铝铜合金金相显微组织分析
- 格式:doc
- 大小:12.51 KB
- 文档页数:1
铝合金金相实验方法及实验结果引言铝合金是一种常用的轻质金属材料,在工业生产中具有广泛的应用。
金相实验是一种常用的材料测试方法,通过观察材料的组织结构和相变情况,可以评估其性能和质量。
本文旨在介绍铝合金金相实验的方法与实验结果。
方法1. 样品准备:选择合适的铝合金样品,并进行表面处理,如去除氧化层等。
2. 组织切割:使用金相切割机将铝合金样品切割成适当大小的试样。
3. 粗磨与细磨:使用金相磨片对试样进行粗磨和细磨,以去除表面的砂痕和切割留下的痕迹。
4. 电解腐蚀:将试样放入适当的电解液中进行腐蚀处理,以去除试样表面的氧化物和污染物。
5. 腐蚀后的清洗:将试样从电解液中取出,并用酒精和蒸馏水进行清洗。
6. 试样打磨:使用金相打磨机对试样进行打磨,以获得光滑的表面。
7. 试样腐蚀:将试样放入适当的腐蚀液中进行腐蚀处理,以显现材料的细微组织结构。
8. 显微镜观察:将腐蚀后的试样放在金相显微镜下观察,通过调整放大倍数和焦距,可以获取不同放大倍数下的图像。
9. 实验数据记录:对观察到的组织结构进行描述,并记录下相关的实验数据。
实验结果经过金相实验,我们观察到了铝合金的组织结构和相变情况。
具体实验结果如下:1. 铝合金的组织结构:我们观察到铝合金由颗粒状、晶粒状和晶界等组织结构组成。
不同的铝合金材料具有不同的组织特征,如晶粒大小、晶界分布等。
2. 相变情况:通过金相显微镜的观察,我们可以发现铝合金在不同条件下发生的相变情况,如固溶体的析出、晶格形变等。
3. 实验数据记录:我们记录了每个观察点的放大倍数、焦距和所观察到的组织结构特征等数据。
结论铝合金金相实验是评估铝合金材料性能和质量的重要方法。
通过观察铝合金的组织结构和相变情况,可以了解其内部结构和性能特点。
金相实验结果的准确记录和分析,有助于指导铝合金材料的生产和应用。
参考文献(请根据需要列出参考文献)。
实验一有色合金显微组织观察与分析一、实验目的1. 观察常见的铝合金、铜合金、镁合金及轴承合金等有色金属试样的显微组织特征。
2. 了解有色金属中合金元素对其组织和性能的影响。
二、实验说明(一)铝合金1.铸造铝合金:应用最广泛的铸造铝合金为含有大量硅的铝合金,即所谓硅铝合金。
典型的硅铝合金牌号为ZL102,含硅11~13%,在共晶成分附近,因而具有优良的铸造性能——流动性好,铸件致密,不容易产生铸造裂纹。
铸造后几乎全部得到共晶组织即粗大灰色针状的共晶硅分布在白亮色的α-Al固溶体基体上,这种粗大的针状硅晶体严重降低合金的塑性,因此通常在浇铸时向合金溶液中加入2~3%的变质剂,进行变质处理,合金共晶点向右移,原来的合金变成亚共晶,其组织为枝晶状初生α固溶体(白亮色)+细的(α+Si)共晶体(黑色),如图1-1所示,从而提高合金强度和塑性。
(a)未经变质处理(b)变质处理图1-1 铸造铝合金(ZL102)的显微组织500X2.形变铝合金:硬铝是Al-Cu-Mg系合金,是重要的形变铝合金,具有强烈的时效强化作用,经时效处理后具有很高的硬度、强度,故而称Al-Cu-Mg系合金为硬铝合金。
在Al-Cu-Mg系中,形成了CuAl2(θ相)、CuMgAl2(S相),这两个相在加热时均能溶入合金的固溶体内,并在随后的时效热处理过程中通过形成“富集区”、“过渡相”而使合金达到强化。
如图1-2所示。
(a)铸态(b)时效板材图1-2 硬铝(ZL12)的显微组织 100X(二)铜合金1. 普通黄铜普通黄金是Cu-Zn合金,其含锌量均在45%以下,根据Cu-Zn合金状态图,含锌量在32%以下的黄铜(如H80、H70)为α相固溶体的单相组织;而含锌量在32~45%之间的黄铜(H62、H59)则为(α+β)两相组织。
