视频信号测试与测量
- 格式:docx
- 大小:367.24 KB
- 文档页数:8
电视系统中数字视频信号的监测包头电视台技术中心,内蒙古包头014030摘要随着数字化、网络化技术在广播电视领域的应用,数字电视图像的清晰度、饱和度都有了质的飞跃,对数字电视节目系统图像质量的监测与测量,有利于科学的进行设备选型、系统验收,促进广播电视技术事业的发展。
关键词监测;pluge信号;色域;眼图;抖动中图分类号tn94 文献标识码a 文章编号 1674-6708(2012)61-0169-02数字电视系统运行质量好坏通常有两种方法来进行评估,一种是测量,另一种是监测。
测量可以提供较高精度的评价参数,需要用复杂的测量仪器,测量主要应用在数字电视产品的设计、制造、设备选型、验收测试、系统安装、系统评估等环节,要求提供较高精度的测量参数。
监测主要应用于电视中心系统质量维护,在监测领域,通常只需要对有限的几个关键参数进行连续、实时的评估,对测量参数的精度要求不高。
对于数字电视节目监测离不开监视器,为了使监视器准确重现原图像,需要规范调整。
根据itu bt-818和itu bt-815标准,首先调整监视器的亮度和对比度。
亮度调整是进行黑电平调整,调整亮度电平时,视频信号是在垂直方向整体移动。
一般使用pluge信号中的三电平信号调整亮度,pluge信号中的三电平信号包括-2%黑、0%黑和+2%灰。
将pluge信号输入到监视器的输入端,如果我们从屏幕上看到-2%黑的电平条,说明信号的黑电平有些偏高。
如果从屏幕看不到+2%黑的电平条,表明信号的黑电平有些偏低。
实际上,只要调整到从屏幕上看-2%黑和0%黑两个条相同,同时能够显示出+2%黑的电平条,此时,亮度电平已经调整到适当位置。
其次对比度调整是调整亮度信号的放大量。
将亮度的层次拉开,信号底部的基点是不动的,对比度的调整没有相应的标准,一般根据环境以及人眼的主观感觉调整到一个适当位置。
而颜色调整实际是色度信号幅度的调整,表现在屏幕上就是色彩饱和度的调整。
1.视频信号幅度:标准的视频信号幅度是1Vp-p,由两个测试指标组成:1) 白条幅度(视频电平):700mV2) 同步脉冲幅度:300mV图1 视频信号幅度对视频的影响:l 同步幅度:超出指标值会引起图像扭曲,甚至图像显示无法观看l 白条幅度:超出指标值会造成图像过亮或过暗2.亮度非线性从消隐电平(黑电平)到白电平之间变化的线性度。
5级幅度的阶梯信号(每级140mV)通过被测通道后,计算相应各阶梯幅度值之间的最大差值.图2 亮度非线性计算亮度非线性对视频的影响:l 图象失去灰度,层次减少。
l 分辨率降低,产生色饱和度失真(由于色度信号是叠加在亮度信号上)。
3.K系数把各种波形失真按人眼视觉特性给予不同评价的基础上来度量图象损伤,这里的失真是短时间波形失真。
一般用“2T正弦平方波失真”( K-2T)作为测试指标。
图3 2T脉冲图4 K-2T计算K系数对视频的影响:导致图像出现多轮廓、造成重影,使清晰度下降。
4.微分增益(DG):由图像亮度信号幅度变化引起的色度信号幅度失真。
5级带色度调制的阶梯信号通过被测通道后,计算各阶梯上的色度幅度值之间的最大差值。
图5 DG测试信号调制的五阶梯图6 微分增益(DG)计算微分增益(DG)对视频的影响l 不同亮度背景下的色饱和度失真,影响彩色效果。
比如:穿鲜红衣服从暗处走向亮处,鲜红衣服会变浓或变淡。
5.微分相位(DP):由图像亮度信号幅度变化引起的色度信号相位失真。
5级带色度调制的阶梯信号通过被测通道后,计算各阶梯上的色度副载波的相位角和消隐电平上副载波信号的相位角之差,超前为正。
DP的测试信号与DG相同。
微分相位(DP)对视频的影响在不同亮度背景下,色调产生失真,影响彩色效果。
例如:鲜红衣服从暗处走到明处,鲜红衣服就偏黄或偏紫。
6.色度/亮度增益差把一个具有规定的亮度和色度分量幅度的测试信号通过被测通道,输出端信号中亮度分量和色度分量幅度比的改变称色度/亮度增益差。
