阿基米德三角形与三道高考试题
- 格式:docx
- 大小:298.72 KB
- 文档页数:5
第27讲 阿基米德三角形知识与方法1.如图1所示,不妨设抛物线为()220x py p =>,抛物线上A 、B 两点处的切线交于点P ,则:(1)设AB 中点为M ,则PM 平行于(或重合)抛物线的对称轴;(2)PM 的中点S 在抛物线上,且抛物线在点S 处的切线平行于弦AB .2.如图2所示,不妨设抛物线为()220x py p =>,抛物线上A 、B 两点处的切线交于点P ,则:(1)若弦AB 过抛物线内的定点Q ,则点P 的轨迹是直线;特别地,若弦AB 过定点()0,m ()0m >,则点P 的轨迹是直线y m =−;(2)若弦AB 过抛物线内的定点Q ,则以Q 为中点的弦与(1)中点P 的轨迹平行. 3.如图3所示,不妨设抛物线为()220x py p =>,抛物线上A 、B 两点处的切线交于点P ,若AB 过焦点F ,则点P 的轨迹为抛物线准线,PA PB ⊥,PF AB ⊥,且PAB 的面积的最小值为2p .4.如图4所示,不妨设抛物线为()220x py p =>,抛物线上A 、B 两点处的切线交于点P ,则:(1)PFA PFB ∠=∠;(2)2AF BF PF ⋅=提醒:阿基米德三角形在小题和大题中都可能涉及,小题可以直接用性质速解,大题则必须给出详细的求解过程.典型例题【例1】己知点()1,1P −在抛物线()220y px p =>的准线上,过点P 作抛物线的切线,切点为A 、B ,则直线AB 的斜率k =_______.【解析】点()1,1P −在抛物线()220y px p =>的准线上⇒抛物线的准线为1x =−⇒抛物线的焦点为()1,0F ,由阿基米德三角形性质,直线AB 过F 且PF AB ⊥,而101112PF k −==−−−,所以直线AB 的斜率为2.【答案】2变式1 已知点()2,1M −和抛物线2:4C x y =,过C 的焦点F 且斜率为k 的直线与C 交于A 、B 两点,若90AMB ∠=︒,则k =_______.【解析】由题意,M 在抛物线C 的准线上,直线AB 过点F 且90AMB ∠=︒,所以MAB 是阿基米德三角形,如图,由阿基米德三角形性质,MF AB ⊥,而11120MF k −−==−−,所以直线AB 的斜率为1.【答案】1变式2 已知抛物线2:4C x y =,过点()1,1P −作抛物线C 的两条切线,切点分别为A 和B ,则经过P 、A 、B 三点的圆的方程为______.【解析】由题意,点P 在抛物线C 的准线上,则PA PB ⊥,PF AB ⊥,且直线AB 过焦点()0,1F ,所以经过P 、A 、B 三点的圆就是以AB 为直径的圆,直线PF 的斜率为11210−−=−−, 所以直线AB 的斜率为12,其方程为112y x =+,设()11,A x y ,()22,B x y , 联立21124y x x y ⎧=+⎪⎨⎪=⎩消去y 整理得:2240x x −−=, 故122x x +=,()12121232y y x x +=++=,从而AB 中点为31,2⎛⎫ ⎪⎝⎭,1225AB y y =++=,所以经过P 、A 、B 三点的圆的方程为()22325124x y ⎛⎫−+−= ⎪⎝⎭.【答案】()22325124x y ⎛⎫−+−= ⎪⎝⎭变式3 已知过抛物线22x y =焦点F 的直线与抛物线交于A 、B 两点,抛物线在A 、B 处的切线交于点C ,则ABC 面积的最小值为______.【解析】由阿基米德三角形性质,当直线AB 过焦点F 时,ABC 面积的最小值为21p =. 【答案】1变式4 已知抛物线2:4C y x =的焦点为F ,过F 的直线与抛物线C 交于A 、B 两点,抛物线C 在A 、B 两点处的切线相交于点P ,若3AF =,则PF =_______. 【解析】设AFO α∠=,则231cos AF α==+,所以1cos 3α=−,故()2231cos 1cos 2BF παα===+−−, 由阿基米德三角形性质,2AF BF PF ⋅=所以2PF ==.【答案】2【例2】抛物线2:2C x py =()0p >的焦点为F ,且F 与圆()22:21I x y ++=上的点的距离的最大值为4. (1)求p 的值;(2)若点Q 在圆I 上,QA 、QB 是抛物线C 的两条切线,A 、B 是切点,当IQ AB ∥时,求直线AB 与y 轴交点的坐标. 【解析】解:(1)由题意,342p+=,所以2p =. (2)显然直线AB 斜率存在,可设其方程为y kx m =+,由(1)知抛物线C 的方程为24x y =,联立24y kx m x y=+⎧⎨=⎩消去y 整理得:2440x kx m −−=,由韦达定理,124x x k +=,124x x m =−,设211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,由24x y =可得24x y =,所以2x y '=,故直线QA 的方程为()211142x x y x x −=−,整理得:21124x x y x =−,同理,直线QB 的方程为22224x x y x =−,联立2112222424x x y x x xy x ⎧=−⎪⎪⎨⎪=−⎪⎩解得:1222x x x k +==,124x x y m ==−,所以点Q 的坐标Wie ()2,k m −, 因为点Q 在圆I 上,所以()22421k m +−+=①, 因为IQ AB ∥,所以22mk k−=,从而222k m =−, 代入式①可得()()22221m m −+−+=解得:3m =,又2220k m =−≥,所以2m ≤,故3m =, 从而直线AB 与y轴的交点的坐标为(0,3.【反思】对于开口向上(或向下)的抛物线的阿基米德三角形大题,通常采用设两个切点,写出切线方程并联立求出交点坐标,同时将切点弦所在直线与抛物线联立,结合韦达定理计算的方法来处理.强化训练1.(★★★)已知点()2,1P −在抛物线()2:20C y px p =>的准线上,过P 作抛物线C 的切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】()2,1P −在准线上4p ⇒=⇒抛物线的焦点为()2,0F,由阿基米德三角形性质,直线AB 过F ,且PF AB ⊥,而101224PF k −==−−−,所以直线AB 的斜率为4, 故直线AB 的方程为()42y x =−【答案】()42y x =−2.(★★★)已知抛物线2:4C x y =的焦点为F ,过点F 的直线l 交抛物线C 于A 、B 两点,抛物线在A 、B 两点处的切线相交于点P ,则PAB 面积的最小值为_______. 【解析】当AB 过焦点时,阿基米德三角形面积的最小值为24p =. 【答案】43.(★★★)已知抛物线2:2C y x =和点1,12P ⎛⎫− ⎪⎝⎭,过C 的焦点F 且斜率为k 的直线l 与抛物线C 交于A 、B 两点,若0PA PB ⋅=,则k =_______.【解析】由题意,1,02F ⎛⎫⎪⎝⎭,点P 在抛物线的准线上,且PA PB ⊥,所以PAB 是阿基米德三角形,从而PF PB ⊥,直线PF 的斜率1011122PF k −==−−−,故直线AB 的斜率为1. 【答案】14.(★★★)已知抛物线2:4C x y =,过点()0,1P x −作抛物线C 的两条切线,切点分别为A 和B ,若经过P 、A 、B 三点的圆被x 轴截得的弦长为4,则0x =______.【解析】由题意,点P 在抛物线C 的准线上,则PA PB ⊥,PF AB ⊥,且AB 过焦点()0,1F ,直线PF 的斜率为001120x x −−=−−,所以直线AB 的斜率为02x ,其方程为012x y x =+,设()11,A x y ,()22,B x y 联立02124x y x x y ⎧=+⎪⎨⎪=⎩消去y 整理得:20240x x x −−=,所以1202x x x +=,()201212022x y y x x x +=+=+, 从而AB 中点为200,12x x ⎛⎫+ ⎪⎝⎭,212024AB y y x =++=+, 因为PA PB ⊥,所以经过P 、A 、B 三点的圆就是以AB 为直径的圆,该圆的半22220014222x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭,解得:01x =±.【答案】1±5.(★★★★)已知抛物线2y x =和点()0,1P ,若过某点C 可作抛物线的两条切线,切点分别为A 和B ,且满足1233CP CA CB =+,则ABC 的面积为______.