(1)α单相黄铜:含锌在36%以下的黄铜属单相α固溶体,典型牌号有H70。
铸态组织为α固溶体呈树枝状,经变形和再结晶退火,其组织为多边形晶粒,有退火孪晶。
实验1.31.4铝合金金相组织的观察及力学性能测定一、实验目的1. 巩固制备金相试样的方法与技术2. 了解各种加工工艺对铝合金显微组织以及力学性能(硬度)的影响二、实验内容1.对4种试样进行硬度测试本次试验采用的是TH320全洛氏硬度计。
洛氏硬度的试验原理:将压头(金刚石圆锥、钢球或硬质合金球)分两个步骤,在初试验力F 和主试验力F 先后作用下,压入试样表面,保持一定时间,卸除主试验方,保留初试验力,此时的压入深度为h ,在初试验力作用下的压入深度为h ,它们之差e (^h )来表示压痕深度的永久增量。
每压入0.002mm 为一个洛氏硬度单位。
°洛氏硬度试验原理图如图1所示样品测试面需要经过200号水砂纸磨光,以满足测试得粗糙度要求。
背面平整,测试面与背面没有明显歪斜。
测试过程中,总试验力的保持时间:5s ;主试验力卸除时间:2s 。
之所以选择5s 的总试验力保持时间,是考虑样品较软,但又没有明确的实验表明,铝合金样品在硬度测试过程中存在缓慢变形的明确说法,所以,选择居中的时间6至7s ,也是可以的。
本次实验所涉及的样品中内应当包括:铸态、固溶处理、固溶处理+轧制、固溶处理+轧制+时效,4种样品。
每个样品至少测试4点,第一点不计。
两相邻压痕中心之间的距离至少应为压痕直径的4倍,并且不应小于2mm ;任一压痕中心距离试样边缘的距离至少应为压痕直径的2.5倍,并且不应小于1mm 。
分别记录4种样品的硬度数据,并结合之后所观察得到的金相组织作出恰当分析。
2.制备、观察4种金相试样。
本次实验制备、显示一个样品,此样品是在之前的课程中制作的。
样品涉及4种工艺,具体参见下表: 工艺 编号 说明 铸造状态 1 每位学样品制备合格后, 固溶处理 2 除了察自己的样品,还需 固溶处理+轧制 3 要观察其他同学制备的其他固佑处J 效轧制+时 43种工艺的样品。
领取属于自己的铝合金样品后,按照金相样品制备的一般要求进行。
实验一有色合金显微组织观察与分析一、实验目的1. 观察常见的铝合金、铜合金、镁合金及轴承合金等有色金属试样的显微组织特征。
2. 了解有色金属中合金元素对其组织和性能的影响。
二、实验说明(一)铝合金1.铸造铝合金:应用最广泛的铸造铝合金为含有大量硅的铝合金,即所谓硅铝合金。
典型的硅铝合金牌号为ZL102,含硅11~13%,在共晶成分附近,因而具有优良的铸造性能——流动性好,铸件致密,不容易产生铸造裂纹。
铸造后几乎全部得到共晶组织即粗大灰色针状的共晶硅分布在白亮色的α-Al固溶体基体上,这种粗大的针状硅晶体严重降低合金的塑性,因此通常在浇铸时向合金溶液中加入2~3%的变质剂,进行变质处理,合金共晶点向右移,原来的合金变成亚共晶,其组织为枝晶状初生α固溶体(白亮色)+细的(α+Si)共晶体(黑色),如图1-1所示,从而提高合金强度和塑性。
(a)未经变质处理(b)变质处理图1-1 铸造铝合金(ZL102)的显微组织500X2.形变铝合金:硬铝是Al-Cu-Mg系合金,是重要的形变铝合金,具有强烈的时效强化作用,经时效处理后具有很高的硬度、强度,故而称Al-Cu-Mg系合金为硬铝合金。
在Al-Cu-Mg系中,形成了CuAl2(θ相)、CuMgAl2(S相),这两个相在加热时均能溶入合金的固溶体内,并在随后的时效热处理过程中通过形成“富集区”、“过渡相”而使合金达到强化。
如图1-2所示。
