羟基磷灰石研究进展
- 格式:doc
- 大小:335.00 KB
- 文档页数:13
纳米材料在环境修复中的新应用研究进展随着工业化和城市化进程的加速,环境污染问题日益严重,给人类的生存和发展带来了巨大的威胁。
传统的环境修复技术往往存在效率低下、成本高昂等问题,难以满足当前环境保护的需求。
近年来,纳米材料因其独特的物理、化学和生物学性质,在环境修复领域展现出了广阔的应用前景,成为了研究的热点。
一、纳米材料的特性纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1 100纳米)的材料。
由于其尺寸小,纳米材料具有比表面积大、表面能高、量子尺寸效应、小尺寸效应等独特的性质。
比表面积大意味着纳米材料具有更多的活性位点,可以与污染物充分接触并发生反应。
表面能高则使其具有更强的化学活性,容易与其他物质发生相互作用。
量子尺寸效应和小尺寸效应则会影响纳米材料的光学、电学和磁学性质,为其在环境修复中的应用提供了更多的可能性。
二、纳米材料在环境修复中的应用(一)水污染修复1、纳米零价铁纳米零价铁(nZVI)是一种常用的纳米材料,对水中的重金属离子(如铬、汞、铅等)和有机污染物(如氯代烃、硝基苯等)具有良好的去除效果。
nZVI 能够通过还原作用将高价态的重金属离子还原为低价态,从而降低其毒性和迁移性。
同时,nZVI 还可以与有机污染物发生加氢反应,将其分解为无害物质。
2、纳米二氧化钛纳米二氧化钛(TiO₂)是一种光催化材料,在紫外光的照射下能够产生强氧化性的自由基,如羟基自由基(·OH),这些自由基可以将水中的有机污染物氧化分解为二氧化碳和水。
此外,TiO₂还可以用于去除水中的微生物和藻类,具有杀菌消毒的作用。
3、碳纳米材料碳纳米管(CNTs)和石墨烯等碳纳米材料具有良好的吸附性能,可以有效地去除水中的重金属离子和有机污染物。
CNTs 独特的中空结构和大比表面积使其能够吸附大量的污染物分子,而石墨烯的二维结构和丰富的官能团也使其成为一种优秀的吸附剂。
(二)土壤污染修复1、纳米羟基磷灰石纳米羟基磷灰石(nHAP)对土壤中的重金属离子具有良好的固定作用。
羟基磷灰石光伏解释说明以及概述1. 引言1.1 概述在当今迅速发展的能源领域中,光伏技术作为一种清洁、可再生的发电方式得到了广泛应用。
羟基磷灰石光伏作为一种新兴的光伏材料,近年来备受关注并取得了显著的进展。
本文将对羟基磷灰石及其在光伏领域中的应用进行介绍和分析,并探讨其性能与发展前景。
1.2 文章结构本文共分为五个部分。
首先在引言部分对文章内容进行概述和说明,然后进入正文部分。
第二部分将解释说明羟基磷灰石和光伏技术的概念和背景。
第三部分将深入剖析羟基磷灰石光伏的原理和机制。
第四部分将评价当前羟基磷灰石光伏电池的性能,并预测未来的发展趋势与挑战。
最后,在结论中总结全文并给出对羟基磷灰石光伏未来前景的展望。
1.3 目的本文旨在全面介绍羟基磷灰石光伏以及其在能源产业中的应用。
通过对羟基磷灰石光伏的解释说明和原理分析,旨在提供读者对该技术的深入理解。
同时,通过评价当前的性能和展望未来前景,希望为羟基磷灰石光伏技术的进一步发展提供有益参考。
本文还将尽可能客观地探讨其发展趋势和挑战,并为其在可持续能源领域中的推广和应用提供科学依据。
2. 羟基磷灰石光伏解释说明:2.1 羟基磷灰石的定义:羟基磷灰石是一种具有化学式Ca5(PO4)3(OH)的无机材料。
它属于钙磷类化合物,具有较高的比表面积和孔隙结构,使其在光伏领域得到广泛应用。
2.2 光伏技术概述:光伏技术是利用半导体材料的光电转换特性将太阳能转化为电能的过程。
通过将光线直接转化为电能,可以实现清洁、可再生的能源供应。
常见的光伏技术包括单晶硅、多晶硅、非晶硅等。
2.3 羟基磷灰石在光伏领域的应用:羟基磷灰石由于其优异的光学和电学性质,在光伏领域能够发挥重要作用。
首先,羟基磷灰石可以作为一种吸收层材料,通过吸收太阳能中的可见光和红外线来产生电荷载流子。
其次,羟基磷灰石可以作为电子传输材料,通过导电通道将产生的电荷载流子引导到外部电路中。
此外,羟基磷灰石还可以作为光伏薄膜的保护层,增强光伏器件的稳定性和耐久性。
羟基磷灰石微球制备方法的研究进展
窦妍;李东旭;曹丰;李延报
【期刊名称】《材料导报》
【年(卷),期】2010(024)0z2
【摘要】简要介绍了羟基磷灰石基本特性,综合论述了羟基磷灰石微球的各种制备方法、原理及微球形成的机理,并对各种方法的优缺点进行了对比分析.指出了羟基磷灰石微球在研究中存在的问题,并对前景进行了展望.
【总页数】3页(P417-419)
【作者】窦妍;李东旭;曹丰;李延报
【作者单位】南京工业大学材料科学与工程学院,南京,210009;南京工业大学材料科学与工程学院,南京,210009;南京工业大学材料科学与工程学院,南京,210009;南京工业大学材料科学与工程学院,南京,210009
【正文语种】中文
【中图分类】TQ174
【相关文献】
1.羟基磷灰石微球制备方法的研究进展 [J], 窦妍;李东旭;曹丰;李延报
2.羟基磷灰石微球的制备方法 [J], 马铭;曹霄峰;郭燕川
3.纳米羟基磷灰石的制备方法研究进展 [J], 王传岭;于敏
4.纳米羟基磷灰石制备方法研究进展 [J], 黄嘉琪; 郑炜山; 颜聪颖; 孙思海; 侯佳馨; 赵增迎
5.中空羟基磷灰石的制备方法研究进展 [J], 李世宏;郑伟;何阳;胡东;李剑;龙世伟;蒋波波;付洪;徐冉;翁杰
因版权原因,仅展示原文概要,查看原文内容请购买。
纳米簇羟基磷灰石中空微球纳米簇羟基磷灰石(nanocluster hydroxyapatite)是一种具有广泛应用前景的新型材料。
它具有独特的结构和优异的性能,被广泛应用于医疗领域、材料科学和生物学等领域。
本文将重点介绍纳米簇羟基磷灰石中空微球的制备方法、结构特点和应用前景。
纳米簇羟基磷灰石中空微球的制备方法多样。
一种常用的方法是溶剂挥发法。
通过在有机溶剂中溶解适量的羟基磷灰石前驱体,并添加表面活性剂和模板剂,形成乳液。
随后,通过挥发有机溶剂,形成中空微球。
这种方法制备的纳米簇羟基磷灰石中空微球具有较小的粒径和较大的比表面积,具有优异的生物相容性和生物活性。
纳米簇羟基磷灰石中空微球具有独特的结构特点。
它们呈球形结构,表面光滑,内部空腔呈中空结构。
在纳米尺度下,它们的表面具有丰富的羟基磷灰石簇,这些簇之间通过强烈的静电作用力相互连接,形成稳定的纳米簇结构。
这种结构使纳米簇羟基磷灰石中空微球具有良好的生物相容性和生物活性,能够有效促进骨组织再生和修复。
纳米簇羟基磷灰石中空微球在医疗领域具有广泛的应用前景。
首先,它们可以作为骨修复材料,用于治疗骨折、骨缺损和骨疾病。
由于纳米簇羟基磷灰石中空微球具有类似于骨组织的化学成分和结构,能够与骨组织紧密结合,促进骨组织再生和修复。
其次,纳米簇羟基磷灰石中空微球还可以用于药物递送系统。
通过将药物包裹在中空微球中,可以实现药物的缓释和靶向释放,提高药物的疗效和减少副作用。
纳米簇羟基磷灰石中空微球还在材料科学和生物学领域具有广泛的应用前景。
它们可以用于制备功能性纳米材料和纳米器件,例如纳米传感器和纳米电池。
由于纳米簇羟基磷灰石中空微球具有较大的比表面积和丰富的表面官能团,能够有效吸附和催化反应物质,具有很高的催化活性和选择性。
纳米簇羟基磷灰石中空微球具有重要的科学研究价值和广阔的应用前景。
通过合理的制备方法,可以获得具有优异性能和多功能的纳米簇羟基磷灰石中空微球。
这些中空微球在医疗领域、材料科学和生物学等领域具有重要的应用价值,将为人类健康和科学研究带来新的突破和进展。
纳米羟基磷灰石在骨科中的临床应用及作用机制杨再清;雷云坤;孟增东【摘要】10.3969/j.issn.2095-4344.2012.51.024% 背景:纳米羟基磷灰石是一种具有代表性的生物活性材料,是现在组织工程领域研究的一个热点。
