八年级数学上册一次函数讲义
- 格式:docx
- 大小:157.49 KB
- 文档页数:6
科目: 数学 年级: 八年级 教师: 占老师一次函数复习讲义知识点1 一次函数和正比例函数的概念(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k ﹤O ,b >0时,直线经过第一、二、四2象限(直线不经过第三象限);④如图11-18(4)所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限).知识点3 正比例函数y=kx (k ≠0)的性质(1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大;(3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小. 知识点4 点P (x 0,y 0)与直线y=kx+b 的图象的关系(1)如果点P (x 0,y 0)在直线y=kx+b 的图象上,那么x 0,y 0的值必满足解析式y=kx+b ;(2)如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点P (1,2)必在函数的图象上.例如:点P (1,2)满足直线y=x+1,即x=1时,y=2,则点P (1,2)在直线y=x+l 的图象上;点P ′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P ′(2,1)不在直线y=x+l 的图象上.知识点5 确定正比例函数及一次函数表达式的条件知识点6 待定系数法知识点7 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.(2)数形结合法.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b=0时,即-kb =0时,直线经过原点; 当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限;当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限;当k ﹤O ,b >0时,图象经过第一、二、四象限;优尚教育个性化复习讲义一次函数复习讲义第12-3页当k ﹤O ,b=0时,图象经过第二、四象限;当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b .(3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合. 典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件. 例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. 例2 当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是一次函数? 基础知识应用题例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >04C .m ﹤21D .m >M.学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数x (年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x 分,两种通讯方式的费用分别为y 1元和y 2元.(1)写出y 1,y 2与x 之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且优尚教育个性化复习讲义S△ABP=4,求P点的坐标.例14 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .中考试题预测例1 某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?例3 如图11-27所示,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数,下(2)某人身高为196cm,一般情况下他的指距应是多少?一次函数复习讲义第12-5页例7 某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县.已知C,D两县运化肥到A,B两县的运费(元/吨)如下表所示.(1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.例10 如图11-31所示,已知直线y=x+3的图象与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式.6优尚教育个性化复习讲义课内课外作业:一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限6.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()一次函数复习讲义第12-7页(A)第一象限(B)第二象限(C)第三象限(D)第四象限7.要得到y =32x-4的图像,可把直线y =32x ().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位8.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<139.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条10.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________. 2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________. 5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为8优尚教育个性化复习讲义正整数)与两坐标所围成的图形的面积为S k(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3(2013•衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是元;(2)第二档的用电量范围是;一次函数复习讲义第12-9页(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?4(2013•内江)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.X 50 60 90 120y 40 38 32 26(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.5.某省夏天由于持续高温和连日无雨,水库蓄水量普遍下降,图11-29是某水库的蓄水量V(万米2)与干旱持续时间t(天)之问的关系图,请根据此图回答下列问题.(1)该水库原蓄水量为多少万米2?持续干旱10天后.水库蓄水量为多少万米3?(2)若水库存的蓄水量小于400万米3时,将发出严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?10优尚教育个性化复习讲义义第6.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地收割小麦,其中30•台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x 表示y ,并注明x 的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.9. (2013•黄石)一辆客车从甲地开)12 往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的函数图像如右图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数关系式;(2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.10.A 市、B 市和C 市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E 市10.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B•市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值.。
第四章一次函数1、函数的观点一般地,设在一个变化过程中有两个变量x 和 y,而且关于 x 每一个确立的值,y 都有独一的值与它对应,那么就说x 是自变量, y 是 x 的函数。
对函数观点的理解:(1)有两个变量(2)一个变量的数值跟着另一个变量的变化而变化(3)自变量每确立一个值,函数有一个而且只有一个值与之对应(或多个x 的值能够对应一个 y 值但不可以一个 x 值对应多个 y 值,如 y=x2和 x2 =y)2、自变量的取值范围自变量的取值一定使含自变量的代数式都存心义。
(1)关系式为整式时,自变量的取值为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实质问题中,自变量的取值还要和实质状况相切合,使之存心义。
如: S r 2中,r表示圆的半径时,r>03、一次函数和正比率函数一次函数 y=kx+b特点:k0x 的次数是 1常数项 b 是随意实数正比率函数: y=kx特点:k0x 的次数是 1常数项 b=0正比率函数是一种特别的一次函数。