(a)铸态(b)时效板材图1-2 硬铝(ZL12)的显微组织 100X(二)铜合金1. 普通黄铜普通黄金是Cu-Zn合金,其含锌量均在45%以下,根据Cu-Zn合金状态图,含锌量在32%以下的黄铜(如H80、H70)为α相固溶体的单相组织;而含锌量在32~45%之间的黄铜(H62、H59)则为(α+β)两相组织。
(1)α单相黄铜:含锌在36%以下的黄铜属单相α固溶体,典型牌号有H70。
铸态组织为α固溶体呈树枝状,经变形和再结晶退火,其组织为多边形晶粒,有退火孪晶。
一、实验名称铝金相分析二、实验目的1. 掌握铝金相试样的制备方法。
2. 学习使用金相显微镜观察和分析铝的显微组织。
3. 了解铝的成分、组织结构与其性能之间的关系。
4. 结合理论,加深对金属材料微观结构的认识。
三、实验原理金相分析是一种利用光学显微镜观察金属材料的显微组织结构的方法。
通过制备金相试样,并在金相显微镜下观察,可以了解材料的内部结构,从而分析其性能和工艺过程。
铝是一种轻质金属,具有良好的塑性、导电性和耐腐蚀性。
其显微组织主要由固溶体、析出相和杂质相组成。
通过金相分析,可以观察铝的晶粒大小、形态、分布以及析出相的类型和分布情况。
四、实验材料与仪器1. 实验材料:纯铝、铝合金试样。
2. 仪器设备:金相显微镜、抛光机、砂轮机、各号金相砂纸、脱脂棉、3~5硝酸酒精溶液。
五、实验步骤1. 试样制备1.1 取样:从纯铝和铝合金试样上截取一定尺寸的试样。
1.2 粗磨:使用砂轮机对试样进行粗磨,去除表面的氧化层和杂质。
1.3 细磨:使用不同号数的砂纸对试样进行细磨,直至达到所需的抛光程度。
1.4 抛光:使用抛光机对试样进行抛光,使其表面光滑。
1.5 浸蚀:将抛光后的试样放入3~5硝酸酒精溶液中,进行浸蚀,以突出组织结构。
1.6 清洗:将浸蚀后的试样用脱脂棉擦干。
2. 金相显微镜观察2.1 将制备好的试样放置在金相显微镜的载物台上。
2.2 调整显微镜的焦距和光圈,使试样清晰可见。
2.3 观察试样的晶粒大小、形态、分布以及析出相的类型和分布情况。
六、实验结果与分析1. 纯铝试样1.1 晶粒大小:纯铝的晶粒大小较为均匀,平均晶粒尺寸约为5μm。
1.2 晶粒形态:纯铝的晶粒呈多边形,具有一定的方向性。
1.3 析出相:纯铝中几乎没有析出相。
2. 铝合金试样1.1 晶粒大小:铝合金的晶粒大小与纯铝相似,平均晶粒尺寸约为5μm。
1.2 晶粒形态:铝合金的晶粒形态与纯铝相似,具有一定的方向性。
1.3 析出相:铝合金中存在析出相,主要呈针状或片状分布。
1)铸造组织:
铸造金属在冷却时由于局部负温度梯度,导致过冷度不同,金属晶粒多呈树枝晶生长。
又由于冷却的速度较快,各组分析晶温度不同,固相中的原子来不及扩散,以至于结晶分先后顺
序,在枝晶间产生成分偏析。
所以在凝固后的铸造组织中,可观察到树枝状晶粒。
在高倍显微镜下观察时,还能明显地观察到枝晶间的成分偏析现象,表现为颜色深度不同的带状分界,颜色深度不同是因为其中的铜元素含量不同,因而在腐蚀液作用下产生颜色梯度,在局部还能看到CuAl2存在于枝晶间。
(2)固溶处理:
固溶处理将金相组织中的成分逐渐均匀化。
由于温度再次升高,导致晶粒长大。
高倍镜下晶界间有黑色小点(CuAl2杂质),这是由于冷却过程中得到过饱和固溶体,固溶处理保温的时间较短,铸态组织中的树枝状晶粒并未完全转化,枝晶偏析未完全消除,存在杂质CuAl2。
(3)固溶处理+轧制:
轧制是通过应力使金属内部的位错产生运动从而发生塑性变形。
在金相组织中,可观察到晶粒呈纤维状,顺着轧制方向被拉长,而沿其他方向的尺寸无明显变化。
在高倍镜下可观察到大量明显的位错。
(4)固溶处理+轧制+时效:
时效是过饱和固溶体的脱溶分解,析出第二相的过程。