目的:综述纳米羟基磷灰石在骨科领域的临床应用进展,并探讨其作用机制。
方法:查阅2001年1月至2011年12月 CNKI 数据库和PubMed数据库有关纳米羟基磷灰石对成骨细胞、破骨细胞的影响及再血管化的研究,并总结其在骨科的临床应用进展。
结果与结论:纳米羟基磷灰石能够提高成骨细胞的增殖活性及功能代谢,诱发新骨形成;而破骨细胞能够吸收、降解羟基磷灰石,同时,纳米羟基磷灰石调节破骨细胞的代谢过程,共同参与了骨代谢。
另外,纳米羟基磷灰石植入体内后能够再血管化,进而有利于骨修复和重建。
基于纳米羟基磷灰石及其复合材料的优越性,是一种较为理想的骨缺损修复材料,已初步应用于临床,并取得了令人鼓舞的效果,但仍有许多问题有待于进一步研究解决。
【期刊名称】《中国组织工程研究》【年(卷),期】2012(000)051【总页数】6页(P9629-9634)【关键词】纳米羟基磷灰石;骨科植入物;骨缺损;再血管化;组织工程骨材料【作者】杨再清;雷云坤;孟增东【作者单位】昆明医学院附属昆华医院骨科,云南省昆明市650032; 云南省第一人民医院骨科,云南省昆明市650032;昆明医学院附属昆华医院骨科,云南省昆明市650032; 云南省第一人民医院骨科,云南省昆明市650032;昆明医学院附属昆华医院骨科,云南省昆明市650032; 云南省第一人民医院骨科,云南省昆明市650032【正文语种】中文【中图分类】R3180 引言如何解决骨缺损的修复问题一直是骨外科、整形外科医师研究的重大难题之一[1]。
骨科医师在治疗骨缺损时常常采用自体骨、异体骨、组织工程化骨来填充骨缺损,运用基因治疗法和物理疗法促进骨愈合。
羟基磷灰石微球力学性能表征方法的研究
李均明;王爱娟;蒋百灵;吕宇鹏
【期刊名称】《西安理工大学学报》
【年(卷),期】2010(026)004
【摘要】羟基磷灰石块体材料的力学性能评价方法较为成熟,而有关小粒径羟基磷灰石颗粒力学性能的评价方法有待进一步研究.针对这一问题,提出采用磁力搅拌法破碎羟基磷灰石微球,通过比较试样破碎前后的粒径变化情况来表征羟基磷灰石微球的力学性能.选取利用离心干燥和喷雾干燥技术制备的两种HA微球为研究对象评价所设计方案的可行性,以期望为小粒径粉体材料的力学性能表征提供实验支撑和理论依据.结果表明所设计方案可行性较好,能够定性的评价羟基磷灰石微球的力学性能.
【总页数】5页(P393-397)
【作者】李均明;王爱娟;蒋百灵;吕宇鹏
【作者单位】西安理工大学,材料科学与工程学院,陕西,西安,710048;西安理工大学,材料科学与工程学院,陕西,西安,710048;西安理工大学,材料科学与工程学院,陕西,西安,710048;山东大学,材料科学与工程学院,山东,济南,250061
【正文语种】中文
【中图分类】TB39
【相关文献】
1.羟基磷灰石微球制备方法的研究进展 [J], 窦妍;李东旭;曹丰;李延报
2.羟基磷灰石微球制备方法的研究进展 [J], 窦妍;李东旭;曹丰;李延报
3.缠绕用直接纱力学性能表征方法的研究及应用 [J], 周小华;宋长久;姚尧平;费其锋;张燕
4.光学透明胶的超弹性力学性能表征方法研究 [J], 贾永臻
5.贻贝壳在不同方法下合成羟基磷灰石多孔微球的性能研究 [J], 李超群;顾忠旗;黄继;石娟;周丽萍;王晴;娄永江
因版权原因,仅展示原文概要,查看原文内容请购买。
纳米羟基磷灰石的制备及在生物医学上的应用研究进展李宾杰;姚素梅;李淑莲;马远方【摘要】综述了近年来有关纳米羟基磷灰石制备方法及其在生物医学领域的应用研究进展;着重介绍了溶胶-凝胶法、化学沉淀法、水热法、前躯体水解法、模板法、超声波法、机械化学法等制备方法,并简要总结了纳米羟基磷灰石在肿瘤治疗、药物载体以及齿科材料和人工骨等生物医学领域的应用进展.【期刊名称】《化学研究》【年(卷),期】2010(021)005【总页数】7页(P90-96)【关键词】纳米羟基磷灰石;制备;应用;研究进展【作者】李宾杰;姚素梅;李淑莲;马远方【作者单位】河南大学,医学院免疫研究所;河南大学,医学院分子医学研究所;河南大学,特种功能材料教育部重点实验室,河南,开封,475004;河南大学,医学院分子医学研究所;河南大学,医学院免疫研究所;河南大学,医学院免疫研究所【正文语种】中文【中图分类】TQ246.3羟基磷灰石(HA)是人体和动物骨骼、牙齿的主要无机成分,分子式为Ca10(PO4)6(OH)2,骨质中的羟基磷灰石是一种长度为200~400 nm,直径为15~30 nm的针状纳米颗粒,其周围规则地排列着骨胶原纤维.人工合成纳米羟基磷灰石(nHA)作为生物陶瓷具有很多优异的性能,如:生物相容性、生物活性、生物降解性、骨传导性、非免疫原性,等等,这些性质使其在生物医学领域有着广泛的应用前景.因此,近年来探索nHA不同的制备方法成为科学家们研究的热点,但主要是湿化学法,即在液相体系中进行.1.1 溶胶-凝胶法溶胶-凝胶法是将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,最后得到无机材料.其优点是在低黏度的液体状态下混合原料,实现原子或分子级的均质化.它能严格控制化学计量比、工艺简单、烧结温度低、产物粒径小且分布均匀.Kuriakose等[1]在85℃时将p H 10.5的0.5 mol/L Ca(NO3)2·4H2O乙醇溶液以5 mL/min的滴加速度加入到5 mol/L(NH4)2HPO4水溶液中,同时在溶胶-凝胶里面加入Ca(OH)2溶液,保持体系p H值为10,快速搅拌反应4 h后,将产品放入到40℃烘箱中过夜,得到的凝胶依次在400℃、750℃、1 200℃烧结2 h后得到半径为1.3 nm的纳米晶.邢瑞敏等[2]以CaCl2和P2O5为原材料,按Ca/P=1.67(摩尔比)分别配置CaCl2和P2O5的乙醇溶液,然后把P2O5醇溶液缓缓滴加到CaCl2的醇溶液中并搅拌30 min,得到无色透明的溶胶,把所制AAO模板浸入该溶胶中60 min后取出,真空干燥24 h,将之放于马弗炉中缓慢升温至600℃,恒温5 h,自然冷却至室温,制备的羟基磷灰石纳米线直径约为50 nm、长度达20μm.黄龙全[3]等将0.25 mol CaO研磨成细小粉末过300目筛,加入到450 mL蒸馏水中,充分搅拌.将0.15 mol的 H3PO4用50 mL蒸馏水稀释后用滴定管慢慢滴加到溶有CaO的烧杯中,边滴加边用磁力搅拌器搅拌,直到烧杯底部的CaO全部溶解,形成白色的 HA溶胶.抽吸过滤后分别用蒸馏水、无水乙醇对所得胶体洗涤3次,然后在温度≤90℃下烘干得到粉体,最后在890℃温度下煅烧2.5 h得到羟基磷灰石粉体,颗粒直径为30 nm.1.2 化学沉淀法化学沉淀法是把沉淀剂加入到盐溶液中,发生沉淀反应后,将沉淀洗涤干燥后,或经热处理得到纳米材料.其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物.张维丽等[4]根据 HAP中Ca/P摩尔比应接近1.67,用转速为300 r/min磁力搅拌充分搅拌一定体积的0.25 mol/L Ca(NO3)2·4H2O溶液,并缓慢滴加20%的氨水溶液,调节Ca(NO3)2·4H2O溶液的p H值;当p H值达到10~11时,开始滴加0.15 mol/L(N H4)2HPO4溶液,得到白色沉淀,在反应过程中不断滴加氨水溶液,保持溶液的p H值不变,滴加完毕后,连续搅拌2 h.反应完毕后,在常温常压下陈化处理5 h以上,将陈化后的沉淀加入去离子水中,稀释并反复洗涤、离心,至反应产物接近中性为止.将离心得到的样品放在40℃的干燥箱中干燥后,放入马弗炉中600℃热处理1 h,或将洗涤至中性的沉淀直接冷冻干燥,得到棒状或针状的纳米颗粒.