【解析】()()12123333CP CA CB CP CP PA CP PB PA PB =+⇒=+++⇒=−⇒P 、A 、B 三点共线,设直线AB 的方程为1y kx =+,设()11,A x y ,()22,B x y ,不妨设0k >, 联立21y kx y x=+⎧⎨=⎩消去y 整理得:210x kx −−=,判别式240k =+>, 由韦达定理12x x k +=,121x x =−,又2PA PB =−,所以122x x =−,联立12121212x x kx x x x+=⎧⎪=−⎨⎪=−⎩可解得:k =,所以12x x +,设AB 中点为D ,则122D x x x +==, 代入1y kx =+得51244D y =⨯+=, 由阿基米德三角形性质知CD x ⊥轴且点C 在直线1y =−上, 所以()59144CD =−−=,故121199922418216ABCSCD x x =⋅−=⨯⨯=⨯=.6.(★★★★★)已知动圆过点()0,1F ,且与直线:1l y =−相切.(l )求动圆圆心的轨迹E 的方程; (2)设P 为一动点,过P 作曲线E 的两条切线PA 、PB ,切点分别为A 和B ,且PA PB ⊥,直线AB 与圆224x y +=相交于C 、D 两点,设点P 到直线AB 的距离为d ,是否存在点P ,使得24AB CD d ⋅=?若存在,求出点P 的坐标;若不存在,说明理由. 【解析】(1)由题意,动圆圆心到点F 的距离和到定直线l 的距离相等, 所以动圆圆心的轨迹是以F 为焦点,l 为准线的抛物线,其方程为24x y =.(2)显然直线AB 的斜率存在,故可设其方程为y kx m =+,设211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫⎪⎝⎭,联立24y kx mx y=+⎧⎨=⎩消去y 整理得:2440x kx m −−=,由韦达定理,124x x k +=,124x x m =−,由24x y =得24x y =,所以2xy '=,故直线PA 的方程为()211142x x y x x −=−,整理得:21124x x y =−,同理,直线PB 的方程为22224x x y =−,联立2112222424x x y x x y ⎧=−⎪⎪⎨⎪=−⎪⎩解得:1222x x x k +==,124x x y m ==−,所以点P 的坐标为()2,k m −,因为PA PB ⊥, 所以12122x x m ⋅=−=−,故1m =,从而AB 过点F , 所以()212122444AB y y k x x k =++=++=+, 原点到直线AB,故CD =点P 到直线AB 的距离d ==所以24AB CD d ⋅=等价于()()2244161k k +⋅=+, 化简得:2101k =+,无解,故不存在点P ,使得|24AB CD d ⋅=.。
阿基米德三角形性质与高考题性质1即:)2,2(2121y y p y y Q +19.(07年江苏卷)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,.(1)若2=⋅,求c 的值;(5分)(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立说明理由.(4分)19.本小题主要考查抛物线的基本性质、直线与抛物线的位置关系、向量的数量积、导数的应用、简易逻辑等基础知识和基本运算,考查分析问题、探索问题的能力.满分14分. 解:(1)设直线AB 的方程为y kx c =+,将该方程代入2y x =得20x kx c --=.令2()A a a ,,2()B b b ,,则ab c =-.因为2222OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫-⎪⎝⎭,,直线AQ 的斜率为22222AQ a c a ab k a a b a b a +-===+--. 又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线. (3)(2)的逆命题成立,证明如下:设0()Q x c -,. 若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQa c a ab k a x a x +-==--,所以202a aba a x -=-,得202ax a ab =+,因0a ≠,有02a bx +=. 故点P 的横坐标为2a b+,即P 点是线段AB 的中点.性质2:2||||||QF BF AF =⋅例7.(13广东)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.性质3:QFB QFA ∠=∠22.(05江西)如图,设抛物线上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.22.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x 解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠ ∴∠AFP=∠PFB.性质4:过焦点的阿基米德三角形面积的最小值为2p(21)(06年全国卷2)已知抛物线24x y =的焦点为F ,A 、B 是热线上的两动点,且(0).AF FB λλ=>过A 、B 两点分别作抛物线的切线,设其交点为M 。
专题4 阿基米德三角形专题3 阿基米德三角形 微点1 阿基米德三角形 【微点综述】在近几年全国各地高考的解析几何试题中可以发现许多试题涉及到与一个特殊的三角形——由抛物线的弦及过弦的端点的两条切线所围成的三角形有关的问题,这个三角形常被称为阿基米德三角形. 阿基米德三角形包含了直线与圆锥曲线相交、相切两种位置关系,聚焦了轨迹方程、定值、定点、弦长、面积等解析几何的核心问题,“坐标法”的解题思想和数形结合方法的优势体现得淋漓尽致,能很好的提升学生解决圆锥曲线问题的能力,落实逻辑推理、数学抽象、数学运算等核心素养.鉴于此,微点研究阿基米德三角形。
一、预备知识——抛物线上一点的切线方程(1)过抛物线()220y px p =>上一点()00,M x y 的切线方程为:()00y y p x x =+;(2)过抛物线()220y px p =−>上一点()00,M x y 的切线方程为:()00y y p x x =−+;(3)过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+; (4)过抛物线()220x py p =−>上一点()00,M x y 的切线方程为:()00x x p y y =−+.下面仅以情形(3)为例给出证明,同理可证其余三种情形。
证法1:设抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00y y k x x −=−,代入22x py =,整理得2002220x pkx py pkx −−+=,由0x ∆=,得()222000044220,220,p k py pkx pk x k y +−=∴−+=抛物线上一点处的切线唯一,∴ 关于k 的一元二次方程200220pk x k y −+=有两个相等的实数根,0,x k p∴=∴所求的切线方程为()000x y y x x p−=−,即2000x x x py py =+−,又2002x py =,∴过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+。
阿基米德多面体一、单选题1半正多面体亦称“阿基米德多面体”是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由八个正三角形和六个正方形构成的(如图所示),则异面直线AB 与CF 所成的角为()A.π6B.π4C.π3D.π22“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以一正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为1,则经过该多面体的各个顶点的球的表面积为()A.8πB.4πC.3πD.2π3半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,它是由正方体的各条棱的中点连接形成的几何体、它由八个正三角形和六个正方形围成(如图所示),若它所有棱的长都为2,则下列说法错误的是()A.该二十四等边体的表面积为24+83B.QH⊥平面ABEC.直线AH与PN的夹角为60°D.该半正多面体的顶点数V、面数F、棱数E,满足关系式V+F-E=24“阿基米德多面体”也称为半正多面体,半正多面体是由两种或多种正多边形面组成,而又不属于正多面体的凸多面体.如图,某广场的一张石凳就是一个阿基米德多面体,它是由正方体截去八个一样的四面体得到的.若被截正方体的棱长为40cm,则该阿基米德多面体的表面积为()A.4800+16003cm2 B.4800+48003cm2C.3600+36003cm2 D.3600+12003cm25“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则该多面体中具有公共顶点的两个正三角形所在平面的夹角正切值为()A.22B.1C.2D.226如图,将正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,截取后的剩余部分称为“阿基米德多面体”,它是一个24等边半正多面体.