汽车制造新技术——搅拌摩擦焊
- 格式:pdf
- 大小:544.05 KB
- 文档页数:4
目前最先进的焊接工艺,搅拌摩擦焊,你知道原理吗搅拌摩擦焊是由英国焊接技术研究所于1991年发明的新型焊接技术,其原理如下图所示。
一根安装在主轴上的形状为蜗杆形式的搅拌针在一定压力下被插入焊缝位置,搅拌针的长度一般要比焊缝深度略浅,以此来保证主轴的轴肩能紧贴被焊接的工件表面。
当工件与搅拌针和轴肩摩擦生热,焊缝附近的材料会因受热产生严重的塑性变形,但是,并不是熔化,只是成为一种“半流体”的状态,随着主轴带动搅拌针沿着焊缝的走向进给,搅拌针不断把已经处于“半流体”状态的材料搅拌到身后,当主轴离开后,这些材料将冷却固化,从而形成一条稳定的焊缝。
大家都知道,以铝合金和镁合金为代表的轻质合金是航空航天器的主要结构材料之一。
然而这些轻质合金的可焊性都非常差,传统的各种熔焊工艺都无法从根本上杜绝热裂纹、气孔和夹渣等这些焊接缺陷的产生,需要靠操作者具有非常高超的技术和工艺才能保证焊接质量。
并且,熔焊的高温会产生大量热量和有毒的烟气,这对操作者的身体健康也造成了很大的威胁。
而搅拌摩擦焊的出现从根本上解决了这一系列问题。
其次,相较于传统熔焊工艺在焊缝附近形成重新铸造形态,搅拌摩擦焊由于主轴会给被焊接的工件部位施加一个很大的压力,所以在焊缝附近得到的是锻造形态,这种锻造形态组织比铸造形态组织致密得多,因而焊接后零件的机械性能也比传统熔焊工艺做出来的好得多。
而搅拌摩擦焊最大的优势体现在其本质是把机械能转化成焊接所需要的热能,所以可以用特定的公式相当准确的计算出焊接热及其引发的工件热变形的量,从而为事前的补偿和事后的纠正提供了几乎不依赖操作者经验的定量的依据,这是任何一种传统焊接工艺都望尘莫及的。
此外,搅拌摩擦焊不需要焊料,这节约了不少成本,因为高端焊料往往都是非常昂贵的。
当然,搅拌摩擦焊也有自身不少的局限性,比如,只适合焊接熔点相对较低的材料(如铝合金、镁合金或者铜合金);工件需要承受很大的紧固力固定在工作台上,并以很大的压紧力压紧,这可能造成额外的变形;对于不规则的异形焊缝的焊接速度较慢,搅拌针和轴肩材料损耗速度较快等。
搅拌摩擦焊原理
搅拌摩擦焊是一种固态焊接方法,通过机械震动和摩擦热来实现焊接。
其原理基于热塑性材料的可塑性和可变形性,通过摩擦热加热两个焊接件的接触面,使金属软化并形成可塑性,然后施加压力,使两个焊接件发生塑性变形混合,最终形成均匀的焊缝。
搅拌摩擦焊主要包括以下几个步骤:
1. 两个待焊接的金属件通过紧密贴合。
2. 在接触面之间施加一定的压力。
3. 使用专用搅拌头,通过高速旋转在接触面上施加摩擦力,引发摩擦热。
4. 随着摩擦热的积累,金属开始加热并软化。
5. 一旦达到足够的软化温度,停止搅拌并继续施加压力,使两个金属件发生塑性变形。
6. 继续施加压力,使金属在接触面上混合,形成焊缝。
7. 冷却后,焊缝区域重新硬化,完成搅拌摩擦焊。
搅拌摩擦焊具有许多优点,包括焊接速度快、焊接接头强度高、焊接过程无火花、无气体和溶剂的排放等。
它可以应用于各种金属材料的焊接,特别适用于铝合金、镁合金等难焊性材料。
搅拌摩擦焊广泛应用于汽车制造、航空航天、船舶制造等领域。
搅拌摩擦焊工艺搅拌摩擦焊(Friction Stir Welding,简称FSW)是一种无焊接熔化的固态焊接技术,由英国剑桥大学的Thomas W. Thomas于1991年首次提出。
相比传统的熔化焊接方法,搅拌摩擦焊具有许多优点,如焊接强度高、焊缝外观美观等,因此在航空航天、汽车制造等领域得到了广泛应用。
搅拌摩擦焊的工艺流程相对简单,主要包括预装夹紧、搅拌摩擦焊接和冷却三个阶段。
首先,需要将两个待焊接的工件通过夹具夹紧,以确保焊接过程中的稳定性。
然后,通过高速旋转的搅拌钎具将焊接面加热至软化温度,同时施加一定的压力。
搅拌钎具的旋转和推进运动将焊接面上的金属材料搅拌在一起,从而实现焊接。
最后,待焊接的区域冷却后,焊缝形成,焊接过程完毕。
搅拌摩擦焊的工艺特点主要包括以下几个方面:1. 无熔化:搅拌摩擦焊是一种固态焊接方法,焊接过程中不产生熔化现象,避免了传统焊接方法中可能产生的气孔、夹杂物等缺陷,提高了焊缝的质量。
2. 焊接强度高:搅拌摩擦焊焊接产生的焊缝表面光滑,焊缝强度高,可以达到甚至超过基材的强度。
3. 焊接速度快:搅拌摩擦焊的焊接速度通常较快,可以在短时间内完成大面积焊接,提高了生产效率。
4. 适用性广:搅拌摩擦焊适用于多种金属材料的焊接,包括铝合金、镁合金、钛合金等,具有较好的通用性。
