离心式空气压缩机的常见故障及检修
- 格式:doc
- 大小:15.75 MB
- 文档页数:8
离心式空气压缩机运行中的主要故障及检修技术分析摘要:随着科技的进步,离心空压机在国内得到了广泛的应用。
空压机的工作受各种因素的影响,有时会发生故障,从而使压缩机不能正常工作。
为此,本文对化工企业离心压缩机在使用过程中出现的常见故障进行了分析,并根据实际情况,给出了相应的维修方法。
关键词:离心式压缩机;主要故障;检修技术引言:离心空压机在工业上应用最为广泛。
当压气机运转时,由于叶轮的高速转动,气体在扩压器流道内分散,增加了气压。
由于压缩空气管道中没有任何润滑部件,所以它的气体供给质量很高,但是一旦设备自身发生故障,将会使其脱离计算机的智能控制,从而导致很大的损失。
因此,文章对离心空压机在运行中经常出现的问题进行了分析。
1.1离心式空气压缩机的原理及其特点1.1离心式空气压缩机的特点我国工业生产的自动化程度不断提高,空压机的使用率不断提高,空压机作为一种工业能源的控制装置,其作用就是把发动机所发出的电力转换成气压,保证装置的正常工作。
根据内部结构的不同,可以分为封闭式、固定式和移动式。
离心空压机通过对压缩机的内部结构进行了优化和改进,使得空压机在高速运转时,内部压力不会发生很大的改变,从而减小了压缩机的机械损耗,提高了转速,降低了故障率。
1.2离心式空气压缩机的原理离心压气机的工作原理是由高速气流引起的离心力引起的。
由于气流速度较快,产生了离心力,因此,由于离心压气机的工作压力和叶轮的旋转速度,从而提高了空气的流速和离心力。
与传统的空压机相比,离心空压机在内部结构上有了较大的改进,从总体设计和使用者的角度来看,它更有利于其它装置的平稳运转。
在离心压气机中,一般采用一至二个叶片,两个叶片并排设置,以达到最大气压,加速气流进入压气机,改善压气机的气动性能。
2.离心式空压机在运行中的主要故障及检修2.1轴承温度2.1.1故障问题轴承是离心空压机的重要组成部分,它直接影响到整个机组能否正常运转,并保证它在长时间的高强度工作中的寿命。
离心式压缩机常见故障原因离心式压缩机是一种常见的压缩机类型,用于将气体或蒸汽压缩到更高的压力。
尽管离心式压缩机具有高效、可靠的特点,但仍然存在一些常见的故障原因。
以下是一些常见的故障原因及其解决方法。
1. 润滑不足:离心式压缩机的润滑系统是保持运行正常的重要组成部分。
润滑不足可能导致摩擦增加,引起设备过热、噪音增加等问题。
解决方法是定期检查润滑系统,确保油液充足并且油滤器清洁。
2. 异常振动:离心式压缩机在运行过程中会产生一定的振动,但如果振动过大,则可能是由于不平衡或松动的零部件等问题引起的。
解决方法是检查和修复不平衡的零部件、紧固松动的螺栓等。
3. 过热:离心式压缩机在运行过程中会产生热量,但如果温度过高,则可能是由于冷却系统故障、油液问题或过载等原因引起的。
解决方法是检查和维修冷却系统、更换油液、减少负载等。
4. 噪音过大:离心式压缩机在运行过程中会产生一定的噪音,但如果噪音异常大,则可能是由于不平衡的旋转部件、松动的零部件等问题引起的。
解决方法是检查和平衡旋转部件、紧固松动的零部件等。
5. 泄漏:离心式压缩机可能存在气体或液体泄漏的问题,这可能导致压力不稳定、能效降低等问题。
解决方法是定期检查和修复密封件、管道连接等并确保压力稳定。
6. 过载:离心式压缩机在运行过程中可能会遇到过载问题,这可能导致电机过热、设备损坏等。
解决方法是检查负载情况并根据需要调整工作条件。
7. 轴承故障:离心式压缩机的轴承是支持旋转部件的关键组成部分,如果轴承出现故障,则可能导致设备无法正常运行。
解决方法是定期检查和保养轴承,并及时更换损坏的轴承。
8. 控制系统故障:离心式压缩机的控制系统可能会出现故障,这可能导致设备无法正常启动、停止或调节。
解决方法是检查和修复控制系统,确保电气元件和连接可靠。