4、一次函数图像性质一次函数 y=kx+ b 的图象的画法 .依据几何知识:经过两点能画出一条直线,而且只好画出一条直线,即两点确立一条直线,因此画一次函数的图象时,只需先描出两点,再连成直线即可 .一般情况下:是先选取它与两坐标轴的交点:( 0 , b ),.即横坐标或纵坐标为 0的点 .k 表示直线y=kx+b(k 0) 向上的方向与x 轴正方向夹角的大小,即直线倾斜的程度;b 表示直线 y=kx+b(k 0)与 y 轴交点的纵坐标一次函数 Y=kx+b k 0 的图象,当 b>0 时,图象与 y 轴的交点在 x 轴的上方;当b<0 时,图象与 y 轴的交点在 x 轴的下方;2两直线 y= k 1 x+ b 1 (k 0)的图象与 y= k 2 x+ b 2 (k 0)的地点关系:( 1) 当 k 1 = k 2 时,且 b 1 b 2 时,两直线平行( 2) 当 k 1 = k 2 时,且 b 1 =b 2 时,两直线重合( 3) 当 k 1 k 2 时,两直线订交( 4) 当 k 1 k 2 时,且 b 1 =b 2 时,两直线交于 y 轴上一点( 0,b 1 )或( 0,b 2 )【稳固训练】 一、选择题1 、 下 列 各 图 给 出 了 变 量 x 与 y 之 间 的 函 数 是 :( )yyyyo xoxoxo xABCD2、已知油箱中有油 25 升,每小时耗油 5 升,则剩油量 P(升)与耗油时间 t(小时 ) 之间的函数关系式为 ( ) A . P=25+5tB . P=25-5tC .P=25D . P=5t - 255t3、函数 y =3x + 1 的图象必定经过点 ().A .(3,5)B .(-2,3)C .(2,7)D . (4,10)4、以下函数关系式 : ① yx ;② y2x11;③ yx 2x 1; ④ y1 .此中一次函数的个数是 ( )xA. 1 个B.2 个C.3 个D.4个 5、假如 y=x -2a +1 是正比率函数,则 a 的值是( )(A)1(B)0(C)-1(D)- 2226. 一次函数 y=kx+b 图象如图,正确的是()(A )k>0,b >0 ( B ) k>0,b <0 ( C ) k<0,b>0(D )k<0, b <07.已知一次函数的图象与直线 y=-x+1 平行,且过点( 8,2),那么此一次函数 的分析式为( )A .y=-x-2B . y=-x-6C . y=-x+10D .y=-x-1 8、若直线 yx n不经过第四象限,则( )mA.m >0,n <0B.m <0,n <0C.m <0,n > 0D.m >0,n ≤09、函数 y=kx+b(k < 0, b > 0)的图象可能是以下图形中的( )y y yyo xo xo xox[A.B.C.D.10、若函数 y=2x+3 与 y=3x -2b 的图象交 x 轴于同一点,则 b 的值为 ( )A .- 3B .-3C . 9D .-92 411 一次函数 y=kx+6,y 随 x 的增大而减小,则这个一次函数的图象不经过 ()A. 第一象限B. 第二象限C.第三象限D. 第四象限12 如图 , 直线 y kx b 经过 A(0,2) 和 B(3,0) 两点 , 那么这个一次函数关系式是 ( ) A. y 2x 3 B. y2x 2 C. y 3x 2 D. y x 1313.李老师骑自行车上班,最先以某一速度匀速前进, ?半途因为自行车发生故障,停下修车耽搁了几分钟,为了准时到校,李老师加速了速度,仍保持匀速前进,假如准时到校. 在讲堂上,李老师请学生画出他前进的行程 y?(千 米)与前进时间 t (小时)的函数图象的表示图,同学们画出的图象如图所 示,你以为正确的选项是( )14、一次函数 y=ax+b ,若 a+b=1,则它的图象必经过点()A 、(-1,-1)B、(-1, 1)C、(1, -1)D、 (1, 1)115、已知点( -4,y 1),(2,y 2)都在直线 y=- 2 x+2 上,则 y 1 y 2 大小关系是 ()(A )y 1 >y 2 (B ) y 1 =y 2(C ) y 1 <y 216.如图一次函数 y=kx+b 的图象经过点 A 和点 B .(1)写出点 A 和点 B 的坐标并求出 k 、 b 的值; (2)求出当 x= 3时的函数值.217、已知,函数 y 1 3k x 2k 1 ,试回答:(1) k 为什么值时,图象交 x 轴于点(3,0)?4(2)k 为什么值时, y 随 x 增大而增大?18、如图,是某汽车行驶的行程 S(km)与时间 t(min)的函数关系图.察看图中所供给的信息,解答以下问题:( 1)汽车在前 9 分钟内的均匀速度是(2)汽车在半途停了多长时间?S/km(3)当 16≤t≤30 时,求 S 与 t 的函数关系式.40129 1630t/min19、某自来水企业为了鼓舞市民节俭用水,采纳分段收费标准,若某用户居民每个月应交水费y(元)是用户量x(方)的函数,其图象如下图,依据图象回答以下问题:( 1)分别求出 x≤5 和 x>5 时, y 与 x 的函数关系式;( 2)自来水企业的收费标准是什么?y(元)( 3)若某户居民交水费9 元,该月用水多少方6.6320.如图信息, l 1为走私船, l 2为我公安快艇,航行时行程与时间的函数图象,问:( 1)在刚出发时我公安快艇距走私船多少㎞?(2)计算走私船与公安快艇的速度分别是多少?( 3)写出 l 1 , l 2的分析式 .( 4)问 6 分钟时两艇相距几千米。
讲义:一次函数内容讲解:一次函数1、若两个变量x,y 间的关系式可以表示成y=kx+b(k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。
特别地,当b=0时,称y 是x 的正比例函数。
()()()32100.0k ⎪⎩⎪⎨⎧<=><b b b2、正比例函数y=kx 的图象是经过原点(0,0)的一条直线。
3、在一次函数y=kx+b 中:当k>0时,y 随x 的增大而增大; 当k<0时,y 随x 的增大而减小。
4、两直线的位置关系:直线111b x k l +=和直线222b x k l +=⎩⎨⎧≠=相交与则则21212121,//,l l k k l l k k 5、正比例函数图像与一次函数图像的关系一次函数b kx +=y 的图像是一条直线,它可以看作是由直线kx =y 沿y 轴平移b 个单位长度得到(当b >0时,向上平移;当b<0时,向下平移)典型例题例1.(1)若正比例函数的图像经过点(-1,2),则这个图像必经过点( )()()()321000.0k ⎪⎩⎪⎨⎧<=>>b bbA .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)(2)一次函数y =2x -2的图象不经过...的象限是( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 (3)已知一次函数21y x =+,则y 随x 的增大而_______________(填“增大”或“减小”).例2.已知y 与x+1成正比例,且当x=5时,y=12,写出y 与x 之间的函数解析式.例3.根据所给的问题,写出y 与x 的函数关系式,并判断这个函数是否为一次函数?(1)矩形的周长是28cm ,它的长为y 厘米,宽是x 厘米;(2)比y 的25%大9的数是x .例4.已知y +b 与x +a (a ,b 是常数)成正比例.求证:y 是x 的一次函数.巩固训练1.下列关于x 的函数中,是一次函数的是( ) A.222-=x y B.11+=x y C.2x y = D.221+-=x y 2.下列各点在直线13-=x y 上的是( )A.)0,1(-B. )0,1(C. )1,0(-D. )1,0( 3. 下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2xy -= 4.已知长方形的周长为25,设它的长为x ,宽为y ,则y 与x 的函数关系为( ) A.x y -=25 B. x y +=25 C. x y -=225D. x y +=225 5.点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,则1y 和2y 的大小关系是( ) A. 1y 2y B. 1y 2y C. 1y =2y D.不能确定 6.对于函数63-=x y ,当x =2-时,y =_______,当y =6时,x =_________. 7.若y 是x 的一次函数,且当x =2时y =7,当x =3时y =9,则这个一次函数的关系式是_______.8.已知正比例函数x k y )21(-=的函数值y 随x 增大而增大,则k ____________________. 9.某公司现在年产值为150万元,计划今后每年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.10.直线2-=kx y 经过点),4(1y ,且平行于直线12+=x y ,则1y =___________,k =______.一次函数的图象与性质例1.已知一次函数y=-2x-2(1)画出函数的图象.(2)求图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求△AOB的面积.(5)利用图象求当x为何值时,y≥0.例2.若直线y=kx+6与两坐标轴所围成的三角形面积是24,求常数k的值是多少?例3.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.⑴求小球速度v(米/秒)与时间t(秒)之间的函数关系式;⑵求3.5秒时小球的速度.⑶经过几秒小球的速度达到10米/秒.巩固训练:1. 一次函数b kx y +=的图象与两坐标轴的交点坐标分别为)0,3(和)2,0(-,则=k ____,=b ____.2.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =_____________.3.直线63+=x y 与两坐标轴围成的三角形的面积是( )A.4B.5C.6D.7 4.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.则1b 和2b 的关系是( ) A. 1b 2b B. 1b 2b C. 1b =2b D.不能确定5.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图像表示为( )6.平分坐标轴夹角的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -= 7.弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,可知不挂物体时弹簧的长度为( )A.7cmB.8cmC.9cmD.10cm8.如图是一次函数b kx y +=的大致图像,由图可知:k _________,b _______ (填“ ”、“ ”或“=”).9.已知直线4+=kx y 与两坐标围成的三角形面积为8,求k 的值.10.一次函数的图像过点)6,1(),2,3(--N M 两点.(1)求该函数的表达式;(2)画出该函数的图像.11. 石家庄至北京300千米,火车从距石家庄站15千米的正定站出发,以每小时90千米/小时的速度向北京方向行驶,求火车与石家庄站间路程s (千米)和时间t (小时)的函数关系式,并指出自变量的取值范围.( 正定站位于北京与石家庄之间)12、南方的A 城有化肥200吨,B 城有化肥300吨,现要把化肥运往甲、乙两个农场,若从A 城运往甲、乙两个农场的运费分别为20元/吨和25元/吨,从B 城运往甲、乙两个农场的运费分别为15元/吨和22元/吨,现已知甲农场需要220吨,乙农场需要280吨,如果你承包了这项运输任务,怎样调运花钱最少?13、在边长为2的正方形ABCD 的一边BC 上有一点P ,从B 点运动到C 点,设PB=x ,梯形APCD 的面积S.(1)写出S 与x 的函数关系式;(2)求自变量x 的取值范围;(3)画出函数图象。