5. 环保节能:搅拌摩擦焊过程中不需要额外的填充材料和保护气体,无烟尘产生,减少了对环境的污染,同时节约了能源。
搅拌摩擦焊工艺在航空航天、汽车制造等领域得到了广泛应用。
例如,航空航天领域的发动机和机身结构常采用铝合金材料进行制造,而搅拌摩擦焊可以有效地实现铝合金的焊接,提高了零部件的性能和可靠性。
汽车制造领域中,搅拌摩擦焊可以用于车身结构、悬挂系统等部件的焊接,提高了汽车的安全性和耐久性。
尽管搅拌摩擦焊具有许多优点,但也存在一些挑战和局限性。
首先,搅拌摩擦焊的设备成本较高,需要专门的设备来实现焊接。
其次,对于某些材料,如高碳钢、不锈钢等,搅拌摩擦焊效果不理想,难以实现高质量的焊接。
搅拌摩擦焊技术
1. 搅拌摩擦焊是熔接金属材料的无焊接方法,它对厚度较厚的工件,尤其是对零件中
厚度变化较大的坡口连接,效果更佳,也比剪切连接更可靠。
搅拌摩擦焊技术通过将原料金
属摩擦加热而使之融合。
搅拌摩擦焊结合了摩擦焊的融合金属诱导和搅拌的大量焊接固
溶效果的优点,神始看到应用更加广泛,已经成功应用于航空航天、汽车、船舶等领域。
2. 搅拌摩擦焊技术可分为三大部分:物料准备与预处理、搅拌摩擦焊系统与参数控
制和处理后台检验等。
其中物料准备与预处理包括材料选择、清理、切割、锻造等;搅拌
摩擦焊系统与参数控制部分要根据不同材料来确定一系列熔接参数,控制摩擦焊系统;处
理后台检验部分需要进行超声波探伤、熔合区显微组织分析以及力学性能检测。
3. 搅拌摩擦焊技术有很多优点,其中最重要的是可以节省焊材,并且可以达到同种
金属材料熔接更佳的效果。
此外,搅拌摩擦焊技术还可以减少工件对焊接产生的受损,也
可以大大节约工序耗费的时间。
4. 搅拌摩擦焊技术在焊接应用中也有一些问题需要重视,其中最大的问题就是冷锤
在熔接区附近残留的块状熔接金属,这些块状熔接金属的残留会影响熔接的强度和密封性,从而增加故障率。
另外,在搅拌摩擦焊中摩擦力的控制也非常重要,过大的摩擦力会使焊
接的温度偏高,容易造成焊接变形或脆性断开。
5. 搅拌摩擦焊技术是一种新型的熔接技术,在实际应用中要根据不同材料来制定适
当的焊接工艺参数,控制摩擦力等要素,从而获得高质量的焊接。
搅拌摩擦焊搅拌摩擦焊,是一种新型的焊接技术,也被称为搅拌摩擦联接。
它是通过在焊接区域旋转和挤压两个金属工件来产生热量和塑性变形,从而使两个工件达到联接的目的。
与传统的焊接技术相比,搅拌摩擦焊具有许多优点,如焊接速度快、焊缝质量高、金属变形小等。
本文将详细介绍搅拌摩擦焊的原理、应用和发展趋势。
一、搅拌摩擦焊的原理搅拌摩擦焊的原理是在两个金属工件之间施加旋转和挤压力,产生热量和塑性变形,从而使两个工件达到联接的目的。
搅拌摩擦焊的焊接区域主要由以下几个部分组成:1. 摩擦区:是指两个金属工件之间产生的热量和塑性变形的区域,也是焊接区域的主要部分。
在摩擦区,由于热量和挤压力的作用,金属工件的表面会产生摩擦热,从而使金属表面熔化和塑性变形。
在摩擦区,金属工件的晶粒也会受到影响,产生细化和变形,从而提高焊缝的质量。
2. 搅拌区:是指焊接区域中金属工件被挤压和旋转产生的区域。
在搅拌区,金属工件的晶粒也会受到影响,产生细化和变形,从而提高焊缝的质量。
3. 热影响区:是指焊接区域中受到热影响但未受到塑性变形的金属区域。
在热影响区,金属工件的晶粒也会受到影响,但不会产生细化和变形。
二、搅拌摩擦焊的应用搅拌摩擦焊的应用非常广泛,可以用于焊接各种金属材料,如铝合金、镁合金、钛合金、铜、钢等。
它在航空、汽车、船舶、铁路、电子、建筑等领域都有着广泛的应用。
1. 航空领域:搅拌摩擦焊可以用于制造航空器的结构件,如机翼、尾翼、机身等。
它可以提高焊缝质量,减少金属变形,从而提高航空器的性能和安全性。
2. 汽车领域:搅拌摩擦焊可以用于制造汽车的车身、底盘、发动机等部件。
它可以提高焊缝质量,减少金属变形,从而提高汽车的性能和安全性。
3. 船舶领域:搅拌摩擦焊可以用于制造船舶的船体、船舶设备等部件。
它可以提高焊缝质量,减少金属变形,从而提高船舶的性能和安全性。
4. 铁路领域:搅拌摩擦焊可以用于制造铁路车辆的车体、车轮等部件。
它可以提高焊缝质量,减少金属变形,从而提高铁路车辆的性能和安全性。
搅拌摩擦焊工艺及其应用1 搅拌摩擦焊的定义与原理搅拌摩擦焊是一种非常新颖的金属连接技术,其原理是将金属材料在高速旋转的条件下不断挤压与摩擦热而使金属材料发生塑性变形进而在次冷却时形成均匀的焊缝。
搅拌摩擦焊是一种采用振荡摩擦进行的钎焊技术。
摩擦过程中,金属材料被强制变形,形成皱纹和复杂的微细组织结构,这就是焊接区域。
