2020年人教版七年级数学上学期 期末考试卷八(含答案)
- 格式:doc
- 大小:118.00 KB
- 文档页数:6
人教版2019-2020学年七年级(上)期末数学试卷含答案解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣22.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,53.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.95.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<08.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.110.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天二、填空题(每小题3分,共18分)11.﹣1的倒数是.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.13.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为km.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有.(填序号)三、解答题(本大题共72分)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.18.计算:(1)10﹣(﹣5)+(﹣9)+6﹣12018﹣6÷(﹣2)×(2)19.解方程:(1)2(3﹣x)=﹣4(x+5)(3)20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.24.去年微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?参考答案与试题解析一.选择题(共10小题)1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣2【分析】将各数按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣2<﹣1<0<5,则最小的数是﹣2,故选:D.2.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,5【分析】根据单项式系数及次数的定义来求解.【解答】解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.3.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=【分析】根据一元一次方程的定义,可得答案.【解答】解:A、是一元二次方程,故A错误;B、是一元一次方程,故B正确;C、是二元一次方程,故C错误;D、是分式方程,故D错误;故选:B.4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.9【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而得出m,n的值,即可分析得出答案.【解答】解:∵﹣x3y n与3x m y2是同类项,∴m=3,n=2,则mn=6.故选:C.5.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点【分析】根据线段的性质:两点之间,线段最短进行解答即可.【解答】解:2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是两点之间,线段最短,故选:B.6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°【分析】直接利用方向角的概念分别分析得出答案.【解答】解:A、射线OA的方向是北偏东30°方向,故此选项错误;B、射线OB的方向是北偏西25°,故此选项错误;C、射线OC的方向是东南方向,正确;D、射线OD的方向是南偏西15°,故此选项错误;故选:C.7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<0【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.8.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【解答】解:根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在右边,“快”在左边.故不正确的是C.故选:C.9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.1【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2018÷3,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴个位数字分别为3、9、7、1依次循环,∵2018÷4=504……2,∴32018的个位数字与循环组的第2个数的个位数字相同,是9,故选:B.10.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天【分析】此题是工程问题,把此工作分段进行分析,甲自己做了3天做了,则可知道甲自己做需要3÷=12天,再用方程求出各自做完需要的时间,利用工作量=工作时间×工作效率求剩余时间,而后即可求得总时间.