三极管共集电极放大电路和共基极放大电路详解
- 格式:ppt
- 大小:1.27 MB
- 文档页数:70
共集电极放大电路讲解共集电极放大电路是一种常用的电子电路,用于放大输入信号的电压。
它是晶体管放大电路的一种重要形式,具有简单、稳定、线性度高等优点。
本文将对共集电极放大电路进行详细的讲解。
共集电极放大电路的基本结构如图所示。
它由一个NPN型晶体管、电容、电阻等元件组成。
输入信号通过电容C1耦合到晶体管的基极,而电源电压Ve则通过电阻Rb1和电阻Rb2分压形成。
晶体管的集电极通过电阻Re与电源电压Vcc相连,形成了放大电路的输出。
在共集电极放大电路中,晶体管的基极电压与集电极电压共用电源电压,因此称为共集电极电路。
这种电路的特点是输出电压与输入电压之间的相位关系为180度,即电压放大电路。
共集电极放大电路的工作原理是这样的:当输入电压为正半周期时,电容C1充电,电压在电容上升。
此时,电压在电阻Rb1和电阻Rb2之间形成电压分压,将一部分电压作用在晶体管的基极上,使得晶体管的输入电流增大。
晶体管的输出电流也随之增大,通过电阻Re形成输出电压。
当输入电压为负半周期时,电容C1放电,电压在电容上下降。
此时,电压在电阻Rb1和电阻Rb2之间形成电压分压,将一部分电压作用在晶体管的基极上,使得晶体管的输入电流减小。
晶体管的输出电流也随之减小,通过电阻Re形成输出电压。
通过上述的工作原理,可以得出共集电极放大电路的电压增益为Av = -gm * Re,其中gm为晶体管的跨导,Re为电阻的阻值。
电压增益的负号表示输出电压与输入电压之间的相位关系为180度。
除了电压增益,共集电极放大电路还具有电流放大的特点。
由于电阻Re的存在,电流通过晶体管的电流与电阻Re之间存在关系,当输入电压变化时,输出电流也会随之变化。
这使得共集电极放大电路具有电流放大的作用。
共集电极放大电路的应用非常广泛。
在实际电子电路中,它常常用于信号放大、阻抗匹配等方面。
由于其简单、稳定、线性度高的特点,使得它成为了很多电子设备的重要组成部分。
总之,共集电极放大电路是一种常用的电子电路,具有简单、稳定、线性度高等优点。
测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。
”下面让我们逐句进行解释吧。
一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。
根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。
测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。
图2绘出了万用电表欧姆挡的等效电路。
由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。
假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。
测试的第一步是判断哪个管脚是基极。
这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。
在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。
二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。
将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。
根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c 极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
三极管放大电路,说说三极管放大的基本电路 三极管放大电路,说说三极管放大的基本电路三极管是电流缩小气件,有三个极,折柳叫做集电极C,基极B,发射极E。
分红NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基础原理。
下面的理解仅看待NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。