为得到高比表面积的纳米颗粒,日本宫崎大学 Kijima[5]研究组将Ca(NO3)2,KH2PO4,C12(EO)9,Tween 60,HNO3和 H2O按1.67∶1∶1∶1∶8∶60的摩尔比配制成均相混合物,然后加入适量的氨水,混合均匀,静置48 h后得到条状的nHA,在此过程中,Tween 60发生水解,产生硬脂酸根与纳米颗粒表面上的Ca2+作用产生的硬脂酸钙阻止了颗粒团聚,并且C12(EO)9进一步地夹在硬脂酸钙和nHA之间,阻止颗粒团聚长大.产生颗粒在500℃烧结5 h,得到颗粒直径为4~20 nm,比表面积高达364 m2·g-1的纳米材料.Kim等[6]将500 mL 1.0 mol/L Ca(OH)2悬浮液和500 mL 0.6 mol/L H3PO4溶液,在25℃时直接混合反应得到nHA颗粒,在此过程中首先生成中间体CaHPO4·2H2O,之后中间体再慢慢转换为nHA,完全转换需要5 d.本方法的优点是不会在体系中引入其他离子.1.3 水热法水热法是在特制的密闭反应容器里,采用水溶液作为反应介质,在高温高压环境中,使得通常难溶或不溶的物质溶解后再重结晶的一种方法.它可直接得到结晶良好的粉体,无需做高温灼烧处理,避免了粉体的硬团聚和结构缺陷.Wang等[7]将0.024 mol的K2HPO4·3H2O和 0.024 mol的十六烷基三甲基溴化铵(CTAB)加入到100 mL去离子水中,加热到50℃溶解,加入1 mol/L的 KOH 来调整体系p H值为12,搅拌2 h,同时,把60 mL 0.04 mol CaCl2的溶液慢慢加入到上述体系,搅拌后将悬浮液加到高压反应釜中分别在120℃和150℃温度下反应12~24 h,得到长径比不同的纳米棒.Zhang等[8]将2 mmol Ca(NO3)2·4H2O,0.2g CTAB,用适量去离子水溶解,并用一定量的 HNO3(或氨水)调整体系p H值为4.0~9.0得到20 mL溶液1,另外又在15 mL去离子水中加入2 mmol柠檬酸钠和1.2 mmol(NH4)2HPO4得到溶液2,剧烈搅拌30 min溶液1后,将溶液2加入进一步搅拌20 min,将得到的混合溶液转移到不锈钢高压釜中在180℃温度下反应24 h.结果显示在不同p H值条件下可以得到不同长径比的纳米棒或由纳米棒自组装成的微米颗粒.梁琼[9]将0.281 0 g Ca(NO3)2和0.092 4 g(NH4)2HPO4混合于70 mL p H值为7.5(用氨水调节)的去离子水中;同时将等量的Ca(NO3)2和(NH4)2HPO4混合于70 mL p H值为10.5的去离子水中,分别搅拌10 min后离心分离.将p H值为7.5条件下所得沉淀物分散于p H值为10.5的水溶液中,再将重新混合后的悬浮液倒入100 mL高压反应釜中,于180℃条件下水热处理10 h.冷却至室温,离心分离,用去离子水将沉淀洗涤3次后于80℃条件下干燥10 h,制得的HA纳米棒的平均长径比最长(约为28).1.4 前驱体水解法前驱体水解法首先通过制备固体前驱体,然后控制不同的水解条件制备纳米颗粒,由于通过固相表面溶解的离子发生水解反应,反应条件可控性能好,所以日本人 Ito[10]将50 L 1.1 mol/L NH4H2PO4溶液与同样体积的2.7 mol/L Ca(NO3)2溶液混合后剧烈搅拌30 min得到白色的CaHPO4·H2O沉淀,过滤,在60℃和250℃烘干24 h得到 CaHPO4.在70℃时将0.4 g CaHPO4加入到40 L水中,用NH3·H2O或NaOH调整p H值在9.0~13.0,并调节水解体系的离子强度可以得到纳米针、纳米纤维、纳米片,实现了不同形貌的羟基磷灰石选择性制备.1.5 模板法模板法是指在模板所限的微小空间内进行材料制备,如以反相微乳液胶束内的“水池”为微反应器以及通过表面活性剂的相关基团对纳米晶不同晶面的吸附作用而制备各种纳米微粒材料.因反应物质能够以需要的适当浓度均匀分散于乳液液滴内并得到相应的离子基团保护,所以可以避免溶液中因局部浓度过高而引起的团聚问题,从而使反应均匀进行并可制备单分散性很好的微粒材料.美国华盛顿大学Bose研究组[11]将一定量的Ca(NO3)2和H3PO4溶解到水中制成的水溶液作为水相,将壬基酚聚氧乙烯5醚和10醚为表面活性剂,加入到环己烷中溶解作为油相,按照一定的体积比把水相加入到油相中搅拌制成反相透明微胶束,用氨水来调节体系p H值为7,在室温下反应12 h,在不同温度下老化不同时间,得到前驱体干燥后在不同的温度下灼烧得到纳米颗粒,通过一系列的实验发现微乳液组成,p H值,老化时间、温度,以及金属离子的浓度都对纳米颗粒的表面积和形貌有着很大的影响.Wei等[12]分别将Ca(NO3)2·4H2O(1.67 mol)和 (NH4)2HPO4(1 mol)加入到十二胺(0.2 mol),乙醇(10 mol),庚烷 (2 mol)和水 (600 mol)的混合溶液中搅拌.两种乳液在室温20℃时迅速混合反应,将得到沉淀过滤,洗涤数次,在反应体系p H=9时,得到纳米带宽度为1.37 nm,在p H=7时,纳米球直径为55~60 nm.周琰春等[13]将60 mL 3 mmol·L-1的Na2HPO4和3 mL 0.09 mol·L-1的CTAB 溶于200 mL三次蒸馏水中,用1 mol·L-1NH3·H2O调节溶液p H值为9~10,在20℃下磁力搅拌30 min,然后滴加5 mmol·L-1的CaCl2溶液60 mL,得到乳白色溶胶,反应过程中随时用N H3·H2O调节溶液维持p H值在9~10之间,反应继续陈化24 h,此过程一直伴随搅拌.反应完成后,用0.22μm的微孔滤膜过滤,将过滤得到的沉淀用去离子水和无水乙醇反复冲洗至其中无CTAB为止.将清洗干净的沉淀放置在45℃的真空烘箱中烘干,得到nHA是形貌均匀、成分单一、直径约20 nm的球形颗粒.1.6 超声波法传统的湿法制备超细粉末普遍存在的问题是易形成团聚结构,从而破坏了粉体的超细均匀特性.超声的空化和微射流产生的瞬时高温,高压和极快的传质速率不仅促进晶核的形成,同时起到控制晶核同步生长的作用,为制备超细、均一纳米粉末提供了良好的条件.斯洛文尼亚科研人员[14]用超声波产生的瞬间空化作用,使一定量的Ca(NO3)2,NH4H2PO4和尿素在水中发生均匀沉淀反应,用尿素分解调整体系p H 值,制备了晶化的片状nHA.1.7 机械化学法机械化学法靠压碎、击碎等机械作用,将反应物充分地混合并使之进一步地发生化学反应,工艺简单,成本低廉.Yeong等[15]使用CaHPO4和CaO物质的量比为3∶2,在传统的球磨机上以乙醇为介质,氧化锆球为球磨珠充分混合物料,然后再放到一定尺寸的氧化铝容器中用不锈钢球为球磨珠进一步研磨,研磨20 h以上得到高度结晶的类球状羟基磷灰石纳米晶,尺寸为25 nm,比表面积为76.06 m2/g.2.1 癌症治疗nHA安全无毒,可降解吸收或全部随粪便排出,因此其本身就可以作为药物.研究发现由于nHA表面存在大量的悬空键,提供较多的Ca2+离子,可以通过细胞膜使癌细胞过度摄入,产生细胞毒性,抑制癌细胞生长;另外,nHA可导致DNA损伤,形成DNA 链缺口,影响遗传物质DNA的合成;诱导细胞周期阻滞和凋亡;抑制肿瘤细胞的端粒酶基因的表达,下调端粒酶活性的作用,从而限制许多恶性肿瘤的无限制生长,所以nHA目前已应用于抗肿瘤药物研究.Li等人[16]用荧光免疫检验法和MTT法研究发现:棒状和椭球状nHA纳米颗粒会使黑色素肿瘤细胞的细胞核收缩,破裂,细胞增殖受到抑制.Liu等人[17]把人肝癌BEL-7402细胞与不同浓度的nHA放在一起培养,通过MTT 法、荧光显微镜、流式细胞仪表征研究,发现nHA可以阻止肝癌细胞的增殖,引起癌细胞的凋亡,并且nHA的浓度和凋亡率呈现明显的正比关系.Cheng等人[18]从分子机制角度研究发现,nHA可以通过线粒体依赖和天冬氨酸特异性的半胱氨酸蛋白水解酶依赖途径诱导人体胃癌SGC-79 01细胞的凋亡来阻止细胞增殖. Bauer[19]等发现肝癌细胞对nHA的吸收是通过网格蛋白介导的内吞作用完成,nHA对肝癌细胞作用是由于nHA团聚体阻塞了细胞内涵体或在nHA作用下溶菌酶发生降解产生毒性作用.