【解答】解:设乙自己做需x天,甲自己做需3÷=12天,根据题意得,2(+)=﹣解得x=24则还需÷(+)=4天所以完成这项工作共需4+5=9天故选:A.二.填空题(共6小题)11.﹣1的倒数是﹣.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣1=﹣的倒数是:﹣.故答案为:﹣.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为 1 .【分析】根据一元一次方程的解得概念即可求出m的值.【解答】解:将x=2代入mx﹣2=02m﹣2=0m=1故答案为:113.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=﹣7 .【分析】将a﹣b=﹣10、c+d=3代入原式=a+d﹣b+c=a﹣b+c+d,计算可得.【解答】解:当a﹣b=﹣10、c+d=3时,原式=a+d﹣b+c=a﹣b+c+d=﹣10+3=﹣7,故答案为:﹣7.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为9或25 km.【分析】设A、B两地的距离为xkm,分C地在A、B两地之间、A地在B、C两地之间两种情况考虑,根据时间=路程÷速度即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设A、B两地的距离为xkm,当C地在A、B两地之间时(如图1所示),有+=5.1,解得:x=25;当A地在B、C两地之间时(如图2所示),有+=5.1,解得:x=9.故答案为:9或25.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有①②④.(填序号)【分析】根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.【解答】解:∵∠A和∠B互补,∴∠A+∠B=180°,①∵∠B+(90°﹣∠B)=90°,∴90°﹣∠B是∠B的余角,②∵∠B+(∠A﹣90°)=∠B+∠A﹣90°=180°﹣90°=90°,∴∠A﹣90°是∠B的余角,③∵∠B+(∠A+∠B)=∠B+×180°=∠B+90°,∴(∠A+∠B)不是∠B的余角,④∵∠B+(∠A﹣∠B)=(∠A+∠B)=×180°=90°,∴(∠A﹣∠B)是∠B的余角,综上所述,表示∠B余角的式子有①②④.故答案为:①②④.三.解答题(共9小题)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.【分析】(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB的中点E,画射线DE与射线CB交于点O;(3)画线段AD,然后从A向D延长使DF=AD.【解答】解:如图所示:.18.计算:(1)10﹣(﹣5)+(﹣9)+6(2)﹣12018﹣6÷(﹣2)×【分析】(1)将减法转化为加法,再计算即可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=10+5﹣9+6=21﹣9=12;(2)原式=﹣1+3×=﹣1+1=019.解方程:(1)2(3﹣x)=﹣4(x+5)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2x=﹣4x﹣20,移项合并得:2x=﹣26,解得:x=﹣13;(2)去分母得:9+3x﹣6=2x+4,移项合并得:x=1.20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,当x=﹣2,y=1时,原式=﹣10+1=﹣9.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,然后乘以0.3即可解答本题.【解答】解:(1)(+8)+(﹣9)+(+4)+(﹣7)+(﹣2)+(﹣10)+(+11)+(﹣3)+(+7)+(﹣5)=8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=8+4+11+7﹣9﹣7﹣2﹣10﹣3﹣5=30﹣36=﹣6(千米),答:收工时,检修工在A地的西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66(千米)66×0.3=19.8(升)答:从A地出发到收工时,共耗油19.8升.22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.【分析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单价利润×数量即可求出销售完这批货物的总利润,用其除以进价×100%再与40%比较后,即可得出结论.【解答】解:(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据题意得:10x+15(100﹣x)=1300,解得:x=40,∴100﹣x=60.答:该店用1300元可以购进A种型号的文具40只,B种型号的文具60只.(2)(12﹣10)×40+(23﹣15)×60=560(元),∵560÷1300×100%≈43.08%>40%,∴若把所购进A,B两种型号的文具全部销售完,利润率超过40%.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.