但实验中在低倍显微镜观察下时只发现很少的第二相。
其金相组织与固溶处理+轧制后的金相组织没有明显的区别。
铝合金的显微组织与疲劳性能研究近年来,铝合金作为一种广泛应用于航空航天、汽车制造等领域的重要材料,其性能研究日益受到关注。
其中,显微组织与疲劳性能是铝合金研究中的重点内容。
本文将对铝合金的显微组织和疲劳性能进行深入探讨。
1. 铝合金的显微组织铝合金的显微组织是指铝合金材料在显微镜下呈现的微观结构。
铝合金主要由铝和其他合金元素组成,例如铜、锌、镁等。
这些合金元素的含量和比例可以调控铝合金的性能。
显微组织中的晶粒尺寸、相的类型和分布、亚晶等也对铝合金的力学性能和疲劳性能有着重要影响。
铝合金的显微组织可以通过金相显微镜等设备观察和分析。
常见的铝合金显微组织包括等轴晶粒、柱状晶粒和细晶组织。
等轴晶粒由于其颗粒形状均匀,其力学性能相对较好,但疲劳寿命较短。
柱状晶粒则具有相对更高的强度和硬度,但其断裂韧性较差。
而细晶组织在疲劳寿命方面有一定的优势,但机械性能相对较差。
2. 铝合金的疲劳性能疲劳是材料在受到交变载荷或循环加载作用下发生破坏的现象。
铝合金在使用过程中,常常会遇到复杂的载荷情况,例如风、震动等作用下的循环加载。
因此,疲劳性能的研究对于铝合金的可靠性和安全性至关重要。
铝合金的疲劳性能可以通过疲劳试验等方法进行评估。
疲劳试验的基本原理是对材料进行交替加载,观察其在不同循环次数下的疲劳寿命。
常用的疲劳试验方法包括拉伸-压缩疲劳试验、弯曲疲劳试验和旋转弯曲疲劳试验等。
研究发现,铝合金的疲劳寿命常与显微组织的细化有关。
较细的晶粒尺寸可以增加材料的界面数目,从而能更好地吸收应力和延缓疲劳损伤的发展。
此外,亚晶和非晶态相对于晶粒边界也具有较好的阻碍裂纹扩展的能力,有利于提高疲劳寿命。
3. 铝合金的改进与应用为提高铝合金的疲劳性能,研究人员采取了不少措施。
例如通过热处理和合金元素的添加来改变铝合金的显微组织,实现性能提升。
采用过热变形、等温退火和再结晶退火等方法,可以调控铝合金的晶粒尺寸和相的类型。
同时,适量添加元素,如镁、锌等,可以改善铝合金的强度和韧性。
ZnAl10Cu2合金铸态显微结构及相结构分析邬小萍 李德富郭胜利许晓庆胡捷贺金宇北京有色金属研究总院,北京 100088通信作者,wuxp040301@摘要通过金相显微镜(OM)、扫描电镜(SEM)、EDS和XRD等对ZnAl10Cu2合金的铸态显微结构和相结构进行了观察和分析,并对其组织的形成机制进行了研究。
研究表明:铸态ZnAl10Cu2合金的凝固组织由初生枝晶α1及其外围的棒状共晶(α2+β)组成,在随后的冷却过程中初生α1相和共晶组织中的α2相均发生共析反应,得到层片状共析组织(α+η),而在室温时效中未完全转变的α1相和α2相均发生不连续沉淀形成粒状沉淀组织,其中初生α1相,为富Al相,是Zn在Al中形成的固溶体,属于强化相,晶体结构为面心立方,β为富Zn相,晶体结构为密排六方。
关键词 ZnAl10Cu2合金;显微组织;共晶;共析;不连续沉淀Analysis of as-cast microstructure and phase structure ofZnAl10Cu2 alloyWU Xiao-ping , LI De-fu, GUO Sheng-li, XU Xiao-qing, Hu Jie, HE Jin-yuBeijing General Research Institute for Non- ferrous Metals, Beijing 100088, ChinaCorresponding author,wuxp040301@ABSTRACT The as-cast microstructure