这两个电流的方向都是流起程射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的管制(假定电源能够提供应集电极足够大的电流的话),并且基极电流很小的变化,会惹起集电极电流很大的变化,且变化餍足肯定的比例干系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β通常远大于1,例如几十,几百)。
借使我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,招致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么遵循电压计算公式U=R*I能够算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取进去,就获得了放大后的电压信号了。
三极管 微波三极管广州首套房贷利率优吉峰农三极管在现实的放大电路中行使时,还必要加适当的偏置电路。
这有几个由来。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必需在输入电压大到一定水平后才华孕育发生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以以为是0。
但实际中要放大的信号不时远比0.7V要小,如果不加偏置的话,这么小的信号就不够以引起基极电流的改动(由于小于0.7V时,基极电流都是0)。
如果我们事前在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,事实上三极管作用。
一、复习引入共射极放大的特点有哪些?二、新授(一)共集电极放大电路共集电极放大电路的组成如图1(a)所示。
图1(b)为其微变等效电路,由交流通路可见,基极是信号的输入端,集电极则是输入、输出回路的公共端,所以是共集电极放大电路,发射极是信号的输出端,又称射极输出器。
各元件的作用与共发射极放大电路基本相同,只是R e除具有稳定静态工作的作用外,还作为放大电路空载时的负载。
(a)电路图(b)微变等效电路图1 共集电极放大电路1.静态分析由图1(a)可得方程V CC=I B R B+U BE+(1+β)I B R E则I B= (V CC - U BE )/R B+(1+β)R EI C=βI BU CE= V cc-I E R E≈V cc-I C R E3.动态分析(1)电压放大倍数A u由图1(b)可知u i=i b r be+i e R L′=i b[r be+(1+β)R L′]u o=i e R L′=(1+β)i b R L′式中:R L′=R E//R L。
故A u==u o/u i=i b(1+β)R L′/ I b[r be+(1+β)R L′]= (1+β)R L′/[r be+(1+β)R L′] 一般(1+β)R L′> r be,故A u≈1,即共集电极放大电路输出电压与输入电压大小近似相等,相位相同,没有电压放大作用。
(2)输入电阻R iR i=u i/i b=i b r eb+(1+β)i b R L′/ I b = r be+(1+β)R L′故R i= R B// R L′=R B//[r be+(1+β)R L′]说明,共集电极放大电路的输入电阻比较高,它一般比共射基本放大电路的输入电阻高几十倍到几百倍. (3)输出电阻R o将图3(b)中信号源U s短路,负载R L断开,计算R0的等效电路如图2所示。
图2 计算输出电阻的等效电路由图可得I=I e +I b +βI b =I e +(1+β)I b=U o /(R E +(1+β))·U/(r be +R S ′)式中:R s ′=R S //R B 。
三极管多级放大电路动态参数详解许峰川,邹丽新,吕清松(苏州大学文正学院,江苏苏州215104)一、引言单个三极管可以构成共射极、共基极、共集电极放大电路,不同组态的放大电路具有各自的优点和用途。
当单管放大电路的主要技术指标———如:电压增益、输入电阻、输出电阻、带宽和输出功率等———无法满足实际应用需要时,往往通过合适的方式将它们组合起来,构成多级放大电路,以充分利用各组态的优点,获得更好的电路性能。
该内容,也是“模拟电路”课程中三极管章节的教学重点和难点之一。
目前的教材主要以共射—共基放大电路为例,如图1所示,介绍多级放大电路动态参数的求解。