总结起来,离心式压缩机的常见故障原因包括润滑不足、异常振动、过热、噪音过大、泄漏、过载、轴承故障和控制系统故障等。
针对这些故障,我们可以采取相应的解决方法来修复设备并保证压缩机的正常运行。
离心式压缩机运行中常见的故障及检修分析摘要:本文主要通过对压缩机的原理的简介以及在运行时常见的一些故障进行分析及给出了相应的检修处理对策,并简要分析了压缩机主轴和叶轮的检修。
关键词:压缩机;运行;故障;检修1 离心式压缩机的工作原理离心式制冷压缩机有单级、双级和多级等多种结构型式。
单级压缩机主要由吸气室、叶轮、扩压器、蜗壳等组成。
对于多级压缩机,还设有弯道和回流器等部件。
多级离心式制冷压缩机的中间级。
级数较多的离心式制冷压缩机中可分为几段,每段包括一到几级。
离心式制冷压缩机的工作原理如下:气体在压缩机中通过高速的叶轮转动对其做功,使其压力和动能急剧增高,从而使得气体的流速和压力得到了提高。
然后大部分气体动能转变为压力能,压力进一步提高。
而多级离心式制冷压缩机不同的是其利用回流器和弯道将气体导入下一级叶轮进行升压。
2 离心式压缩机运行中常见的故障分析2.1压缩机漏气发生漏气主要密封系统出现的故障,主要有以下几方面现象:2.1.1沉积夹杂物时。
应保持气体纯洁,通流部分和气缸内有沉积物时应尽早清除。
2.1.2检查发现应力腐蚀和化学腐蚀密封系统工作不良时。
为防止发生应力集中,防止有害成分进入压缩机,做好压缩机的防腐措施。
检查密封系统各元件,查出原因及时解决。
2.1.3对于O形密封环不良工作失效时。
要及时检查各O形环,如发现不良和老化应更换。
2.1.4气缸或管接头漏气。
此时需要检查气缸接合面和各法兰接头,发现漏气及时采取措施,可通过热紧固或者停机检修处理。
2.1.5密封胶有失效的现象时。
首先要对气缸中分面的密封胶及填料进行检查,再对其他部位的结合面以及有密封胶的地方进行检查,发现失效应及时更换。
2.1.6密封环破损、腐蚀、断裂、磨损。
检查各密封环;发现断裂、破损、磨损和腐蚀应查明原因,并灰时修复或更换2.2油滤器压差高发生油滤器压差高主要有以下原因:2.2.1过滤器滤芯长期未更换,太脏。
可通过更换油滤器滤芯来消除油滤器压差高。
离心压缩机在运行中的故障分析及检修技术摘要:离心压缩机是一种高速空压机,使用范围较广。
离心压气机在维修和管理中具有较为显著的特点,即其主要气流沿径向运动。
本文通过简述离心压气机的工作原理,探究了它在使用过程中的常见故障和维修方法,以期为相关研究提供借鉴。
关键词:离心压缩机;故障分析;检修技术一、离心压缩机工作原理及优缺点(一)离心压缩机工作原理离心压缩机包括主机,冷却液,油站,电动机等部件。
机组存在较多质量控制点,机组水平,旋转件平衡水平,支撑轴承接品质等状况均由压缩机机组掌控,而这些零件是否正常运行决定着离心压缩机总体运作等级。
离心压缩机原理为电动机驱动压缩机主轴叶轮旋转,压缩机内部气体受离心力作用压缩进入扩散器,且此时工作轮中部形成一气流较稀的区域,叶轮内不断有新气涌入,确保气压机内的气能够持续流动,由于离心力的影响,压力升高在扩压器转速下降后,得到进一步提升,以满足生产工作需要。
在多级叶轮的串联作用下,还可以进一步改善其内部的压力[1]。
(二)离心压缩机的优缺点离心压缩机作为一种重要的机械设备,已在炼油、化工等行业得到广泛的应用。
尤其是多油楔轴承、小流量窄叶轮加工、高压密封等工艺的突破,使得离心压缩机的流量和压力都有了很大的提高,其应用领域也得到了进一步的拓展,在某种程度上可以替代往复压缩机。
离心压缩机占地面积小,重量轻,结构紧凑,气量大。
其工作效率高,操作可靠,摩擦件减少,零件数量减少,操作中的人力成本和维修成本低。
二、离心式压缩机故障诊断及检修的重要性离心压缩机的故障诊断和维修是非常关键的。
通过对离心压缩机的故障诊断与维修,可以极大地保障机组的正常运转。
随着全球一体化的不断深化,石油化工产业的发展与全球经济的关系日益密切,企业面临的挑战和机会也越来越多。