这一过程不需要额外的附加材料,因此也被称为固态钎焊。
搅拌摩擦焊的原理是通过搅拌和摩擦的相互作用,为金属轴套表面提供局部加热来处理金属本身。
在摩擦过程中,摩擦产生的热量会使金属材料温度升高,而旋转工具逐渐伸进焊缝,在相对运动的作用下,产生了强烈的塑性变形以及显著的变形应变。
在形成初期焊缝时,相对运动引起的压力会把材料从环形清隙中抽出,形成时生成混味均匀的焊接界面。
这些过程中摩擦加热导致局部熔化,接长和冷却会使金属变形,并形成一个均匀的、与母材相似的焊缝。
2 搅拌摩擦焊的工艺流程及其特点2.1 搅拌摩擦焊的工艺流程(1)工件准备:首先需要准备待焊接的工件。
工件通常是板材、管材、棒材等形状,可以是相同材质,也可以是不同材质。
(2)夹紧工件:将工件夹紧在专用的工件夹具中,以保证工件在搅拌摩擦焊过程中不会移动或震动。
(3)起始摩擦:在工件接头处的摩擦面上施加旋转摩擦力,使工件表面熔融并形成可焊接的状态。
(4)搅拌摩擦:在不断施加旋转摩擦力的情况下,摩擦头沿着工件的接合面移动,搅拌工件的金属组织,从而形成焊接。
(5)升温保压:在搅拌摩擦焊完成后,保持摩擦头的位置不动,使焊缝部位升温到一定程度,再施加一定的保压力,使焊缝固化。
(6)退火处理:对焊接完成后的工件进行退火处理,可以进一步提高焊接质量和性能。
2.2 搅拌摩擦焊的特点(1)搅拌摩擦焊是一种无焊接接头凸出、无端部凸出的焊接方法,焊缝起伏很小,对焊接部件外观和尺寸精度要求较高的场合比较适用。
(2)搅拌摩擦焊过程中没有明显的电弧和喷溅现象,不需要额外的保护气体,易于操作。
焊接工艺中的摩擦搅拌焊技术摩擦搅拌焊技术在焊接工艺中的应用摩擦搅拌焊(Friction Stir Welding,FSW)技术,作为一种新兴的焊接工艺,正在逐渐得到人们的关注和认可。
它的出现不仅改变了传统焊接方法,还带来了许多优势和创新。
本文将从摩擦搅拌焊技术的原理、应用范围和未来发展等方面,探讨其在焊接工艺中的重要性和价值。
一、摩擦搅拌焊技术的原理摩擦搅拌焊技术是一种无熔区焊接方法,它利用回转的焊接工具,通过摩擦加热和搅拌的作用,将金属板材相互连接。
其原理主要包括以下几个方面:1. 摩擦加热:焊接工具通过与工件的摩擦产生热量,将工件表面加热至可塑性温度,但不达到熔点。
这种无熔区的加热方式是摩擦搅拌焊的特点之一。
2. 塑性流动:在摩擦作用下,金属材料开始发生塑性变形,产生较强的流动性,但保持了原有的晶体结构。
通过搅拌工具的旋转和推进,工件的材料被搅拌成连续的焊接接头。
3. 冷却固化:在搅拌过程中,焊接接头由于摩擦加热而达到可塑性状态,但在离开焊接工具后,温度迅速下降,接头被固化为连续的金属接合部分。
二、摩擦搅拌焊技术的应用范围摩擦搅拌焊技术以其独特的焊接原理和优异的性能,广泛应用于不同材料的焊接领域。
其主要应用范围包括以下几个方面:1. 航空航天领域:摩擦搅拌焊技术可以用于航空航天器件的连接,例如飞机翼板、舱壁、涡轮发动机叶片等。
这种焊接方法能够减少热输入,提高焊接质量和强度,减小了焊接变形和应力集中的问题。
2. 轨道交通领域:摩擦搅拌焊技术可以应用于轨道交通车辆的制造和维修。
例如,高铁列车的车体焊接、地铁车辆的连接等。
由于摩擦搅拌焊能够避免焊接变形和减小焊接缺陷,因此能够提高车辆的运行平稳性和安全性。
3. 汽车制造领域:摩擦搅拌焊技术可以应用于汽车车身的焊接。
与传统的焊接方法相比,摩擦搅拌焊能够提供更强的接头强度和密封性,同时还能够降低噪音和振动,提高车身的刚性和安全性。
4. 电子设备领域:摩擦搅拌焊技术可以用于电子设备的组装和连接。
搅拌摩擦焊基本原理
嘿,朋友们!今天咱来唠唠搅拌摩擦焊这玩意儿的基本原理。
你说搅拌摩擦焊啊,就好比是一场特别的舞蹈!想象一下,有两个金属物件,它们要紧紧地连接在一起。
这时候啊,就有一个神奇的“搅拌头”出现啦,就像一个超级舞者一样,在这两个金属物件之间欢快地舞动。
这个搅拌头一边旋转,一边往前移动,就跟跳舞时的旋转和前进似的。
它在金属表面这儿蹭蹭,那儿磨磨,把金属给搅动起来啦。
这一搅动可不得了,金属就像是被施了魔法一样,开始变得柔软,然后就乖乖地融合在一起啦!
这多神奇呀!你看普通的焊接,可能会有大火花呀,高热量呀,搞不好还会变形啥的。
但搅拌摩擦焊就不一样啦,它就这么悄悄地、温柔地把金属连接起来,就像两个好朋友手牵手一样自然。
咱再打个比方,搅拌摩擦焊就像是做面包。
搅拌头就是那个揉面的大手,把金属材料当成面团一样揉啊揉,揉到它们完全融合在一起,变成一个坚固的整体。
而且呀,它还不会像烤面包那样可能烤焦了或者出啥问题,多靠谱呀!