S A .B .C .D .课堂检测一、选择题或填空题:(每小题15分,共60分) 1.直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法( )A. 1 个B. 2 个C.3 个D. 4个3.我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )4.为了增强公民的节水意识,某制定了如下用水收费标准:每户每月的用水超过10吨时,水价为每吨1.2元,超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,则y 关于x 的函数关系式是 二、解答题:本题满分40分5.小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已 知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才 乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m.图中的 折线表示小亮在整个行走过程中y 与x 的函数关系. ⑴小亮行走的总路程是____,他途中休息了________min . ⑵①当50≤x ≤80时,求y 与x 的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点路程是多少?第五讲:一次函数的图象的性质【考纲要求】本讲包括以下主要内容:(1)函数的概念、(2)一次函数的概念及一次函数与正比例函数的关系、(3)一次函数,正比例函数的图象各有什么特征、(4)确定一次函数表达式.经历函数、一次函数等概念的抽象概括过程,体会函数中的建模思想.具体内容如下:1.定义:形如的函数叫做关于x的一次函数,自变量x的取值范围是一切实数。
一次函数综合责编:审核:辅导科目数学学生姓名授课老师上课课次授课日期班型教学目标1.掌握一次函数的变换规律.2.能通过函数图像解方程和不等式.3.掌握一次函数与三角形的综合问题.知识梳理一、一次函数的几何变换1.平移【回顾】平移具有什么性质?【探究】一次函数的平移在下图中画出一次函数y=2x的图像,再将图像分别向上下左右四个方向进行平移,并分别求出平移后的一次函数的解析式.【结论】 (1)当两个一次函数图像平行时,那么这两个一次函数解析式中的k 值相等.(2)一次函数平移口诀:上加下减,左加右减.【注】注意“左加右减”要在解析式中的每一个x 后都要进行加减,平移后的解析式一般要去括号化简为一般式.1.将直线y=5x 向左平移三个单位后得到的直线解析式为___y=5x+15_______.2.若一次函数y=kx+3(k ≠0)的图像向左平移4个单位后经过原点,则k=__43-______.3.若一次函数y=kx+3的图像与y=3x 的图像平行,则k=__3______. 2.对称画出y=x+1的图像,并将之分别关于x 轴,y 轴以及原点进行对称,并分别求出对称后的解析式.【结论】一次函数对称口诀:关于谁,谁不变,另一个变为相反数;关于原点都要变.4.将直线2x 21y +=的图像先向右平移2个单位,再关于y 轴对称后的直线解析式为_1x 21-y +=_.二、与方程不等式综合 1. 与一元一次方程综合一般地,因为任何一个以x 为未知数的一元一次方程都可以变形为ax+b=0(a ≠0)的形式,所以解一元一次方程相当于求与之对应的一次函数y=ax+b (a ≠0)的函数值为0时,自变量x 的值.【提示】求直线y=kx+b (k ≠0)与x 轴的交点,可令y=0得方程kx+b=0,解方程得k b -k =,k b-是直线y=kx+b (k ≠0)与x 轴交点的横坐标.反之,由一次函数的图像也能求出与之对应的一元一次方程的解.5.若一次函数y=kx+b 的图像经过经过点经过点(2,1)和点(3,-2),则方程kx+b=-2的解为__x=3______.2. 与二元一次方程(组)综合一般地,因为每个含有未知数x 和y 的二元一次方程,都可以变形为y=kx+b (k 、b 是常数,k ≠0)的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条直线.这条直线上每个点的坐标(x ,y )都是这个二元一次方程的解.【总结】求两条直线的交点坐标就是联立两个函数解析式成一个二元一次方程组,解得的二元一次方程组的解即是两条直线交点的纵横坐标.6.如图,一次函数11b x k y +=的图像1l与一次函数22b x k y +=的图像2l 相交于点P ,则关于x ,y 的方程组 的解是( A ).3. 与不等式综合一般地,因为任何一个以x 为未知数的一元一次不等式都可以变为ax+b >0或ax+b <0(a ≠0)的形式,所以解一元一次不等式相当于求与之对应的一次函数y=ax+b (a ≠0)的函数值大于0或小于0时,自变量x 的取值范围.图像法解一元一次不等式kx+b >ax+c ,即是确定函数y=kx+b 在y=ax+c 上方时所对应自变量x 的取值全体.7.已知函数111b x k y +=与函数222b x k y +=的图象如图所示,则不等式2211b x k b x k ++>的解集是__x >1________.8.如图,直线y=kx +b 经过点A (-5,0),B (-1,4). (1)求直线AB 的表达式.(2)若直线y=-2x-4与直线AB 相交于点C ,求点C 的坐标. (3)根据图象,写出关于x 的不等式kx +b>-2x-4的解集. 【答案】(1)y=x+5 (2)(-3,2) (3)x >-3 三、与三角形的面积综合 1.三角形底边在坐标轴上|y ||x |2121A C COA CH OA S ••=••=△ |x ||y |2121B C BOC CH OB S ••=••=△2.三角形底边与坐标轴平行底边平行于x 轴:|y -y ||x -x |2121H C B A ABC CH AB S ••=••=△底边平行于y 轴:|x -x ||y -y |2121H C B A ABC CH AB S ••=••=△3.无重合无平行:割补法 【探究】求△AOB 的面积.9.已知-次函数的图象过点(0,3),且与正比例函数x21-y =的图象交于点A (2,a ).(1)求一次函数表达式.(2)这两个函数图象与x 轴所围成的三角形面积.【答案】(1)y=-2x+3 (2)4310.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13. (1)求点 B 的坐标.(2)若△ABC 的面积为4,求直线2l 的解析式.【答案】(1)(0,3) (2)1-x 21y。
初中数学一次函数讲义1.基本概念形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,又称线性函数,其中x为自变量,y为因变量。
当b=0时,即y=kx,被称为正比例函数,是一种特殊的一次函数。
函数特征:(1)k是常数,且k≠0,当k=0时y=b不是一次函数,是偶函数的一种;(2)自变量x和因变量y的次数为1;(3)常数项b可以为任意实数,当b=0时,一次函数为奇函数;(4)一般情况,自变量x和函数值y的取值范围为全体实数R,实际情况应注意取值范围;(5)k决定函数变化趋势,k绝对值越大,函数越接近y轴,反之越接近x 轴,b为直线与y轴的交点,b又被称为截距;(6)一次函数斜率k=tan(α),其中α为函数图像与x轴正方向夹角,α≠0或90°。
表示方法:(1)解析式法:用含有自变量x的式子表示函数的方法;(2)列表法:把一系列x的值对应的函数值y列成表来表示函数关系;(3)图像法:用图像表示函数关系。
2.一次函数图像及其性质2.1图像一次函数图像为xy平面坐标系中不与坐标轴垂直/平行的一条直线。
与x和,0)和(0,b)两点。
对于常数k,b数值的不同引起图像的y轴分别交于(- bk性质变化如下图所示。
一次函数画法:,0)和(0,b)两点,即函数与两点确定一条直线,一般而言,可取(- bkxy坐标轴的交点,连接两点,确定直线。
例题1:证明一次函数图像是一条直线。
解题思路:一次函数满足y=kx+b函数解析式方程,通过验证满足函数任意三点在一条直线上,即可证明一次函数图像为一条直线。
证明:在一次函数图像中取任意三点A(x1,y1),B(x2,y2),C(x3,y3),且x1≠x2≠x3,则满足:A点:y1=kx1+bB点:y2=kx2+bC点:y3=kx3+bAB两点确定的直线斜率为k AB= y2−y1x2−x1= kx2+b−(kx1+b)x2−x1= k;BC两点确定的直线斜率为k BC= y3−y2x3−x2= kx3+b−(kx2+b)x3−x2= k;由上可知,AB和BC确定的直线斜率相同,表明A B C三点在一条直线上,由任意满足函数关系的三点在一条直线上,可证明一次函数图像是一条直线。
