06 热处理原理之马氏体转变
- 格式:pdf
- 大小:1.90 MB
- 文档页数:22
马氏体转变概述摘要:钢经奥氏体化后快速冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变为马氏体转变。
马氏体转变是钢件热处理强化的主要手段。
因此,马氏体转变的理论研究与热处理生产实践有着十分密切的关系。
本文简略介绍了碳钢中的马氏体转变的定义、机理、研究过程、和技术运用情况[1]。
1 马氏体转变的特点及定义1.1 马氏体相变是无扩散型相变因为相变前后化学成分不变,新相(马氏体)和母相(奥氏体)碳的质量分数相同,只是晶格结构由面心立方晶格转变成了体心立方晶格而且马氏体相变可以在-196℃到-296℃低温下进行,这样低的温度原子扩散极困难,所以相变不可能以扩散方式进行,因此马氏体相变过程中,原子有规则移动,原来相邻的原子相变以后仍然相邻,原子不发生扩散就可以发生马氏体相变[2]。
1.2 切变共格和表面浮凸现象人们早就发现,在高碳钢样品中产生马氏体转变之后,在其磨光的表面上出现倾动,形成表面浮凸。
这个现象说明转变和母相的宏观切变有着密切关系。
马氏体形成是以切变的方式实现的,同时马氏体和奥氏体之间界面上的原子是共有的,既属于马氏体,又属于奥氏体,而且整个相界面是互相牵制的,这种界面称为“切变共格”界面[3]。
1.3 马氏体转变是在一个温度范围内形成就马氏体相变而言,不但在快冷的变温过程中有马氏体相变,而且在等温过程中,也有等温马氏体产生,如Fe - Ni26 - Cu3 合金所能发生等温马氏体相变,但钢的马氏体相变是在一个温度范围内形成的[4]。
当奥氏体被冷却到Ms点以下任一温度时,不需经过孕育,转变立即开始,转变速度极快,但转变很快就停止了,不能进行到终了,为了使转变继续进行,必须降低温度,也就是说马氏体是在不断降温条件下才能形成。
这是因为在高温下母相奥氏体中某些与晶体缺陷有关的有利位置,通过能量起伏和结构起伏,预先形成了具有马氏体结构的微区。
这些微区随温度降低而被冻结到低温,在这些微区里存在一些粒子,这些粒子在没有成为可以长大成马氏体的晶核以前我们叫它核胚。
什么是马氏体转变:研究简史19世纪中叶,英国人索尔拜首次用显微镜观察了淬硬钢的金相组织,后对此种针状组织物命名为马氏体。
图1示出高碳钢淬火态的金相组织,针状物(其空间形态为板片状)为马氏体,基底为残留奥氏体。
20世纪20年代,美国人芬克和苏联人库尔久莫夫分别(独立地)用x射线衍射技术确定了钢中马氏体的本质:体心正方结构,碳在a-Fe中的过饱和固溶体,奥氏体在非平衡(大过冷)条件下转变成的一种介稳相。
到50年代,不但积累了大量有关钢中马氏体转变的技术资料,而且还发现在一系列有色合金及某几种纯金属中也发生相似的转变。
在此基础上,逐渐认识到,以钢中马氏体形成为代表的相变,是一种与历来了解的固态扩散型晶型转变具有本质区别的固态一级相变——非扩散的晶型转变,定名为马氏体转变。
各种合金系中经马氏体转变形成的低温产物皆称为马氏体,如钛合金中马氏体、铜合金中马氏体等。
马氏体转变是金属热处理时发生的相变的基本类型之一,对钢的强化热处理及形状记忆合金的应用技术具有重要意义。
非平衡条件下,金属和合金中发生的非扩散的晶型转变。
是固态一级相变的一种基本类型。
产物称为马氏体,通常具有板、片状的外形。
主要特征(1)宏观形状效应。
不但有体积变化,而且有形状变化。
如图2所示,在母相的自由表(平)面上,转变成马氏体的那块面积发生一定角度的倾斜,并仍保持为平面。