在石油化工行业,压缩机设备是不可或缺的,它直接关系到石油化工的生产是否能够获得良好的经济效益。
当前市场上的压缩机品种和性能都很丰富,而我国的压气机在效率和生产能力方面仍处于较低水平。
离心式制冷压缩机的常见故障及处理方法1.压缩机不运转或运转困难原因:供电故障、电机故障、控制回路故障、传动系统故障等。
处理方法:检查供电是否正常,检修电机、控制回路和传动系统,确保各部件正常工作。
2.压缩机运转时出现异常噪音原因:轴承磨损、传动系统松动、腔体内部积碳等。
处理方法:更换损坏的轴承,调整传动系统,清洗腔体内部附着物。
3.压缩机振动较大原因:传动系统不平衡、轴承松动、不平衡的叶轮等。
处理方法:调整传动系统,加固轴承连接处,平衡叶轮。
4.压缩机过热原因:过大的负载、冷却系统故障、压缩机内部的灰尘积聚等。
处理方法:检查负载是否过大,修复冷却系统,清洁压缩机内部。
5.压缩机漏油原因:密封件老化、损坏或接口松动、腔体内部油泵故障等。
处理方法:更换密封件,紧固接口,修复或更换油泵。
6.压缩机冷却不良原因:冷却系统堵塞、冷却效果差、冷却水循环故障等。
处理方法:清洗冷却系统,检查冷却水的循环情况,确保冷却效果正常。
7.压缩机过载原因:供电电压不稳定、冷却系统故障、管道阻塞等。
处理方法:稳定供电电压,修复冷却系统,清洁管道。
8.压缩机启动困难原因:电源故障、冷却系统故障、传动系统故障等。
处理方法:检查电源情况,修复冷却系统,调整传动系统,确保正常启动。
9.压缩机油泵故障原因:油泵磨损、堵塞或堵塞、加油泵不适当等。
处理方法:更换磨损的油泵,清洁堵塞的油泵,确保加油泵正常工作。
总结起来,离心式制冷压缩机的常见故障包括压缩机不运转、异常噪音、振动较大、过热、漏油、冷却不良、过载、启动困难和油泵故障等。
处理这些故障需要根据具体情况进行相应的检修、清洗、更换和调整等操作。
及时发现并解决这些故障,可保障离心式制冷压缩机的正常运行,并确保制冷系统的高效运作。
压缩机常见故障分析及处理方法故障现象故障原因处理方法压缩机异常振动1.机组不对中 1.重新对中,消除管道外力的影响,必要时进行热态对中检查2.压缩机转子不平衡 2.检查转子弯曲度及是否结垢或破损,如有必要应对转子重新进行平衡3.轴承不正常 3.检查并修复轴承消除半速涡动因素4.联轴器故障或不平衡 4.检查修复或更换联轴器,进行平衡5.动静部分摩擦,基础不均匀下沉或机座变形5.调整安装间隙或更换超差件,消除机座变形,加固基础6.油压、油温不正常 6.检查各润滑点油压,油温及油系统工作情况,找出异常原因设法解决7.压缩机喘振7.检查压缩机运行时是否远离喘振点,防喘裕度是否正确,气体纯度是否降低,根据原因按操作法规定进行处理消除8.气体带液或杂物浸入8.消除带液和清除杂物9.轴颈测振部位的机械跳动和电跳动过大9.消除轴颈部位的机械和电磁偏差10.转子热弯曲10.修复或更换转子11.转子有裂纹11.修复或更换转子压缩机管线异常振动1.管道应力过大 1.消除管道应力2.压缩机气流激振 2.调整工艺参数,消除气流激振3.管线支撑设计不当 3.重新复核压缩机管线支撑压缩机轴向推力过大及轴位移增加1.级间密封损坏或磨损,造成密封间隙增大1.更换密封2.齿式或膜片式联轴器齿面或磨损磨损2.修复或更换联轴器及其余部件3.压缩机喘振或气流不稳定3.及时调整工艺参数,使压缩机运行稳定4.推力盘端面跳动大,止推轴承座变形大4.更换推力盘或轴承座5.轴位移探头零位不正确,探头特性不好5.校核探头,重新校对探头零位6.油温、油压波动 6.调整油温、油压7.止推轴承损坏7.更换止推轴承压缩机轴承温度升高1.温度计安装不当或热电偶损坏1.检查测温套的安装情况,校准温度计,更换或修复热电偶及其余测温元件2.供油温度高或油质不符合要求2.检查冷却水的压力和流量,投用备用冷却器或更换补充新油3.润滑油量减小或油压低3.1检查油的粘度、含水量和抗乳化度等3.2检查油箱的油位及泵工作情况3.3检查润滑油过滤器前后的压差,投用备用过滤器或清洗3.4检查油系统阀门开度和漏油情况4.