无★代表普通高中、★代表重点高中、★★代表四大名校y=kx +b (k ,b 为常数,k ≠0)叫做x 的一次函数,其中x 是自变量,y 是因变量。
正比例函数: 函数y=kx (k 为常数,且(k ≠0)),此时b=0, y 叫做x 的正比例函数。
2.函数的三种表示方法:列表法 图像法 解析式法 3.作一次函数的图像:列表,描点,连线(1)作正比例函数y =kx 的图像常取点(0,0)和(1,k );(2)作一次函数)0(≠+=b b kx y 的图像常取(b ,0)和(0,k b-)两点,这两点是直线与坐标轴的交点。
4.一次函数y=kx+b 的图像和性质: y 随增大而_________随x 增大而_________例1.(1)下列函数关系中表示一次函数的有( )①12+=x y ②xy 1=③x x y -+=21④t s 60=⑤x y 25100-=A.1个B.2个C.3个D.4个 (2)已知3m22x )2m m (y -+=,如果y 是x 的正比例函数,则m 的值为( )A.2B.-2 C 2,-2 D.0初二数学(秋季)讲义 第十讲 一次函数变式练习1-1. 已知函数(1)3my m x =-+是一次函数,则m=___变式练习1-2. 已知函数y=(2m-1)x+1-3m ,m 为何值时, ①这个函数是一次函数? ②这个函数为正比例函数?例2. 已知y 与x-3成正比例,且x=2时,y=7。
(1)写出y 与x 之间的函数关系式 (2)当x=4时,求y 的值 (3)当y=4时,求x 的值变式练习2. 已知y-2与4x 成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 。
例3.已知等腰三角形的周长为6,底边为y 表示,腰长为x(1)写出用x 表示y 的函数关系式 (2)在坐标系中画出函数图像(3)求它的图象与x 轴、y 轴所围成图形的面积;变式练习3. 在同一坐标系中作出, y=2x+1,x y 3=,的图像例4. 函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ,与两坐标轴围成的三角形面积是 。
八年级数学上册一次函数讲义学习要点分类:一、了解类:常量,变量,函数,一次函数解析式,正比例函数,比例系数k。
二、理解类:性质,图像,k,b取值对图像的影响,待定系数法求解析式,描点法画图,数形结合思想。
三、附加类:各个知识点的联系能力讲解--坐标,解析式,图像,性质;特殊三角形与一次函数的关联。
函数部分1、已知y1=x+1,y2=-2x+4,对任意一个x,取y1,y2中的较大的值为m,则m的最小值是___________.2、下列各曲线中不能表示y是x的函数的是()A. B. C. D.3.如图,把矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,CD,则AF= .若64、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y(元)与水量x(吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为元/吨;若用水超过5吨,超过部分的水费为元/吨。
5、如图,已知点F的坐标为(3,0),点A、B分别是某函数图象与x第6题(第5题)轴、y 轴的交点,点P 是此图象上的一动点,设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(0≤x ≤5),则以下结论不正确...的是( ) A 、OB =3 B 、OA =5 C 、AF =2 D 、BF =56. 如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为 。
7、一艘轮船自西向东航行,在A 处测得北偏东45°方向有一座小岛C ,继续向东航行30海里到达B 处,测得小岛C 此时在轮船的北偏东60o 方向上.请问: 轮船继续向东航行多少海里,距离小岛最近?8.如图,将一个等腰直角三角形按图示方式依次翻折,若DE =a ,则下列说法正确的个数有( )①DC ′平分∠BDE ; ②BC 长为a )22(+; ③△B C ′D 是等腰三角形; ④△CED 的周长等于BC 的长。
专题九一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:(1)在匀速运动公式vts=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______.(2)在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x(5)y=x2-1中,是一次函数的有()(A)4个(B)3个(C)2个(D)1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(满足函数关系式,使之有意义。
)例题:(1)下列函数中,自变量x的取值范围是x≥2的是()A...D.(2)函数y=x的取值范围是___________.5、画函数的图像方法(列表、描点、连线)6、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
(二)一次函数1、一次函数的定义一般地,形如y kx b=+(k,b是常数,且0k≠)的函数,叫做一次函数,其中x是自变量。
当0b=时,一次函数y kx=,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b=+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b=,0k≠时,y kx=仍是一次函数.⑶当0b=,0k=时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注意:正比例函数一般形式 y=kx ① k不为零② x指数为1 ③ b取零正比例函数图像增减性:当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.例题:(1)正比例函数(35)y m x=+,当m 时,y随x的增大而增大. (2)若23y x b=+-是正比例函数,则b的值是()A.0B.23C.23- D.32-(3)函数y=(k-1)x,y随x增大而减小,则k的范围是 ( )A.0<k B.1>k C.1≤k D.1<k(4)东方超市鲜鸡蛋每个0.4元,那么所付款y元与买鲜鸡蛋个数x(个)之间的函数关系式是_______________.(5)平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数. 注意:一次函数一般形式 y=kx+b① k不为零②x指数为1③b取任意实数(1)一次函数增减性:例题:(1)若关于x的函数1(1)my n x-=+是一次函数,则m= ,n . (2)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A B C D(3)将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线 . (4)若直线axy+-=和直线bxy+=的交点坐标为(8,m),则=+ba_____.(5)已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1 B.3mC.m D.3m-1(6)若一次函数y=kx+b的图象经过第二、三、四象限,则k、b的取值范围是()A. k>0,b>0B. k>0,b<0C. k<0,b<0D. k<0,b>0(7)若直线mnxy-=不经过第四象限,则()A.m>,n<0B.m<0,n<0C.m<0,n>0D.m>0,n≤0(8)若直线y=(m2-m-4)x+m-1与直线y=2x-3平行,则m= _______ 。
可编辑修改精选全文完整版第四章:一次函数◆4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x和y,如果给定一个x值,相应地就确定了一个y 值,那么我们称y是x的函数.其中x是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据.辨误区自变量与另一个变量的对应关系若y是x的函数,当x取不同的值时,y的值不一定不同.如:y=x2中,当x=2,或x=-2时,y的值都是4.[例1-1] 下列关于变量x,y的关系式:①x-3y=1;②y=|x|;③2x-y2=9.其中y是x 的函数的是< >.A.①②③ B.①② C.②③ D.①②[例1-2] 已知y=2x2+4,<1>求x取错误!和-错误!时的函数值;<2>求y取10时x的值..谈重点函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式.谈重点函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y=x+1是表示y是x的函数.若写成x=y-1就表示x是y的函数.也就是说:求y与x的函数关系式,必须是用只含变量x的代数式表示y,即得到的等式<解析式>左边只含一个变量y,右边是含x的代数式.[例2]已知等腰三角形的周长为36,腰长为x,底边上的高为6,若把面积y看做腰长x的函数,试写出它们的函数关系式.3.自变量的取值范围<1>使函数有意义的自变量的全体取值叫做自变量的取值范围.<2>自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义.当解析式是整式时,自变量的取值范围是全体实数;当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数;当解析式中含有零整数幂或负整数指数幂时,自变量的取值应使相应的底数不为0;其次,当函数解析式表示实际问题时,自变量的取值还必须使实际问题有意义.[例3]若等腰三角形的周长为50 cm,底边长为x cm,一腰长为y cm,y与x的函数关系式为y=错误!<50-x>,则变量x的取值范围是__________.4.函数的表示方法函数的表示方法一般有三种:列表法、图象法、解析法,以解析法应用较多.