从它的棱中任取两条,则这两条棱所在的直线为异面直线的概率为()A.1023B.1223C.2969D.50697半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.下图是棱长为2的正方体截去八个一样的四面体,得到的一个半正多面体,则下列说法错误的是()A.该半正多面体是十四面体B.该几何体外接球的体积为4π3C.该几何体的体积与原正方体的体积比为5∶6D.原正方体的表面积比该几何体的表面积小8“阿基米德多面体”这称为半正多面体(semi-regularsolid),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.已知AB=32 2,则该半正多面体外接球的表面积为()A.18πB.16πC.14πD.12π9中国有悠久的金石文化,印信是金石文化代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”.半正多面体是由两种或两种以上的正多边形围成的多面体,古希腊著名数学家阿基米德研究过此类多面体的性质,故半正多面体又被称为“阿基米德多面体”.半正多面体体现了数学的对称美,如图,是一个棱数为24的半正多面体,它的所有顶点都在同一个正方体的棱上,且此正方体的棱长为1.则下列关于该多面体的说法中错误的是()A.多面体有12个顶点,14个面B.多面体的表面积为3C.多面体的体积为56D.多面体有外接球(即经过多面体所有顶点的球)10半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形围成(如图所示),若它所有棱的长都为2,则()A.BC ⊥平面ABEB.该二十四等边体的体积为3223C.ME 与PN 所成的角为45°D.该二十四等边体的外接球的表面积为16π11有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.若点E 为线段BC 上的动点,则直线DE 与直线AF 所成角的余弦值的取值范围为()A.13,22B.13,32C.12,22D.12,3212半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,它是由正方体的各条棱的中点连接形成的几何体.它由八个正三角形和六个正方形围成(如图所示),若它的棱长为2,则下列说法错误的是()A.该二十四等边体的外接球的表面积为16πB.该半正多面体的顶点数V 、面数F 、棱数E ,满足关系式V +F -E =2C.直线AH 与PN 的夹角为60°D.QH ⊥平面ABE13“阿基米德多面体”是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为2,则其外接球的表面积为()A.16πB.8πC.16π3D.32π314“阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以一正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”,若该多面体的棱长为1,则经过该多面体的各个顶点的球的体积为()A.43π B.82π3C.4πD.8π15有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.若点E为线段BC上的动点,则下列结论不正确的是()A.存在点E、使得A、F、D、E四点共面;B.存在点E,使DE⊥DF;C.存在点E,使得直线DE与平面CDF所成角为π3;D.存在点E,使得直线DE与直线AF所成角的余弦值3510.二、多选题16半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,半正多面体有且只有13种.最早用于1970年世界杯比赛的足球就可以近似看作是由12个正五边形和20个正六边形组成的半正面体,半正多面体体现了数学的对称美.如图所示的二十四等边体就是一种半正多面体,它由8个正三角形和6个正方形围成,它是通过对正方体进行八次切截而得到的.若这个二十四等边体的棱长都为2,则下列结论正确的是()A.MQ与平面AEMH不可能垂直B.异面直线BC和EA所成角为60°C.该二十四等边体的体积为402D.该二十四等边体外接球的表面积为18π317“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥,得到的半正多面体的表面积为12+43,则关于该半正多面体的下列说法中正确的是( ).A.AB =2B.该半正多面体的外接球的表面积为6πC.AB 与平面BCD 所成的角为π4 D.与AB 所成的角是π3的棱共有16条18半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美,二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则()A.BF ⊥平面EABB.AB 与PF 所成角为45°C.该二十四等边体的体积为203D.该二十四等边体多面体有12个顶点,14个面19“阿基米德多面体”也称为半正多面体,它是由边数不全相同的正多边形为面围成的多面体,体现了数学的对称美.如图,将正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥,得到的半正多面体的表面积为12+43,则关于该半正多面体的下列说法中正确的是()A.AB 与平面BCD 所成的角为π4B.AB =22C.与AB 所成的角是π3的棱共有16条 D.该半正多面体的外接球的表面积为6π20半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形围成(如图所示),若它所有棱的长都为2,则()A.BC ⊥平面ABEB.该二十四等边体的体积为4023C.ME 与NP的夹角为60°D.该二十四等边体的外接球的表面积为16π21有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.若点E 为线段BC 上的动点(包含端点),则下列说法正确的是()A.该半正多面体的体积为163B.当点E 运动到点B 时,DE ⎳FGC.当点E 在线段BC 上运动时(包含端点),AH 始终与DE 垂直D.直线DE 与平面AFHG 所成角的正弦值的取值范围为0,2222很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为22的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的.下列结论正确的有()A.该半正多面体的表面积为48+323B.AG⊥平面BCDGC.点B到平面ACD的距离为433D.若E为线段BC的中点,则异面直线DE与AF所成角的余弦值为351023很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得,则下列各选项正确的是()A.该半正多面体的体积为203B.A,C,D,F四点共面C.该半正多面体外接球的表面积为12πD.若点E为线段BC上的动点,则直线DE与直线AF所成角的余弦值的取值范围为12,2 224半正多面体亦称“阿基米德体”,是由边数不全相同的正多边形为面的多面体.如图,将正四面体每条棱三等分,截去顶角所在的小正四面体,得到一个有八个面的半正多面体.点A、B、C是该多面体的三个顶点,且棱长AB=2,则下列结论正确的是()A.该多面体的表面积为243B.该多面体的体积为4623C.该多面体的外接球的表面积为22πD.若点M是该多面体表面上的动点,满足CM⊥AB时,点M的轨迹长度为4+43三、填空题25很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.若E 为线段BC 的中点,则直线DE 与直线AF 所成角的余弦值为.26“阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.二十四等边体就是一种半多正多面体.如图,棱长为1的正方体截去八个一样的四面体,就得到二十四等边体,则该几何体的体积为.27半正多面体亦称“阿基米德体”“阿基米德多面体”,是以边数不全相同的正多边形为面的多面体.某半正多面体由4个正三角形和4个正六边形构成,其可由正四面体切割而成,如图所示.已知MN =1,若在该半正多面体内放一个球,则该球表面积的最大值为.28半正多面体亦称“阿基米德体”“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体.某半正多面体由4个三角形和4个正六边形构成,其可由正四面体切割而成,如图所示.若点G 在直线BC 上,且BG =5BC,BC =1,则直线EF 与直线AG 所成角的余弦值为.29半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则正确的序号是.