付莉等人[20]研究发现长度约为60~80 nm、直径约为10~20 nm的nHA粒子,可以明显地抑制卵巢癌细胞株SKOV3的生长,其作用机制可能是在细胞周期的S期诱导肿瘤细胞凋亡.2.2 药物载体nHA对一些物质具有很强的吸附和承载能力.作为载体可以与蛋白质药物、核酸以及化疗药物结合进行靶向治疗,将大大增加局部药物浓度及作用时间,化疗药还可减少对全身器官的损害.Tomoda等[21]研究发现,nHA晶体中a晶面越大,则表面上游离的Ca2+就越多,从而吸附较多的带有负电荷的蛋白如牛血清白蛋白,而带有正电荷的盐酸溶菌酶在nHA颗粒表面也有一定的吸附.Kandori等人[22]认为表面电荷近中性的肌血球素(MGB)与纳米羟基磷灰石则通过分子间的范德华力结合.Ijntema K等[23]采用共沉淀法将蛋白类药物牛血清白蛋白(BSA)包裹于nHA晶粒中获得了具有缓释功能的药物释放体系,药物的释放速率由 HA的溶解过程控制.Sokolova等[24]研究发现,由于DNA中的磷酸根可以和钙离子产生较好的作用力,可以作为第二代基因载体,用于基因治疗,克服了病毒载体的不稳定性,细胞毒性以及较低的转染效率.Itokazu[25]报道ADM-HA作用骨肉瘤细胞效果较好,且 HA具有缓释作用,可以持续作用肿瘤细胞.刘静霆等[26]研究发现nHA负载阿霉素后,可明显促进肿瘤细胞的凋亡,降低阿霉素的骨髓抑制及心肌毒副作用.Ferraz[27]等用海藻酸钠/nHA复合微球可以担载青霉素、青霉素-克拉维酸、红霉素等不同类型的抗生素,它们不但具有抑菌性,而且还具有很好的缓释效果以及表现出好的造骨细胞增殖效果,可以作为新一代的注射骨材料和药物载体.Zhang等人[28]进一步对海藻酸钠/nHA复合微球担载药物双氯芬酸和缓释效果进行研究,发现nHA是微球内部结构的交联剂,可以限制海藻酸钠聚合物链的移动,并且它还改变了海藻酸钠微球表面结构,限制了球体的收缩率,增加了担载药物量,增加了释放时间,与海藻酸钠微球缓释时间相比增加了8 h.Talal等[29]研究发现 HA-聚乳酸-聚乳酸纤维与聚乳酸-聚乳酸纤维相比表现出较好的蛋白吸附行为,吸附到的蛋白可持续释放96 h,因此可以应用于生物蛋白药物的输运系统.Yang等[30]将布洛芬药物担载在含荧光物质铕离子的nHA上面,可以通过荧光性能的改变来判断药物释放的情况,因此是一种理想的药物载体材料.2.3 齿科材料由于人工合成的nHA抗菌性能较差,而结晶性和结构稳定性较高,从而不易生物降解,不利于骨缺损部位的骨生长.并且nHA的物理、化学及生物性能取决于其晶型结构和组成,所以在nHA中掺入一些金属元素是提高其性能的有效方法.林英光等人[31]将锌掺入nHA中可形成置换式固溶体,nHA原有晶格发生畸变,材料的结晶性、溶解性及生物降解性等性能发生改善,从而具有更好的生物学性能、骨缺损修复能力和抗菌性能.纳米ZnHA对大肠杆菌、金黄色葡萄球菌、乳酸杆菌的抑菌率均高于nHA的抑菌率,且抑菌率随 r值的增加而增大.程江等人[32]在传统沉淀法制备nHA工艺中掺入锶盐,制得掺锶nHA,其抗致龋菌性能得到提高,推测其抗菌机理为:掺锶后溶解性能提高,在一定的时间内解离出更多的带正电荷的Sr2+能吸附细胞膜带负电的细菌,并可能与细胞膜中的蛋白质结合破坏微生物细胞的能量代谢系统,使细菌生长受阻或死亡.Kim等人[33]研究发现,在HA中掺入银离子,可以通过延缓细菌的新陈代谢来抑制细菌生长.Ahn等[34]为提高nHA生物陶瓷材料的韧度,在制备纳米结构的羟基磷灰石生物陶瓷过程中,引入3%(质量百分比)的氧化钇和氧化锆复合纳米颗粒,与传统的羟基磷灰石材料相比,显示出优异的化学和机械性能,断裂韧性接近骨密质.Li等人[35]发现粒径大小约为20 nm的掺杂铽的nHA毒性小,且荧光周期长,在医学诊断上有着很好的应用前景. 2.4 人工骨材料人工合成的nHA一方面具有良好的生物相容性、生物可降解性、骨传导性,另一方面其脆性和较低的机械强度又限制了其临床应用.人体骨可近似看作以骨胶原为基体材料,以羟基磷灰石为增强材料而构成的复合材料,因此以羟基磷灰石为增强材料,以聚合物特别是生物可降解聚合物为基体的复合材料与体骨的成分和结构相似,可以弥补金属和陶瓷材料的不足,有望成为理想的人工骨替代材料.邓霞等[36]用水热合成的nHA作为无机相与新型的可降解的脂肪族聚酯酰胺(PEA)按不同比例复合,nHA与PEA之间既有化学键合又有分子间的相互作用,可在二者之间形成良好的化学界面,使复合材料能更好地传递外应力,达到既增强又增韧的目的,使材料性能得以改善.其拉伸模量从188 MPa增至323 MPa,同时nHA复合材料又赋予材料以较高的生物活性,体外将成骨细胞和材料联合培养,细胞显示出良好的生长增殖活性.复旦大学邵正中等人[37]将nHA悬浊液与丝素蛋白(SF)溶液采用同轴共纺法制备nHA(芯部)/SF(皮层)双组分电纺纤维,并分别以SF电纺纤维、SF/HA复合纤维和SF/HA“皮-芯”纤维为有机基质,在特定的条件下显现出很好的诱导羟基磷灰石等无机物在其表面沉积矿化的能力,有可能用以模拟动物骨骼这类无机/有机纳米复合材料,为进一步的实行骨修复的动物或临床实验等提供基础. Chen等[38]采用把NH4H2PO4加入到Ca(NO3)2与壳聚糖(CS)混合溶液中,用氨水调节p H为10制备出 HA/CS纳米复合材料,羟基磷灰石颗粒直径约为20~30 nm,长约100 nm.Li等[39]采用原位沉析法制备的羟基磷灰石/壳聚糖复合材料的弯曲强度为67.8 MPa,压缩强度为47.8 MPa,比骨松质高2~3倍,基本上满足了骨替代材料对力学性能的要求.Nukavarapu[40]把可生物降解的聚二苯丙氨酸乙酯膦腈与粒径为100 nm的nHA混合制备成的微球孔径为86~145μm,压缩模量达到46~81 MPa,与自然骨相近,并且表现出很好的成骨细胞吸附性,细胞增殖和碱性磷酸酶表达,在骨组织应用方面有很好的潜力.Sundaram[41]等制备了nHA和壳聚糖复合颗粒,可以通过物理、化学、生物吸附作用吸附水中的F-,是一种高效、成本低、生物相容性的去氟剂.Reverchon[42]等用超临界CO2法制备了nHA/聚乳酸复合材料,孔隙率超过90%,最大的压缩模量达到123 kPa,溶剂残留率低于百分之五,可作为理想的人工骨材料.尽管硅橡胶具有生物相容性在骨科材料中有一些应用,但是其生物惰性和柔性影响了其进一步应用,Wen[43]等人在硅橡胶材料中引入nHA,很好地克服了上述问题,当nHA含量在50%时能达到最好的机械性能,改善了其使用效果.综上所述,随着纳米材料在医学领域中的应用日益广泛,nHA以其安全无毒、生物相容性、可生物降解等优点成为科研人员热点关注的纳米材料.至今为止,它的新制备方法还在不断涌现,其在生物医学领域中的应用也在不断推进,但其目前还更多地用于生物医学体外实验等基础性研究中.相信随着科学家的继续努力,nHA会越来越多地应用于生物医学领域.【相关文献】[1]Kuriakose T A,Kalkura N,Palanichamy M,et al.Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanolbased sol-gel technique at low temperature[J].J Cryst Growth,2004,263:517-523.[2]邢瑞敏,刘山虎.