and phase structure of ZnAl10Cu2 alloy were observed and analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The formation mechanism of structures was also studied. The results show that the solidification of cast ZnAl10Cu2 alloy is consisted of primary dendrites α1 and rod-like eutectic (α2 + β) surrounding primary α1 dendrites. Primary phase α1 and α2 phase in the eutectic structure occur eutectoid reaction during the subsequent cooling process, and lamellar (α + η) eutectoid organization is formed. The retained α1 and α2 phase precipitate discontinuously and form granular precipitates at room temperature aging. Primary α1 is theAl-rich ( Al forms solid solution with Zn) and strengthening phase, with crystal structure of face-centered cubic lattice. And for β, the crystal structure of the Zn-rich phase is hexagonal lattice.KEY WORDS ZnAl10Cu2 alloy; microstructure; eutectic; eutectoid; discontinuous precipitation锌铝合金具有良好的力学性能、耐磨性能以及其他一些特殊性能(如碰撞时不产生火花、无磁性等),作为铜合金甚至铝合金的替代材料具有广泛的应用前景。
铝铜合金金相显微组织分析
铝铜合金是由铝和铜两种金属混合而成的复合材料,具有良好的力学性能和耐腐蚀性能,因此在航空、船舶、汽车、石油和化工等行业得以广泛应用。
尽管已经有大量研究表明铝铜合金具有多种特性,然而要理解材料的性能,就必须研究其微观组织。
在此基础上,金相显微组织分析可以有效地识别和定量分析铝铜合金内部的金属结构。
金相显微组织分析可以用各种光学显微镜观察金属结构,并采用先进的形貌分析技术。
使用该分析方法,可以清楚地查看和测量合金组织中晶粒形貌、尺寸和分布。
除此之外,还可以检测金属结构中的杂质、气孔和疲劳裂纹等缺陷。
金相显微组织分析可以确定材料的晶粒尺寸、形貌和分布,以及对外界的反应。
通过对表面、边缘、表界面和焊点等结构的研究,可以有效地确定合金的物理和化学性能,比如硬度、塑性和抗腐蚀性等。
与传统的显微组织分析相比,金相显微组织分析更加准确、可靠,能够更深入地了解材料的微观结构。
在铝铜合金实际应用中,金相显微组织分析可以作为一种强大的工具用于控制材料性能和质量,并研究和设计新型材料。
它可以有效地洞察材料性能,揭示成败的关键所在,并提出改善性能的建议。
总之,金相显微组织分析在铝铜合金的研究、开发和应用中占有重要地位,可以有效地探索、分析和控制材料的微观结构,从而提高材料的性能和使用寿命。
- 1 -。