①BF ⊥平面EAB ; ②AB 与PF 所成角为45°;③该二十四等边体的体积为203; ④该二十四等边体外接球的表面积为8π.30将棱长为12的正四面体沿棱长的三等分点处截去四个小正四面体后,所得的多面体称为阿基米德体,如图所示.若点N 在阿基米德体的表面上运动,且直线MN 与直线AB 始终满足MN ⊥AB ,则动点N 的轨迹所围成平面图形的面积是.四、双空题31半正多面体(又称作“阿基米德体”),是由两种或两种以上的正多边形围成的多面体,其构成体现了数学的对称美.如图,这是一个棱数为24,棱长为2的半正14面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体沿共顶点的三条棱的中点截去八个相同的三棱锥所得,则这个半正多面体的体积为﹔若点E 为线段BC 上的动点,则直线DE 与平面AFG 所成角的正弦值的取值范围为32阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为;若M,N是该阿基米德多面体表面上任意两点,则M,N两点间距离的最大值为.33“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个棱长为2正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则该多面体的表面积为;其外接球的表面积为.34有很多立体图形都体现了数学的对称美,其中半正多面体是由两种成两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得,这个正多面体的表面积为.若点E为线段BC上的动点,则直线DE与直线AF 所成角的余弦值的取值范围为.35如图,将正四面体每条棱三等分,截去顶角所在的小正四面体,余下的多面体就成为一个半正多面体,亦称“阿基米德体”.点A,B,M是该多面体的三个顶点,点N是该多面体外接球表面上的动点,且总满足MN⊥AB,若AB=4,则该多面体的表面积为;点N轨迹的长度为.阿基米德多面体一、单选题1半正多面体亦称“阿基米德多面体”是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由八个正三角形和六个正方形构成的(如图所示),则异面直线AB 与CF 所成的角为()A.π6B.π4C.π3D.π2【答案】C【分析】依题意将图形放到正方体中,如图所示,由正方体的性质可得∠PQM 为异面直线AB 与CF 所成的角,即可得解;【详解】解:二十四等边体可认为是由正方体切去八个全等的三棱锥得到的,如图所示,可知AB ⎳PQ ,CF ⎳MQ ,所以∠PQM 为异面直线AB 与CF 所成的角,因为△PQM 是等边三角形,所以∠PQM =π3,故异面直线AB 与CF 所成的角为π3;故选:C2“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以一正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为1,则经过该多面体的各个顶点的球的表面积为()A.8πB.4πC.3πD.2π【答案】B【分析】将该多面体补形为正方体,得到经过该多面体的各个顶点的球为正方体ABCD-EFGH的棱切球,求出该正方体的边长,求出棱切球的半径,得到表面积.【详解】将该多面体补形为正方体,则由OR=1,AO=AR,AO⊥AR,所以由勾股定理得:AO=AR=22,所以正方体的边长为22×2=2,所以经过该多面体的各个顶点的球为正方体ABCD-EFGH的棱切球,所以棱切球的直径为该正方体的面对角线,长度为2×2=2,故过该多面体的各个顶点的球的半径为1,球的表面积为4π×12=4π.故选:B3半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,它是由正方体的各条棱的中点连接形成的几何体、它由八个正三角形和六个正方形围成(如图所示),若它所有棱的长都为2,则下列说法错误的是()A.该二十四等边体的表面积为24+83B.QH⊥平面ABEC.直线AH与PN的夹角为60°D.该半正多面体的顶点数V、面数F、棱数E,满足关系式V+F-E=2【答案】B【分析】由三角形和正方形面积公式即可求出二十四等边体的表面积,线面垂直判定定理,利用平移求异面直线夹角,推理分析即可判断结果.【详解】对于A,S□ABCD=22=4,S△ABE=12×32×2×2=3,S表=6S□ABCD+8S△ABE=6×4+8×3=24+83,故A正确;对于B,由图可知QH⎳BF,BF⊥EB,但BF与AB和AE都不垂直,所以QH不可能与平面ABE垂直,故B错误;对于C,由图可知AH⎳AD,而直线AH与AD的夹角为60°,所以直线AH与PN的夹角为60°,故C正确;对于D,该半正多面体的顶点数为12、面数为14、棱数为24,满足12+14-24=2,故D正确;故选:B.4“阿基米德多面体”也称为半正多面体,半正多面体是由两种或多种正多边形面组成,而又不属于正多面体的凸多面体.如图,某广场的一张石凳就是一个阿基米德多面体,它是由正方体截去八个一样的四面体得到的.若被截正方体的棱长为40cm,则该阿基米德多面体的表面积为()A.4800+16003cm2 B.4800+48003cm2C.3600+36003cm2 D.3600+12003cm2【答案】A【分析】通过图形可知阿基米德多面体是由六个全等的正方形和八个全等的等边三角形构成,分别求解正方形和等边三角形面积,加和即可.【详解】由题意知:阿基米德多面体是由六个全等的正方形和八个全等的等边三角形构成,其中正方形边长和等边三角形的边长均为202+202=202;∴阿基米德多面体的表面积S=6×2022+8×12×202×202×32=4800+16003cm2.故选:A.5“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则该多面体中具有公共顶点的两个正三角形所在平面的夹角正切值为()A.22B.1C.2D.22【答案】D【分析】将该多面体放在正方体中,利用空间向量的坐标运算,求出平面EFG 和平面GHK 的法向量,即可求平面EFG 和平面GHK 夹角的余弦值,进而可求解.【详解】将该“阿基米德多面体”放入正方体中,如图,平面EFG 和平面GHK 为有公共顶点的两个正三角形所在平面,建立如图所示空间直角坐标系,设正方体的棱长为2,则E (1,0,2),F (2,1,2),G (2,0,1),H (2,1,0),K (1,0,0),设平面EFG 的法向量为m=(x ,y ,z ),EF =(1,1,0),EG =(1,0,-1),所以EF ⋅m=x +y =0EG ⋅m=x -z =0,令x =1,y =-1,z =1,所以m =(1,-1,1),设平面GHK 的法向量为n=(a ,b ,c ),GH =(0,1,-1),GK =(-1,0,-1),所以GH ⋅n=b -c =0GK ⋅n=-a -c =0,令a =1,b =-1,c =-1,所以n =(1,-1,-1),设平面平面EFG 和平面GHK 的夹角为θ,则cos <m ,n >=m ⋅n m ⋅n=13×3=13,因为平面EFG 和平面GHK 的夹角为锐角,所以cos θ=cos <m ,n > =13,所以sin θ=1-cos 2θ=223,tan θ=sin θcos θ=22,故选:D6如图,将正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,截取后的剩余部分称为“阿基米德多面体”,它是一个24等边半正多面体.从它的棱中任取两条,则这两条棱所在的直线为异面直线的概率为()A.1023B.1223C.2969D.5069【答案】B【分析】分一条直线位置于上(或下)底面,另一条不在底面;两条直线都位于上下底面时;两条直线都不在上下底面时计数,再根据古典概型公式求解即可.【详解】解:当一条直线位置于上(或下)底面,另一条不在底面时,共有10×8=80对异面直线,当两条直线都位于上下底面时,有4×2=8对异面直线,当两条直线都不在上下底面时,有7×8=56对异面直线,所以,两条棱所在的直线为异面直线的概率为P=80+56+8C224=1223故选:B7半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.下图是棱长为2的正方体截去八个一样的四面体,得到的一个半正多面体,则下列说法错误的是()A.该半正多面体是十四面体B.该几何体外接球的体积为4π3C.该几何体的体积与原正方体的体积比为5∶6D.原正方体的表面积比该几何体的表面积小【答案】D【分析】由题意求该几何体的体积与表面积,由外接球的半径求体积,对选项逐一判断即得.【详解】由图可知该半正多面体的表面是由6个正方形和8个等边三角形构成,所以为十四面体,该半正多面体是十四面体,故A正确;该几何体外接球的球心为原正方体的中心,故外接球半径为1,外接球的体积为4π3,故B正确;对于C,该几何体的体积V=V正方体-8V四面体=(2)3-8×13×12×12×22=523,正方体体积为22,故该几何体的体积与原正方体的体积比为5∶6,故C正确;对于D,该几何体有6个面为正方形,8个面为等边三角形,S表=6×12+8×34×1=6+23<12,即原正方体的表面积比该几何体的表面积大,故D 错误.