轴承损坏 4.检查修理或更换轴承5.轴向推力增大或止推轴承组装不当5.检查压缩机转子及密封情况,调整间隙,检查止推轴承,消除缺陷,消除压缩气体带液现象6.压缩机气封漏气 6.调整气封间隙或更换气封压缩机径向轴承故障1.润滑不正常 1.确保使用合格的润滑油2.压缩机不对中 2.检查对中情况,必要时进行调整3.轴承间隙不符合要求 3.检查间隙,必要时进行调整或更换轴承4.压缩机或联轴器不平衡4.检查压缩机转子组件和联轴器,看是否有污物附着或转子组件缺损,必要时转子应重新找平衡压缩机推力轴承故障1.轴向推力过大 1.1检查止推轴承间隙1.2检查气体进出口压差,必要时检查内部密封环间隙数据是否超标1.3检查段间平衡盘密封环间隙是否超标2.润滑不正常 2.1检查油泵、油过滤器和油冷器2.2检查油温、油压和油量,2.3检查油的品质压缩机喘振1.运行点落入喘振区或距喘振边界太近1.检查运行点在压缩机特性线上位置,如距喘振边界太近或落入喘振区,应及时调整运行工况,消除喘振2.防喘裕度整定不当 2.改变自控系统整定值3.吸入流量不足 3.检查进气阀门开度,消除进气通道阻塞,投入防喘振自控,流量过低时应停机4.压缩机出口压力过高 4.压缩机减速停机时气体未放空或回流,出口止逆阀失灵或不严密,气体倒灌,应查明原因并采取措施5.工况变化时放空阀回流阀未及时打开5.进口流量减少或转速变化时应及时打开防喘振放空阀或回流阀门6.防喘装置未投自动 6.正常运行防喘装置应投自动7.防喘装置或机构工作失准或失灵7.定期检查防喘装置的工作情况,如发现失灵、失准或卡涩、动作滞后等,应及时解决8.升速升压过快8.升速升压应缓慢均匀9.降速未先降压9.降速之前应先降压,以免发生喘振10.气体性质改变或气体状态严重改变10.调整工艺参数在设计要求范围内11.级间内漏量增大11.更换级间密封12.气体分子量发生变化12.调整混合气体比例到要求范围内压缩机轴端及密封面泄漏1.轴端梳齿气封损坏 1.修复或更换梳齿气封2.缸体配合处密封圈损坏2.更换密封圈3.油压过高 3.调整油压到要求范围内4.油封损坏 4.更换油封5.压缩机内泄漏加大 5.更换或修复级间气封6.密封环精度不够 6.检查密封环,必要时应修理或更换7.密封油品质和油温不7.检查密封油质、指标不符应更换,检查密封油温,并符合要求进行调整8.油气压差系统工作不良8.检查密封气压力及线路,并调整到规定值;检查压差系统各元件工作情况9.密封部分磨损或损坏9.拆下密封后重新调整间隙组装;按规定进行修理或更换10.浮环座的端面有缺口或密封面磨损10.消除吸入损伤、减少磨损,必要时进行更换新件11.浮环座的接触磨损不均匀11.应研磨、修正接触面或更换新备件12.密封环断裂或破坏12.可能组装时造成损伤,组装应注意;尽量减少空负荷运转;不能修复时更换13.密封面、密封件、O型环被腐蚀13.分析气体性质,更换部件材质或更换新件14.因低温部分操作密封部分结冰14.消除结冰,或用于干燥氮气净化密封大气15.计量仪表工作误差15.检查系统的测量仪表,发现失准时检修或更换压缩机进出口法兰泄漏1.进口法兰垫子损坏 1.更换垫子2.出口法兰垫子损坏 2.更换垫子3.进口密封面磨损 3.修复密封面4.出口密封面磨损 4.修复密封面5.进口管道应力过大,法兰变形5.消除管道应力6.出口管道应力过大,法兰变形6.消除管道应力压缩机油封泄漏1.油封间隙超标 1.更换油封2.油封回油孔堵塞 2.疏通回油孔3.油封梳齿磨损 3.修复密封部位或改变轴向密封位4.上下油封不同心 4.重新装配油封5.装配有误 5.按正确方法装配6.油压过高 6.其他操作7.不对中和振动7.消除不对中和振动8.排油烟风机运转故障8.检查排油烟风机运转情况,清洗油雾分离器滤芯压缩机电机超负荷1.电气方面存在问题1.检查断路器的动作情况;检查电压是否降低;检查各相电流差是否在3%以内;2.