缓和曲线要素及主点里程桩号计算
- 格式:xls
- 大小:13.50 KB
- 文档页数:1
缓和曲线逐桩坐标计算时间:2010-01-31 12:42:36 来源: 作者:李洪亮我要投稿我要收藏投稿指南四公司沿海项目部李洪亮摘要:利用一缓和曲线算例,通过数学分析,推导出缓和曲线逐桩坐标计算公式,此公式可作为道路测设中的范例来运用,有很强的指导意义。
关键词:缓和曲线、公式、逐桩坐标一、引言道路建设中,由于受地形或地质影响,经常需要改变线路方向,为满足行车要求,往往要用曲线把两条直线连接起来。
曲线的构成形式无外乎圆曲线和缓和曲线,本文以河北省沿海高速某曲线段为例推导出缓和曲线的逐桩坐标计算公式,以方便图纸的审核,满足施工放样的需求。
本公式具有良好的操作性,方便施工、提高精度,可作为道路测设中的范例运用。
二、公式推导1 、实例数据河北省沿海高速公路一缓和曲线(如图): AB 段为缓和曲线段, A 为 ZH 点,B 为 HY 点, RB =800m ; A 点里程为 NK0+080 ,切线方位角为θA=100 ° 00 ′24.1 ″,坐标为 XA =4355189.493,YA=476976.267 ; B 点里程为 NK0+158.125 ,切线方位角为θB =102 ° 48 ′ 15.6 ″,坐标为 XB=4355174.669 ,YB=477052.964 ,推求此曲线段内任意点坐标。
2 、公式推导及实例计算方法一:弦线偏角法1 )公式推导由坐标增量的计算方法我们不难理解,求一点坐标可以根据其所在直线的方位角以及直线上另一点的坐标和距待求点的距离。
所以我们可以利用 ZH 点,只要知道待求点距 ZH 点的距离(弦长 S )和此弦与 ZH 点切线方位角的夹角(转角a ),即可求出该点坐标。
根据回旋线方程 C=RL ,用 B 点数据推导出回旋线参数:C=RLS =800*78.125=62500 ( LS为 B 点至 ZH 点的距离)设待求点距 ZH 点距离为 L因回旋线上任意点的偏角β0=L2/2RLS, 且转角 a=β/3 ,可得该点转角 a 。
11.2.1 带缓和曲线的圆曲线的测设为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。
目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。
数学表达为:ρ∝1/l 或ρ·l = k ( k为常数)若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有:ρ·l = R·l0 = k目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R ,铁路缓和曲线的长度为:l0 = 0.09808V3/R 。
11.2.2 带缓和曲线的圆曲线的主点及主元素的计算带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。
带缓和曲线的圆曲线的主元素及计算公式:切线长 T h = q+(R+p)·tan(α/2)曲线长 L h = 2l0+R·(α-2β0)·π/180°外矢距 E h = (R+p)·sec(α/2)-R切线加长 q = l0/2-l03/(240R2)圆曲线相对切线内移量 p = l02/(24R)切曲差 D h = 2T h -L h式中:α 为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。
11.2.3 缓和曲线参数推导dβ = dl/ρ = l/k·dl两边分别积分,得:β= l2/(2k) = l/(2ρ)当ρ = R时,则β =β0β0 = l0/(2R)若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则:dx = dl·cosβ = cos[l2/(2k)]·dldy = dl·sinβ = si n[l2/(2k)]·dl考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线长度l为参数的缓和曲线方程式:X = l-l5/(40R2l02)+……Y = l3/(6Rl0)+……通常应用上式时,只取前一、二项,即:X = l-l5/(40R2l02)Y = l3/(6Rl0)另外,由图可知,q = X HY-R·sinβ0p = Y HY-R(1-cosβ0)以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2)p = l02/(24R)若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为:Xi = R·sinψi+qYi = R·(1-cosψi)+p11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核ZH桩号 = JD桩号-T hHY桩号 = ZH桩号+l0QZ桩号 = HY桩号+L/2YH桩号 = QZ桩号+L/2 = HY桩号+L = ZH桩号+l0+LHZ桩号 = YH桩号+l0 = ZH桩号+L hJD桩号 = ZY桩号-T h+D h(检核)11.2.5 带缓和曲线的圆曲线的主点的测设过程:(1)在JD点安置经纬仪(对中、整平),用盘左瞄准直圆方向,将水平度盘的读数配到0°00′00″,在此方向量取T h,定出ZH点;(2)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出HY点;(3)倒转望远镜,转动照准部到度盘读数为α,量取T h,定出HZ点;(4)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出YH点;(5)继续转动照准部到度盘读数为(α+180°)/2,量取E h,定出QZ点。
道路测量中缓和曲线中桩坐标计算方法的研究摘要:本文讲解了在利用全站仪进行缓和曲线中桩放样时,缓和曲线的基本形和卵形两种情况下中桩坐标计算的方法。
关键词:缓和曲线、基本形、卵形、中桩坐标计算。
随着全站仪在道路工程施工测量中的普及,传统的中线放样方法逐渐被淘汰。
目前道路工程中线放样时,只要能计算出中线上任意一点的坐标,用全站仪或者GPSRTK的坐标放样功能就可很方便、快捷地完成实地放样。
道路线形是由直线、圆曲线、缓和曲线三种线形组合而成的,而直线与圆曲线组合的线形(见图一)中桩坐标计算比较简单,在此不作阐述。
下面就缓和曲线与其它两种线形组合的线形中桩坐标计算予以分析。
缓和曲线与其它两种线形组合构成的线形主要有缓和曲线的完整形(即基本形)(见图二)和非完整形(即卵形)(见图三)二种。
一、基本形曲线中桩坐标计算:1、对于第一缓和曲线及圆曲线段(ZH~YH)(如图四),建立以ZH为坐标原点,切线方向为X′轴,半径方向为Y′轴的曲线坐标系(X′O′Y′)。
先计算曲线各点在曲线坐标系下的坐标。
⑴对于第一缓和曲线段(ZH~HY)内任一点i(此时L=Ki-KZH)若圆曲线半径R≥100m时,则Xi′=L-L5/(40R2Ls12) 公式①Yi′=L3/(6RLs1) 公式②若圆曲线半径R<100m时,则X′=L-L5÷[40(RLS)2] L9÷[3456(RLS)4]–L13÷[599040(RLS)6]L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式③)Y′=L3÷[6(RLS)] - L7÷[336(RLS)3] L11÷[42240(RLS)5] - L15÷[9676800(RLS)7] L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11] (公式④)⑵对于圆曲线段(HY~YH)上任一点iXi′=q Rsin cent;iYi′=R(1-cos cent;i) pL=Ki-KZH cent;i=(L- Ls1)*180/(Rπ) β0内移值P=Ls12/(24R)切线增值q= Ls1/2- Ls13/(240R2)综合⑴、⑵,根据不同坐标系的相互转换,可得ZH~YH上任一点i的中桩测量坐标为:Xi=XZH cosA×Xi′-sinA×f×Yi′(公式⑤)Yi= YZH sinA×Xi′ cosA×f×Yi′(公式⑥)角。
带缓和曲线放样数据计算①需求:1.缓和曲线常数:缓和曲线切线角β、切垂距m 、内移距p ;2.曲线要素:切线长T 、曲线长L 、外矢距E 、切曲差q ;3.曲线主点里程和坐标:直缓点ZH 、缓圆点HY 、曲中点QZ 、圆缓点YH 、缓直点HZ 。
4.曲线桩点里程和坐标。
②思路:1.已知条件:偏角(转角):α 曲线半径:R 缓和曲线长:0l 交点JD 里程:DK***+***.*** 三个控制点坐标:JD :(xjd ,yjd ) QD :(xqd ,yqd ) ZD :(xzd ,yzd )2.计算公式:1)缓和曲线常数(1)缓和曲线切线角β——Rl R l ⋅=⋅=ππβ00901802 (2)切垂距m ——2302402Rl l m -= (3)内移距p ——R l p 2420=2)曲线要素(1)切线长T :mp R T +⋅+=)2tan()(α(2)曲线长L :02180)2(l R L +⋅-⋅=πβα(3)外矢距E :R p R E -+=)2cos(α(4)切曲差q :L T q -=2 3)计算曲线主要点里程0000)5( 2)4(2)3( )2( )1(l YH HZ l LQZ YH l L HY QZ l ZH HY T JD ZH +=-+=-+=+=-=里程里程里程里程里程里程里程里程里程里程注意:里程直接以米为单位写数值,写成DK***+***.***的形式。
4)切线支距法计算数据根据公式计算,分别求得直缓点ZH 、缓圆点HY 、曲中点QZ 、圆缓点YH 、缓直点HZ 和各桩点的坐标值。