故选:D .8“阿基米德多面体”这称为半正多面体(semi -regularsolid ),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.已知AB =322,则该半正多面体外接球的表面积为()A.18πB.16πC.14πD.12π【答案】A【分析】根据正方体的对称性可知:该半正多面体外接球的球心为正方体的中心O ,进而可求球的半径和表面积.【详解】如图,在正方体EFGH -E 1F 1G 1H 1中,取正方体、正方形E 1F 1G 1H 1的中心O 、O 1,连接E 1G 1,OO 1,OA ,O 1A ,∵A ,B 分别为E 1H 1,H 1G 1的中点,则E 1G 1=2AB =32,∴正方体的边长为EF =3,故OO 1=O 1A =32,可得OA =OO 21+O 1A 2=322,根据对称性可知:点O 到该半正多面体的顶点的距离相等,则该半正多面体外接球的球心为O ,半径R =OA =322,故该半正多面体外接球的表面积为S =4πR 2=4π×3222=18π.故选:A .9中国有悠久的金石文化,印信是金石文化代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”.半正多面体是由两种或两种以上的正多边形围成的多面体,古希腊著名数学家阿基米德研究过此类多面体的性质,故半正多面体又被称为“阿基米德多面体”.半正多面体体现了数学的对称美,如图,是一个棱数为24的半正多面体,它的所有顶点都在同一个。
微专题 阿基米德三角形基础回顾:圆锥曲线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形。
特殊地,过抛物线22=y px 的焦点F 任作一条弦AB ,抛物线在点,A B 处的两条切线相交于点M ,∆MAB 为阿基米德三角形.B A ,在其准线L 的上投影分别为B A '',,则有如下结论:1. 交点M 在22=y px 准线上2. 切线交点与弦中点连线平行于对称轴3. 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点4. ⊥MA MB ,⊥MF AB5. MN 与抛物线的交点平分线段MN6. MB 平分BA B '∠, 7.MA 平分角AB A '∠8. 2MF FB FA =⋅ 9. MAB S ∆2min p = 二、典例解析题型一 两切线交点的轨迹1. 过抛物线22=y px 的焦点F 任作一条弦AB ,抛物线在点,A B 处的两条切线相交于点M ,则M 在22=y px 的准线上 ,且⊥MA MB ,⊥MF AB ,证明:设直线AB 的方程为2=+px my .由22,,2⎧=⎪⎨=+⎪⎩y px p x my 可得2220y pmy p --=.显然0∆> 设1122(,),(,)A x y B x y ,则122y y pm +=,212y y p =-.抛物线在,A B 两点的切线方程分别为()11y y p x x =+,()22y y p x x =+.解之得1212,2,2⎧=⎪⎪⎨+⎪=⎪⎩y y x p y y y 由此求得两切线的交点坐标12(,)22+-y y P M所以M 在22=y px 的准线上.22212121⋅=⋅==--AM BMp p p p k k y y y y p,∴⊥MA MB(,)=-MF p pm ,2121(,)=--AB x x y y()()()21212121022p p MF AB p x x pm y y p my my pm y y ⎛⎫⋅=---=+----= ⎪⎝⎭∴⊥MF AB .题型二 阿基米德三角形面积的最小值2.抛物线的弦与过弦的端点的两条切线所围成的三角形称为阿基米德三角形.阿基米德三角形有一些有趣的性质,如若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y 2=4px (p >0),弦AB 过焦点,△ABQ 为其阿基米德三角形,则△ABQ 的面积的最小值为_______.解:由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△P AB 为直角三角型,且角P 为直角,S =P A •PB ≤,由于AB 是通径时,即AB =2p 最小,故S ≤p 2,故答案为:p 2.题型三 阿基米德三角形的形状的判断2. 抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上. 设抛物线y 2=2px (p >0),弦AB 过焦点,△ABQ 为阿基米德三角形,则△ABQ 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .随Q 位置变化前三种情况都有可能 解:如图所示.设Q,A (x 1,y 1),B (x 2,y 2).则,.设直线AB :my =x ﹣,联立,化为y 2﹣2pmy ﹣p 2=0,得到y 1+y 2=2pm ,.设过点A 的切线为,联立,化为,∵直线是抛物线的切线,∴=0,化为pk 1=y 1.设过点B 的切线为,同理可得pk 2=y 2. ∴p 2k 1k 2=y 1y 2.∴,解得k 1k 2=﹣1.∴.即△ABQ 是直角三角形.故选:B .题型四 阿基米德三角形的判断.4若M 在22=y px 的准线上,且⊥MA MB ,则,MA MB 是抛物线的两条切线,∆MAB 为阿基米德三角形.证明:过22=y px 的焦点F 任作一条弦AB ,过B A ,分别作抛物线的两条切线,设它们交于点M ',则M '在22=y px 的准线上,且B M A M '⊥',由抛物线的焦点弦的性质知,2=-px 是以AB 为直径的圆的切线,又M 在2=-px 上,且⊥MA MB ,则可得'M 与M 重合.所以,MA MB 是抛物线的两条切线.∆MAB 为阿基米德三角形.方法总结:1.圆锥曲线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形。
阿基米德定律试题及答案一、单项选择题1. 阿基米德定律描述的是液体对物体的哪种力?A. 重力B. 浮力C. 摩擦力D. 张力答案:B2. 阿基米德定律中,物体所受的浮力与其排开液体的什么成正比?A. 质量B. 体积C. 密度D. 压力答案:B3. 在阿基米德定律中,液体的密度如何影响物体所受的浮力?A. 无关B. 成正比C. 成反比D. 无法确定答案:B二、填空题4. 阿基米德定律的数学表达式为:\( F_b = \rho \cdot V \cdot g\),其中 \( F_b \) 表示________,\( \rho \) 表示________,\( V \) 表示________,\( g \) 表示________。
答案:浮力;液体的密度;排开液体的体积;重力加速度5. 当一个物体完全浸没在液体中时,它所受的浮力等于________。
答案:排开液体的重量三、简答题6. 解释为什么物体在液体中会浮起来。
答案:物体在液体中浮起来是因为液体对物体施加的浮力与物体的重力相等但方向相反。
如果物体的密度小于液体的密度,那么它所受的浮力将大于其重力,导致物体上浮。
7. 描述阿基米德定律在船舶设计中的应用。
答案:在船舶设计中,阿基米德定律用于计算船体在水中所受的浮力,确保船舶有足够的排水量来支撑其重量。
设计师利用这一原理来确定船体的形状和尺寸,以确保船舶在不同载荷下的稳定性和浮力。
四、计算题8. 一个体积为0.02立方米的木箱完全浸没在水中,水的密度为1000千克/立方米,重力加速度为9.8牛顿/千克,求木箱所受的浮力。
答案:首先计算木箱排开水的重量,即 \( \rho \cdot V = 1000 \, \text{kg/m}^3 \times 0.02 \, \text{m}^3 = 20 \, \text{kg} \)。
然后计算浮力 \( F_b = m \cdot g = 20 \, \text{kg} \times 9.8 \, \text{N/kg} = 196 \, \text{N} \)。