与叶轮相的邻扩压器表面腐蚀,扩压度降低2.检查扩压器各流道,如有腐蚀应改善材质或提高表面硬度;清扫表面,使表面光滑;如叶轮与扩压器相碰或扩压器变形,视情况修复或更换3.叶轮或扩压器变形 3.修复或更换变形叶轮或扩压器4.转动部分与静止部分相碰4.检查各部间隙,不符合要求则必需调整和更换5.吸入压力高 5.与设计数据对照,找出原因,并解决润滑油变色1.润滑油乳化 1.更换润滑油2.油温过高2.1加强冷却效果、2.2改进润滑方式、2.3油泵装配间隙不合3.机械杂质过多3.1置换润滑油3.2检查轴承系统,更换磨损件4.润滑油选用不对 4.更换润滑油润滑油压异常1.连接部位泄漏 1.消除泄漏2.调压阀损坏 2.更换调压阀3.油泵打不起压 3.修理油泵4.油过滤器堵塞 4.更换或者清洗油过滤器5.压力表显示不准 5.更换压力表6.回油不畅 6.检查疏通回油管线7.轴承座中分面泄漏7.消除泄漏压缩机联轴器故障1.膜片损坏 1.更换膜片2.连接件螺栓松动,磨损2.紧固连接件或更换3.联轴器护罩碰擦 3.调整护罩位置适合4.润滑油变质或量少 4.更换或添加润滑脂5.联轴器护罩碰擦 5.调整护罩位置适合6.联轴器护罩中封面漏油6.重涂密封胶或者更换密封条级间冷却器漏1.冷却器腐蚀及磨损1.检查冷却水水质看是否被污染,或者使用了不适当的水作为冷却水2.冷却器破裂2.1检查管子固定是否稳妥,固定部分有无损坏,及时更换2.2检查冷却水水压是否在设计值范围内,及时调整3.安装操作不当3.1检查内管是否胀紧3.2检查法兰面是否平整,连接是否正常3.3检查垫片材料是否合格,有无破裂,及时更换。
离心式压缩机的常见故障及排除摘要:离心式压缩机在冶金、划分、石油及航空港天等方面应用广泛,具有重要作用,离心式压缩机的安全、稳定运行非常重要,但其运行过程中常见较多故障而对正常生产带来严重负面影响。
探讨了离心式压缩机的常见故障,分析其原因并探讨了相关排除方法,为离心式压缩机安全、稳定运行提供保障。
关键词:离心式压缩机;润滑油;轴承离心式压缩机的压力强、流量大,其运行是否稳定对企业的安全及生产效益具有重要影响。
受到设计、装配及运行等多方面的影响,离心式压缩机运行过程中容易出现故障,现对离心式压缩机的故障及故障排除策略探讨如下。
一、离心式压缩机故障1、转子不平衡受到加工技术及材料质量的影响,旋转机械的转子质量不可能绝对轴对称分布,因此现实中没有转子是绝对平衡的,这也就造成转子旋转式存在离心力干扰,造成轴承产生动载荷而引起机器振动。
转子不平衡的原因较多,涵盖设计、材料、加工及装配、工艺问题等。
不平衡振动类型包括固有不平衡、转子飞缺、转子临时或永久弯曲、轴上零部件松动、固体杂质沉积或冲蚀等。
2、转子不对中转子不对中可划分为组合不对中、角度不对中及平行不对中三种。
转子不对中所引起故障的特征包括:造成轴承油膜压力改变,轴承较小的可能会出现油膜失稳;联轴节两侧出现相位差;角不对中可造成轴向振动,平行不对中可造成径向振动;转子负荷与不对中振幅正相关,轴承越低的轴承由于被架空而出现油膜稳定性降低,因此其振幅越大。
3、油膜震荡油膜震荡发生时输入能量大,会对转子轴承系统零部件甚至机组的安全带来威胁。
油膜震荡发生迅速,可见瞬时振幅增高后突发能发生局部油膜破裂,可引起轴瓦与轴颈摩擦,对转子及轴承造成严重损坏。
4、旋转失速、喘振旋转失速包括突变型与渐进型两种,前者为气量减少后失速区迅速扩大,容易产生大气流脉冲,可引起强烈的管道及机器振动;后者气量减少后失速区逐渐扩大。
突变型失速没有得到很好地控制会发展为喘振,二者都可引起压缩机流量下降而导致不稳定流动。
离心式压缩机故障诊断技术分析【摘要】摘要:引言:离心式压缩机在工业生产中起到至关重要的作用,但随之而来的故障也时常发生。
本文将对离心式压缩机的故障特点、诊断方法和预防措施进行深入分析。
故障特点分析:离心式压缩机常见的故障包括振动过大、温度异常、噪音增大等,这些故障特点需要及时识别并解决,以避免影响生产效率。