它的优点那可真是不少呢!首先,它对环境很友好呀,没有那些刺鼻的气味和吓人的火花。
其次呢,焊接出来的质量那叫一个棒,坚固得很呢!还有啊,它能焊接好多不同的金属材料,就像个万能胶一样。
你说这么好的技术,咱不得好好利用呀!在好多领域都能看到它的身影呢,比如航空航天呀,汽车制造呀,甚至是一些小小的电子产品里都可能有它的功劳。
总之啊,搅拌摩擦焊就像是一个默默无闻的英雄,悄悄地在背后为我们的生活提供着便利和保障。
咱可得好好感谢那些发明和研究它的人呀,让我们的世界变得更美好!这就是搅拌摩擦焊的基本原理,是不是很有意思呀?。
1搅拌摩擦焊概览搅拌摩擦焊(Friction Stir Welding,FSW)作为一种固相连接技术,在1991年由英国焊接研究所(The Welding Institute, TWI)发明。
与传统熔化焊相比,FSW无需添加焊丝、不需要保护气体,焊接过程无污染、无烟尘、无辐射,焊接接头残余应力低,因此具有焊接效率高、焊接变形小、能耗低、设备简单、焊接过程安全等一系列优点。
经过20多年的发展,FSW已经在航空航天、轨道交通、舰船等领域得到了广泛应用。
搅拌摩擦焊的原理如图1所示。
高速旋转的搅拌头扎入被焊工件内,旋转的搅拌针与被焊材料发生摩擦并使其发生塑化,轴肩与工件表面摩擦生热并用于防止塑性状态的材料溢出。
在焊接过程中,工件要刚性固定在背部垫板上,搅拌头边高速旋转边沿工件的接缝与工件相对移动,在搅拌头锻压力的作用下形成焊缝,最终实现被焊工件的冶金结合。
图1 搅拌摩擦焊接原理搅拌摩擦焊广泛适用于各类材料,目前已成功实现了铝、镁等低熔点金属及合金、铜合金、钛合金、钢铁材料、金属基复合材料以及异种金属(铝/铜、铝/镁、铝/钢等)的焊接。
在传统技术的基础上,搅拌摩擦焊有了五大创新发展:双轴肩搅拌摩擦焊、静轴肩搅拌摩擦焊、搅拌摩擦点焊、复合能场搅拌摩擦焊、搅拌摩擦增材制造。
双轴肩搅拌摩擦焊(Bobbin Tool Friction Stir Welding,BT-FSW)与传统FSW相比,其搅拌头为上、下轴肩结构,两个轴肩通过搅拌针连接,下轴肩取代了传统FSW的背部刚性支撑垫板,对工件进行自支撑,实现中空部件的焊接。
其焊接原理如图2所示。
上、下双轴肩的结构在焊接过程中降低了接头厚度方向的温度梯度,减小了接头组织不均匀性,可实现根部全焊透的焊接。
图2 双轴肩搅拌摩擦焊接原理1.上轴肩2.前进侧3.熔合线4.后退侧5.工件6.搅拌针7.下轴肩静轴肩搅拌摩擦焊(Stational Shoulder Friction Stir Welding,SS-FSW)采用轴肩与搅拌针分体式设计,在焊接过程中内部搅拌针处于旋转状态,而外部轴肩不转动,仅沿焊接方向行进。
搅拌摩擦焊在汽车工业中的应用引言随着汽车工业的快速发展,汽车制造商不断寻求新的焊接技术来提高生产效率和提供更高质量的焊接连接。
搅拌摩擦焊(F ri ct io nS ti rW el d in g,简称FS W)作为一种创新的焊接方法,在汽车制造业中得到了广泛应用。
本文将探讨搅拌摩擦焊在汽车工业中的应用以及其优势。
1.搅拌摩擦焊的原理搅拌摩擦焊是一种通过转动和横向移动的无传统熔化焊接过程。
其原理是通过固态摩擦加热使焊接接头材料软化,并通过下压力和搅拌运动实现焊接。
这种焊接方法不需要填充金属或焊接材料,具有较高的焊接速度和良好的焊接质量。
2.搅拌摩擦焊在汽车制造中的应用2.1汽车车身焊接搅拌摩擦焊被广泛用于汽车制造的车身焊接。
在传统的车身制造过程中,汽车车身需要通过多个焊接点连接。
而使用搅拌摩擦焊,可以将车身板材焊接成较大的整体结构,提高了焊接连接的强度和刚性,同时减少了焊接缺陷的发生。
2.2材料连接为了降低汽车的重量并提高燃油效率,汽车制造商越来越多地采用铝合金和其他轻质材料作为车身结构材料。
搅拌摩擦焊被广泛应用于这些材料的连接,因为它能够有效地实现不同材料之间的焊接,提供坚固的连接和良好的密封性,同时减少了不同材料之间的反应。
2.3零部件焊接除了车身焊接和材料连接,搅拌摩擦焊还被应用于汽车零部件的焊接,例如发动机零部件、制动系统和底盘组件等。
搅拌摩擦焊能够实现零部件的高强度连接,同时提供良好的密封性和耐高温性能,满足汽车工业对零部件焊接质量和可靠性的需求。
3.搅拌摩擦焊的优势3.1高焊接速度与传统的焊接方法相比,搅拌摩擦焊具有更高的焊接速度。
这是因为搅拌摩擦焊不需要等待焊接材料熔化和凝固,而是通过摩擦加热和搅拌运动实现焊接,大大缩短了焊接时间。
3.2良好的焊接质量搅拌摩擦焊能够提供高强度、无缺陷的焊接连接。
焊接区域经过搅拌摩擦焊处理后,具有均匀的组织和细小的晶粒尺寸,提高了焊接接头的强度和硬度。
搅拌摩擦焊原理及其产热特点搅拌摩擦焊,这可是个挺有趣的焊接技术呢。
咱们先得知道它是怎么一回事儿。
这就好比是在做面条的时候,有一根特制的擀面杖,在面团里不停地搅和。
搅拌摩擦焊呢,就是有个特殊的搅拌头,在两块要焊接的材料之间转动、摩擦。
这个搅拌头啊,就像是一个勤劳的小蜜蜂,在材料之间钻来钻去。
它一边旋转,一边沿着焊接的缝儿往前走。
这两块材料呢,就像两个小伙伴,本来是分开的,现在被这个小蜜蜂一样的搅拌头给弄在一起啦。
那搅拌摩擦焊的产热特点可就更有意思了。