有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示.<1>列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法.<2>图象法:通过建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.<3>解析法:用式子表示函数关系的方法称为解析法,这样的式子称为函数的解析式.析规律函数的三种表示方法三种表示方法各有优缺点,应用时要视具体情况,选择适当的表示方法,或将三种方法结合使用.①列表法:优点是能明显地显现出自变量与对应的函数值,缺点是取值有限;②图象法:优点是形象、直观、清晰地呈现出函数的一些性质,缺点是求得的函数值是近似的;③解析法:优点是简明扼要、规范准确,并且可以根据解析式列表、画图象,进而研究函数的性质;缺点是有些函数无法写出解析式,只能列出表格或画出图象来表示.[例4] 你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是< >.5.怎样判定函数关系<1>从关系式判定函数由函数的定义知道,在某个变化过程中,有两个变量x 和y ,对于x 每一个确定的值,y 都有且只有一个值与之对应,当x 取不同的值时,y 的值可以相等也可以不相等,但如果一个x 的值对应着两个不同的y 值,那么y 一定不是x 的函数.根据这一点,我们可以判定一个关系式是否表示函数.<2>从表格中判定函数根据函数的定义知道,从表格中理解函数仍然是先看是否只有两个变量,再看对于变量x 每一个确定的值,y 是否都有唯一的值和它对应,也就是说x 若取相同的值,y 必须是相同的值.<3>从图象上判定函数根据函数的定义知道,每一个x 值只能对应唯一的一个y 值,因此要判断哪些图形表示的是函数,只要在所给的自变量的取值范围内任作一条垂直于x 轴的直线,若直线与所给图形只有一个交点,则说明这个图形表示的是函数,若交点不止一个,则一定不是函数.[例5-1] 下列表格中能反映y 是x 的函数的是< >.A x -1 1 2 3 -1 y 0 2 4 8 10B x 0 1 2 3 0 y -2 2 3 4 6C x 2 2 2 2 2 y -1 0 1 1 3D x -1 1 2 3 4 y 0 2 4 8 10[例5-2] y x 6.如何判断同一函数学习了函数的概念,判断两个函数是否表示同一函数要看它们是不是满足以下三个条件:<1>自变量的取值范围完全相同.<2>函数值的取值范围完全相同.<3>变形后,两个函数的解析式是一致的,即自变量和函数的对应关系完全相同.如果两个函数满足以上三个条件,那么它们是同一函数.解答这类问题的关键是正确理解上述的三个条件.☆函数的自变量取值范围和解析式为函数的两个基本条件,判断两个函数是否相等的关键是看自变量取值范围和解析式.自变量取值范围和函数值分别相同的函数不一定是相等函数.[例6-1] 下列函数中,与y =x 表示同一个函数的是< >.A .y =错误!B .y =|x |C .y =<错误!>2D .y =错误![例6-2]下列各组函数中,哪些是同一函数:①y x =与1y x =+;②1,y x x =-为实数,与1,y x x =-为自然数;③24y x =-与22y x x =-+④11y x =+与11u x =+; ⑤2y x x =2y x =; ⑥2||y x =与2,02,0x x y x x ≥⎧=⎨-<⎩; 7.函数图象的实际应用函数的图象是由点组成的,每个点都具有实际意义,利用函数的图象可以反映实际问题中的关系,同样通过观察函数的图象也可以得到关于实际问题的相关信息.可以说,函数的图象是我们解决实际问题的有效手段和重要的工具.解决函数图象选择问题的关键是在阅读反映实际问题的文字语言的同时,对图象进行观察、分析,获取有效的解题信息.解答这类问题主要是利用数形结合的思想分析问题、解决问题.[例7]父亲节,学校"文苑"专栏登出了某同学回忆父亲的小诗:"同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还."如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致吻合的图象是< >.………………………………………………………………………………◆4.2一次函数与正比例函数1.一次函数的定义若两个变量x,y之间的关系式可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x的一次函数<x是自变量>.谈重点一次函数的条件函数是一次函数必须符合下列两个条件:<1>关于两个变量x,y的次数是1;<2>必须是关于两个变量的整式.[例1]下列函数中,是一次函数的是< >.A.y=7x2B.y=x-9 C.y=错误! D.y=错误!2.正比例函数的定义对于一次函数y=kx+b,当b=0,即y=kx<k为常数,且k≠0>时,我们称y是x的正比例函数.辨误区一次函数与正比例函数的关系需要注意的是正比例函数是一次函数的特殊情况,特殊之处在于b=0,且k≠0,因此,正比例函数一定是一次函数,但一次函数并不一定是正比例函数.[例2]下列函数中,是正比例函数的是< >.A.y=-2x B.y=-2x+1 C.y=-2x2D.y=-错误!辨误区正比例函数的判断要判断一个函数是否是正比例函数,首先看它是否为一次函数,也就是能否转化为y=kx +b<k≠0>的形式;其次要清楚正比例函数是特殊的一次函数,函数解析式能否转化为y=kx<k≠0>的形式.3.根据条件列一次函数关系式列函数关系式是培养数学应用能力和抽象思维能力的一种方法,解决这类问题的基本思路为:首先要认真审题,抓住关键词,找出问题中的变量并用字母表示,然后根据题意列出函数关系式.点技巧如何列函数关系式列关系式时,一定要先知道两个变量,并且弄清谁是自变量.[例3] 甲、乙两地相距30 km,某人从甲地以每小时4 km的速度走了t h到达丙地,并继续向乙地走.<1>试分别确定甲、丙两地距离s1<km>及丙、乙两地距离s2<km>与时间t<h>之间的函数关系式.<2>它们是什么函数.4.一次函数与正比例函数的联系与区别若两个变量x,y之间的关系可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x 的一次函数,特别地当b=0时,称y是x的正比例函数,显然正比例函数是一次函数,而一次函数不一定是正比例函数,正比例函数是一次函数的特殊情况.区别:①正比例函数是一次函数,但一次函数不一定是正比例函数;②正比例函数的图象一定经过原点及经过两个象限,但一次函数一般不经过原点,通常情况下要经过三个象限.__①两种函数的图象都是一条直线;②两种函数的增减性相同;③当b=0时,一次函数转化为正比例函数,因此正比例函数是一次函数的特例.[例4-1]在下列函数中,x是自变量,哪些是一次函数?哪些是正比例函数?<1>y=3x;<2>y=错误!;<3>y=-3x+1;<4>y=x2.[例4-2] 已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.5.用一次函数解决实际问题函数与我们的生活息息相关,生活中的许多问题可以通过函数得以解决,如何才能正确地确定两个变量之间的函数关系式呢?具体地说和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.辨误区写解析式,定自变量的范围通常确定一个函数,不仅要确定这个函数的解析式,还要确定这个函数的自变量的取值范围.[例5] 一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9 L,行驶了1 h后发现已耗油1.5 L.<1>求油箱中的剩余油量Q<L>与行驶的时间t<h>之间的函数关系式,并求出自变量t的取值范围;<2>如果摩托车以60 km/h的速度匀速行驶,当油箱中的剩余油量为3 L时,老王行驶了多少千米?………………………………………………………………………………◆4.3一次函数的图象1.函数的图象对于一个函数,我们把它的自变量x与对应的变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形就叫做该函数的图象.谈重点函数图象与点的坐标的关系<1>函数图象上的任意点P<x,y>必满足该函数关系式.<2>满足函数关系式的任意一对x,y的值,所对应的点一定在该函数的图象上.<3>判定点P<x,y>是否在函数图象上的方法是:将点P<x,y>的坐标代入函数表达式,如果满足函数表达式,这个点就在函数的图象上;如果不满足函数的表达式,这个点就不在函数的图象上.[例1] 判断下列各点是否在函数y=2x-1的图象上.A<2,3>, B<-2,-3>.2.函数图象的画法画函数图象的一般步骤:<1>列表:列表给出自变量与函数的一些对应值,通常把自变量x的值放在表的第一行,其对应函数值放在表的第二行,其中x的值从小到大.<2>描点:以表中每对对应值为坐标,在平面直角坐标系内描出相应的点.描点时一般把关键的点准确地描出,点取得越多,图象越准确.<3>连线:按照自变量从小到大的顺序,把所描的点用平滑的曲线连接起来.释疑点平滑曲线的特点所谓的"平滑曲线",现阶段可理解为符合图象的发展趋势、让人感觉过渡自然、比较"平""滑"的线,实际上有时是直线.[例2] 作出一次函数y=-2x-1的图象.分析:取几组对应值,列表,描点,连线即可.解:列表:x …-2-101…y …31-1-3…描点:以表中各组对应值作为点的坐标,在坐标系中描出相应的点.连线:把这些点连起来.注:一次函数y=-2x-1的图象是直线,连线时,两端要露头.3.一次函数的图象和性质<1>一次函数的图象和性质①一次函数的图象:一次函数y=kx+b<k≠0>的图象是一条直线.由于两点确定一条直线,因此画一次函数的图象,只要描出图象上的两个点错误!,过这两点作一条直线就行了.我们常常把这条直线叫做"直线y=kx+b".②一次函数中常量k,b<k≠0>:直线y=kx+b<k≠0>与y轴的交点是<0,b>,当b>0时,直线与y轴的正半轴相交;当b<0时,直线与y轴的负半轴相交;当b=0时,直线经过原点,此时一次函数即为正比例函数.