故障诊断方法:通过振动分析、温度监测、声音测试等多种方法,可以准确诊断离心式压缩机的故障原因,从而采取正确的维修措施。
故障预防措施:定期维护保养、合理运行调整、及时更换易损件等预防措施能有效延长离心式压缩机的使用寿命,减少故障发生的可能性。
结论:通过对离心式压缩机的故障诊断技术进行分析,可以有效提高设备运行的稳定性和可靠性,为工业生产提供更好的保障。
【关键词】离心式压缩机、故障诊断、技术分析、故障特点、故障预防、结论、引言1. 引言1.1 引言离心式压缩机是一种常见的空气压缩设备,广泛应用于工业生产和民用领域。
由于长时间使用或操作不当,离心式压缩机常常会出现各种故障,给生产和使用带来不便和损失。
对离心式压缩机的故障诊断技术进行分析和研究具有重要意义。
本文旨在通过对离心式压缩机故障特点的分析、故障诊断方法的探讨以及故障预防措施的总结,为相关工程技术人员提供一些参考和指导。
我们将从故障特点分析入手,梳理离心式压缩机常见的故障表现及可能的原因,以便更快更准确地定位故障点。
接下来,我们将介绍一些常用的故障诊断方法,例如振动分析、温度监测、压力测试等,帮助技术人员快速找出故障原因并进行修复。
我们将总结一些有效的故障预防措施,包括定期维护保养、合理使用和操作规范等方面,以避免故障的发生。
通过本文的阐述,相信读者们能够更好地了解离心式压缩机的故障特点、诊断方法和预防措施,提高设备的稳定性和可靠性,确保生产的顺利进行。
愿本文能为相关行业的技术人员在工作中提供一些帮助和指导。
2. 正文2.1 故障特点分析离心式压缩机常见的故障特点有以下几点:1. 压缩机噪音异常:通常情况下,离心式压缩机在运行过程中会产生一定的噪音,但如果噪音突然增大或出现异常噪音,可能是由于叶轮不平衡、轴承损坏或油脂不足等原因导致的故障。
离心式空气压缩机的常见故障及检修新钢气体厂刘晓鹏一离心压缩机结构简介离心压缩机通常由压缩机本体、电机、增速箱以及压缩机的辅助系统(如:润滑油系统、中间冷却器、仪控、电控、管路等)等组成。
离心式压缩机本体由转子、定子、轴承等组成。
转子由主轴、叶轮、联轴器等组成,有时还有轴套、平衡盘。
定子由机壳、隔板、密封(级间密封和轴密封)、进气室和蜗室等组成。
其中隔板由扩压器、弯道、回流器等组成。
有时在叶轮进口前设有进气导流器(预旋器)。
A 壳体离心式压缩机的壳体结构主要有水平剖分型和垂直剖分型两种。
水平剖分型的壳体分为上、下两半,是用途最广泛的一种结构型式。
B叶轮离心式压缩机的叶轮又称工作轮,是使气体提高能量的唯一元件。
叶轮按其整体结构可分为开式、半开式和闭式三种,压缩机中实际应用的是半开式和闭式两种。
叶轮随叶片出口角的不同,可分为前向叶轮(不采用) 、径向叶轮和后向叶轮。
C扩压器常在叶轮后设置流通面积逐渐扩大的扩压器,用以把速度能转化为压力能,以提高气体压力。
离心式压缩机的扩压器分无叶扩压器和叶片扩压器两种。
无叶扩压器效率较低,但结构简单,同一无叶扩压器可与不同出口角的叶轮匹配工作。
对于工况变化较大的情况,采用无叶扩压器较好。
具有相同扩压度时,叶片扩压器的径向尺寸比无叶扩压器小,对于工况变化小的情况,为了提高效率,以采用叶片扩压器较好。
D 密封在离心式压缩机的各级之间和主轴穿过机壳处,为了防止泄漏,安装轴封装置。
轴封型式有迷宫密封、机械密封、浮环密封和抽气密封等。
迷宫密封是在密封体上嵌入或铸入或用堵缝线固定多圈翅片,构成迷宫衬垫。
翅片的材料有黄铜片、磷青铜片、铅青铜片、铝片和白合金片等。
视气体的性质、有无灰尘或雾,以及气体温度而定。
轴封结构如下图:1简要介绍我厂16000、20000离心式空气压缩机结构1.116000空压机多轴H型1.2 20000空压机单轴中间冷却器内置型2 离心压缩机的喘振任何离心压缩机按其结构尺寸,在某一固定的转速下都有一个最高的工作压力,在此压力下有一个相应的最低的流量。
当离心压缩机出口的压力高于此数值时,就会产生喘振。