高考与阿基米德三角形试题答案1.(2008年江西卷理科第21题)21.(本小题满分12分)1.证明:(1)设1122(,),(,)A x y B x y ,由已知得到120y y ≠,且22111x y -=,22221x y -=,设切线PA 的方程为:11()y y k x x -=-由1122()1y y k x x x y -=-⎧⎨-=⎩ 得2221111(1)2()()10k x k y kx x y kx ------=从而2222211114()4(1)()4(1)0k y kx k y kx k ∆=-+--+-=,解得11x k y =因此PA 的方程为:111y y x x =- 同理PB 的方程为:221y y x x =-又0(,)P m y 在PA PB 、上,所以1011y y mx =-,2021y y mx =- 即点1122(,),(,)A x y B x y 都在直线01y y mx =-上 又1(,0)M m也在直线01y y mx =-上,所以三点A M B 、、共线 (2)垂线AN 的方程为:11y y x x -=-+, 由110y y x x x y -=-+⎧⎨-=⎩得垂足1111(,)22x y x y N ++,设重心(,)G x y所以11111111()321(0)32x y x x m x y y y +⎧=++⎪⎪⎨+⎪=++⎪⎩ 解得1139341934x y m x y x m y ⎧--⎪=⎪⎪⎨⎪-+⎪=⎪⎩由22111x y -= 可得11(33)(33)2x y x y m m --+-=即2212()39x y m --=为重心G所在曲线方程 2.(2008年山东卷理科第22题)解:(Ⅰ)证明:由题意设221212120(2)22x x A x B x x x M x p p p ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭,,,,,,.由22x py =得22x y p =,得xy p'=,所以1MA x k p =,2MB x k p=. 因此直线MA 的方程为102()x y p x x p +=-,直线MB 的方程为202()xy p x x p+=-. 所以211102()2x x p x x p p +=-,① 222202()2x x p x x p p+=-.② 由①、②得121202x x x x x +=+-, 因此1202x xx +=,即0122x x x =+. 所以A M B ,,三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当02x =时,将其代入①、②并整理得:2211440x x p --=, 2222440x x p --=,所以12x x ,是方程22440x x p --=的两根,因此124x x +=,2124x x p =-,又222101221222ABx x x x x p p k x x p p-+===-,所以2AB k p =.由弦长公式得AB ==又AB =1p =或2p =, 因此所求抛物线方程为22x y =或24x y =.(Ⅲ)解:设33()D x y ,,由题意得1212()C x x y y ++,, 则CD 的中点坐标为12312322x x x y y y Q ++++⎛⎫⎪⎝⎭,,设直线AB 的方程为011()x y y x x p-=-, 由点Q 在直线AB 上,并注意到点121222x x y y ++⎛⎫⎪⎝⎭,也在直线AB 上, 代入得033x y x p=.若33()D x y ,在抛物线上,则2330322x py x x ==, 因此30x =或302x x =.即(00)D ,或2022x D x p ⎛⎫ ⎪⎝⎭,.(1)当00x =时,则12020x x x +==,此时,点(02)M p -,适合题意.(2)当00x ≠,对于(00)D ,,此时2212022x x C x p ⎛⎫+ ⎪⎝⎭,,2212022CDx x pk x +=221204x x px +=,又0AB x k p =,AB CD ⊥, 所以22220121220144AB CDx x x x x k k p px p++===-,即222124x x p +=-,矛盾. 对于20022x D x p ⎛⎫ ⎪⎝⎭,,因为2212022x x C x p ⎛⎫+ ⎪⎝⎭,,此时直线CD 平行于y 轴,又00AB x k p=≠,所以直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点.综上所述,仅存在一点(02)M p -,适合题意. 3.(2007年江苏卷理科19题)解:(1)设过C 点的直线为y kx c =+,所以()20x kx c c =+>,即20x kx c --=,设A ()()1122,,,x yB x y ,OA =()11,x y ,()22,OB x y =,因为2OA OB ⋅=,所以12122x x y y +=,即()()12122x x kx c kx c +++=,()221212122x x k x x kc x x c +-++=所以222c k c kc k c --++=,即220,c c --=所以()21c c ==-舍去(2)设过Q的切线为()111y y k x x -=-,/2y x =,所以112k x =,即2211111222y x x x y x x x =-+=-,它与y c =-的交点为M 11,22x cc x ⎛⎫-- ⎪⎝⎭,又21212,,2222x x y y k k P c ⎛⎫++⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以Q ,2k c ⎛⎫- ⎪⎝⎭,因为12x x c =-,所以21c x x -=,所以M 12,,222x x k c c ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭,所以点M 和点Q 重合,也就是QA 为此抛物线的切线。
第80讲阿基米德三角形知识梳理如图所示,AB 为抛物线22(0)x py p =>的弦,11(,)A x y ,22(,)B x y ,分别过,A B 作的抛物线的切线交于点P ,称PAB △为阿基米德三角形,弦AB为阿基米德三角形的底边.1、阿基米德三角形底边上的中线平行于抛物线的轴.2、若阿基米德三角形的底边即弦AB 过抛物线内定点()00 C x y ,,则另一顶点P 的轨迹为一条直线.3、若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点.4、底边长为a 的阿基米德三角形的面积的最大值为38a p.5、若阿基米德三角形的底边过焦点,则顶点Q 的轨迹为准线,且阿基米德三角形的面积的最小值为2p .6、点P 的坐标为1212,22x x x x p ⎛⎫+ ⎪⎝⎭;7、底边AB 所在的直线方程为()121220; x x x py x x +--=8、PAB △的面积为3128PAB x x S p-=.9、若点P 的坐标为()00,x y ,则底边AB 的直线方程为()000x x p y y -+=.10、如图1,若E 为抛物线弧AB 上的动点,点E 处的切线与PA ,PB 分别交于点C ,D ,则||||||||||||AC CE PD CP ED DB ==.11、若E 为抛物线弧AB 上的动点,抛物线在点E 处的切线与阿基米德三角形PAB △的边PA ,PB 分别交于点C ,D ,则2EABPCDS S = .12、抛物线和它的一条弦所围成的面积,等于以此弦为底边的阿基米德三角形面积的23.图1必考题型全归纳题型一:定点问题例1.(2024·山西太原·高二山西大附中校考期末)已知点()0,1A -,()0,1B ,动点P 满足PB AB PA BA =⋅.记点P 的轨迹为曲线C .(1)求C 的方程;(2)设D 为直线=2y -上的动点,过D 作C 的两条切线,切点分别是E ,F .证明:直线EF 过定点.例2.(2024·陕西西安·西安市大明宫中学校考模拟预测)已知动圆M 恒过定点10,8F ⎛⎫⎪⎝⎭,圆心M 到直线14y =-的距离为1,8d d MF =+.(1)求M 点的轨迹C 的方程;(2)过直线1y x =-上的动点Q 作C 的两条切线12,l l ,切点分别为,A B ,证明:直线AB 恒过定点.例3.(2024·全国·高二专题练习)已知平面曲线C 满足:它上面任意一定到10,2⎛⎫⎪⎝⎭的距离比到直线32y =-的距离小1.(1)求曲线C 的方程;(2)D 为直线12y =-上的动点,过点D 作曲线C 的两条切线,切点分别为A B 、,证明:直线AB 过定点;(3)在(2)的条件下,以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.变式1.(2024·陕西·校联考三模)已知直线l 与抛物线2:2(0)C x py p =>交于A ,B 两点,且OA OB ⊥,OD AB ⊥,D 为垂足,点D 的坐标为(1,1).(1)求C 的方程;(2)若点E 是直线4y x =-上的动点,过点E 作抛物线C 的两条切线EP ,EQ ,其中P ,Q 为切点,试证明直线PQ 恒过一定点,并求出该定点的坐标.变式2.(2024·安徽·高二合肥市第八中学校联考开学考试)抛物线的弦与在弦两端点处的切线所围成的三角形被称为“阿基米德三角形”.对于抛物线C :2y ax =给出如下三个条件:①焦点为10,2F ⎛⎫⎪⎝⎭;②准线为12y =-;③与直线210y -=相交所得弦长为2.(1)从以上三个条件中选择一个,求抛物线C 的方程;(2)已知ABQ 是(1)中抛物线的“阿基米德三角形”,点Q 是抛物线C 在弦AB 两端点处的两条切线的交点,若点Q 恰在此抛物线的准线上,试判断直线AB 是否过定点?