JDQD JD QD ZH i JD QD JD QD ZH i QDJD QD JD JD QD QD JD JD ZH QD JD JD ZH JD QD JD QD QD JD y x Y Y y x X X X X Y Y T Y Y T X X X X Y Y Tl DK ---------+=++=--=⨯+=⨯+=--=+ααααααααcos sin sin cos )arctan(sin cos )arctan(R 已知数据:HY ***.******i i i i 0坐标方位角:坐标方位角:缓圆点第一段:JDQD JD QD ZH i JD QD JD QD ZH i ZH ZH JD QD y x Y Y y x X X Y X ZH p m HY DK HY DK HY ------+=++=++αααααβcos sin sin cos ),( ***.****** ***.****** i i i i 已知数据:圆缓点曲中点第二段:缓圆点ZDJD y x Y Y y x X X T Y Y T X X X X Y Y HZ DK YH ZD JD HZ i ZD JD ZD JD HZ i ZD JD JD HZ ZD JD JD HZ JDZD JDZD ZD JD ---=+-=⨯+=⨯+=--=+------αααααααααcos sin sin cos sin cos )arctan(***.****** i i i i 坐标方位角:缓直点第三段:圆缓点③步骤:1.输入已知参数;2.点击计算。
缓和曲线坐标计算公式你说的坐标应该是在整条公路上的坐标不是支距法算出来的坐标吧支距法现在都不怎么用了给你个偏角法的计算公式吧ZH至i点的偏角A=30xL的平方除以派除以R 除以LsZH至i点的弦长C=L(ZH至i点的长)-L的5次方除以90 除以R的平方除以Ls的平方具体是这样的:建立以ZH或(HZ)为原点,过ZH的切线及半径分别X轴与Y轴的坐标系统后,就可以用曲线上各点在这个坐标系统中的x,y测设曲线。
坐标计算如下:缓和曲线:xi=li- li^5/40R^2li^2yi=li/6Rl0-li^7/336R^3li^3圆曲线:xi=R×sinαi+myi=R(1-cosαi)+pα=180°∕πR(li- l0)+β0li是曲线上与测设点距ZH点的弧长,l0缓和曲线长度,m,p,β0是缓和曲线参数缓和曲线计算偏角公式L2(平方)/(2RLs)L:缓和曲线上任一点到ZH点距离R:圆半径Ls:缓和曲线长当L=Ls时,公式就是L/(2R)卵形曲线坐标计算方法简介:在高速公路立交平面线型中,现越来越多采用卵形曲线这一线型形式,而卵形曲线坐标的计算在现有相关书籍中却又很少提到,这就为施工中的坐标计算及放样增加了较大难度,为解决此难道,我在实践中通过对缓和曲线坐标的计算加以分析并结合理论知识,总结出了卵形曲线坐标的计算方法和技巧。
关键字:卵形曲线坐标计算一、概念卵形曲线:是指在两半径不等的圆曲线间插入一段缓和曲线。
也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。
二、卵形曲线坐标计算原理根据已知的设计参数,求出包括卵形曲线的完整缓和曲线的相关参数和曲线要素,再按缓和曲线坐标计算的方法来计算卵形曲线上任意点上的坐标。
三、坐标计算以雅(安)至攀(枝花)高速公路A合同段(西昌西宁)立交区A匝道一卵形曲线为例,见图一:(图一)已知相关设计数据见下表:主点桩号坐标(m)切线方位角(θ)X Y ° ’ ”ZHAK0+090 9987.403 10059.378 92 17 26.2HY1AK0+160 9968.981 10125.341 132 23 51.6YH1AK0+223.715 9910.603 10136.791 205 24 33.6HY2AK0+271.881 9880.438 10100.904 251 24 18.5YH2AK0+384.032 9922.316 10007.909 337 04 54.2HZAK0+444.032 9981.363 10000.000 0 00 001、缓和曲线(卵形曲线)参数计算A1= =59.161卵形曲线参数:A2=(HY2-YH1)×R1(小半径)×R2(大半径)÷(R2-R1)=(271.881-223.715)×50×75÷(75-50)= 7224.900A2= =84.999A3= =67.0822.卵形曲线所在缓和曲线要素计算卵形曲线长度LF由已知条件知:LF=HY2-YH1=271.881-223.715=48.166卵形曲线作为缓和曲线的一段,因此先求出整条缓和曲线的长度LS,由此找出HZ“点的桩号及坐标(实际上不存在,只是作为卵形曲线辅助计算用)LM=LS(YH1至HZ“的弧长)=A2÷R1=7224.900÷50=144.498∴HZ“桩号=YH1+LM=223.715+144.498=368.213LE=HY2至HZ“的弧长=A2÷R2=7224.900÷75=96.332或LE= LM-LF=144.498-48.166=96.332卵形曲线长度LF=LM-LE=144.498-96.332=48.166(校核)HY2=HZ“-LE=368.213-96.332=271.881(校核)由上说明计算正确3.HZ“点坐标计算(见图二)(图二)①用缓和曲线切线支距公式计算,缓和曲线切线支距公式通式:Xn=[(-1)n+1×L4n–3]÷[(2n-2)!