2.1 喘振发生的条件给定压力下流量小于最小喘振流量;给定流量下压力大于最高喘振压力。
2.2喘振发生时的现象发生喘振时,机组开始强烈振动,伴随发生异常的吼叫声,而且是周期性地发生;机壳相连接的出口管线也随之发生较大的振动;进口管线上的压力表指针大幅度摆动;出口止回阀处发生周期性的开和关的撞击声响;主电动机的电流表指针大幅度的摆动;在操作仪表上,流量表等也发生大幅度的摆动。
2.3喘振发生的危害喘振对压缩机的迷宫密封损坏较大,由于密封的损坏,将使润滑油窜入流道,影响冷却器和冷凝器的效率。
严重的喘振很容易造成转子轴向窜动,烧坏止推轴瓦,叶轮有可能被打碎。
极严重时,可使压缩机遭到破坏,会损伤齿轮箱,电动机以及连接压缩机的管线和设备等。
三离心式压缩机检修中的几个问题1 检修前的准备工作现场勘查,检修项目及方案,人员配备,工具、材料、备件、机具、相关技术资料的准备,其它要求(检修安全报告书、动火单、停送电报告单、检修安全规定等)。
2 检修(前、后)数据测量2.1联轴器同心度2.2 密封间隙用小斜塞尺测量叶轮口环、平衡盘等处迷宫密封的侧面间隙。
对每个迷宫密封取2个数值并相加,与标准值进行对比,如超出范围应进行更换。
同时轻敲迷宫密封,检查其是否损坏2.3 转子径向及轴向跳动量将百分表安在需要测量部位,均匀转动转子,分别记录对应180°的最大及最小数值。
考虑转子的轴向窜量,应多盘车几次进行测量。
将2块百分表安在靠近两端轴瓦(轴瓦盖不能拆卸掉)轴径处,将制作好的抬轴径的支架放在轴的两端,用钢丝绳分别固定住轴,慢慢拧紧支架横梁上的螺栓,使轴慢慢上移,观察百分表的读数并记录。
齿轮径向与轴向跳动量的测量与此相同。
2.4转子轴向总窜量拆除止推盘前后止推轴承,用百分表测量转子轴向的端面,向前后2个方向轴向移动,直至转子内部件接触机壳部件位置。
测量转子总窜量S,其值应等于转子与定子间左右两侧窜量之和。
装上止推轴承工作侧瓦块,测量转子自工作侧向排气端的窜量S1,转子自工作位置向前窜量S2=S- S1,通过3个数据确定转子定心。
比较S1、S2,必要时调整止推轴承触垫片。
应旋转转子进行多次测量。
2.5 轴瓦紧力在瓦壳背部和轴承座中分面分别放置直径约0.1-0.2mm的铅丝,然后放上轴承盖,均匀拧紧螺栓,最后打开轴承盖,用千分尺测量铅丝的厚度,瓦壳背部铅丝与轴承座中分面铅丝测量数据之差即为紧力值。
测量完毕后拆除下部轴瓦,拆除时,轴瓦涂上润滑油,用木棍撬起轴,用铜棒轻轻敲击,使之沿轴向转动至上方取出并放置指定位置。
2.6齿轮侧隙与顶隙将铅丝放入2个齿轮之间,按电机的转动方向旋转主动齿轮,铅丝按旋转方向旋出。
测量铅丝被齿轮顶部与侧部所压的厚度,齿轮顶部铅丝厚度数值即为顶隙值,齿轮侧部铅丝厚度数据之和即为侧隙值。
也可以用百分表测量齿轮的侧隙。
将百分表垂直安在小齿轮的轮齿上,然后用活动扳手拧紧小齿轮非轴伸端的方头,用冲击力旋转小齿轮,保证大齿轮不动。
此时百分表的读数即为侧隙值。
2.7 齿面接触斑迹着色检查着色前应先擦净齿轮上的润滑油,涂抹着色粉时要轻,不能过厚,着色粉要涂抹在主动轮的啮合面上。
然后轻轻转动主动轮,检查齿轮啮合斑迹。
接触斑迹的位置不应偏向凹齿齿顶。
2.8 轴承间隙的测量(1)假轴法A 假轴的直径与轴承的实际工作轴颈相差在0.05mm以内,假轴的中心线与工作水平面的垂直度误差在0.02mm以内。
B 将轴承组合在假轴上,拧紧中分面螺栓,用0.02mm 的塞尺检查中分面无间隙。
C 架千分表并沿工作时的垂直方向上下抬动径向轴承,千分表读数假定为S(m m),考虑瓦块的倾绕效应,实际的轴承间隙为C(mm),则对五块瓦结构有:C=0.894S此外,还需计入假轴与实际轴颈的差值。
(2)抬轴法将百分表装在轴承座或其它固定物件上,采用相关专用工具多次把转子水平抬起,取其读数的平均值即为轴承间隙值。
(3)压铅丝法A 所采用的铅丝直径应比所测间隙大30-50%。
B 对轴承壳体中分面和轴承座中分面,用0.02mm塞尺检查,中分面应无间隙且不错口。