溶胶凝胶模板法制备羟基磷灰石纳米线[J].化学研究,2010,21(2):7-10.[3]黄龙全,徐英莲,傅雅琴,等.溶液-凝胶法制备纳米羟基磷灰石[J].浙江理工大学学报,2008,25(2):199-202.[4]张维丽,王臻,李荣先,等.利用液相合成方法制备纳米羟基磷灰石[J].新技术新工艺,2007(2):80-83.[5]Uota M,Arakawa H,Kitamura N,et al.Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactantmediated approach[J].L angmuir,2005,21(10):4724-4728.[6]Kim D,Cho I S,Kim J Y,et al.Simple large-scale synthesis of hydroxyapatite nanoparticles:In situ observation of crystallization process[J].L angmuir,2010,26(1):384-388.[7]Wang YJ,Zhang S H,Wei K,et al.Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template[J].Mater Lett,2006,60:1484-1487.[8]Zhang C M,Yang J,Quan Z W,et al.Hydroxyapatite nano-and microcrystals with multiform morphologies:controllable synthesis and luminescence properties[J].Cryst Growth Des,2009,9(6):2725-2733.[9]梁琼,韩冬梅,顾福博,等.水热重结晶法制备羟基磷灰石纳米棒[J].无机化学学报,2007,23(1):86-90.[10]Ito H,Oaki Y,Imai H.Selective synthesis of various nanoscale morphologies of hydroxyapatiteviaan intermediate phase[J].Cryst Growth Des,2008,8(3):1055-1059. [11]Wu YJ,Bose S.Nanocrystalline hydroxyapatite:micelle templated synthesis and characterization[J].L angmuir,2005,21(8):3232-3234.[12]Wei K,Wang YJ,Chen L,et al.Synthesis and characterization of hydroxyapatite nanobelts and nanoparticles[J].Mater Lett,2005,59:220-225.[13]周琰春,蔡玉荣,刘丽,等.球形羟基磷灰石纳米颗粒的可控合成及其对间充质干细胞生长分化的影响[J].无机化学学报,2007,23(8):1335-1340.[14]Jevtic M,Mitric M,Kapin S S,et al.Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation[J].Cryst GrowthDes,2008,8(7):2217-2222.[15]Yeong K C B,Wang J,Ng S C.Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4[J].Biomaterials,2001,22:2705-2712.[16]Li B,Guo B,Fan H S,et al.Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro[J].A ppl Sur Sci,2008,255:357-360.[17]Liu Z S,Tang S L,Ai Z L.Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells[J].World J Gastroenterol,2003,9(9):1968-1971.[18]Cheng XJ,Deng C S,Tang S L,et al.Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells[J].Biol Pharm Bull,2007,30(1):128-132.[19]Bauer I,Li S,Han Y,et al.Internalization of hydroxyapatite nanoparticles in liver cancer cells[J].J Mater Sci:Mater Med,2008,19:1091-1095.[20]付莉,冯卫,彭芝兰,等.羟基磷灰石纳米粒子对卵巢癌作用的体外实验研究[J].中国生物医学工程学报,2007,26(4):584-587.[21]Tomoda K,Ariizumi H,Nakaji T,et al.Hydroxyapatite particles as drug carriers forproteins[J].Colloid Surf ace B,2010,76:226-235.[22]Kandori K,Fudo A,Ishikawa T.Adsorption of myoglobin onto various synthetic hydroxyapatite particles[J].Phys Chem Chem Phys,2000,2:2015-2020.[23]Ijntema K,Heuvelsland W J,Dirix C A.Hydroxyapatite micro-carriers for biocontrolled release of protein drugs[J].Inter J Pharm,1994,112(3):215-224.[24]Sokolova V,Epple M.Inorganic nanoparticles as carriers of nucleic acids into cells[J].A ngew Chem Int Ed,2008,47:1382-1395.[25]Itokazu M,Kumazawa S,Wada E,et al.Sustained release of adriamycin from implanted hydroxyapatite blocks for the treatment of experimental osteogenic sarcoma inmice[J].Cancer Lett,1996,107:11-18.[26]刘静霆,韩颖超,李世普,等.羟基磷灰石纳米粒子负载阿霉素的体外抗肿瘤活性研究[J].中国生物医学工程学报,2008,27(4):572-576.[27]Ferraz M P,Mateus A Y,Sousa J C,et al.Nanohydroxyapatite microspheres as delivery system for antibiotics:Release kinetics,antimicrobial activity,and interaction with osteoblasts[J].J Biomed Mater Res Part A,2007,8(14):994-1004.