【分析】(1)先根据角平分线定义求出∠AOC、∠COB的度数,再求出∠BOD的度数即可求解;(2)求出∠BOE的度数,根据角的和差关系即可得出答案.【解答】解:(1)∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∴∠AOC=∠BOD;(2)∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.24.去年(2017年)微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.【分析】(1)先根据题中所描述的6条规则,列出式子得到一个三位数,然后根据规则判断手机号的最后一位及年龄,再根据年份验证即可;(2)根据题意列出代数式,从数学式子进行解释即可;(3)根据(2)中的式子进行判断是否符合,然后根据年份为2018,修改规则即可.【解答】解:(1)根据题意得:(7×2+5)×50+1767﹣2004=713第一位数字7是你手机号的最后一位,接下来13就是你的实际年龄,2017﹣2004=13,准确;(2)设手机尾号为x,由题意得:(2x+5)×50+1767=100x+2017去年是2017年,此数减去你出生的那一年后,正好是你的年龄,而百位上的第一个数字是手机尾号;(3)设手机尾号为x,(2x+5)×50+1767=100x+2017今年是2018年,用2017年这个数减去你出生的那一年后,不符合,可以修改规则⑤为:“把得到的数目加上1768”(2x+5)×50+1767=100x+2018,这样在今年就仍然准了.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?【分析】(1)利用非负数的性质求出a与b的值,确定出AB即可;(2)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可;(3)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可.【解答】解:(1)∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7;(2)若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10;(3)若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.5.。
2022-2023年人教版数学七年级上册期末考试测试卷及答案(一)一、单选题(本题共10小题,每小题5分,共50分)1.某商品的标价为150元,若以8折降价出售.相对于进价仍获利20%,则该商品的进价为()A.120元B.110元C.100元D.90元2.震惊世界的MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中,首次侦听到疑是飞机黑匣子的脉冲信号,探测到的信号所在海域水深4500米左右,其中4500用科学记数法表示为()A.4.5×10B.4.5×10C.45.0×10D.0.45×103.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.B.C.D.4.在下列数中,负数的个数是()A.0个B.1个C.2个D.3个5.下列说法中正确的是()A.正整数与正分数统称为正有理数B.正整数与负整数统称为整数C.正分数、0、负分数统称为分数D.一个有理数不是正数就是负数6.若|a|=|b|,则()A.a=b B.a=﹣b C.a=±b D.=±17.下列各组数中,互为相反数的是()A.(﹣3)和﹣3B.(﹣3)和3C.(﹣2)和﹣2D.|﹣2|和|﹣2|8.把多项式x-xy+xy+x-3按x的降幂排列是()A.x+x+xy-3-xyB.-xy+xy+x+x-3C.-3-xy+xy+x+xD.x+x+xy-xy-39.已知,,…,都是正数,如果M=(++…+)(++…+),N=(++…+)(++…+),那么M,N的大小关系是()A.M>N B.M=N C.M<N D.不确定10.已知有理数a,b,c在数轴上的位置如图所示,下列错误的是()A.b+c<0B.−a+b+c<0C.|a+b|<|a+c|D.|a+b|>|a+c|二、填空题(本题共5小题,每小题5分,共25分)11.有理数、在数轴上的位置如图所示,下列说法:①,②,③,④,⑤;其中正确的序号有.12.已知|x|=3,|y|=2,且xy>0,则x−y的值等于.13.计算:−1+24÷(−2)−3×()=.14.若、、都是非零有理数,其满足,则的值为.15.绝对值小于2019的所有整数之和为.三、计算题(本题共3小题,每小题9分,共27分)16.计算:(1)(4分)(2)(5分)17.有理数a,b,c在数轴上的位置如图所示,化简:.18.单项式xy与多项式xy+y+的次数相同,求m的值.四、解答题(本题共4小题,每小题12分,共48分)19.如图,延长线段AB到C,使BC=3AB,点D是线段BC的中点,如果CD=3cm,那么线段AC的长度是多少?20.植树节甲班植树的株数比乙班多20%,乙班植树的株树比甲班的一半多10株,若乙班植树x株.(1)列两个不同的含x的代数式表示甲班植树的株数.(2)根据题意列出以x为未知数的方程.(3)检验乙班、甲班植树的株数是不是分别为25株和35株.21.如图,是直线上一点,为任一射线,平分,平分,(1)分别写出图中与的补角;(2)与有怎样的数量关系,请说明理由.22.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数的点重合参考答案一、单选题(本题共10小题,每小题5分,共50分)1.【考点】一元一次方程的应用.【分析】利润=售价﹣进价=进价×利润率,据此列方程求解.【解答】解:设该商品的进价为x元.根据题意得150×0.8﹣x=20%•x.解得x=100.即该商品的进价为100元.故选:C.【点评】此题考查一元一次方程的应用,搞清楚销售问题中各个量之间的关系是关键.2.【答案】B【解析】解:4500=4.5×10故答案为:B3.【答案】D【解析】∵由图可知a<0<b,且|a|>|b|,<0∴a<−b,故答案为:D.4.【答案】D【解析】解:−(−3)=3,属于正数;(−2)²=4,属于正数;0既不是正数,也不是负数;−3²=−9,属于负数;−|−3|=−3,属于负数;-是负数;综上所述,负数的个数有3个。