在对所给共射—共基放大电路进行工作原理分析和动态参数定量计算时,首先需要准确地画出其对应的小信号等效电路图。
在阐述该部分内容时,康华光教授主编的《电子技术基础———模拟部分(第六版)》第202页和童诗白、华成英教授主编的《模拟电子技术基础(第五版)》第105页都只给出了共射—共基放大电路的交流通路,如图2所示,并没有给出放大电路的小信号等效电路图。
因此,大部分学生难以理解相关动态参数的分析求解过程以及多级放大电路和单管放大电路动态参数求解过程的区别,尤其难以理解为什么要先求后一级放大电路的输入电阻。
本文明晰了放大电路相关动态参数的定义,给出了方便学生理解和记忆的画小信号等效电路图具体步骤,详细分析了共射—共基放大电路动态参数的求解过程。
由于静态参数的求解过程与基极分压式射极偏置电路类似,文中不再赘述。
二、动态参数求解在对三极管构成的放大电路动态参数求解之前,首先应画出其对应的小信号等效电路。
而在画小信号等效电路图前,应先判断三极管的工作组态,具体的判断方法是:看输入信号加在哪个电极,输出信号从哪个电极取出,剩下的电极便是共同电极。
如图1所示,对于直接耦合的多级放大电路而言,两级之间的连接点A,既是前一级信号的输出点,又是后一级信号的输入点。
因此,三极管T 1的工作组态为共射极,三极管T 2的工作组态为共基极。
除去信号的输入、输出端。
另一端就是共极三极管基本放大电路的三种组态组态一:共射电路组态二:共集电极电路共集电极组态基本放大电路如图所示。
(1)直流分析(2)交流分析放大倍数/输入电阻/输出电阻组态三:共基极放大电路共基组态放大电路如图交流、直流通路微变等效电路共基极组态基本放大电路的微变等效电路性能指标三种组态电路比较放大电路的三种基本组态2.6.1共集电极放大电路上图(a)是一个共集组态的单管放大电路,由上图(b)的等效电路可以看出,输入信号与输出信号的公共端是三极管的集电极,所以属于共集组态。
又由于输出信号从发射极引出,因此这种电路也称为射极输出器。
下面对共集电极放大电路进行静态和动态分析。
一、静态工作点根据上图(a)电路的基极回路可求得静态基极电流为二、电流放大倍数由上图(b)的等效电路可知三、电压放大倍数由上图(a)可得Re’=Re//RL由式(2.6.4)和(2.6.5)可知,共集电极放大电路的电流放大倍数大于1,但电压放大倍数恒小于1,而接近于1,且输出电压与输入电压同相,所以又称为射极跟随器。
四、输入电阻由图2.6.1(b)可得Ri=rbe+(1+β)Re’由上式可见,射极输出器的输入电阻等于rbe和(1+β)R、e相串连,因此输入电阻大大提高了。
由上式可见,发射极回路中的电阻R、e折合到基极回路,需乘(1+β)倍。
五、输出电阻在上图(b)中,当输出端外加电压U。
,而US=0时,如暂不考虑Re的作用,可得下图。
由图可得由上式可知,射极输出器的输出电阻等于基极回路的总电阻()除以(1+β),因此输出电阻很低,故带负载能力比较强。
由上式也可见,基极回路的电阻折合到发射极,需除以(1+β)。
2.6.2共基极放大电路上图(a)是共基极放大电路的原理性电路图。
由图可见,发射极电源VEE的极性保证三极管的发射结正向偏置,集电极电源VCC的极性保证集电结反向偏置,从而可以使三极管工作在放大区,因输入信号与输出信号的公共端是基极,因此属于共基组态。
除去信号的输入、输出端。
另一端就是共极三极管基本放大电路的三种组态组态一:共射电路组态二:共集电极电路共集电极组态基本放大电路如图所示(1)直流分析/『W B厂心訓【血斗⑴的』"叱亡―厶傀_ '忧_Wn流通路R产隔川4交流通路,(2)交流分析渤呼筲帥由淬迴園b2h放大倍数/输入电阻/输出电阻① 中Ifi 电压放人倍数 芜賽(1+处;碍"(1 + 0)化比较匸£和CU 组态放大电瞎的电压放大倍数公式.它们的分r 足"乘以输岀电极对地妁址漩这效负载屯 阻.分母都是三极管基极对地的交流输入电阻。