如果是,求出定点坐标;如果不是,请说明理由.变式3.(2024·湖北武汉·高二武汉市第四十九中学校考阶段练习)已知抛物线2:C y ax =(a 是常数)过点(2,2)P -,动点1,2D t ⎛⎫- ⎪⎝⎭,过D 作C 的两条切线,切点分别为A ,B .(1)求抛物线C 的焦点坐标和准线方程;(2)当1t =时,求直线AB 的方程;(3)证明:直线AB 过定点.变式4.(2024·全国·高三专题练习)已知动点P 在x 轴及其上方,且点P 到点(0,1)F 的距离比到x 轴的距离大1.(1)求点P 的轨迹C 的方程;(2)若点Q 是直线4y x =-上任意一点,过点Q 作点P 的轨迹C 的两切线QA 、QB ,其中A 、B 为切点,试证明直线AB 恒过一定点,并求出该点的坐标.题型二:交点的轨迹问题例4.(2024·全国·高三专题练习)已知抛物线C 的顶点为原点,其焦点()0,F c (0)c >到直线:20l x y --=.(1)求抛物线C 的方程;(2)设点0(P x ,0)y 为直线l 上一动点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点,求直线AB 的方程,并证明直线AB 过定点Q ;(3)过(2)中的点Q 的直线m 交抛物线C 于A ,B 两点,过点A ,B 分别作抛物线C 的切线1l ,2l ,求1l ,2l 交点M 满足的轨迹方程.例5.(2024·全国·高三专题练习)已知抛物线2:4C x y =的焦点为F ,过点F 作直线l 交抛物线C 于A 、B 两点;椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率2e =.(1)求椭圆E 的方程;(2)经过A 、B 两点分别作抛物线C 的切线1l 、2l ,切线1l 与2l 相交于点M .证明:点M 定在直线1y =-上;(3)椭圆E 上是否存在一点M ',经过点M '作抛物线C 的两条切线M A ''、(M B A '''、B '为切点),使得直线A B ''过点F ?若存在,求出切线M A ''、M B ''的方程;若不存在,试说明理由.例6.(2024·全国·高三专题练习)已知动点Q 在x 轴上方,且到定点()0,1F 距离比到x 轴的距离大1.(1)求动点Q 的轨迹C 的方程;(2)过点()1,1P 的直线l 与曲线C 交于A ,B 两点,点A ,B 分别异于原点O ,在曲线C 的A ,B 两点处的切线分别为1l ,2l ,且1l 与2l 交于点M ,求证:M 在定直线上.变式5.(2024·全国·高三专题练习)已知动点P 与定点(1,0)F 的距离和它到定直线:4l x =的距离之比为12,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点(4,0)M 的直线与曲线C 交于,A B 两点,,R Q 分别为曲线C 与x 轴的两个交点,直线,AR BQ 交于点N ,求证:点N 在定直线上.变式6.(2024·全国·高三专题练习)已知点F 为抛物线2:2(0)C x py p =>的焦点,点M 、N 在抛物线上,且M 、N 、F 三点共线.若圆22:(2)(3)16P x y -+-=的直径为MN .(1)求抛物线C 的标准方程;(2)过点F 的直线l 与抛物线交于点A ,B ,分别过A 、B 两点作抛物线C 的切线1l ,2l ,证明直线1l ,2l 的交点在定直线上,并求出该直线.变式7.(2024·全国·高三专题练习)下面是某同学在学段总结中对圆锥曲线切线问题的总结和探索,现邀请你一起合作学习,请你思考后,将答案补充完整.(1)圆222:O x y r +=上点()00,M x y 处的切线方程为.理由如下:.(2)椭圆22221(0)x y a b a b+=>>上一点()00,x y 处的切线方程为;(3)(,)P m n 是椭圆22:13x L y +=外一点,过点P 作椭圆的两条切线,切点分别为A ,B ,如图,则直线AB 的方程是.这是因为在()11,A x y ,()22,B x y 两点处,椭圆L 的切线方程为1113x x y y +=和2213x x y y +=.两切线都过P 点,所以得到了1113x m y n +=和2213x my n +=,由这两个“同构方程”得到了直线AB 的方程;(4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-,由22()33y n k x m x y -=-⎧⎨+=⎩,得222(13)6()3()30k x k n km x n km ++-+--=,化简得Δ0=,得222(3)210m x mnk n -++-=.若PA PB ⊥,则由这个方程可知P 点一定在一个圆上,这个圆的方程为.(5)抛物线22(0)y px p =>上一点()00,x y 处的切线方程为00()y y p x x =+;(6)抛物线2:4C x y =,过焦点F 的直线l 与抛物线相交于A ,B 两点,分别过点A ,B 作抛物线的两条切线1l 和2l ,设()11,A x y ,()22,B x y ,则直线1l 的方程为112()x x y y =+.直线2l 的方程为222()x x y y =+,设1l 和2l 相交于点M .则①点M 在以线段AB 为直径的圆上;②点M 在抛物线C 的准线上.题型三:切线垂直问题例7.(2024·全国·高三专题练习)已知抛物线C 的方程为24x y =,过点P 作抛物线C 的两条切线,切点分别为,A B .(1)若点P 坐标为()0,1-,求切线,PA PB 的方程;(2)若点P 是抛物线C 的准线上的任意一点,求证:切线PA 和PB 互相垂直.例8.(2024·全国·高三专题练习)已知抛物线C 的方程为24x y =,点P 是抛物线C 的准线上的任意一点,过点P 作抛物线C 的两条切线,切点分别为,A B ,点M 是AB 的中点.(1)求证:切线PA 和PB 互相垂直;(2)求证:直线PM 与y 轴平行;(3)求PAB 面积的最小值.例9.(2024·全国·高三专题练习)已知中心在原点的椭圆1Γ和抛物线2Γ有相同的焦点(1,0),椭圆1Γ的离心率为12,抛物线2Γ的顶点为原点.(1)求椭圆1Γ和抛物线2Γ的方程;(2)设点P 为抛物线2Γ准线上的任意一点,过点P 作抛物线2Γ的两条切线PA ,PB ,其中,A B 为切点.设直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k 为定值.变式8.(2024·全国·高三专题练习)已知中心在原点的椭圆1C 和抛物线2C 有相同的焦点()1,0,椭圆1C 过点31,2G ⎛⎫⎪⎝⎭,抛物线2C 的顶点为原点.()1求椭圆1C 和抛物线2C 的方程;()2设点P 为抛物线2C 准线上的任意一点,过点P 作抛物线2C 的两条切线PA ,PB ,其中A ,B 为切点.①设直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k 为定值;②若直线AB 交椭圆1C 于C ,D 两点,PAB S ,PCD S 分别是PAB ,PCD 的面积,试问:PABPCDS S 是否有最小值?若有,求出最小值;若没有,请说明理由.变式9.(2024·全国·高三专题练习)抛物级22(0)x py p =>的焦点F 到直线2py =-的距离为2.(1)求抛物线的方程;(2)设直线1y kx =+交抛物线于()11,A x y ,()22,B x y 两点,分别过A ,B 两点作抛物线的两条切线,两切线的交点为P ,求证:PF AB ⊥.变式10.(2024·河南驻马店·校考模拟预测)已知抛物线E :()220x py p =>的焦点为F ,点P 在E 上,直线l :20x y --=与E 相离.若P 到直线l 的距离为d ,且PF d +的最小值为2.过E 上两点,A B 分别作E 的两条切线,若这两条切线的交点M 恰好在直线l 上.(1)求E 的方程;(2)设线段AB 中点的纵坐标为n ,求证:当n 取得最小值时,MA MB ⊥.题型四:面积问题例10.(2024·全国·高三专题练习)已知抛物线C 的方程为()220x py p =>,点3,2A x ⎛⎫ ⎪⎝⎭是抛物线上的一点,且到抛物线焦点的距离为2.(1)求抛物线的方程;(2)点Q 为直线12y =-上的动点,过点Q 作抛物线C 的两条切线,切点分别为D ,E ,求QDE △面积的最小值.例11.(2024·全国·高三专题练习)已知抛物线22x py =上一点()0,1M x 到其焦点F 的距离为2.(1)求抛物线的方程;(2)如图,过直线:2l y =-上一点A 作抛物线的两条切线AP ,AQ ,切点分别为P ,Q ,且直线PQ 与y 轴交于点N .设直线AP ,AQ 与x 轴的交点分别为B ,C ,求四边形ABNC 面积的最小值.例12.(2024·全国·高三专题练习)已知抛物线2:2(0)C x py p =>的焦点到原点的距离等于直线:440l x y --=的斜率.