1. SDI信号质量标准与测试诊断方法2014-10-16 15:12:18 编辑:烦高来源:数字音视工程网在高速SDI信号的传输和转换过程中,由于硬件设备的性能及安装水平的不同,导致SDI信号质量下降,造成高清视频信号接收错误。
通常需要对SDI信号进行测试,并根...在高速SDI信号的传输和转换过程中,由于硬件设备的性能及安装水平的不同,导致SDI信号质量下降,造成高清视频信号接收错误。
通常需要对SDI信号进行测试,并根据测试结果判断可能出现问题的原因,从而保证高清系统中每条链路的性能。
在SDI信号出现之前,高清视频信号采用模拟信号进行传输。
模拟信号在传输和转换过程中非常容易出现质量下降,通常采用高速示波器进行波形采样测试。
通常需要测试的指标有色条幅度、同步振幅和时间、噪声、频率响应、多波群、非线性度、通道延时、瞬时特性等。
图1 模拟视频信号测试波形而SDI信号采用模数转换和高速串行编码技术,使用一根同轴电缆即可传输所有数字视频及音频信息。
图2 SDI信号生成原理简图由于SDI为数字信号,信号的生成原理和特性不同于模拟视频信号,因此SDI信号测试内容的关注点和模拟视频信号测试基本不同。
如下所示为SDI信号的几个关键特性:电平幅度、抖动、上升/下降时间、单元间隔(周期)。
图3 SDI数字信号特性按照SMPTE 259M、SMPTE 292M、SMPTE424M的规定,SD-SDI、HD-SDI、3G-SDI信号质量标准(包含幅度、过冲、上升/下降时间、抖动时间、抖动排列等)各不相同。
而且,HD-SDI 和3G-SDI高速信号对上升/下降时间的要求达到了几十到几百ps量级。
图4 各种SDI信号质量标准以上几个指标一般通过波形测试仪器的眼图和抖动显示工具来测试。
1.眼图及抖动测试眼图及抖动波形是两个用于SDI测试的重要工具。
图5 眼图测试专用测试仪眼图工具可以自动测试眼幅度、眼上升/下降时间、眼上升/下降时间差、眼上升/下降过冲、峰峰值抖动、电平幅度等。
图2. 100%白电平测试信号频输出电平;2.水平清晰度;3.亮度通道带宽; 4亮度非线形失真;5.亮度波形失真;6亮度性噪比;7.色度幅频响应;8.色度信噪比;9.亮度时延差; 10.微分增益和微分相位。
a.进入(PAL制视频输出电平)——(100%白电平),设Repeat-1。
b.Measure——Level meter——Measure Positionc.调节pos.(a)和pos.(b)的位置,可分别读出Out amplitude、White bar、Sync. Amplitude和Burst Amplitude.2.水平清晰度DVD测试盘DVD视盘机电视机图3 水平清晰度测试方框图定义:沿水平方向人眼所能分辨的屏幕图象的最大线数。
使用器材:电视机或监视器使用测试信号:Mono scope测试步骤:a.进入(PAL制水平清晰度)——(Mono Scope)b.从电视机或监视器直接读出水平清晰度线数。
3.亮度信噪比(S/N Luminance)DVD测试盘DVD视盘机视频测试仪图4. 亮度信噪比测试方框图定义:在亮度信号的平坦部分输出电平对有效噪声电平之比。
对图象的影响:多噪声的影响,通常看起来模糊或是呈雪花状的斑点,彩色部分则呈现开花状的现象。
严重具有噪声的信号,可能导致设备对的无法同步且信号会极度模糊及失去其应有的解析度。
使用测试信号:亮度线性斜波 / 亮度线性小斜波 / White 100% / 50%灰电平测试步骤(track45):a.进入(6亮度信噪比)——(100%白电平).设Repeat-1.(以100%白电平为例)b.Measure——Noise spectrum——menu——Filters selection——high pass 100KHz+low pass 5.0MHz+Fsc. Trap Filter.c.亮度线性斜波和亮度线性小斜波必须另外选择Tilt Null.而100%白电平和50%灰电平不选择Tilt Null.d.测量时分为加权(unified weighting)和不加权两种,根据要求测量.e.可以读出亮度信噪比Noise level.4.色度信噪比(S/N Chroma)DVD测试盘DVD视盘机视频测试仪图5. 色度信噪比测试方框图色度信噪比(S/N)分为调幅(AM)色度信噪比(参考信号电平对调幅噪声分量之比)和调相(PM)色度信噪比(参考信号电平对调相噪声分量之比).参考信号电平是对应于复合视频信号中100%调度的色度信号的电压V ref(c)°使用测试信号:100%全红信号.测试步骤(track47):a.进入(PAL制色度信噪比)——100%全红信号。