[28]Zhang J,Wang Q,Wang A.In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices[J].ActaBiomaterialia,2010,6:445-454.[29]Talal A,Waheed N,Al-Masri M,et al.Absorption and release of protein from hydroxyapatite polylactic acid(HAPLA)membranes[J].J Dentistry,2009,37:820-826. [30]Yang P,Quan Z,Li C,et al.Bioactive,luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier[J].Biomaterials,2008,29:4341-4347.[31]林英光,杨卓如,程江.纳米掺锌羟基磷灰石的制备及抗菌性能[J].华南理工大学学报:自然科学版,2007,35(7):67-71.[32]林英光,杨卓如,程江.纳米掺锶羟基磷灰石的制备及其抗菌性能研究[J].化工新型材料,2007,35(3):20-24.[33]Kim T N,Feng Q L,Kim J O,et al.Antimicrobial effects of metal ions(Ag+,Cu2+,Zn+)in hydroxyapatite[J].J Mater Sci:Mater Med,1998(9):129-134.[34]Ahn E,Gleason N,Nakahira A,et al.Nanostructure processing of hydroxyapatite-based bioceramics[J].N ano Lett,2001,1(3):149-153.[35]Li L,Liu Y,Tao J,et al.Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe[J].J Phys ChemC,2008,112(32):12219-12224.[36]邓霞,陈治清,钱志勇,等.纳米羟基磷灰石/脂肪族聚酯酰胺复合材料[J].生物医学工程学杂志,2008,25(2):378-381.[37]曹惠,陈新,邵正中.羟基磷灰石/丝素蛋白复合纤维的制备及其矿化研究[J].化学学报,2008,66(18):2059-2064.[38]Chen F,Wang Z C,Lin C J.Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials[J].Mater Lett,2002,57(4):858-861.[39]Li B,Hu Q,Qian X,et al.Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture[J].Acta PolymericaSinica,2002(6):828-833.[40]Nukavarapu S,Kumbar S,Brown J,et al.Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissueengineering[J].Biomacromolecules,2008,9:1818-1825.[41]Sundaram C S,Viswanathan N,Meenakshi S.Uptake of fluoride by nano-hydroxyapatite/chitosan,a bioinorganic composite[J].Biores Technol,2008,99:8226-8230.[42]Reverchon E,Pisanti P,Cardea S.Nanostructured PLLA-hydroxyapatite scaffolds produced by a supercritical assisted technique[J].Ind Eng Chem Res,2009,48:5310-5316.[43]Wen J,Li Y,Zuo Y,et al.Preparation and characterization of nano-hydroxyapatite/silicone rubber composite[J].Mater Lett,2008,62:3307-3309.。
双膦酸盐结合羟基磷灰石
将双膦酸盐与羟基磷灰石结合的主要目的是利用双膦酸盐的药理作用促进骨组织的再生和修复。
双膦酸盐可以抑制骨质疏松症的进展,并在骨折愈合过程中起到促进骨形成的作用。
而羟基磷灰石作为一种生物相容性良好的材料,能够提供支撑和框架,有助于骨折愈合和骨组织再生。
从临床角度来看,双膦酸盐结合羟基磷灰石的复合材料在骨科手术中被广泛应用,例如在骨折固定、骨缺损修复和人工关节置换等方面。
这种材料不仅能够提供机械支撑,促进骨折愈合,还能通过释放双膦酸盐来调节骨代谢,减少骨质疏松的发生。
此外,双膦酸盐结合羟基磷灰石的材料设计和制备也是一个研究热点,科研人员致力于改善材料的力学性能、生物相容性和药物释放效果,以期望能够更好地满足临床需求。
总的来说,双膦酸盐结合羟基磷灰石作为一种具有潜在临床应用前景的生物材料,对于骨科领域的骨折修复和骨质疏松治疗具有重要意义。
它的研究和应用对于促进骨科医学的发展和提高患者生活质量具有重要意义。
基于纳米羟基磷灰石的生物复合材料研究进展周鑫; 蓝艺鑫; 程丽佳【期刊名称】《《创伤外科杂志》》【年(卷),期】2019(021)010【总页数】4页(P790-793)【关键词】人工骨; 羟基磷灰石; 复合材料; 生物相容性【作者】周鑫; 蓝艺鑫; 程丽佳【作者单位】610106 成都成都大学医学院【正文语种】中文【中图分类】R687中国外科植入物专委会数据显示,2005年我国骨质疏松患者已超过1亿人,随着老龄化的进程加速,预计到2050年将达到2.12亿,占人口总数的13.2%,而超过30%老年骨折患者与骨质疏松相关。
我国各种关节炎重症患者超过8 000万人,现有肢残患者75万人,同时,每年新增骨损伤患者300万人。
这也就意味着:随着我国老龄化进程的加快,我国骨科疾病的患病人数将加速增长,使得骨修复替代材料成为临床需求量最大的生物医用材料之一。
骨修复替代材料是骨组织工程发展的基础。
理想的骨修复材料应该具备生物相容性、机械耐受、可生物降解、可诱导再生等特性。
纳米羟基磷灰石(nano-hydroxyapatite,nHA)具有表面活性大、溶解度高、生物活性好等特点,但是在复合材料中nHA含量越多生物力学性能越差,脆性越大。
生物复合材料较单一材料在生物相容性、生物活性及成骨能力方面有更强的塑造能力,更容易满足临床需求。
本文将综述5种基于nHA的生物复合材料的性能、制备方法及临床应用情况。
1 nHA/聚酰胺(polyamide,PA)聚酰胺是临床上使用较多的一线材料,该材料具有较好的生物相容性和降解性。
PA66是PA的一个品种,nHA/PA66在临床上广泛运用于脊髓的修复,PA能增加nHA材料的韧性,nHA /PA66复合材料的抗压、抗弯强度和弹性模量与人体骨皮质的力学性能相近。
2005年,医用nHA /PA66复合骨充填材料(YZB /国0063-2003)被批准上市,现已在全国1 300多家甲级医院应用,取得了良好的临床治疗效果[1]。
牙釉质表面再矿化方法的研究进展摘要】牙釉质表面脱矿是龋病及其他非龋性牙体病变(酸蚀症等)的主要病理改变之一,对脱矿牙釉质进行再矿化以恢复其应有理化特性的研究逐渐成为研究热点,本文对近年牙釉质表面再矿化方法的发展作一综述。
【关键词】牙釉质氟羟基磷灰石再矿化涂层龋病是人类的常见病、多发病之一,在各种疾病的发病率中,龋病位居前列。