人教版七年级上册期末测试卷数学试一.选择题(共10小题)1.﹣5的相反数是( )A .﹣5B .5C .15D .−152.下列几何体都是由4个相同的小立方块搭成的,其中从正面看和从左面看,形状图相同的是( )A .B .C .D .3.在∠AOB 内部任取一点C ,作射线OC ,则一定存在( )A .∠AOB >∠AOC B .∠AOC >∠BOC C .∠BOC >∠AOCD .∠AOC =∠BOC4.2022年冬奥会即将在北京举行,北京也即将成为迄今为止唯一一个即举办过夏季奥运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为15.6亿美元.其中15.6亿用科学记数法表示为( )A .1.56×107B .15.6×109C .1.56×108D .1.56×1095.下列各式计算正确的是( )A .a +2a =3a 2B .3a +b =3abC .7a 2+2a 2=9a 2D .3ab ﹣4ab =ab6.如图,下列结论中,不能说明射线OC 平分∠AOB 的是( )A .∠AOC =∠BOCB .∠AOB =2∠BOC C .∠AOB =2∠AOCD .∠AOC +∠BOC =∠BOA 7.已知x =3是关于x 的方程ax +2x ﹣3=0的解,则a 的值为( )A .﹣1B .﹣2C .﹣3D .1 8.解方程x 2−1=x−13时,去分母正确的是( ) A .3x ﹣3=2x ﹣2 B .3x ﹣6=2x ﹣2C .3x ﹣6=2x ﹣1D .3x ﹣3=2x ﹣1 9.如图,OC 是∠AOB 的平分线,∠BOD =13∠DOC ,∠BOD =18°,则∠AOD 的度数为( )A .72°B .80°C .90°D .108°10.正方形纸板ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形纸板ABCD 绕着顶点顺时针方向在数轴上连续无滑动翻转,则在数轴上与2023对应的点是( )A .DB .C C .BD .A二.填空题(共5小题)11.计算:(﹣2)2﹣|﹣3|= .12.写出一个一元一次方程,使它的解为x =7: .13.画一条直线同时经过点A 和点B ,这样的直线可以画 条.14.如图,直线AB 、CD 相交于点O ,射线OM 平分∠AOC ,∠MON =90°.若∠MOC =35°,则∠BON 的度数为 ..15.已知三点A ,B ,C 在一条直线上,且AB =7cm ,BC =3cm ,若点D 是线段AC的中点,则线段DB 的长度是 cm .三.解答题(共8小题)16.计算:(1)|−214|−(−34)+1−|1−12|; (2)16+(﹣2)3−19×(﹣32)-(﹣4)4.17.解方程:(1)2(x +8)=x ﹣1; (2)2x+15−1=x−23.18.先化简,再求值:5x 2+4﹣(3x 2+5x )﹣(2x 2﹣6x +5).其中x =﹣3.19.如图,已知线段a ,b .(1)请用没有刻度的直尺和圆规按下列要求作图,不写作法,保留作图痕迹;①作线段AB =a ;②延长线段AB 到C ,使BC =b .(2)在(1)的条件下,若AB =8,BC =5,点D 是线段AB 的中点,点E 是线段AC 的中点,求线段DE 的长.20.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B 两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?21.阅读材料并回答问题:请你完成以下问题:(1)将同学一的解答过程空缺部分补充完整,能正确求出图2中∠BOD的度数.(2)判断同学二的说法是否正确,若不正确,请说明理由;若正确,请你在图1中画出另一种情况对应的图形,并求∠BOD的度数.22.如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程x﹣2=0是方程x﹣1=0的后移方程.(1)判断方程2x+1=0是否为方程2x+3=0的后移方程(填“是”或“否”);(2)若关于x的方程3x+m+n=0是关于x的方程3x+m=0的后移方程,求n的值.(3)当a≠0时,如果方程ax+b=0是方程ax+c=0的后移方程,用等式表达a,b,c满足的数量关系.23.已知线段AB=15,点C在线段AB上,且AC:CB=3:2.(1)求线段AC,CB的长;(2)点P是线段AB上的动点,线段AP的中点为M,设AP=m.①请用含有m的代数式表示线段PC,MC的长;②若三个点M,P,C中恰有一点是其它两点所连线段的中点,则称M,P,C三点为“共谐点”,请直接写出使得M,P,C三点为“共谐点”的m的值.。
人教版七年级数学上册期末考试测试卷(附答案)篇文章是一份数学测试题,包含10道选择题。
以下是对每道题的解答和解释:1.如果+20%表示增加20%,那么-6%表示减少6%。
答案为C。