视频监控系统无线传输设备射频技术指标与测试1 范围本标准规定了工作在336MHz~344MHz或1785MHz~1805MHz频段视频监控系统无线传输设备的主要射频技术参数、限值要求和测试方法。
本标准适用于工作在336MHz~344MHz或1785MHz~1805MHz频段视频监控系统中的无线传输设备,包括基站、中继台和便携台等设备。
2 技术要求2.1 通用技术要求2.1.1 工作频率2.1.1.1 概述视频监控系统无线传输设备的用户应按照国家无线电管理部门的相关规定申请台站执照,并按照执照中指配的工作信道使用,不可随意更改工作信道。
2.1.1.2 336MHz~344MHz频段视频监控系统无线传输设备336MHz~344MHz频段视频监控系统无线传输设备的信道间隔为2MHz。
336MHz~344MHz频段视频监控系统无线传输设备的中心频率可由公式(1)得出: (1)f=N+2337⨯c式中:f——设备工作中心频率,单位为MHz;cN——整数,取值范围0~3。
2.1.1.3 1785MHz~1805MHz频段视频监控系统无线传输设备1785MHz~1805MHz频段视频监控系统无线设备可使用250kHz或者500kHz信道间隔。
基站和终端设备允许多信道合并使用,基站最大允许使用5MHz,终端类设备最大允许使用1MHz。
当信道间隔为250kHz时,其设备工作中心频率见公式(2):+=)f+(N.01785⨯125125. (2)c式中:f——设备工作中心频率,单位为MHz;cN——整数,取值范围1~80。
当信道间隔为500kHz时,其设备工作中心频率见公式(3):=)++f(N11785⨯5.0125. (3)c式中:f——设备工作中心频率,单位为MHz;cN——整数,取值范围1~40。
2.1.2 天线端口视频监控无线传输设备的天线端口分别开路、短路3min后,其射频性能不变。
视频监控无线传输设备天线端口阻抗为50 。
卫星数字电视接收器测量方法介绍卫星数字电视接收器是一种广泛应用于民用和商用领域的设备,用于接收卫星信号并将其转换为可视化的视频和音频信号。
为了确保卫星数字电视接收器的质量和性能达到预期,需要进行测量和测试。
本文将介绍卫星数字电视接收器的测量方法,包括信号质量测量、频谱分析、误码率测试等。
信号质量测量卫星数字电视接收器的一个重要测量参数是信号质量。
信号质量可以用于评估接收器的性能,并确定信号是否足够强以提供高质量的视频和音频输出。
一种常见的信号质量测量方法是测量信号的信噪比(SNR)。
以下是一种基本的测量步骤:1.连接卫星数字电视接收器到卫星天线,并确保天线对准卫星。
2.打开接收器,并选择一个需要测试的频道。
3.使用信号质量测量功能来测量信号的信噪比。
该功能通常可以通过接收器的菜单选项访问。
信噪比测量结果通常以分贝(dB)为单位,较高的值表示较好的信号质量。
另外,还可以使用误码率(BER)测量来评估信号质量。
误码率是在数字通信中评估信号误差的一种指标。
较低的误码率表示较好的信号质量。
误码率测试通常需要使用特定的测试设备。
频谱分析频谱分析是另一种重要的卫星数字电视接收器测量方法。
频谱分析用于确定信号的频率构成和幅度分布,以帮助识别潜在的问题和干扰。
以下是一个常见的频谱分析步骤:1.连接卫星数字电视接收器到频谱分析仪或频谱分析软件。
2.打开接收器,并选择一个需要分析的频道。
3.启动频谱分析仪或软件,并将其设置为正确的频率范围和分辨率带宽。
4.分析仪或软件将显示接收到的信号的频率构成和幅度分布。
通过观察频谱分析结果,可以检测到可能存在的干扰或频率偏移等问题。
误码率测试误码率(BER)测试是评估卫星数字电视接收器性能的重要方法之一。