龋病的发展虽然很少会危及患者生命,但是给人类造成的危害甚大,特别是病变向牙体深部发展后,可引起牙髓病、根尖周病、颌骨炎症等一系列并发症,以致严重影响全身健康。
此外,龋病及其继发病作为一个病灶,引起远隔脏器疾病的案例也时有报告[1]。
龋病作为一种发生在牙体硬组织中的慢性疾病,开始时表现为表层釉质脱矿,随着龋病继续发展,最后表现为牙齿形态的破坏,龋洞形成。
针对龋病发展阶段的不同特点,龋病治疗大致分为两大类:非手术治疗和手术治疗。
前者是指采用药物或再矿化等保守方法使龋病病变终止或消除的治疗方法,主要应用于早期牙釉质龋未形成龋洞者。
因为该法可以取得更佳的临床疗效,最少程度降低龋病治疗给社会各患者带来的经济、心理负担,一直以来都是人们研究的热点。
目前国内外使牙釉质表面硬化和再矿化的主要方法有:早期的氟处理技术,亚稳态的含钙磷的矿化液,及近期的纳米磷灰石晶体或含蛋白的纳米磷灰石晶体在牙釉质表面沉积技术等。
1 氟处理技术氟化物作为有效的防龋药物已经被众多学者研究证实,并在全世界得到广泛应用。
氟化物的防龋机制主要表现在:使处于龋病形成阶段的牙齿从其外环境中吸收氟,替换牙齿硬组织中羟基磷灰石的羟基,变成氟磷灰石。
氟磷灰石较羟基磷灰石有更强的耐酸能力,可以抑制釉质脱矿并促进已有龋损再矿化。
早期龋损局部氟浓度的增加,会干扰致龋菌活性,抑制其生长,并有利于牙齿对矿物质的重吸收,从而减缓或逆转龋损过程[2]。
目前氟化物防龋的主要方法有氟添加剂、氟化钠、氟化氨银等[1]。
口腔临床治疗过程中主要应用的氟化物形态有氟化物糊剂、含氟凝胶、氟离子溶液、氟化泡沫,此外氟离子还被广泛应用于充填材料及牙科粘接剂中[3]。
羟基磷灰石压电系数简介羟基磷灰石是一种重要的无机功能材料,具有良好的生物相容性和生物活性。
羟基磷灰石压电系数是衡量这种材料在压电效应方面性能的重要参数。
本文将对羟基磷灰石压电系数进行全面、详细、完整且深入的探讨。
什么是压电效应?压电效应是指某些晶体材料在受到机械应力作用时,会出现电荷分布的不平衡,导致电荷的极化现象。
这种电荷分布的不平衡产生的电压称为压电效应。
羟基磷灰石具有压电效应,可以转换机械能和电能之间的相互转化。
羟基磷灰石的性质羟基磷灰石是一种化学式为Ca10(PO4)6(OH)2的无机化合物,属于磷酸盐类。
它的晶体结构稳定,具有良好的化学稳定性和生物相容性。
此外,羟基磷灰石还具有良好的生物活性,可以促进骨组织生长和修复。
羟基磷灰石的压电性能羟基磷灰石具有良好的压电性能,其压电系数的大小是评估其压电效应的重要指标。
压电系数是指在机械应力作用下,在材料表面积分面上单位面积受力时,产生的电极化强度和机械应力的比值。
羟基磷灰石的压电系数通常用d33来表示,其单位是pm/V。
影响羟基磷灰石压电系数的因素羟基磷灰石的压电系数受到多种因素的影响,下面将列举一些主要的影响因素: 1. 晶体结构:羟基磷灰石的晶体结构对其压电性能有很大影响。
晶体结构的对称性和晶格畸变会影响羟基磷灰石的压电性能。
2. 含量:羟基磷灰石中磷酸根离子和羟基的含量对其压电系数有影响。
适量的磷酸根离子可以增加羟基磷灰石的压电系数。
3. 成分:羟基磷灰石可以通过掺杂其他金属离子来改变其组成,从而影响压电性能。
不同的金属离子掺杂会改变晶体结构和电荷分布,从而改变压电系数。
4. 温度:温度也是影响羟基磷灰石压电系数的重要因素。
随着温度的升高,羟基磷灰石的压电系数一般会减小。
研究方法与进展研究羟基磷灰石压电系数的方法主要包括实验测量和理论计算两种途径。
实验测量通常采用压电共振频率法、震荡电桥法等方法。
理论计算则可以利用第一性原理计算或分子动力学模拟等方法进行。
纳米羟基磷灰石的制备及其在医学领域的应用漳州师范学院化学与环境科学系08科学教育摘要:生物陶瓷纳米羟基磷灰石在自然界中以自然骨、牙中的无机矿物成分为主要形式。
人工合成的纳米羟基磷灰石材料具有与自然矿物相似的结构、形态、成分,表现出良好的生物相容性和生物活性,广泛应用于医学领域。
本文综合论述了纳米羟基磷灰石在物理化学方面的应用并对其在医学领域的应用进行了详细的论述和展望。
关键词:纳米羟基磷灰石、医学领域、合成方法及应用Abstract:Biological nanometer hydroxyapatite ceramics in nature to natural bone and tooth the inorganic mineral composition as the main form. Synthetic nano hydroxyapatite orbital implant material has and natural mineral similar structure、shape、composition、show good biocompatibility and biological activity,widely used in medical field. The paper discusses the nano hydroxyapatite in physical chemistry and its application in medical field of applied discussed in detail and prospected.Keywords: nano hydroxyapatite,medical field,synthesis method and application1.n-HA简介羟基磷灰石的化学式为Ca10 ( PO4) 6 (OH)2,简称HA,属六方晶系,晶格参数为a = b = 0 .9421nm、c = 0 . 6882nm。
羟基磷灰石研究进展摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。
同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。
对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。
主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。
关键词:羟基磷灰石制备复合材料涂层研究进展前言羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。
从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。
HA 属六方晶系, 空间群为P63/m。
其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。
单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个[ OH]-, 这样的结构和组成使得H A 具有较好的稳定性。
磷灰石是自然界广泛分布的磷酸钙盐矿物,根据其结构通道中存在的阴离子的种类,可分为氟-、氯-、羟磷灰石等不同亚种矿物。
其中,羟基磷灰石(hydroxyapatite,缩写为HA或HAp)的研究和应用最广泛。
羟基磷灰石是人体和动物的骨骼和牙齿的主要无机成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供支架,发挥骨传导作用, 是理想的硬组织替代材料,被认为是最有前途的人工齿及人工骨的替代材料。
1、羟基磷灰石的合成制备虽然1871年就合成出羟基磷灰石,但是由于技术的限制,直至1971年才有羟基磷灰石生物陶瓷的成功报道,并迅速扩大临床应用。
经过多年的研究,近年来已经开发出多种方法制备羟基磷灰石。
鉴于各种方法在制备原理于过程上存在相当大的差异,所得到的HA的性能也产生了较大的差异。