你想啊,当这个搅拌头在材料里面转的时候,就像咱们冬天搓手取暖一样。
咱们的手相互摩擦就会发热,搅拌头和材料之间的摩擦也是这个道理。
只不过,这个热可不像咱们搓手那么简单。
它产生的热量是很集中的,就像聚光灯打在舞台上的一个小角落一样。
这种产热方式啊,和传统的焊接可不一样。
传统焊接有时候就像在野外生火,火到处乱窜,热量也散得到处都是。
搅拌摩擦焊的热就规规矩矩地在搅拌头和材料接触的地方产生。
这就好比是在一个小房间里开了个小暖炉,暖炉的热就集中在这个小房间里,不会到处乱跑。
再说说这个热量的大小吧。
它就像是厨师做菜的时候掌握火候一样。
搅拌摩擦焊产生的热量是刚刚好能让材料软下来,能够融合在一起。
不会像有些焊接方法,热太多了,把材料都烧坏了,就像烤焦的面包,黑乎乎的,没法吃了。
也不会像热不够的时候,材料就像两个不熟的朋友,只是表面碰了碰,里面还是各干各的,根本没融合好。
从这个产热的速度来看呢,搅拌摩擦焊就像是短跑运动员起跑一样,很快就能达到需要的热量。
这就保证了焊接的效率。
而且啊,这个热量在整个焊接过程中是比较稳定的。
不像有些焊接,一会儿热一会儿冷,就像那调皮的小孩,一会儿安静一会儿吵闹,这样焊接出来的东西质量肯定不好。
搅拌摩擦焊的这种产热特点,在实际应用中可太有用了。
比如说在汽车制造上,汽车的很多部件都需要焊接。
如果用传统焊接,可能就会有很多问题,像是焊接处不牢固啦,外观不好看啦。
搅拌摩擦焊原理:搅拌摩擦焊是一种先进的固态连接技术,主要利用搅拌摩擦过程的热量和机械力来实现材料的连接。
该技术在铝、铜、钢等各类金属材料的连接中均有广泛应用。
以下是对搅拌摩擦焊原理的详细介绍。
一、搅拌摩擦焊的基本原理搅拌摩擦焊的核心原理在于利用一个特殊形状的搅拌头来刮擦待连接的材料表面。
搅拌头的形状通常为圆锥形或圆柱形,材料一般选用具有高强度和耐磨性的硬质合金。
在焊接过程中,搅拌头插入待连接的两块材料之间,通过旋转和向前推移的方式对材料表面进行刮擦。
搅拌摩擦焊过程中的热量主要来源于搅拌头的摩擦和塑性变形产生的热量。
当搅拌头向前推移时,刮擦产生的塑性变形会引发材料内部的热量。
这些热量不仅使材料表面软化,还产生大量的热塑性流体,这些流体在搅拌头的压力下填充了材料表面的微小缝隙,从而实现了材料的连接。
二、搅拌摩擦焊的工艺特点1.固态连接:搅拌摩擦焊是一种固态连接技术,焊接过程中没有熔融态材料的参与,因此具有无液相、无污染的优点。
2.温度适中:相较于传统的熔焊方法,搅拌摩擦焊的温度较低,可以有效降低材料的热损伤,适用于对温度敏感的材料。
3.适用范围广:搅拌摩擦焊可以适用于不同种类的金属材料,包括铝、铜、钢等,具有广泛的应用前景。
4.高效节能:由于搅拌摩擦焊没有熔融态材料的消耗,因此其能源消耗远低于传统熔焊方法。
5.操作简单:搅拌摩擦焊的焊接过程相对简单,操作方便,对操作人员的技术要求较低。
三、搅拌摩擦焊的应用由于其独特的优点,搅拌摩擦焊在许多领域都得到了广泛应用。
1.航空航天:在航空航天领域,许多结构组件需要高强度、高可靠性的连接。
搅拌摩擦焊能够满足这些严苛的要求,因此在飞机和火箭等结构中得到了广泛应用。
2.轨道交通:在轨道交通领域,为了保证车辆和轨道的安全性,需要对各种金属材料进行高质量的连接。
搅拌摩擦焊以其固态连接、高效节能等优点,在该领域得到了广泛应用。
3.电子封装:在电子封装领域,由于电子元件需要微型化和高度集成化,因此需要精确控制连接的质量和可靠性。
CATALOGUE 目录•搅拌摩擦焊技术简介•搅拌摩擦焊技术研究现状•搅拌摩擦焊技术在不同领域的应用•搅拌摩擦焊技术的前景展望与发展趋势•结论搅拌摩擦焊是一种新型的焊接方法,其核心是利用搅拌头与工件之间的摩擦热和塑性变形热,使工件局部加热至塑性状态,并在搅拌头的强烈搅拌作用下实现材料的连接。
与传统的熔焊方法不同,搅拌摩擦焊过程中不涉及熔化,因此可以避免熔焊过程中出现的元素烧损、接头组织性能恶化等问题。
高效节能接头质量高适用范围广操作简单ABCD航空航天领域汽车制造领域其他领域轨道交通领域搅拌摩擦焊技术的应用范围搅拌摩擦焊技术的研究进展搅拌摩擦焊技术自发明以来,经过多年的研究和发展,已经在多个领域得到广泛应用。
在科研方面,研究者们不断探索新的搅拌摩擦焊技术,提高其焊接质量和效率。
在应用方面,搅拌摩擦焊技术已经应用于航空、航天、汽车、船舶等领域,取得了良好的效果。
010203搅拌摩擦焊技术的优势与局限搅拌摩擦焊技术的研究热点与挑战总结词搅拌摩擦焊技术在航空航天领域的应用具有广泛性和重要性。
要点一要点二详细描述搅拌摩擦焊技术在该领域主要用于制造飞机和火箭等关键部件,如铝合金和钛合金的焊接。
相比传统焊接方法,搅拌摩擦焊技术具有更高的焊接质量和更快的焊接速度,提高了生产效率,降低了制造成本。
此外,搅拌摩擦焊技术还具有较好的接头强度和耐腐蚀性,使得飞机和火箭等关键部件的寿命更长、安全性更高。
航空航天领域总结词搅拌摩擦焊技术在汽车制造领域的应用日益增多,成为汽车制造的重要焊接方法之一。
详细描述搅拌摩擦焊技术在该领域主要用于制造汽车车身、底盘和发动机等关键部件,如低碳钢、铝合金和不锈钢的焊接。
相比传统焊接方法,搅拌摩擦焊技术具有更高的焊接质量和更快的焊接速度,提高了生产效率,降低了制造成本。
