车载信号系统介绍
- 格式:ppt
- 大小:2.13 MB
- 文档页数:51
CTCS2200H列控车载系统介绍CTCS2200H(Chinese Train Control System 2200H)是中国铁路局自主研发的列控车载系统,用于管理和控制列车在运行过程中的速度、距离和位置等要素。
本文将介绍CTCS2200H的基本原理、关键技术以及其在列车运行中的应用。
CTCS2200H的基本原理是通过无线通信技术实现与地面信号系统的通信,以确保列车在运行过程中的安全和顺畅。
系统的核心是车载装置,它包含有线通信单元、车载控制器和计算机控制单元。
车载装置通过与线路侧的基站进行通信,实时获取运行信息,并根据相关规则和算法,向列车运行员提供准确的运行指令。
CTCS2200H采用了多种先进的技术,使其具备了较高的安全性和可靠性。
其中最重要的技术之一是无线通信技术。
系统通过支持双向无线通信,可以实现车辆与基站之间的数据传输和指令控制。
此外,系统还采用了高精度全球定位系统(GPS)技术,通过卫星定位和时间同步,实现了列车的精确定位和时钟同步。
CTCS2200H还具备自动列车保护和控制功能。
系统中包含一套完善的安全规则和算法,可以自动检测列车运行中的潜在危险情况,并及时向运行员发出警示。
当列车接近停车点或限速区域时,系统可以自动降低列车的速度,以确保列车的安全停车或安全通过。
此外,系统还可以对列车进行自动制动,以应对紧急情况和意外事件。
CTCS2200H在列车运行中具有广泛的应用。
首先,它可以实现列车的自动控制,减轻了机车驾驶员的负担,提高了运行的安全性和效率。
其次,系统可以自动监测和记录列车的运行数据,为后续的运营计划和维护工作提供支持。
此外,CTCS2200H还可以与其他列车控制系统进行无缝集成,实现列车运行的协调和优化。
总之,CTCS2200H是中国铁路局自主研发的列控车载系统,具备高安全性和可靠性。
它通过无线通信和自动控制技术,实现了列车的自动保护和控制,并在列车运行中发挥了重要作用。
地铁车载信号系统功能及常见故障分析摘要:我国交通事业在近几年来得到蓬勃发展,地铁属于其中重要组成部分,为人们日常生活便利出行提供支持。
但在地铁运行过程中,地铁车载信号系统可能出现故障,因此必须制定解决方案,才可保障人们出行安全。
综上,本文首先分析地铁车载信号系统功能,之后分析常见故障,最后提出故障解决措施,希望进一步提高我国地铁运行可靠性。
关键词:地铁;车载信号系统;功能;常见故障前言:地铁车载信号系统被广泛应用于车辆运行过程中,可为地铁智能化、数字化管理提供技术支持,其也会对地铁能否安全运行、运营效率产生直接影响。
具体来说地铁车载信号系统常见故障类型较多,如ATP冗余故障等,一旦发生故障,将会造成严重安全事故,因此必须及时解决、科学处置,才可保障运行安全。
一、地铁车载信号系统功能地铁车载信号系统主要功能是为车辆运行提供辅助控制,特征为运行闭塞,属于管理系统,属于列车自动控制系统核心构成。
地铁车载信号系统不仅可保障列车安全、稳定运行,还可提升运行效率,确保对列车进行自动化、智能化控制。
从目前实际使用情况来看,相比于传统轨道电路地-车通信模式来说,地铁车载信号系统运行原理为车-地双向实时通信移动闭塞原理。
地铁车载信号系统使用过程中,会利用速度传感器、应答器获取列车轨道实际点位与运行方向,之后利用车载天线将数据传输至轨道旁列车自动防护系统中。
防护系统可使用这些数据信息,联合轨道旁其他设备信息,对列车移动授权进行计算,并将数据输送至列车控制系统中。
地铁车载信号系统获取移动授权数据后,会依据列车行驶速度、授权终点等数据对最大允许行驶速度进行计算。