误码率是指单位时间内传输的错误比特数与总传输比特数之比。
误码率的测量可以帮助评估信号传输质量,并确定在不同条件下接收器的性能。
以下是一种常见的误码率测试方法:1.使用误码率测试设备连接到卫星数字电视接收器的输出端口。
1. 理解复合视频信号
复合视频信号是所有需要生成视频信号的成分组合在同一信号中的信号。
构成复合信号的三个主要成分如下:
● 亮度信号——包含视频图像的强度(亮度或暗度)信息
● 色彩信号——包含视频图像的色彩信息
● 同步信号——控制在电视显示屏等显示器上信号的扫描
单色复合信号是由两个成分组成的:亮度和同步。
图1显示了这个信号(通常成为Y信号)。
图1:单色复合视频信号(亮度从白过渡到黑)
色彩信号通常被称为C信号,在图2中示出。
图2:彩色条的色彩信息信号(包括颜色突发)
复合彩色视频信号通常成为彩色视频、消隐与同步(CVBS)信号示Y与C之和,如图3所示。
CVBS = Y + C
图3:彩色条的彩色复合视频信号两个组成部分Y与C可以作为两个独立信号分开传输。
这两个信号合称为Y/C或S视频。
2. 视频信号组成
单一水平视频行信号由水平同步信号、后沿、活动象素场以及前沿组成,如图4所示。
图4:视频信号组成
水平同步(HSYNC)信号示每条新的视频行的开始。
其后是后沿,用来作为从浮地(交流耦合)视频信号去除直流分量的参考电平。
这是通过单色信号的钳制间隔实现的,它出现在后沿中。
对于合成彩色信号,钳制发生在水平同步脉冲中,由于大部分后沿用于色彩突发,它提供了信号色彩成分解码信息。
在MAX帮助中,视频信号的所有设置参数都有较清楚的描述。
色彩信息可以包含在单色视频信号中。
复合色彩信号包含标准单色信号(RS-170或CCIR),并加入了以下成分:
● 色彩突发:位于后沿,这是提供后续色彩信息相位和幅值参考的高频场。
● 色彩信号:这是实际的色彩信息。
它由两个以色彩突发频率调制到载波的象限成分组成。
这些组成部分的相位和幅值决定了每个象素的色彩内容。
视频信号的另一方面是垂直同步(VSYNC)脉冲。
这实际上是在场之间发生的脉冲序列,用于通知显示器,完成垂直重跟踪,准备扫描下一场。
在每个场中都有几行是不包含活动视频信息的。
有些只包含HSYNC脉冲,而其他包含均衡与VSYNC脉冲序列。
这些脉冲是在早期的广播电视中定义的,所以从那以后构成了标准的一部分,虽然之后的硬件技术能够避免部分附加脉冲的使用。
在图5中给出了复合RS-170交叉信号,其中包括垂直同步脉冲,为了简单起见,下面给出了一个6行帧:
图5:VSYNC脉冲
应当理解对于从模拟相机得到的图片,其垂直尺寸(以象素为单位)是由帧接收器对水平视频行采样的速率所决定的。
而这个速率是由垂直行速率合相机的体系结构所决定的。
相机CCD阵列的结构决定了每个象素的大小。
为了避免图像失真,您必须对水平方向,以一定速率进行采样,将水平的活动视频场分割为正确的象素点数。
下面是RS-170标准的实例:
感兴趣参数:
● 行/帧数:525(其中包括用于显示的485线;其余是每两个场之间的VSYNC行)
● 行频率:15.734 kHz
● 行持续时间:63.556微秒
● 活动水平持续时间:52.66微秒
● 活动象素/行数:640
现在,我们可以进行一些计算:
● 象素时钟频率(每个象素达到帧接收器的频率):640象素/行/ 52.66 e-6 秒/行= 12.15 e6 象素/行(12.15 MHz)
● 活动视频的象素行长度+ 定时信息(称为HCOUNT):63.556 e-6 秒* 12.15 e6 象素/秒= 772 象素/行
● 帧率:15.734 e3 行/秒/ 525 行/帧= 30 帧/秒
3. 不同的视频格式
以下表格描述了常用标准模拟视频格式的一些特征:
NTSC:美国国家电视标准委员会
PAL:逐行倒相
SECAM: Systeme Electronic Pour Coleur Avec Memoire
4. 彩色编码
对于所有的PAL和NTSC格式而言,编码是基于正交调幅(QAM)概念的,其中将两个彩色成分通过象限幅度调制之后,合并在一起。