此外,搅拌摩擦焊技术还具有较好的接头强度和耐腐蚀性,使得汽车的关键部件更加可靠、耐用。
总结词搅拌摩擦焊技术在船舶制造领域的应用具有广泛性和重要性。
搅拌摩擦焊的原理及其特点搅拌摩擦焊(Friction Stir Welding,简称FSW)是一种固态焊接技术,其原理是通过在焊接接头处施加搅拌力和摩擦热来实现焊接。
它的特点是焊接过程中无熔化,无焊接热源,不需要填充材料,能够实现高强度、高质量的焊接。
搅拌摩擦焊的原理是利用焊接工具的自旋和推进运动,在焊接接头上施加搅拌力,使接头处的金属材料发生塑性变形,并通过摩擦热使金属材料的温度升高到可塑性范围内。
在高温和高压的作用下,金属材料发生塑性流动,形成焊接接头。
搅拌摩擦焊的特点主要体现在以下几个方面:1. 无熔化:搅拌摩擦焊是一种固态焊接技术,焊接过程中不产生熔化现象。
相比传统的熔化焊接方法,它避免了焊接接头处的液态金属流动和凝固过程中的缺陷产生,能够得到更好的焊接质量。
2. 无焊接热源:搅拌摩擦焊的焊接热源是通过焊接工具的自旋和推进运动产生的摩擦热。
相比传统的焊接方法,它不需要额外的焊接热源,能够节约能源。
3. 无需填充材料:搅拌摩擦焊的焊接接头是通过金属材料的塑性流动形成的,不需要使用填充材料。
这样可以避免填充材料与基材之间的界面问题,提高了焊接接头的强度和密封性。
4. 高强度焊接:搅拌摩擦焊由于焊接过程中金属材料的塑性流动和细化效应,能够得到高强度的焊接接头。
与传统的焊接方法相比,搅拌摩擦焊能够实现更高的焊接接头强度。
5. 适用范围广:搅拌摩擦焊适用于多种金属材料的焊接,包括铝合金、镁合金、铜合金等。
与传统的焊接方法相比,它能够实现不同种类和不同厚度金属材料的焊接。
6. 焊接过程稳定:搅拌摩擦焊的焊接过程中,焊接工具的自旋和推进运动能够使焊接接头处的金属材料均匀受热和塑性变形,使得焊接过程更加稳定。
同时,焊接工具的设计和控制技术的发展,使得搅拌摩擦焊的焊接过程能够实现自动化和精确控制。
搅拌摩擦焊是一种无熔化、无焊接热源、无需填充材料的固态焊接技术。
它具有高强度焊接、适用范围广和焊接过程稳定等特点。
搅拌摩擦焊的原理及其特点搅拌摩擦焊(Friction Stir Welding,简称FSW)是一种新型的固态焊接技术,其原理是利用专用的搅拌工具在焊接接头处进行搅拌和摩擦加热,使焊缝材料发生塑性变形并实现焊接连接。
搅拌摩擦焊具有许多独特的特点,使其在航空航天、汽车、船舶等领域得到广泛应用。
搅拌摩擦焊的原理是通过旋转的搅拌工具将焊接接头中的材料进行搅拌和摩擦加热,从而实现焊接连接。
搅拌工具通常由一个圆柱形肩部和一个锥形销钉组成,通过该工具在焊接接头中进行搅拌和摩擦加热时,焊缝材料发生塑性变形,形成焊接接头。
搅拌工具在焊接过程中施加的压力使焊缝材料得到良好的连接,而没有融化的现象发生。
这种固态焊接技术不仅具有高强度、高质量的焊接接头,而且可以焊接多种金属材料,包括高强度铝合金、镁合金等。
搅拌摩擦焊具有以下特点:1. 无需填充材料:搅拌摩擦焊是一种固态焊接技术,焊接过程中没有熔化的现象发生,因此不需要额外的填充材料。
这不仅节约了材料成本,而且避免了因填充材料导致的气孔、夹杂物等缺陷。
2. 焊接接头质量高:搅拌摩擦焊技术通过搅拌工具的旋转和摩擦加热,使焊缝材料发生塑性变形,形成均匀致密的焊接接头。
焊接接头的质量高,具有良好的力学性能和疲劳寿命。
3. 可焊接多种金属材料:搅拌摩擦焊技术可以焊接多种金属材料,包括铝合金、镁合金、不锈钢等。
这使得搅拌摩擦焊在航空航天、汽车、船舶等领域得到广泛应用。
4. 适用于大尺寸焊接:搅拌摩擦焊技术适用于大尺寸的焊接接头,可以实现长焊缝的连续焊接。
这在船舶、桥梁等领域具有重要意义。
5. 减少热影响区:搅拌摩擦焊焊接过程中没有融化现象发生,因此热影响区较窄,焊接接头周围的材料不会受到过热的影响,减少了变形和残余应力的产生。
6. 环保节能:搅拌摩擦焊焊接过程中无需使用额外的填充材料和保护气体,减少了环境污染和能源消耗。
7. 适应性强:搅拌摩擦焊技术适应性强,可以适应不同形状、尺寸和材料的焊接接头,具有良好的工艺适应性。
图1 搅拌摩擦焊工作原理图2 铸造铝合金和6mm铝合FSW接头6mm 6082铝合金板材铸造铝合金对于焊接材料而言,搅拌摩擦焊可以焊接所有牌号的铝合金,包括可以熔焊的5000、6000系列铝合金和熔焊难以焊接的2000、7000和铝锂合金材料;同时搅拌摩擦焊还可以实现不同种材料的连接。
正常情况下,搅拌摩擦焊不需要焊丝和保护气,焊接过程消耗较少。
焊接接头强度可以达到母材金属的80%以上。
搅拌摩擦焊目前可以实现所有的熔焊焊接结构,通过搅拌摩擦焊设备,可以实现1D、2D和3D结构的焊接。
并且由于焊透控制可以通过搅拌头来保证,所以迄今搅拌摩擦焊最大焊接深度还没有得到定义,图3为英国焊接研究所焊接的100mm厚度的搅拌摩擦焊接头。
图3 TWI焊接的厚度为100mm的搅拌摩擦焊接头汽车铝合金材料汽车通常选用能够大批量制造的商业化金属材料制造,使用比较普遍的一种是薄板低碳钢,另一种是铝合金。
铝合金材料很早就在国外越野汽车如LAND ROVER、运动赛车和高档轿车奥迪中使用, 并且由于汽车发展轻量化趋势的要求,铝合金在汽车中的使用越来越多,有资料显示,铝合金代替传统的钢铁制造汽车可使整车重量减轻30%~40%,制造发动机可减轻30%,制造缸体和缸盖可减轻30%~40%,制造车轮可减轻50%。