与此同时,车载自动防护系统还会对不同列车之间的距离、速度进行监管,基于移动授权范围内,保障列车安全运行,还会将数据信息输送到人机交互界面[1],对列车司机操作进行正确指导。
地铁车载信号系统还可发挥自动驾驶列车功能,列车行驶过程中,使用ATO可替代司机完成自动化驾驶与控制,确保车速稳定、行驶安全。
车载wifi系统原理
车载WiFi系统是一种通过无线技术将车辆内部的互联网连接分享给乘客的系统。
它通常包括以下原理:
1. 车载无线网络设备:车载WiFi系统通过嵌入在车辆中的无线路由器或其他无线设备,将来自外部网络的互联网信号接收到车辆内部。
2. 互联网连接:车载WiFi系统可以通过多种方式连接到互联网,例如通过车辆自身内置的3G/4G连接、车辆所处区域的无线局域网(Wi-Fi)信号或外部移动数据网络(如手机热点)。
3. 信号传输:车载WiFi系统将接收到的互联网信号通过无线技术(通常是Wi-Fi)传输给车辆内部的无线设备,例如智能手机、平板电脑或笔记本电脑。
4. 安全性:车载WiFi系统通常会提供安全措施,例如Wi-Fi 加密、密码保护和访问控制,以确保车辆内部的互联网连接安全可靠。
5. 网络分享:车载WiFi系统可以通过无线路由功能将接收到的互联网连接分享给车辆内的多个设备,使乘客可以同时连接并使用互联网。
总体来说,车载WiFi系统通过将车辆内部和外部的无线网络
连接起来,为乘客提供便捷的互联网访问和共享,提升车内的互联网体验。
厦门一号线的信号系统Urbalis888设备,主要由以下子系统组成: ➢ ATS 子系统; ➢ ATP/ATO 子系统;➢ 计算机联锁(CBI )子系统; ➢ 信号集中监测子系统; ➢ 数据通信(DCS )子系统。
其整体结构如下:CCCC图1.1.1 Urbailis888线路总体结构车载的CBTC 网络是冗余的,分别用蓝色和红色画出。
它由两个车载控制器、两个司机显示单元、两个调制解调器(每端安装两个无线DCS 天线)、两套编码里程计和两个信标天线以及信号相关按钮和指示灯等组成。
DL编码里程计 Ethernet NetworkDL DCSmodemdeskdeskCORECAB1CAB2VIOM VIOM RepeaterSwitch SwitchSwitchSwitch COREDCS modem RepeaterRepeater Repeater编码里程计2 个DCS 天线图1.1.2 车载结构第一节车载信号设备功能介绍车载ATP/ATO设备的具体功能介绍如下:一、ATO的功能:列车自动驾驶(ATO)子系统可以驾驶列车,根据OCC的调整命令并考虑所有最严格的速度限制,向车辆发送牵引和制动命令。
ATO子系统可以平稳的驾驶列车以确保乘客的舒适度。
(一)驾驶模式转换驾驶模式间的转换符合安全、高效、操作简单的原则,人机界面友好、可操作性强,确保驾驶模式转换时列车运行的安全。
(二)自动驾驶功能1自动驾驶列车自动驾驶是ATO的主要功能,ATO生成速度控制命令并发送到列车的牵引和制动系统。
此功能可以确保:➢与ATS和ATP子系统结合,高效经济地实现列车自动驾驶、自动折返。
➢在车站和折返线精确平稳停车;➢在ATP的保护下,根据ATS的指令实现对列车的自动驾驶,自动完成对列车的站台精确停车、开启和关闭车门及屏蔽门、离站启动、牵引、惰行以及制动的合理控制,并确保达到设计间隔及旅行速度。
➢ATO驾驶的列车在线路上(特别是上坡、下坡、变坡点)运行将避免不必要的牵引变换,使列车运行保持平稳,保证乘客的舒适度。
车载信号系统与车辆系统的接口功能分析摘要:本文对地铁车载信号系统与车辆系统在接口功能上进行详细阐述,提出一种对接口信息进行实时监测的设备,用于准确定位列车故障、提高故障排查效率。