② 输入电阻尽"Ke 十(”®用L )]③ 输出电阳 将綸入信号 垣路,负载开 路异那 ,信 巧源短路,内阻 保留〃總=叫g 十码),R\ =尺〃鹉"甩 氏=[(1M )1* A 肛+心沪(底爪)共基组态放大电路如图生广冻*舟+玮广幷(1+”)P 先企) 死乩电苗电蹦组态三:共基极放大电路微变等效电路共基极组态基本放大电路的微变等效电路I「1仁矶o —1 +]&比tO■1—►b—性能指标① 电压放大倍数 弟=!&//&=十色型$he② 输入电限 R.=曲 jfe= 1 1L+0 % 1 协③ 输出电阻R 严氐交流、直流通路空流通路;三种组态电路比较■共射电路;电压和电流放大倍数均大,输入输岀电压相位相反,输岀输出电阻适中°常用于电压放大.・共集电路二电压放大倍数是小于且扌妾近于1的正数,具有电压跟随特点I输入电阳大’输岀电阻小.常作为电路的输入和输出级乜■共基电弟匕放大倍数同共射电路.输入电阻小,频率特性好.帘用作宽带庶大器口放大电路的三种基本组态2. 6. 1共集电极放大电路上图(a)是一个共集组态的单管放大电路,由上图(b)的等效电路可以看出,输入信号与输出信号的公共端是三极管的集电极,所以属于共集组态。
三极管共基极同向放大电路
(原创版)
目录
一、三极管共基极同向放大电路的概念
二、三极管共基极同向放大电路的工作原理
三、三极管共基极同向放大电路的优点
四、三极管共基极同向放大电路的应用领域
五、总结
正文
一、三极管共基极同向放大电路的概念
三极管共基极同向放大电路是一种半导体放大电路,它由三个电极组成:发射极、基极和集电极。
在这种电路中,输入信号与输出信号同相,具有较高的电压放大倍数和较低的输入电阻。
由于其特殊的电路结构,共基极同向放大电路在某些方面具有优越性能。
二、三极管共基极同向放大电路的工作原理
共基极同向放大电路的工作原理如下:
1.输入信号从发射极输入,经过基极后,驱动集电极产生输出信号。
2.输出信号由集电极和发射极之间的电流产生,基极电流较小,对输出信号的影响较小。
3.由于输入信号与输出信号同相,因此不会出现相位颠倒的情况。
三、三极管共基极同向放大电路的优点
共基极同向放大电路具有以下优点:
1.电流放大倍数较高,可以实现较大的信号放大。
2.输入电阻较小,能够更好地接收输入信号。
3.输出电阻较大,能够驱动较大的负载。
4.晶体管的截止频率较高,适用于高频电路。
四、三极管共基极同向放大电路的应用领域
共基极同向放大电路广泛应用于以下领域:
1.宽频带放大电路:由于其较高的工作频率,共基极同向放大电路可用于宽频带放大电路。
2.高频谐振放大器:共基极同向放大电路的高截止频率使其在高频谐振放大器中具有优越性能。
3.其他需要高电压放大倍数的应用场合。
三极管基本放大电路的三种组态Prepared on 24 November 2020除去信号的输入、输出端。
另一端就是共极三极管基本放大电路的三种组态组态一:共射电路组态二:共集电极电路共集电极组态基本放大电路如图所示。
(1)直流分析(2)交流分析放大倍数/输入电阻/输出电阻组态三:共基极放大电路共基组态放大电路如图交流、直流通路微变等效电路共基极组态基本放大电路的微变等效电路性能指标三种组态电路比较放大电路的三种基本组态2.6.1共集电极放大电路上图(a)是一个共集组态的单管放大电路,由上图(b)的等效电路可以看出,输入信号与输出信号的公共端是三极管的集电极,所以属于共集组态。
又由于输出信号从发射极引出,因此这种电路也称为射极输出器。
下面对共集电极放大电路进行静态和动态分析。
一、静态工作点根据上图(a)电路的基极回路可求得静态基极电流为二、电流放大倍数由上图(b)的等效电路可知三、电压放大倍数由上图(a)可得Re’=Re//RL由式(2.6.4)和(2.6.5)可知,共集电极放大电路的电流放大倍数大于1,但电压放大倍数恒小于1,而接近于1,且输出电压与输入电压同相,所以又称为射极跟随器。
四、输入电阻由图2.6.1(b)可得Ri=rbe+(1+β)Re’由上式可见,射极输出器的输入电阻等于rbe和(1+β)R、e相串连,因此输入电阻大大提高了。
由上式可见,发射极回路中的电阻R、e折合到基极回路,需乘(1+β)倍。
五、输出电阻在上图(b)中,当输出端外加电压U。
,而US=0时,如暂不考虑Re的作用,可得下图。
由图可得由上式可知,射极输出器的输出电阻等于基极回路的总电阻()除以(1+β),因此输出电阻很低,故带负载能力比较强。
由上式也可见,基极回路的电阻折合到发射极,需除以(1+β)。
2.6.2共基极放大电路上图(a)是共基极放大电路的原理性电路图。
由图可见,发射极电源VEE的极性保证三极管的发射结正向偏置,集电极电源VCC的极性保证集电结反向偏置,从而可以使三极管工作在放大区,因输入信号与输出信号的公共端是基极,因此属于共基组态。