一次函数y=kx+b中的k,决定了直线的倾斜程度,k的绝对值越大,则直线越接近y轴,反之,越靠近x轴.③一次函数y=kx+b<k≠0>的性质:当k>0时,直线y=kx+b从左向右上升,函数y的值随自变量x的增大而增大;当k<0时,直线y=kx+b从左向右下降,函数y的值随自变量x的增大而减小.<2>正比例函数的图象和性质①正比例函数的图象:一般地,正比例函数y=kx<k是常数,k≠0>的图象是一条经过原点的直线,我们称它为直线y=kx.在画正比例函数y=kx的图象时,一般是经过点<0,0>和<1,k>作一条直线.②正比例函数y=kx的性质:当k>0时,直线y=kx经过第一、三象限,从左往右上升,即y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左往右下降,即y随x 的增大而减小.[例3-1]作出一次函数y=-3x+3的图象.[例3-2]若一次函数y=<2m-6>x+5中,y随x增大而减小,则m的取值范围是________.[例3-3]下图表示一次函数y=kx+b与正比例函数y=kx<k,b是常数,且k≠0>图象的是< >.4.k,b的符号与直线所过象限的关系学习了一次函数y=kx+b<k≠0>,我们知道一次函数图象经过哪些象限是由k,b的符号决定的.一般分为四种情况:<1>k>0,b>0时,图象过第一、二、三象限;<2>k>0,b<0时,图象过第一、三、四象限;<3>k<0,b>0时,图象过第一、二、四象限;<4>k<0,b<0时,图象过第二、三、四象限.析规律 k,b的符号与直线的关系根据一次函数y=kx+b中k,b的符号可以确定图象所经过的象限;根据函数图象所经过的象限,可以确定k,b的符号.解决有关问题,应熟练把握k,b的符号与函数图象所经过象限的几个类型,并能灵活应用.[例4-1] 一次函数y=kx+b的图象经过第二、三、四象限,则正比例函数y=kbx图象经过哪个象限?[例4-2]如图是一次函数y=kx+b的图象的大致位置,试分别确定k,b的正负号,并判断一次函数y=<-k-1>x-b的图象所经过的象限.5.一次函数图象与坐标轴的交点一次函数的图象是直线,这条直线与x轴交于点错误!,与y轴交于点<0,b>.考查直线与两坐标轴的交点的问题常见的有三类:<1>判定直线所过的象限,一般给出函数关系式,判定直线经过哪几个象限或确定不经过哪个象限.<2>求直线的解析式,一般先设出函数关系式为y=kx+b<k≠0>,把已知的两点的坐标分别代入,求出k,b的值即可.<3>求两交点与坐标轴围成的三角形的面积,由于这个三角形是直角三角形,利用面积公式即可.[例5] 如图,已知直线y=kx-3经过点M<-2,1>,求此直线与x轴,y轴的交点坐标,并求出与坐标轴所围的三角形的面积.6.关于一次函数的最值问题对于一般的一次函数,由于自变量的取值范围可以是全体实数,因此不存在最大、最小值<简称"最值">,但在实际问题中,因题目中的自变量受到实际问题的限制,所以就有可能出现最大值或最小值.求解这类问题,先分析问题中两个变量之间的关系是否适合一次函数模型,再在自变量允许的取值范围内建立一次函数模型.运用一次函数解决实际问题的关键是根据一次函数的性质来解答.除正确确定函数表达式外,利用自变量取值范围去分析最值是解题的关键."在生活中学数学,到生活中用数学",是新课标所倡导的一个主旨之一,在考题中,有许多利用数学知识求解生活中的实际问题的试题,考查同学们利用所学知识求解实际问题的能力.[例6] 某报刊销售亭从报社订购晚报的价格是0.7元,销售价是每份1元,卖不掉的报纸可以以每份0.2元的价格退回报社,若每月按30天计算,有20天每天可卖出100份报纸,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,报亭每天从报社订购多少份报纸,才能使每月所获得的利润最大?………………………………………………………………………………◆4.4一次函数的应用1.确定一次函数表达式<1>借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx<k≠0>;若不过原点,则为一次函数,可设其关系式为y=kx+b<k≠0>;然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式.<2>确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx<k≠0>中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式.②一次函数y=kx+b<k≠0>有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值.[例1]如图,直线AB对应的函数表达式是< >.A.y=-错误!x+3 B.y=错误!x+3 C.y=-错误!x+3 D.y=错误!x+3点技巧用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b<k≠0>的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式.2.待定系数法<1>定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数.<2>用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程<组>,得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式.[例2-1] 一次函数图象如图所示,求其解析式.[例2-2] 在直角坐标系中,一次函数y=kx+b的图象经过三点A<2,0>,B<0,2>,C<m,3>,求这个函数的表达式,并求m的值.解:根据题意,得2k+b=0①,b=2, km+b=3②,把b=2代入①,得2k+2=0,即k=-1;把b=2,k=-1代入②,得m=-1.故函数的表达式为y=-x+2.3.一次函数的实际应用<1>通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.释疑点函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.<2>一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.谈重点函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b<k≠0>的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等.[例3-1]甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y<m>与挖掘时间x<h>之间的关系如图所示,请根据图象所提供的信息解答下列问题:<1>乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了__________ m.<2>请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.<3>当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?[例3-2] 某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象<两条射线>如图,观察图象回答下列问题:<1>每月行驶的路程在什么范围内时,租国有出租车公司的车合算?<2>每月行驶的路程等于多少时,租两家车的费用相同?<3>如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?析规律函数图象交点规律两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处的函数值相等.4.一次函数和一元一次方程的关系当一次函数y=kx+b<k≠0>中的函数值为0时,可得0=kx+b即kx+b=0,这在形式上变成了求关于x的一元一次方程,也就是说,当一次函数y=kx+b的函数值为0时,相应的自变量的值即为方程kx+b=0的解;若从图象上来看,则可看做函数y=kx+b的图象与x轴的交点的横坐标,即为方程kx+b=0的解.由此可见,方程与函数是密不可分的.[例4] 某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y<L>与行驶时间t<h>的关系如下表,与行驶路程x<km>的关系如下图.请你根据这些信息求A行驶时间t<h>012 3油箱余油量y<L>1008468525一次函数y=kx+b<k≠0>的图象可以看做由直线y=kx平移|b|个单位长度而得到<当b >0时,向上平移;当b<0时,向下平移>.实际上就是指一次函数y=kx+b的图象沿y轴平移时,在b的位置上按照"上加下减"的规律进行.如:一次函数l1:y=错误!x+2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向上平移2个单位长度得到的;一次函数l2:y=错误!x-2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向下平移2个单位长度得到的.思考:函数图像左右移动解析式如何变化呢?[例5] 如图所示,将直线OA向上平移1个单位长度,得到一个一次函数的图象,那么这个一次函数的解析式是__________.析规律平移中的函数解析式解决平移问题可以对性质进行记忆直接运用,也可以找出平移后借助坐标系运用待定系数法求解.平移前后k的值不变,改变的是b的值.6.函数、方程和不等式的完美结合从"数"的角度看,由于任何一元一次方程都可以转化为ax+b=0<a,b为常数,且a≠0>的形式,所以解一元一次方程可以看做:当一次函数y=ax+b的值为0时,求相应的自变量的值;反之,求自变量x为何值时,一次函数y=ax+b的值为0,只要求出方程ax+b=0的解即可.由于任何一元一次不等式都可以转化为类似ax+b>0或ax+b<0的形式,所以解一元一次不等式可以看做:当一次函数y=ax+b的值大<小>于0时,求自变量相应的取值范围;反之,求一次函数y=ax+b的值何时大<小>于0时,只要求出不等式ax+b>0或ax+b<0的解集即可.从一元一次方程、一元一次不等式与一次函数的关系可以看出,三者最终能用函数观点统一起来,并且达到一种完美的结合,这种结合,又常常在一些考题中得以体现.。
