体积膨胀但没有对外做功,如果没有吸放热,则内能也不变,扩散后满足等温方程。
热机及其效率 设一系统做正循环,那么,系统在膨胀阶段所吸收的热量1Q 大于在压缩阶段放出热量2Q ,其差值12Q Q -转变为一循环中系统对外所做的功W ,能完成这种转变的机械称为热机,热机的物理本质就是系统做正循环.热机的主要部分是:一个高温热源(发热器),用来供给1Q 的热量;一个低温热源(冷却器),用来吸取2Q 的热量;一种工作物质(如水、空气或水蒸气等),以及盛工作物质的气缸、活塞等.对于热机,最重要的问题在于由高温热源吸取的热量1Q 中,究竟有多少可以转变为功W ,至于低温热源所吸收的热量2Q 的多少,并不重要.因此定义了热机的效率η为:一循环中系统对外所做的功W 与由高温热源吸取的热量1Q 的比值,即1221111Q Q QW Q Q Q η-===-.热机效率的大小,由循环的具体结构、性质而定.制冷机及其效率 设一系统做负循环,则1W 为负,2W 为正,且1W >2W ,12W W W =+为负,即一循环中系统对外做了W 的负功;又系统从低温热源吸收了较少的热量2Q ,而在高温热源放出了较多的热量1Q ,因而一循环中放出的净热量为1Q -2Q =W .所以系统在一负循环中,外界对系统做了W 功的结果为:系统在低温热源吸人热量2Q 连同转变而成的热量,一并成为1Q 的热量放入高温热源,结果将热量2Q 由低温热源输送到高温热源,这就是制冷机(也叫热泵)的原理.对制冷机,要关心的问题是:一循环中系统做了W 功后,有多少热量2Q 由低温热源输送到高温热源去了,因此把2Q W 定义为制冷机的制冷系数.有时也把1211Q Q W Q Q η-== 211Q Q =-叫做制冷机的效率,可以看出,制冷机的效率越高,制冷系数越小,经济效能越低. 在技术上使用热机的种类很多,有蒸汽机、内燃机和制冷机等,下图分别表示蒸汽机和制冷机的工作过程框图.例题精讲【例1】一定量的理想气体分别由初态a经①过程ab和由初态a′经②过程a′cb到达相同的终态b,如p-T图所示,则两个过程中气体从外界吸收的热量Q1,Q2的关系为( )A. Q1<0,Q1> Q2. B . Q1>0,Q1> Q2.C .Q1<0,Q1< Q2.D .Q1>0,Q1< Q2.【例2】压强为1.0×105Pa,体积为0.0082m3的氮气,从初始温度300K加热到400K,如加热时(1)体积不变(2)压强不变,问各需热量多少?哪一个过程所需热量大?为什么?【例3】一气缸内盛有一定量的刚性双原子分子理想气体,气缸活塞的面积S =0.05 m2,活塞与气缸壁之间不漏气,摩擦忽略不计.活塞右侧通大气,大气压强p0 =1.0×105 Pa.劲度系数k=5×104N/m的一根弹簧的两端分别固定于活塞和一固定板上(如图).开始时气缸内气体处于压强、体积分别为p1 = p0 =1.0×105 Pa,V1 = 0.015 m3的初态.今缓慢加热气缸,缸内气体缓慢地膨胀到V2 =0.02 m3.求:在此过程中气体从外界吸收的热量.【例4】如图所示,两个截面相同的圆柱形容器,右边容器高为H ,上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的活塞。