图4为美国福特公司2005年利用搅拌摩擦焊汽车焊接Automobile Welding挪威Hydro Aluminum公司首先利用搅拌摩擦焊实现了铝合金汽车轮毂的搅拌摩擦焊制造,如图6所示,即利用铝合金板材搅拌摩擦焊成为筒体结构,再利用液压滚压成形技术压制成设计形状,然后再利用搅拌摩擦焊将锻压或铸造轮副连接在轮鼓上,这种制造工艺既减轻了轮箍重量也简化了生产成本和提高生产效率。
目前,该技术已经在日本、澳大利亚和中国等地投入批量化铝合金轮毂生产。
汽车悬挂臂目前已经实现搅拌摩擦焊制造,如图7a所示,日本Showa Aluminum和Tokai Rubber公司在2004年就利用搅拌摩擦焊把挤压型材制造的悬挂头与直径20~30mm的铝合金管材焊在一起,实现汽车悬挂系统铝合金悬臂搅拌摩擦焊批量化制造。
一、实验目的1. 了解搅拌摩擦焊的基本原理和操作方法。
2. 掌握搅拌摩擦焊实验设备的操作流程。
3. 分析搅拌摩擦焊过程中的关键参数对焊接质量的影响。
4. 评估搅拌摩擦焊在特定材料焊接中的应用效果。
二、实验原理搅拌摩擦焊(Friction Stir Welding,FSW)是一种新型固相连接技术,通过高速旋转的搅拌头与工件接触产生摩擦热,使材料发生塑性变形,实现焊接。
该技术具有焊接接头质量高、变形小、无需填充材料等优点。
三、实验设备与材料1. 实验设备:搅拌摩擦焊机、焊接电源、引伸计、硬度计等。
2. 实验材料:不锈钢板材,尺寸为100mm×100mm×3mm。
四、实验方法1. 根据实验要求,设置搅拌摩擦焊机的参数,包括搅拌头的转速、焊接速度、搅拌头插入深度等。
2. 将不锈钢板材放置在焊接机的工作台上,调整好夹具,确保工件固定牢固。
3. 启动搅拌摩擦焊机,进行焊接实验。
焊接过程中,观察搅拌头的旋转状态和焊接接头的形成过程。
4. 焊接完成后,对焊接接头进行外观检查、力学性能测试和金相组织分析。
五、实验结果与分析1. 外观检查:焊接接头表面光滑,无裂纹、气孔等缺陷,焊接质量良好。
2. 力学性能测试:焊接接头的抗拉强度、弯曲强度等指标均达到母材水平,说明搅拌摩擦焊具有良好的力学性能。
3. 金相组织分析:焊接接头的显微组织为细小的等轴晶粒,晶粒尺寸均匀,无明显的热影响区,说明搅拌摩擦焊具有优异的组织性能。
六、讨论与结论1. 搅拌摩擦焊具有焊接接头质量高、变形小、无需填充材料等优点,在航空航天、汽车制造等领域具有广泛的应用前景。
2. 实验结果表明,搅拌摩擦焊能够有效地焊接不锈钢板材,焊接接头质量良好,力学性能满足要求。
3. 搅拌摩擦焊过程中的关键参数对焊接质量有重要影响。
通过合理调整搅拌头的转速、焊接速度、搅拌头插入深度等参数,可以获得高质量的焊接接头。
七、实验总结本次实验成功进行了搅拌摩擦焊实验,验证了搅拌摩擦焊技术的可行性和有效性。
搅拌摩擦焊的工艺特点及其应用搅拌摩擦焊(Friction Stir Welding,简称FSW)是一种高效的焊接技术,其原理是通过一个特殊的工具在两个待焊接材料之间进行高速旋转和直线移动,从而在材料内部产生摩擦热和塑性变形,使材料达到熔焊的效果。
这种工艺具有许多独特的优点,如焊接质量高、材料损耗低、焊接过程环保等,因此在工业领域得到了广泛应用。
一、工艺特点1. 热输入低:搅拌摩擦焊过程中,工具在材料内部产生摩擦热,而不是像传统熔焊方法那样直接加热材料。
因此,热输入低,避免了热影响区过大和材料性能下降的问题。
2. 焊接过程中无金属熔化:搅拌摩擦焊过程中,材料仅发生塑性变形,而无金属熔化。
这使得焊接接头的化学成分和性能更加均匀,避免了由于金属熔化导致的杂质和气体问题。
3. 焊接过程环保:由于搅拌摩擦焊过程中无金属熔化,因此避免了金属熔化过程中产生的烟雾和有害物质。
同时,由于热输入低,焊接过程产生的热量也对环境的影响较小。
4. 焊接速度快:搅拌摩擦焊的速度较快,适用于大批量生产。
同时,由于焊接过程中无金属熔化,焊接接头不需要后续处理,大大缩短了生产周期。
5. 适用范围广:搅拌摩擦焊适用于多种金属材料的焊接,如铝、铜、钢等。
同时,也适用于不同厚度、形状和尺寸的材料的焊接。
二、应用领域1. 航空航天领域:搅拌摩擦焊在航空航天领域的应用主要包括飞机结构件、发动机零件等的焊接。
由于焊接质量高、焊接速度快,大大提高了航空航天产品的生产效率和质量。
2. 汽车制造领域:搅拌摩擦焊在汽车制造领域的应用主要包括车身结构件、发动机零件等的焊接。
采用搅拌摩擦焊技术,可以大大减轻汽车重量,提高燃油效率,降低排放。
3. 铁路交通领域:搅拌摩擦焊在铁路交通领域的应用主要包括铁路车辆结构件、桥梁结构的焊接。
采用搅拌摩擦焊技术,可以提高铁路交通产品的可靠性和安全性。
4. 能源工程领域:搅拌摩擦焊在能源工程领域的应用主要包括压力容器、管道等的焊接。
搅拌摩擦焊接的定义-回复题目:搅拌摩擦焊接的定义及其应用领域摩擦焊接是一种常见的金属焊接方法,通过在接触面上加大接触压力并施加摩擦力,将两个金属片合并在一起。
它具有高效、环保、低能耗等优点,因此被广泛应用于航空航天、汽车制造、船舶建造以及金属制造等领域。