由此带动邻近的母相呈山峰状凸起(另一侧下凹),原始态表面的直线刻痕转入新相后仍为直线,在界面处不断开,保持连续。
(2)非扩散。
生成相与母相成分相同,以共格或半共格界面为生长相界面,故不存在相界面迁移的热激活机制。
形核率和长大速度皆与扩散型转变的热动力学处理结果显著不符。
(3)惯习现象。
生成相的片、板的空间取向不是任意的,而是平行于母相的某个晶面(称为惯习面)。
作为母相的一个原子面,惯习面在相变过程中既不畸变,也不转动,是不变平面。
图3是对图2的局部作进一步标注,a’b’曲面发生转动,面积也有变化;但AB线段长度不变,方向也不变。
§ 1—4 马氏体转变钢经奥氏体化后,快速冷却,抑制其扩散性分解,在较低温度下发生的转变,为马氏体转变。
马氏体转变是钢件热处理强化的主要手段之一。
因此,马氏体转变理论的研究与热处理实践有着十分密切的关系。
早在战国时期,人们已经知道可以用淬火,即将钢加热到高温后淬入水或油中急冷的方法提高钢的硬度。
经过淬火的钢制宝剑可以“销铁如泥” 。
但是在当时,对于淬火能提高钢的硬度的本质还不清楚。
直到十九世纪未期,人们才知道,钢在加热与冷却过程中,内部相组成发生了变化,因而引起了钢的性能的改变。
为了纪念在这一发展过程中作出杰出贡献的德国冶金学家Adolph Marte ns (阿道夫,马顿斯),法国著名的冶金学家Osmo nd (奥斯门德)建议将钢经淬火所得高硬度相称为马氏体,并因此而将得到马氏体相的转变过程称为马氏体转变。
马氏体的英文名称为-Martensite,常用M表示。
由于钢在生产上得到了最广泛的应用以及马氏体转变最先在钢的淬火过程中发展,因此,在十九世纪未,二十世纪初对马氏体的研究,主要局限于研究钢中的马氏体转变及转变所得的马氏体。
二十世纪三十年代,人们用X射线结构分析方法测得钢中马氏体是C溶于a -Fe而形成的过饱和固溶体。
马氏体中的固溶碳即原奥氏体中的固溶碳。
因此,曾一度认为所谓马氏体即碳在中a -Fe 的过饱和间隙固溶体。
对于马氏体转变的研究,初期着重于了解马氏体转变与钢中其它转变的不同点,正是由于观察到了一系列不同于其它转变的特点,曾经有人认为马氏体转变与其它转变不同,是一个由快冷造成的内应力场所引起的切变过程。
四十年代后,在Fe-Ni、Fe-Mn 合金以及许多有色金属及合金中也发现了马氏体转变。
不仅观察到了冷却过程中发生的马氏体转变,还观察到了加热过程中所发生的马氏体转变。
新观察到的马氏体转变的特征和钢中马氏体转变的特征相似,基于这一新的发现,人们不得不把马氏体的定义修正为:凡相变的基本特征属于马氏体型的产物统称为马氏体。
马氏体回火转变过程
马氏体回火转变是指在高温下形成的马氏体在热处理后被回火,使之
变成更稳定的组织结构。
马氏体回火转变过程包括以下几个阶段:
1.回火前马氏体阶段:
在高温下,钢经过淬火使之形成马氏体。
这是一种具有高硬度和脆性
的组织结构。
2.针状马氏体阶段:
在回火温度较低的情况下,马氏体开始发生转变,出现一些细小的针
状马氏体晶体。
这种晶体具有一定的强度和韧性。
3.板条状马氏体阶段:
随着回火温度的逐渐上升,马氏体会转变成板条状马氏体。
这种晶体
比针状马氏体更稳定,具有更高的韧性。
4.珠光体阶段:
当回火温度达到一定程度,板条状马氏体转变成了珠光体。
珠光体是
一种具有良好韧性和强度的晶体结构,是最终目标。
总的来说,马氏体回火转变过程是指在淬火后,通过回火使之得到更
稳定的组织结构的过程。
在回火的过程中,马氏体逐渐转变成针状马氏体、板条状马氏体和最终的珠光体。