八年级上册数学书一次函数知识点
一次函数是指形如f(x) = ax + b的函数,其中a和b是常数,且a不等于0。
一次函数的几个重要概念和知识点包括:
1. 函数图像:一次函数的图像是一条直线。
直线的斜率为a,表示函数的增长速率。
斜率为正表示函数单调递增,斜率为负表示函数单调递减。
2. 截距:直线在y轴上与y轴的交点称为y轴截距,表示函数在x=0时的值。
直线与
x轴的交点称为x轴截距,表示函数在y=0时的值。
3. 斜率公式:斜率可以通过两点间的坐标计算得到。
设两点坐标为(x1, y1)和(x2, y2),则斜率k = (y2 - y1) / (x2 - x1)。
4. 函数的性质:一次函数的性质包括单调性、奇偶性、周期性、奇偶线对称性等。
一
次函数只有增减性,没有周期性和奇偶性。
5. 函数的方程:已知函数的图像,可以根据截距和斜率确定函数的方程。
如果知道一
点坐标和斜率,可以使用点斜式方程y - y1 = k(x - x1);如果知道两点坐标,可以使
用两点式方程(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)。
6. 函数的解析式:一次函数的解析式为f(x) = ax + b,其中a表示斜率,b表示截距。
以上是八年级上册数学书中关于一次函数的一些重要知识点。
在学习中应该掌握函数
的图像、斜率、截距、函数方程的求解方法,以及实际问题中的应用技巧。
八年级上册数学一次函数知识点讲解一次函数的表达式是y=kx+b (k≠b k、b是常数),其中是x自变量,y是因变量,读作y是x 的一次函数,当x取一个值时,y有且只有一个值与x对应,如果有两个或两个以上的值与x对应,那么这个函数就不是一次函数。
一次函数表达式求解:一次函数也叫做线性函数,一般在x,y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。
一次函数的表达方式一般都为y=kx+b的函数,叫做y是x的一次函数,当常数项为零时的一次函数,可表示为y=kx(k≠0),这时的常数k也叫比例系数。
常用来表示一次函数的方法有解析法,图像法和列表法。
一次函数的解析式一般分为点斜式,两点式,截距式。
解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。
还有一个描点法。
一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
通常情况下y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
一次函数与一次方程之间的关系:一次函数、方程和不等式是初中数学的主要内容之一,也是中考的必考知识点,新课程标准把三部分的关系提到了十分明朗化的程度。
因此,应该重视这部分内容的教学在教学中,可以从以下几个知识点进行辨析。
任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看,就相当于已知直线y=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。
利用函数图像解方程:-2x+2=0,可以转化为求一次函数y=-2x+2与x轴交点的横坐标。
而y=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。
注意:解一元一次方程ax+b=0(a≠0)与求函数y=ax+b(a≠0)的图像与x轴交点的横坐标是同一个问题。
八年级上册数学书一次函数知识点
一次函数,又称线性函数,是指函数的自变量的最高次数是1,即一次函数的表达式为f(x) = kx + b,其中 k 和 b 分别为常数,k 称为函数的斜率,b 称为函数的截距。
一次函数的图像为一条直线,其特点是经过平面上两个不同点,且不垂直于 x 轴。
一次函数的知识点:
1. 斜率:斜率表示函数图像的倾斜程度。
对于一次函数 f(x) = kx + b,其斜率 k 表示线的倾斜程度,通过简单计算可得到。
2. 截距:截距表示函数图像与 y 轴的交点坐标。
对于一次函数 f(x) = kx + b,其截距
b 即为 y 轴的交点坐标,通过函数表达式可得到。
3. 函数图像:一次函数的图像是一条直线,通过两个不同的点即可确定一条线。
根据斜率和截距的不同取值,函数图像可能是上升的直线、下降的直线或者水平直线。
4. 解一次方程:由于一次函数的定义域和值域都是全体实数,所以解一次方程常用于求特定函数值或特定自变量的值。
5. 函数关系的确定:通过给定函数的部分信息,如斜率、截距、图像等,可以确定出函数关系的特点和形式。
这些是一次函数的主要知识点,对于八年级上册数学书中关于一次函数的学习内容,可能涉及到函数的性质、图像的分析及应用、方程的解法等。
请根据具体的教材内容进行学习和理解。
学科教师辅导讲义学员编号:年级 :初二课时数:学员姓名:辅导科目 :数学学科教师 :课题一次函数课型□预习课□同步课□复习课□习题课□专题课授课日期及时段一次函数的图像与性质拔高讲义一、【知识点拨】1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线,(1)两个常用的特殊点:与y轴交于(0,b);与x轴交于(—,0)(2)由图象可以知道,直线y=k x+b与直线y=k x平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、性质:(1)增减性 k〉0时,y随x增大而增大k<0时,y随x增大而减小(2)图象的位置免费获取该文档请关注微信公众号:中小学教学资料共享免费获取更多精品免费获取该文档请关注微信公众号:中小学教学资料共享 免费获取更多精品二、【典型例题剖析】例1(1)已知直线y=kx+b 经过点(3,-1)和点(—6,5),则k=_______,b=______。
(2)已知一次函数y=kx+5过点P (-1,2),则k=________。
例2(1)一次函数1-=x y 的图象不经过( )(A)第一象限 (B)第二象限 (C )第三象限 (D )第四象限(2)如图,表示一次函数y =mx+n 与正比例函数y=mnx(m,n 是常数,且 mn ≠0)图像的是( ).例3.直线y=kx+b 与直线y=5-4x 平行,且与直线y=—3(x —6)相交,交点在y 轴上,求此直线解析式.例4. 已知函数221(43)3aa y a a x --=-++是一次函数,则a 的值为 ( )例5如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x 的取值范围是.例6(2011山东省潍坊, 14,3分)一个y关于x的函数同时满足两个条件:x 时.y随x的增大而减小,这个函数解析式为①图象过(2,1)点;②当0_______________ (写出一个即可)三【知识点分类专练】知识点1:一次函数的定义免费获取该文档请关注微信公众号:中小学教学资料共享免费获取更多精品免费获取该文档请关注微信公众号:中小学教学资料共享 免费获取更多精品:一次函数通常可以表示 的形式,其中k 、b 是 ,k 0.特别地,当 时,一次函数y =kx (常数k ≠0)也叫 .正比例函数也是一次函数,它是一次函数的特例. 【课堂练习】:1、下列函数:①y=—8x;②y=8x;③y=8x 2;④y=8x+1;⑤y=53++z x .其中是一次函数的有( ) A.1个 B 。
第6章 一次函数6.2 一次函数 课程标准 课标解读 1、了解两个条件可确定一次函数;能根据所给信息(图像、表格、实际问题等)利用待定系数法确定2、经历正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式 1、根据所给信息,利用待定系数法确定一次函数的表达式 2、理解一次函数的概念,理解一次函数y kx b =+的图象与正比例函数y kx =的图象之间的关系;知识点01 理解一次函数的定义1、一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.2、y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.【微点拨】 当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.【即学即练1】1.在①8y x =-;①8y x=-;①1y x =+;①286y x =-+;①0.51y x =--,一次函数有( )A .1个B .2个C .3个D .4个 【即学即练2】2.下列4个函数关系:y =2x +1,y =1x ,s =60t ,y =100﹣25x ,其中是一次函数的共有( ) A .1个 B .2个 C .3个D .4个 知识点02 待定系数法求一次函数解析式目标导航知识精讲一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.【微点拨】先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.【即学即练3】3.定义:(, )A x y 为平面直角坐标系内的点,若满足x y =,则把点A 叫做“平衡点”,例如:(1,1)M ,(2,2)N --都是平衡点.当24x -时,直线2y x m =+上有“平衡点”,则m 的取值范围是( ) A .04mB .42m -C .24m -D .20m -≤【知识拓展】分段函数:1、对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.2、对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围. 考法01 一次函数识别1、一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,当k>0时,图象从左到右上升,y 随x 的增大而增大,当k<0时,图象从左到右下降,y 随x 的增大而减小2、一次函数y=kx +b(k≠0)的图象是经过(0,b )和(-b/k ,0 )两点的一条直线,因此一次函数y=kx +b 的图象也称为直线【典例1】下列4个函数关系:121,,60,10025y x y s t y x x =+===-,其中是一次函数的共有( ) A .1个 B .2个 C .3个D .4个 考法02 正比例函数的定义1. 定义:一般地,形如y=kx (k 是常数,k≠0)的函数,叫做正比例函数,其中k 叫做比例系数。