其中搅拌摩擦焊接是摩擦焊接方法中的一种特殊形式,它通过旋转容器中的工具头,同时施加下压力和旋转热摩擦,在金属接触面间形成永久的焊缝。
本文将一步一步详细介绍搅拌摩擦焊接的定义、原理、设备及其应用领域。
第一步:定义搅拌摩擦焊接搅拌摩擦焊接是一种用于将金属片焊接在一起的方法。
它通过施加下压力和旋转热摩擦来生成热量,并在金属接触面处形成焊缝。
搅拌摩擦焊接以其高强度、高质量以及适用于多种金属材料的特点而受到广泛关注。
第二步:原理搅拌摩擦焊接的原理基于热摩擦效应。
在搅拌摩擦焊接过程中,工具头被旋转而且施加下压力,使其与金属表面接触并形成摩擦。
这种摩擦会引起金属表面的热量生成。
当足够的热量被生成时,工具头会穿透金属板,形成一个圆形摩擦区域。
摩擦区域内的高温使得金属软化并变得可塑,随后工具头继续旋转并施加下压力,使金属片激动并形成永久的焊缝。
第三步:设备搅拌摩擦焊接通常需要一台专门设计的设备。
这种设备通常由工具头、压力系统和控制系统等部分组成。
工具头是整个焊接过程的核心部分,通常由耐磨材料制成。
压力系统用于施加下压力,保证相应的接触压力。
控制系统通常包括旋转速度、下压力和焊接时间等参数的控制。
第四步:应用领域搅拌摩擦焊接已被广泛应用于多个领域。
首先,它在航空航天领域中得到广泛应用,用于连接航空器的结构件,如机翼、蒙皮板等。
该焊接方法可以减少重量、提高强度,并能够满足对高强度、高质量的要求。
其次,在汽车工业中,搅拌摩擦焊接被用于连接车辆的零部件,如车身结构、底盘等。
它可以提供可靠的焊缝,并提高整体车身的刚性。
此外,搅拌摩擦焊接还被应用于船舶建造、金属制造以及其他需要高强度、高质量焊接的领域。
图1 搅拌摩擦焊工作原理
图2 铸造铝合金和6mm铝合FSW接头
6mm 6082铝合金板材
铸造铝合金
对于焊接材料而言,搅拌摩擦焊可以焊接所有牌号的铝合金,包括可以熔焊的5000、6000系列铝合金和熔焊难以焊接的2000、7000和铝锂合金材料;同时搅拌摩擦焊还可以实现不同种材料的连接。
正常情况下,搅拌摩擦焊不需要焊丝和保护气,焊接过程消耗较少。
焊接接头强度可以达到母材金属的80%以上。
搅拌摩擦焊目前可以实现所有的熔焊焊接结构,通过搅拌摩擦焊设备,可以实现1D、2D和3D结构的焊接。
并且由于焊透控制可以通过搅拌头来保证,所以迄今搅拌摩擦焊最大焊接深度还没有得到定义,图3为英国焊接研究所焊接的100mm厚度的搅拌摩擦焊接头。
图3 TWI焊接的厚度为100mm的搅拌摩擦焊接头
汽车铝合金材料
汽车通常选用能够大批量制造的商业化金属材料制造,使用比较普遍的一种是薄板低碳钢,另一种是铝合金。
铝合金材料很早就在国外越野汽车如LAND ROVER、运动赛车和高档轿车奥迪中使用, 并且由于汽车发展轻量化趋势的要求,铝合金在汽车中的使用越来越多,有资料显示,铝合金代替传统的钢铁制造汽车可使整车重量减轻30%~40%,制造发动机可减轻30%,制造缸体和缸盖可减轻30%~40%,制造车轮可减轻50%。
图4为美国福特公司2005年利用搅拌摩擦焊
汽车焊接Automobile Welding
挪威Hydro Aluminum公司首
先利用搅拌摩擦焊实现了铝合金汽
车轮毂的搅拌摩擦焊制造,如图6所
示,即利用铝合金板材搅拌摩擦焊
成为筒体结构,再利用液压滚压成
形技术压制成设计形状,然后再利
用搅拌摩擦焊将锻压或铸造轮副连
接在轮鼓上,这种制造工艺既减轻
了轮箍重量也简化了生产成本和提
高生产效率。
目前,该技术已经在
日本、澳大利亚和中国等地投入批
量化铝合金轮毂生产。
汽车悬挂臂目前已经实现搅拌
摩擦焊制造,如图7a所示,日本
Showa Aluminum和Tokai Rubber公
司在2004年就利用搅拌摩擦焊把挤
压型材制造的悬挂头与直径20~
30mm的铝合金管材焊在一起,实
现汽车悬挂系统铝合金悬臂搅拌摩
擦焊批量化制造。
在美国,Tower Automotive公
司首先利用搅拌摩擦焊为Ford公司
生产铝合金悬挂臂(如图7b所示),
这是美国汽车市场第一次将搅拌摩
(a)AEI公司
(b) 中国搅拌摩擦焊中心
图6 搅拌摩擦焊铝合金轮毂
FSW焊缝
厚板材料
薄板材料
Automobile Welding
汽车焊接
(b)Tower公司产品
(a)AEI公司产品
最初德国Audi公司和GKSS公司将搅拌摩擦焊短焊技术用于铝合金汽车零件的制造,如图9所示。
但是汽车零件的批量制造,搅拌摩擦焊短焊不能满足汽车零件的生产效率要求。
经过进一步的改进,搅拌摩擦点焊已经代替了搅拌摩擦短焊技术,并且日本马自达公司已将该
技术用于“马自达RX-8”型跑车后门框的焊接(如图10所示)。
结论
综上所述,
汽车的轻量化发展
以及铝合金材料的大量应用使得搅
拌摩擦焊在汽车中的应用越来越广泛。
通过改善设计和结构,搅拌摩擦焊可以提高接头的强度和结构刚
度,
减少材料的厚度和减轻汽车的重量。
搅拌摩擦点焊是一种新型的
铝合金汽车制造技术,基于该技术
在生产效率、节省能源、投资成本低等方面的优势,未来可能会发展
成为铝合金汽车的主导制造技术。
图9 搅拌摩擦焊短焊接头
图10 马自达公司用搅拌摩擦点焊制造RX-8铝合金汽车门及后盖
文章查询编号:W0518
等级些性能指标完全满足汽车设计要求。