×22n–2×(4n-3)×(RLs)2n–2]Yn=[(-1)n+1×L4n–1]÷[(2n-1)!×22n–1×(4n-1)×(RLs)2n–1]公式中符号含义:n —项数序号(1、2、3、……n)!—阶乘R —圆曲线半径Ls —缓和曲线长②现取公式前6项计算(有关书籍中一般为2-3项,不能满足小半径的缓和曲线计算精度要求,如本例中AK0+090~AK0+160段缓和曲线,如AK0+160中桩坐标带2项算误差达8cm),公式如下:X=L-L5÷[40(RLS)2]+L9÷[3456(RLS)4]–L13÷[599040(RLS)6]+L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式1)Y=L3÷[6(RLS)] - L7÷[336(RLS)3]+L11÷[42240(RLS)5] - L15÷[9676800(RLS)7]+L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11] (公式2)公式中L为计算点至ZH“或HZ“的弧长HZ“:AK0+368.213的坐标从YH1:AK0+223.715推算,L=LS=HZ“-YH1=368.213-223.715=144.498将L=LS 代入公式(1)、(2)得:X=117.1072 Y=59.8839L对应弦长C=√(X2+Y2)=131.5301偏角a1=arctg(Y÷X)=27°05’00.2”* 偏角计算用反正切公式,不要用其它公式。
第三讲公路平面坐标计算1、平曲线认识道路是一个三维空间的工程结构物,它的中线是一个空间曲线,叫路线,其在水平面的投影就是平面线形。
道路平面线形由于受到沿线地形、地质、水文、气候等自然条件和人为条件的制约而改变方向。
在路线平面方向的转折处为满足行车要求,需要用适当的曲线把前、后直线连接起来,这种曲线称为平曲线。
平曲线包括圆曲线和缓和曲线。
①圆曲线要素主点桩号计算:ZY点里程=JD点里程-TQZ点里程=ZY点里程+L/2 YZ点里程=ZY点里程+LJD里程=QZ里程+D/2(校核)②缓和曲线要素切线长: 外距:曲线长:()s s 18022180l aR l a R L h +=+-=πβπ切线加长:q =/2-3/(240R2)圆曲线相对切线内移量:p = 2/(24R)切曲差 Dh = 2T -Lh上式中:α 为线路转向角;β0为缓和曲线角; 其中q 、p 、β0缓和曲线参数。
ZH 桩号 = JD 桩号-T HY 桩号 = ZH 桩号+QZ 桩号 = HY 桩号+L/2YH 桩号 = QZ 桩号+L/2 = HY 桩号+L = ZH 桩号++LHZ 桩号 = YH 桩号+= ZH 桩号+LhJD 桩号 = ZY 桩号-Th +Dh (检核)m)2)((q tgp R T ++=α)(m 2sec)(R p R E -+=αLs Ls Ls Ls Ls Ls注意:上面计算需要大家掌握主点桩号计算,五大主点:ZH、HY、QZ、YH、HZ,还会遇到一些特殊点例如起点QD、终点ZD、公切点GQ。
可以判断下图即可。
重点知识必须掌握(线元法基础):直线:曲率为0,起终点半径无穷大。
圆曲线:具有一定曲率半径的圆弧,半径为固定值。
缓和曲线:在直线与圆曲线之间或两个不同半径的圆曲线之间设置的曲率连续变化的曲线(指从直线上半径无穷大到圆曲线的定值之间曲率半径逐渐变化的过渡段),我国公路缓和曲线的形式采用回旋线。
(曲率为半径的倒数)A1,A2——缓和曲线参数R——圆曲线半径Ls1,Ls2——缓和曲线长度一段完整缓和曲线满足公式:A²=R x Ls1,A²=R x Ls2入缓和曲线:从ZH点到HY点,A固定不变,随着Ls1的增大,半径从∞减小到R出缓和曲线:从YH点到HZ点,A固定不变,随着Ls2的减小,半径从R增大到∞如果A²≠R x Ls,那么这段缓和曲线是不完整的,叫做不完整缓和曲线。
高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
第三讲公路平面坐标计算1、平曲线认识道路是一个三维空间的工程结构物,它的中线是一个空间曲线,叫路线,其在水平面的投影就是平面线形。
道路平面线形由于受到沿线地形、地质、水文、气候等自然条件和人为条件的制约而改变方向。
在路线平面方向的转折处为满足行车要求,需要用适当的曲线把前、后直线连接起来,这种曲线称为平曲线。
平曲线包括圆曲线和缓和曲线。
①圆曲线要素主点桩号计算:ZY点里程=JD点里程-TQZ点里程=ZY点里程+L/2 YZ点里程=ZY点里程+LJD里程=QZ里程+D/2(校核)②缓和曲线要素切线长: 外距:曲线长:()s s 18022180l aR l a R L h +=+-=πβπ切线加长:q =/2-3/(240R2)圆曲线相对切线内移量:p = 2/(24R)切曲差 Dh = 2T -Lh上式中:α 为线路转向角;β0为缓和曲线角; 其中q 、p 、β0缓和曲线参数。