C 测量两上瓦中部处的铅丝厚度S,则实际的轴承间隙C 为:C=1.1S3 转子轴向位置的确定离心式压缩机正常运转时,推力盘是和工作面推力轴承相接触的。
因此,工作面推力轴承的位置就决定了转子轴向位置。
检修时,可以增减工作面(或非工作面)推力轴承背面的垫片,来移动推力轴承,这样转子也随之改变其轴向位置。
确定转子轴向位置是要求每级叶轮出口和扩压器进口对中,以避免在这些部位发生气流冲击。
特别是压缩重气体的离心式压缩机,这一要求尤其重要。
因此,有些制造厂在图样上规定了所允许的偏差。
但是,在实际检修中发现,要实现这些要求不仅很麻烦,有时,甚至无法达到。
特别是更换了转子、气封或其他零件之后。
在这种情况下,可根据下面两条原则来确定转子轴向位置。
1.有开式叶轮的转子,转子的轴向位置,应能保证开式叶轮进气侧的轴向间隙。
2.全部为闭式叶轮的转子,转子的轴向位置应能保证最末级叶轮出口和扩压器流道对中。
然后,还要再复查其他级叶轮和扩散器的对中情况,差别太大时应找出原因,进行调整。
确定转子的轴向位置之后,转子以这个位置为中心,在未装推力轴承的情况下,向两端的窜动量应符合下述要求:向工作面推力轴承侧的窜动量,不能小于规定的轴位移报警值的0.5mm;向非工作面推力轴承侧的窜动量,不能小于轴位移报警值和推力轴承间隙之和加0.5mm;上述两项窜动量之和,即为转子在气缸内的总轴向窜动量,一般在3mm 以上。
由于转子的轴向位置是由工作面推力轴承的位置确定的。
因此,为了固定转子的轴向位置,需要确定工作面推力轴承背面垫片的厚度。
这一工作,在检修现场可以这样进行:先记录下转子从确定的轴向位置向非工作面和工作面推力轴承两侧的轴向窜动量。
例如,向工作面侧窜动量为S1,向非工作面侧的窜动量为S2。
然后,把工作面推力轴承装入并在其背面垫上一块任意厚度的垫片。
使推力盘和工作面推力轴承接触,然后从这个位置把转子向非工作面推力轴承侧拨动到极限位置,并记下其窜动量,例如为S3。
则S2-S3=±S4。
S4为正时,表示工作面推力轴承背面的垫片应减薄S4。
S4为负时,工作面推力轴承背面的垫片应加厚S4。
4 检修注意事项1 径向轴承(1)可倾瓦块一般不推荐刮瓦,但为使整个轴承接触良好,可在瓦量不超差并达到巴氏合金表面技术要求的前提下适当修刮。
(2)瓦块连同瓦壳一起更换时,应用红丹检查新装的下瓦壳与下轴承座的接触情况,新瓦壳在轴承座瓦窝内不得松晃,两侧间隙不大于0.03mm,防转销不高出轴承座中分面。
(3)瓦块相间的位置和方向不得调错。
更换单个瓦块时应确保与同组瓦块厚度不超差。
2 止推轴承(1)止推轴承间隙应采用非工作侧调整垫片进行调整,使用的垫片数不超过1片。
调整止推间隙应在扣缸调整好转子轴向位置后进行。
测量止推轴承间隙应扣上轴承座上盖,并上紧中分面螺栓和销子后测量,米切尔型止推轴承的轴向间隙用端盖垫片厚度调整。
(2)对米切尔型止推轴承,用火焰加热止推盘时应防止使止推盘表面退火,同时置转子于外侧死点,防止使内侧瓦块巴氏合金溶化。
(3)止推轴承瓦块间的相互位置在拆装中应作好相互对位标志,不能调错。
(4)为防止止推轴承过载,应严格保证止推盘端面跳动不超差,轴承座中分接合面不错口。
(5)转子的工作位置应在止推轴承工作侧进行调整,根据轴承座的结构,调整壳体垫片厚度或工作侧止推轴承垫片厚度。
(6)轴位移探头的零位应与设计的零位相一致,表头指示的位移量应与千分表指示的转子轴位浮动量相吻合。
3 联轴器的对中找正(1)像高速旋转的设备,如汽轮机、离心式压缩机等,为让对中精确、数值有效可靠,通常应采用三表精确对中找正法。
(2)此法与而表对中找正有所不同,在与传动轴中心线等距离处对称布置两块百分表同时读取其轴向读数,可以消除传动轴手动盘车时轴向窜动对轴向读数的误差,从而提高测量精度。
(3)关键位置尺寸(4)两联轴器距离较远对中找正时对假轴的要求(除用激光对中仪外):尽量轻且刚度要好。