(1)求抛物线C 的方程及准线方程;(2)点P 是直线l 上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,求PAB 面积的最小值.变式11.(2024·全国·高三专题练习)如图,已知抛物线2:2(0)C y px p =>上的点R 的横坐标为1,焦点为F ,且||2RF =,过点(4,0)P -作抛物线C 的两条切线,切点分别为A 、B ,D 为线段PA 上的动点,过D 作抛物线的切线,切点为E (异于点A ,B ),且直线DE 交线段PB 于点H .(1)求抛物线C 的方程;(2)(i )求证:||||AD BH +为定值;(ii )设EAD ,EBH △的面积分别为12S S ,,求12133S S S =+的最小值.变式12.(2024·全国·高三专题练习)已知点A (﹣4,4)、B (4,4),直线AM 与BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率之差为﹣2,点M 的轨迹为曲线C .(1)求曲线C 的轨迹方程;(2)Q 为直线y=﹣1上的动点,过Q 作曲线C 的切线,切点分别为D 、E ,求△QDE 的面积S 的最小值.变式13.(2024·河南开封·河南省兰考县第一高级中学校考模拟预测)已知点()F ,平面上的动点S 到F 的距离是S 40+=的距离的2倍,记点S 的轨迹为曲线C .(1)求曲线C 的方程;(2)过直线:2l y =上的动点()(),22P s s >向曲线C 作两条切线1l ,2l ,1l 交x 轴于M ,交y 轴于N ,2l 交x 轴于T ,交y 轴于Q ,记PNQ V 的面积为1S ,PMT △的面积为2S ,求12S S ⋅的最小值.题型五:外接圆问题例13.(2024·全国·高三专题练习)已知P 是抛物线C :2134y x =-的顶点,A ,B 是C 上的两个动点,且4PA PB ⋅=- .(1)试判断直线AB 是否经过某一个定点?若是,求这个定点的坐标;若不是,说明理由;(2)设点M 是PAB 的外接圆圆心,求点M 的轨迹方程.例14.(2024·高二单元测试)已知点P 是抛物线21:34C y x =-的顶点,A ,B 是C 上的两个动点,且4PA PB ⋅=- .(1)判断点()0,1D 是否在直线AB 上?说明理由;(2)设点M 是△PAB 的外接圆的圆心,点M 到x 轴的距离为d ,点()1,0N ,求MN d -的最大值.例15.(2024·全国·高三专题练习)已知点P 是抛物线21:34C y x =-的顶点,A ,B 是C 上的两个动点,且4PA PB ⋅=- .(1)判断点()0,1D -是否在直线AB 上?说明理由;(2)设点M 是△PAB 的外接圆的圆心,求点M 的轨迹方程.题型六:最值问题例16.(2024·全国·高三专题练习)如图已知()2,P t -是直线2x =-上的动点,过点P 作抛物线24y x =的两条切线,切点分别为,A B ,与y 轴分别交于,C D.(1)求证:直线AB 过定点,并求出该定点;(2)设直线AB 与x 轴相交于点Q ,记,A B 两点到直线PQ 的距离分别为12,d d ;求当12AB d d +取最大值时PCD 的面积.例17.(2024·湖南·高三校联考阶段练习)在直角坐标系xoy 中,已知抛物线()2:20C x py p =>,P 为直线1y x =-上的动点,过点P 作抛物线C 的两条切线,切点分别为,A B ,当P 在y 轴上时,OA OB ⊥.(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.例18.(2024·辽宁沈阳·校联考二模)从抛物线的焦点发出的光经过抛物线反射后,光线都平行于抛物线的轴,根据光路的可逆性,平行于抛物线的轴射向抛物线后的反射光线都会汇聚到抛物线的焦点处,这一性质被广泛应用在生产生活中.如图,已知抛物线()2:21C x py p =>,从点()4,9发出的平行于y 轴的光线照射到抛物线上的D 点,经过抛物线两次反射后,反射光线由G 点射出,经过点()1,5-.(1)求抛物线C 的方程;(2)已知圆()22:34M x y +-=,在抛物线C 上任取一点E ,过点E 向圆M 作两条切线EA 和EB ,切点分别为A 、B ,求EA EB ⋅ 的取值范围.变式14.(2024·贵州·高三校联考阶段练习)已知抛物线()2:20C x py p =>上的点()02,y 到其焦点F 的距离为2.(1)求抛物线C 的方程;(2)已知点D 在直线l :=3y -上,过点D 作抛物线C 的两条切线,切点分别为,A B ,直线AB 与直线l 交于点M ,过抛物线C 的焦点F 作直线AB 的垂线交直线l 于点N ,当MN 最小时,求ABMN 的值.变式15.(2024·黑龙江大庆·高二大庆实验中学校考阶段练习)已知抛物线2:4C y x =,点P 为直线2x =-上的任意一点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,则点()0,1M 到直线AB 的距离的最大值为()A .1B .4C .5D题型七:角度相等问题例19.设抛物线2:C y x =的焦点为F ,动点P 在直线:20l x y --=上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程.(2)证明∠PFA=∠PFB .例20.(2024·全国·高三专题练习)已知F ,F '分别是椭圆221:171617C x y +=的上、下焦点,直线1l 过点F '且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段GF 的垂直平分线交2l 于点H ,点H 的轨迹为2C .(1)求轨迹2C 的方程;(2)若动点P 在直线:20l x y --=上运动,且过点P 作轨迹2C 的两条切线PA 、PB ,切点为A 、B ,试猜想PFA ∠与PFB ∠的大小关系,并证明你的结论的正确性.例21.(2024·江苏南通·高三统考阶段练习)在平面直角坐标系xOy中,已知圆22=>交于点M,N(异于原点O),MN恰为该圆的+-=与抛物线2:2(0)C x py pG x y:(1)1直径,过点E(0,2)作直线交抛物线于A,B两点,过A,B两点分别作抛物线C的切线交于点P.(1)求证:点P的纵坐标为定值;∠=∠.(2)若F是抛物线C的焦点,证明:PFA PFBy x=的焦点为F,动点P 变式16.(2024·全国·高三专题练习)如图所示,设抛物线C:2x y--=上运动,过P作抛物线C的两条切线PA,PB,切点分别为A,B,在直线l:20求证:AFB BFP∠=∠.变式17.(2024·全国·高三专题练习)在平面直角坐标系xOy中,已知点E(0,2),以OE为直径的圆与抛物线C∶x2=2py(p>0)交于点M,N(异于原点O),MN恰为该圆的直径,过点E作直线交抛物线与A,B两点,过A,B两点分别作拋物线C的切线交于点P.(1)求证∶点P的纵坐标为定值;(2)若F是抛物线C的焦点,证明∶∠PFA=∠PFB。
抛物线中的阿基米德三角形典例:已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.结论1.若),(00y x P 为准线上任一一点,则直线AB 过抛物线的焦点F . 结论2.过F 的直线与抛物线交于B A ,两点,以B A ,分别为切点做两条切线,则这两条切线的交点),(00y x P 的轨迹即为抛物线的准线.若),(00y x P 为准线上任一一点,则有:结论3.直线AB 的方程为)(22000y y p y y p x x +=+=. 结论4.AB PF ⊥.结论5.PB AP ⊥.结论6.直线AB 的中点为M ,则PF 平行于抛物线的对称轴.结论7.ABP ∆面积最小值为2p .1.已知抛物线C :()220x py p =>,过点10,2P ⎛⎫- ⎪⎝⎭作抛物线C 的两条切线PA ,PB ,A ,B 为切点,若直线AB 经过抛物线C 的焦点,则抛物线C 的方程为( ) A .28x y = B .24x y = C .22x y = D .2x y =2.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( )A B .2 C .4 D .3.已知点1F 是抛物线2:2C x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,设其中一个切点为A ,若点A 恰好在以12,F F 为焦点的双曲线上,则双曲线的离心率为( )A 1-B .1C 1D .24.已知点)1,23(-M ,直线l 过抛物线y x C 4:2=的焦点且交抛物线于B A ,两点,且AM 恰好与抛物线C 相切,那么线段AB 的中点坐标为_______.5.已知点)1,1(-M ,直线l 过抛物线x y C 4:2=的焦点且斜率为k 并交抛物线于B A ,两点,若90=∠AMB ,则=k _______.。