ZH 桩号 = JD 桩号-T HY 桩号 = ZH 桩号+QZ 桩号 = HY 桩号+L/2YH 桩号 = QZ 桩号+L/2 = HY 桩号+L = ZH 桩号++LHZ 桩号 = YH 桩号+= ZH 桩号+LhJD 桩号 = ZY 桩号-Th +Dh (检核)m)2)((q tgp R T ++=α)(m 2sec)(R p R E -+=αLs Ls Ls Ls Ls Ls注意:上面计算需要大家掌握主点桩号计算,五大主点:ZH、HY、QZ、YH、HZ,还会遇到一些特殊点例如起点QD、终点ZD、公切点GQ。
可以判断下图即可。
重点知识必须掌握(线元法基础):直线:曲率为0,起终点半径无穷大。
圆曲线:具有一定曲率半径的圆弧,半径为固定值。
缓和曲线:在直线与圆曲线之间或两个不同半径的圆曲线之间设置的曲率连续变化的曲线(指从直线上半径无穷大到圆曲线的定值之间曲率半径逐渐变化的过渡段),我国公路缓和曲线的形式采用回旋线。
(曲率为半径的倒数)A1,A2——缓和曲线参数R——圆曲线半径Ls1,Ls2——缓和曲线长度一段完整缓和曲线满足公式:A²=R x Ls1,A²=R x Ls2入缓和曲线:从ZH点到HY点,A固定不变,随着Ls1的增大,半径从∞减小到R出缓和曲线:从YH点到HZ点,A固定不变,随着Ls2的减小,半径从R增大到∞如果A²≠R x Ls,那么这段缓和曲线是不完整的,叫做不完整缓和曲线。
道路工程测量( 圆曲线缓和曲线计算公式)内容:理解线路勘测设计阶段的主要测量工作 (初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。
重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法—难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。
§ 9.1交点转点转角及里程桩的测设一、道路工程测量概述 6 x:分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。
(一)勘测设计测量(route reconnaissance and design survey)分为:初测(preliminary survey) 和定测(location survey)1 、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone)和纵断面图(profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。
2、2、定测内容:在选定设计方案的路线上进行路线中线测量(center line survey) 、测纵断面图(profile) 、横断面图(cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。
公路缓和曲线段原理及缓和曲线计算公式一、缓和曲线缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。
1.缓和曲线的作用1)便于驾驶员操纵方向盘2)乘客的舒适与稳定,减小离心力变化3)满足超高、加宽缓和段的过渡,利于平稳行车4)与圆曲线配合得当,增加线形美观2.缓和曲线的性质为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。
S=A2/ρ(A:与汽车有关的参数)ρ=C/sC=A2由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。
3.回旋线基本方程即用回旋线作为缓和曲线的数学模型。
令:ρ=R,l h=s 则 l h=A2/R4.缓和曲线最小长度缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。
缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。
a1=0,a2=v2/ρ,a s2)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s)3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。
4)从视觉上应有平顺感的要求计算缓和曲线最小长度缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。
《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。
5.直角坐标及要素计算1)回旋线切线角(1)缓和曲线上任意点的切线角缓和曲线上任一点的切线与该缓和曲线起点的切线所成夹角。
βx=s2/2Rl h(2)缓和曲线的总切线角β=l h2)缓和曲线直角坐标任意一点P处取一微分弧段ds,其所对应的中心角为dβxdx=dscosβxdy=dssinβx3)缓和曲线常数(1)主曲线的内移值p及切线增长值q内移值:p=Y h-R(1-cosβh)=l h2/24R切线增长值:q=X h-Rsinβh=l h/2-lh3/240R2(2)缓和曲线的总偏角及总弦长总偏角:βh=l h/2R总弦长:C h=l h-l h3/90R2O为圆曲线的圆心,圆曲线所对圆心角(等于公路偏角)。