不同状态的HA的制备是HA优异性能得到充分利用的关键。
羟基磷灰石的制备可按照其物理性质分为HA粉体的制备、HA涂层的制备、以及HA复合材料的制备。
1.1经基磷灰石粉体的制备目前制备羟基磷灰石粉末的方法有很多,主要有湿法溶胶一凝胶法、水热法、沉淀法等和干法固相反应及微乳液法。
1.1.1溶胶一凝胶法溶胶-凝胶法是以适当的前驱物配成溶胶, 一般利用金属无机盐或金属醇盐, 在水或醇溶剂中发生水解或醇解反应,形成均匀的溶胶, 然后经过溶剂挥发及加热等处理, 使溶胶转变成网状结构的凝胶, 再经过适当的后处理工艺形成HA晶体。
童义平等探索用溶胶—凝胶法制备羟基磷灰石的工艺条件, 用硝酸钙和磷酸三丁酯为反应原料, 进行对比实验, 优化得到的条件为溶液pH 值控制在8 左右, 烧结温度控制在950℃以上, 恒温时间控制在2.5~ 4.5 小时。
是近些年来才发展起来的新方法,已经引起了广泛的关注。
找到合适的、能够合成最终的羟基磷灰石的溶胶一凝胶体系是其合成的关键。
其原理是:将醇盐溶解在选定的有机溶剂中,在其中加蒸馏水使醇盐发生水解、聚合反应后生成溶胶,再将Ca2+溶胶缓慢滴加到(PO4)3-溶胶中,加水变为凝胶,凝胶经老化、洗涤、真空状态下低温干燥,得到干凝胶,再将干凝胶高温锻烧,就得到羟基磷灰石的纳米粉体。
该方法的优为:合成及烧结温度低、可在分子水平上混合钙磷的前驱体使溶胶具有高度的化学均匀性。
缺点是化学过程比较复杂、醇盐原料价格昂贵、有机溶剂毒性大,对环境易造成污染等。
,该方法的优点是对PH没有要求。
这种方法可以生成Ca/P比不同的HA ,生成的HA粉体可用作生物陶瓷、环境材料、催化、色谱等领域。
1.1.2沉淀法化学沉淀法是制备羟基磷灰石粉体最典型的方法,这种方法通常采用把一定浓度的磷酸氢铵和硝酸钙反应或者磷酸与氢氧化钙在一定的温度下搅拌,常加入适当的沉淀剂,通过控制反应的温度、PH值、反应速率及陈化时间等来实现HAP蹭点结晶化过程,反应过程中使用氨水调节PH值,把沉淀物高温缎烧从而得到HA粉体。
其典型工艺:Ca(NO3)2与磷酸盐[(NH4)3PO4,(NH4)2HPO4,NH4H2PO4]溶液进行反应,沉淀经过滤、干燥,制成粉末颗粒,再在750℃条件下煅烧3h,生成晶体粉末,经成型工艺获得压坯,最后在1050一1200℃温度烧结,即得到羟基磷灰石。
该法的优点是:工艺简单、合成粉体的成木较低,可以大量制造HA粉体,并广泛应用于工业生产巾。
缺点:必须严格控制实验的工艺条件,比如Ca/P的摩尔比、混合物的PH值、以及反应产生沉淀的时间。
1.1.3水热法水热法其特点是在特制的密闭的反应器(高压釜)内,在高温高压下,用水溶液作为反应介质。
在高温高压环境中,不受沸点的限制,可以使介质的温度上升到200一400℃,使原来难溶或不溶的物质溶解并重新结品的方法。
这种方法通常采用磷酸氢钙等为原料的水溶液体系,在高压釜中制备HA粉体。
其典型的工艺为:以CaCl2 [或Ca(NO3)]与NH4H2PO4为原料,以钛网、Ti6Al6V片或其他合金为阴极,以石墨为阳极,控制一2定的PH值和沉淀时间,可得CaHPO4·2H2O ,随后经水蒸气处理,即得到羟基磷灰石。
化学反应如下:与其它化学方法比较, 水热法制备HA粉体由于不需要高温焙烧等后处理工艺, 避免了在这些过程中可能产生的粉体颗粒之间的硬团聚, 制备工艺较为简单, 粒子纯度高, 分散性好, 粒径小, 分布范围窄,这种方法的缺点为:生产周期长, 能耗大, 成本高, 反应条件对产物影响大。
对设备的密闭条件要求很高,反应条件不容易控制,很难生成Ca/P比不同的HA,一般能生成正常配比的HA。
但是可以获得高纯度、高有序度、结品较好的HA多品粉体。
该方法制备的羟基磷灰石粉体在萤光、激光材料、催化载体等方面得到应用。
1.1.4干式法把固态磷酸钙及其他化合物磨细均匀混合在一起,在有水蒸气存在的条件下,反应温度大于1000℃(1000℃一1300℃),可以得到结品较好的羟基磷灰石,反应式为:6CaHPO4·2H2O+4CaCO3=Ca(PO4)6(OH)2+4CO2+14H2O这种方法合成的羟基磷灰石优点是粒径1mm,纯度高,结品完整无品格缺陷,晶格常数不随温度变化。
缺点为该方法要求较高的温度和热处理时间,粉末的可烧结性差,使得应用受到了一定的限制。
一般这种方法制备的羟基磷灰石粉体常用在萤光、激光、敏感功能材料和地质条件模拟实验研究中应用。
此外还有海珊瑚高温置换反应合成等方法。
1.1.5微乳液法微乳液法是利用表面活性剂在溶液中的浓度超过其临界胶束浓度(cmc)形成胶束的性质, 在钙和磷的前躯物溶液中,加入适宜的表面活性剂,形成各种彼此独立的微乳颗粒(如球状、椭圆状、棒状胶束等)来控制HAP晶粒的生长, 以制备不同形貌的超微粒HAP。
1.2经基磷灰石薄膜的研究方法近年来发展起来的金属基表面羟基磷灰石薄膜的研究方法主要有:等离子喷涂,激光熔覆法,溶胶一凝胶法,电沉积方法,仿生合成法,浸渍法,热喷涂等。
这些方法可以分为两大类, 一类方法制备出厚度相对较大的涂层(几十至上百);另一类则偏重于制备薄涂层(厚度在几个至十几个左右)。
1.2.1厚涂层的制备方法1.2.1.1等离子喷涂法等离子喷涂法是制备HA涂层最成功,也是目前临床研究较为成熟,应用最为广泛的方法,并且被广泛投人到商业应用。
等离子喷涂的基本过程是喷涂粉料以气体为载体被送到等离子区,经高温(通常高于1000℃)熔融或半熔融后喷涂到金属基体表面形成羟基磷灰石薄膜,喷涂后的涂层要经过水蒸气处理或热处理。
其典型工艺如下:由钨青铜阳极和喷嘴阴极放电产生电弧,等离子体则在电弧燃烧中产生。
一般等离子气体选择惰性气体或双原子其他的混合物。
喷涂粉末用气流送到高能的等离子气体内,粉末在等离子体中熔化,附着在金属基体上而形成涂层,随着工艺参数,如HA的颗粒大小以及功率的变化,涂层的性能也相应发生变化。
通常等离子喷涂的厚度在几十左右。
等离子喷涂具有操作方便,但他的缺点也很明显首先因羟基磷灰石与金属基体的热膨胀系数不同,易在基体与涂层界面形成残余应力,在喷涂后的冷却过程中涂层可能产生相变和脆裂,使得涂层和基体的结合强度不高;其次,由于等离子喷涂过程涉及高温过程,易使羟基磷灰石发生分解。
另外,由于原始材料采用较高纯度的羟基磷灰石粉末,植被的成本较高,技术设备昂贵,不适合喷涂多孔金属表面。
1.2.1.2激光熔覆法激光熔税法的工作原理在金属基体的表面上预先覆涂一定配比的CaCO3,与CaHPO4·2H2O的混合物粉末涂层,然后用激光器进行多道搭接熔覆处理,使合成与熔覆HA涂层一步完成,合成HA涂层的原理反应为:此方法制得的涂层的优点是:与基体结合良好、硬度高、强度较高、韧性良好,且改善了植人材料的弹性模量与生物硬组织材料的匹配性。
但同样也有缺点存在,涂层的均匀性和稳定性较差,难控制且设备昂贵。
激光熔覆法在制备生物涂层方面刚刚起步,但已经显示出巨大的优越性,很有希望成为生产临床生物材料的途径之一。
1.2.2薄涂层的制备方法1.2.2.1溶胶一凝胶法溶胶一凝胶法除了可以制备HA的粉体以外,还可以制备HA涂层,这一方面近年来研究较多,溶胶一凝胶法是一个相当简单的过程。
溶胶一凝胶法的原理是:将涂层物质或其前驱体制成溶胶,使之均匀的覆盖于基体的表面,由于溶剂的迅速挥发以及后续的缩聚反应而凝胶化,再经干燥和热处理,以获得所需的涂层。
该方法的优点是用料少,成木底;工艺简单,不需要任何的真空的设备;工艺过程温度低;对于形状复杂的材料有利。
1.2.2.2电化学沉积法电化学沉积法是一种点解方法镀膜的过程,也是一种氧化还原过程。
该方法的原理是:在含有被镀金属离子的水溶液(或非水溶液、熔盐)中通直流电,是正离子在阴极表面放电,得到金属、=-0987321、温度低、易于在复杂表面上大面积涂膜、投资少,工艺简单,易于操作。