一次函数__________________________________________________________________________________ __________________________________________________________________________________1、 学生掌握一次函数的性质。
2、 学生掌握一次函数图像的性质。
3、掌握解决一次函数相关题目的方法。
1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且____)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做______。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷__________是一次函数的特例,一次函数包括正比例函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数2、一次函数性质一次函数y=kx+b 的图象是经过______和_____两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移___个单位长度得到.(当b>0时,____;当b<0时,_____)(1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-kb ,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx的图象向下平移b个单位.b>0 b<0 b=0经过第一、二、三象限经过第一、三、四象限经过第一、三象限k>0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<0图象从左到右下降,y随x的增大而减小3、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx (k不为零) ① k不为零② x指数为1 ③ b取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过_________;k<0时,•图像经过________(4)增减性:k>0,y随x的增大而______;k<0,y随x增大而_____(5)倾斜度:|k|越大,越接近______;|k|越小,越接近_____4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:______ , ________即横坐标或纵坐标为0的点.5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)6、正比例函数和一次函数及性质正比例函数 一次函数 概 念 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数. 自变量范 围X 为全体实数 图 象一条直线 必过点(0,0)、(1,k ) (0,b )和(-k b ,0) 走 向 k>0时,直线经过一、三象限;k<0时,直线经过二、四象限 k >0,b >0,直线经过第一、二、三象限 k >0,b <0直线经过第一、三、四象限k <0,b >0直线经过第一、二、四象限k <0,b <0直线经过第二、三、四象限增减性 k>0,y 随x 的增大而增大;(从左向右上升)k<0,y 随x 的增大而减小。
八年级数学上册一次函数讲义
学习要点分类:
一、了解类:常量,变量,函数,一次函数解析式,正比例函数,比例系数k。
二、理解类:性质,图像,k,b取值对图像的影响,待定系数法求解析式,描点法画图,数形结合思想。
三、附加类:各个知识点的联系能力讲解--坐标,解析式,图像,性质;特殊三角形与一次函数的关联。
函数部分
1、已知y1=x+1,y2=-2x+4,对任意一个x,取y1,y2中的较大的值为m,则m的最
小值是___________.
2、下列各曲线中不能表示y是x的函数的是()
A. B. C. D.
3.如图,把矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,CD,则AF= .
若6
4、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居
民每月交水费y(元)与水量x(吨)的函数关系如图所示,请你通过观
察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为
元/吨;若用水超过5吨,超过部分的水费为元/吨。
5、如图,已知点F的坐标为(3,0),点A、B分别是某函数图象与x
第6题
(第5题)
轴、y 轴的交点,点P 是此图象上的一动点,设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:3
55
d x =-
(0≤x ≤5),则以下结论不正确...的是( ) A 、OB =3 B 、OA =5 C 、AF =2 D 、BF =5
6. 如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为 。
7、一艘轮船自西向东航行,在A 处测得北偏东45°方向有一座小岛C ,继续向东航行30海里到达B 处,测得小岛C 此时在轮船的北偏东60o 方向上.请问: 轮船继续向东航行多少海里,距离小岛最近?
8.如图,将一个等腰直角三角形按图示方式依次翻折,若DE =a ,则下列说法正确的个数有( )
①DC ′平分∠BDE ; ②BC 长为a )22(+; ③△B C
′
D 是等腰三角形; ④△CED 的周长等于BC 的长。
E
D C
(第3题)
A . 1个;
B .2个;
C .3个
D .4个。
数形结合思想
9、如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽。
水槽中水面上升高度h 与注水时间的关系大致是下列图像中的( )
10、如图OA 、AB 分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB 表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8 秒钟后,甲超过了乙,其中正确的说法是( ) A .①② B .②③④ C .②③ D .①③④
11、如图,直线6y kx =+与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;
(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;
(3)探究:当点P 运动到什么位置时,△OPA 的面积为27
8
,并说明理由。
(4)是否存在点P ,使△POE 为等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.
(A )
(B )
(C )
(D
)
8.如图,将一个等腰直角三角形按图示方式依次翻折,若DE =a ,则下列说法正确的个数有( )
①DC ′平分∠BDE ; ②BC 长为a )22(+; ③△B C ′D 是等腰三角形; ④△CED 的周长等于BC 的长。
A . 1个;
B .2个;
C .3个
D .4个。
数形结合思想
9、如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽。
水槽中水面上升高度h 与注水时间的关系大致是下列图像中的( )
10、如图OA 、AB 分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB 表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8 秒钟后,甲超过了乙,其中正确的说法是( ) A .①② B .②③④ C .②③ D .①③④
11、如图,直线6y kx =+与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;
(A )
(B )
(C )
(D
)
(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当点P 运动到什么位置时,△OPA 的面积为27
8
,并说明理由。
(4)是否存在点P ,使△POE 为等腰三角形?若存在,求点P 的坐标;若不存在,说明理由. 应用
18.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.
(1) 现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式
纸盒x 个.
①根据题意,完成以下表格:
(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则a的值是.(写出一个即可)
19.青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若共买进100件商品,设买进甲种商品x件,总利润(利润=售价进价)为y元,则求y关于x的函数解析式;(2)该商场为使甲、乙两种商品共100件的总利润不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“十·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:
种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)。