调制必须经过解码,因此跟踪绝对相位需要对彩色信息进行解码。
称为彩色突发的参考信号被插入到每行的开始处,它位于水平同步脉冲之后(参阅上述图3与图4)。
对于所有的SECAM格式,两个彩色成分使用两个不同的子载波频率进行频率调制,之后顺序分步在不同的视频行上。
SECAM格式不需要彩色突发信号。
5. 视频信号电平
视频信号电平定义了视频信号不同部分的电平和范围。
用于定义视频信号电平的组织是IRE (无线电工程师协会)。
消隐电平对应0 IRE,白色电平对应+ 100 IRE。
消隐电平是视频信号的参考级别(通常为0 V),如下面的图6所示,如果对信号进行一定的设置,消隐电平和白色电平是不同的。
图6:视频信号电平
对于NTSC而言,通常应用7.5 IRE设置,将黑色电平提高为+ 7.5 IRE。
对于PAL和SECAM,黑色电平与消隐电平一致,均为0 IRE。
下表根据视频格式显示了不同的视频信号电平。
模拟合成视频信号使用75 Ω的输出阻抗定义为电压源。
当带75 Ω阻抗的负载时,白色电平同步通常为1 V峰峰值。
因此,无负载信号名义上为2 V峰峰值。
6. 隔行扫描概念
所有复合视频系统使用隔行扫描技术在电视屏幕上显示视频图像。
图7显示了隔行扫描概念。
图7:电视屏幕上的隔行扫描
模拟视频信号包含控制扫描从左到右逐行以及从上到下逐场进行扫描。
控制逐行扫描的脉冲称为水平同步脉冲(H-Sync)。
控制垂直扫描的脉冲称为垂直同步脉冲(V-Sync)。
两个交叉场合成一个完整帧。
第一个场称为奇数场,对视频图像的奇数行进行扫描。
第二个场称为偶数场,对视频图像的偶数行进行扫描。
整个过程对每帧进行重复。
7. 活动图像
扫描得到的活动视频图像总是具有4/3的尺寸比例(水平/垂直),它与视频格式无关。
彩色复合视频信号表明扫描过程要求在每行的左侧和右侧需要一些附加空间,在活动视频图像场的顶部和底部也同样如此。
这个额外的空间包含同步信号、彩色突发以及其他例如ITS 等格式特定的信息,这并不是活动视频图像的一部分。
大约所有行的90%以及每行的80%都能够传送活动图像信息。
如下表所示,精确的数值依赖于视频格式。
活动行代表了实际用于传送图像和信息的行数。
举例而言,在NTSC中,每帧的525行中只有480行是传送图像信息的。
同样,在每行中,只有在活动行序列中才传送图像信息,这比整行的持续时间短。
举例而言,在NTSC中,63.55 μs中只有52.2μs是活动行持续时间。
帧速率是扫描速度。
8. 灰度图像和提取线谱轮廓
假设以下条件满足,下一小节中的完整NTSC帧扫描图像对在电视屏幕上可能出现的视频显示进行了模拟:
● 电视能够显示整条线,而不仅仅是活动图像部分。
● 电视并非将两个场进行隔行扫描得到完整的图像帧,而是对整个帧逐行扫描。
扫描从代表偶数场垂直同步模式的几行开始扫描(从上到下逐行)。
在偶数场的垂直同步模式之后插入可选的测试信号(ITS)。
最后显示实际的奇数场活动图像。
这个过程对偶数场重复,构成完整的帧。
说明:大多数行从水平同步脉冲开始,随后是色彩突发模式信号。
之后的活动图像(或ITS)显示强度变化,其中较高的信号电平代表更高的亮度。
位于图8和图9底部的提取谱线轮廓显示了从偶数场提取的活动视频信号行。
关于视频电平的更多信息,等参阅之前的视频信号小节。
水平同步脉冲一般是简单的负脉冲,这些脉冲电平低于亮度信号电平。
但是,垂直同步信号由分步在多行上的脉冲序列构成,脉冲序列对于奇数场和偶数场而言是不同的。
图8和图9显示了用于两种场和三种主要视频格式的垂直同步模式。
图8:用于NTSC的场消隐与同步信号
图9:用于PAL和SECAM的场消隐与同步信号
9. 完整的NTSC帧扫描
图10显示了对构成完整NTSC帧的525行进行扫描的结果。
图10:完整的NTSC帧扫描
图10是一个灰度图像,由于它代表了原始NTSC视频波形的强度图。
色彩信息嵌入到这个波形中,还没有进行编码。
您可以看到左边的信号色彩突发。
点状模式代表了正弦节拍的强度图,构成色彩突发波形。
在解码之后,色彩突发看上去像是单色的表面(如果在电视显示器上可见)。