关键词:地铁;车载信号;接口1.概述地铁车载信号系统为列车提供列车自动运行功能和列车自动防护功能。
在控制中心的监督下,车载信号系统给车辆发送行车指令,监督列车运行,调整行车状态,并在不安全情况下发出紧急制动命令。
由于车载信号系统在行车安全上的关键作用,分析其与车辆系统接口功能,在查找接口电路故障时显得尤为重要。
2.车载信号与车辆系统接口车载信号与车辆系统的接口可以分为三类:车辆电路供给车载控制器的电源、车辆电路车载控制器的信号输入、车载控制器给车辆电路的命令输出。
2.1 电源车辆电路提供3路110VDC电压用于车载信号设备工作,其中一路110VDC通过变压器转换成24VDC供车载控制器(VOBC)工作、一路110VDC车载控制器对外输出、一路110VDC用于列车操作员显示器(TOD)工作。
2.2 车辆至车载信号设备的输入接口车辆至车载信号设备的输入信息包含两类,一类是通过车辆电路给车载信号系统发送的请求;另一类是车载信号系统采集的列车状态信息。
2.2.1 车辆电路给车载信号系统发送的请求1 钥匙开关车辆钥匙开关位于司机控制台上,用来解锁驾驶室,VOBC检测钥匙开关的具体位置,以确定哪边驾驶室被激活。
如果激活的司机室与行车方向不一致,则在ATC模式下,VOBC将不会给列车发出方向信号,列车无法动车。
2 车载控制器复位通过按压司机操作台上的复位按钮,可复位VOBC,以便于司机在行车过程中重启故障的VOBC。
对于装有两台VOBC的列车,通过按压复位按钮时间确定是复位几个VOBC。
3 模式建立地铁列车一共有七种模式:Off模式、无人驾驶模式、AUTO模式、PM模式、ATP反向模式、RM模式、Cut-out模式。
Off模式是在VOBC与控制中心通信状态下的关闭模式,此种模式VOBC将给列车施加紧急制动;AUTO模式由VOBC驾驶列车,司机仅在发车时控制列车出发;PM模式,是一种在VOBC监护下由司机驾驶的模式;无人驾驶模式下,列车将完全由VOBC控制行车,不需要司机参与;ATP反向模式,是一种后退运行模式,当列车出现站台过冲时,可通过ATP反向运行,使列车退回站台;RM模式是一种非通信模式下,VOBC监护司机驾驶的模式;Cut-out模式下VOBC设备会被隔离,列车将完全由司机凭借地面信号进行驾驶,在所有VOBC设备均故障且无法及时恢复时,可以此模式运营。
车载导航的工作原理
车载导航系统的工作原理是基于卫星定位技术。
它通过接收来自全球定位系统(GPS)卫星的信号,来确定车辆的准确位置和行驶方向。
具体的工作步骤如下:
1. GPS信号接收:车载导航系统接收来自多颗GPS卫星的信号。
车载导航系统通常需要至少接收到3颗卫星的信号以确定车辆的位置,但更多的卫星信号可以提高定位的准确性。
2. 三角定位:通过接收到的卫星信号,车载导航系统使用三角定位的方法计算出车辆的准确位置。
三角定位依靠卫星的位置信息和信号到达的时间差来计算车辆的经纬度坐标。
3. 地图数据匹配:车载导航系统将车辆的位置坐标与事先存储在内部存储器中的电子地图进行匹配。
地图数据通常包括道路网络、POI(兴趣点)和其他相关信息。
通过匹配,系统可以确定车辆所在的道路、路口和周围环境等。
4. 路径规划:基于车辆的当前位置和用户输入的目的地信息,车载导航系统使用算法计算出最佳的行驶路径。
路径规划通常考虑诸如交通状况、道路限速、转弯顺序、道路类型等因素。
5. 导航指引:车载导航系统将规划好的行驶路径转化为语音提示或图形指引,在车辆行驶过程中向驾驶员提供准确的导航信息。
导航指引包括沿途的路口、转弯提示、目的地预计到达时间等。
总之,车载导航系统主要依靠GPS卫星信号来确定车辆的位置,并根据电子地图数据进行路径规划和导航指引。
这些功能的综合运用使得驾驶员能够更轻松、准确地到达目的地。