2.解方程得到“3÷2×(2-x)=1”,化简后得到“x=1/2”。
所以“3/2”的倒数是“2/3”。
答案为B。
3.由图可知,a和b的差的绝对值大于它们的积,即|a-b|>ab。
所以选项C错误。
4.368万精确到万位,2.58精确到百分位,0.0450有4个有效数字,保留3个有效数字为1.00×104.选项B错误。
5.从图中可以看出,这是一个棱锥,有5个顶点,有6个面和8条棱。
选项B和D错误。
6.将a,ab和ab2分别化简为a,-a和-a,所以它们按由小到大的顺序排列为ab2<a<ab。
答案为B。
7.将分母移到等号左边,得到“x(x-1)=35(x-1)”;移项化简后得到“5x=15-3(x-1)”。
答案为A。
8.将y和z的值代入x-y+z,得到“4x-2”。
答案为B。
9.沿虚线剪开后,左上角和右下角的小正方形边长相等,设为x,则有n=x,m=x+2n,代入公式得到“x=m/3-n/3”。
答案为B。
10.这个几何体由4个正方形和2个长方形组成,其中一个正方形在底部,上面有一个长方形,另一个长方形和3个正方形在顶部。
所以这个几何体是一个三棱柱。
本文是一篇数学试卷,需要进行格式调整和小幅度改写。
具体修改如下:一、选择题:1.一个几何体最多可由多少个这样的正方体组成?()A。
12个B。
13个C。
14个D。
18个2.填空题:本大题共 10 小题,每小题 3 分,共 30 分。
11.多项式 2x^3 - x^2y^2 - 3xy + x - 1 是_______次_______项式。
12.三视图都是同一平面图形的几何体有_______、_______。
(写两种即可)13.若ab ≠ 0,则等式 a + b = a + b 成立的条件是______________。
人教版2019-2020年度七年级(上)期末数学试卷含答案解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作()A.259 B.﹣960 C.﹣259 D.4422.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.63.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.5.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.6.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣22xab2的次数是6D.﹣的系数是7.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=38.钟表上的时间指示为两点半,这时时针和分针之间形成的角(小于平角)的度数为()A.120°B.90°C.100°D.105°9.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)11.如图,数轴上的A、B、C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A与点B之间B.点B与点C之间C.点B与点C之间(靠近点C)D.点B与点C之间(靠近点C)或点C的右边12.将正偶数按表1排成5列:根据上面的排列规律,2018应在()A.第252行,第1列B.第252行,第4列C.第253行,第2列D.第253行,第5列二、填空题(本大题共6小题,每小题4分,共24分)13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.方程﹣2x﹣1=1的解为x=15.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.16.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示从上到下第m排,从左到右第n个数,如(4,2)表示整数8.则(62,55)表示的数是.三、解答题(本大题共9小题,共78分。
2019-2020学年新人教版七年级上学期期末考试数学试卷及答案2019-2020学年七年级上学期期末考试数学试卷一、正确选择(每一题所给的四个选项中,只有一个是正确的。
本大题有8小题,每题2分,共16分)1.-6的倒数是()A。
6 B。
-6 C。
1/6 D。
-1/62.作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著。
两年来,已有18个项目在建或建成,总投资额达185亿美元。
185亿用科学记数法表示为()A。
1.85×109 B。
1.85×1010 C。
1.85×1011 D。
1.85×10123.下列运算正确的是()A。
(-3) - (-2) = -1 B。
4 ÷ (-2) = -2 C。
-6 = -6 D。
(-3) × (-2) = 64.下列方程中,以-2为解的方程是()A。
3x+1=2x-1 B。
3x-2=2x C。
5x-3=6x-2 D。
4x-1=2x+35.图中的立体图形与平面展开图不相符的是()A。
B。
C。
D。
6.如图,∠AOB=∠COD,则()A。
∠1>∠2 B。
∠1=∠2 C。
∠1<∠2 D。
∠1与∠2的大小无法比较7.钟表4点30分时,时针与分针所成的角的度数为()A。
45° B。
30° C。
60° D。
75°8.按照___所示的计算机程序计算,若开始输入的x值为2.第一次得到的结果为1,第二次得到的结果为4, (2019)得到的结果为()A。
1 B。
2 C。
3 D。
4二、合理填空(本大题有8小题,每题2分,共16分)9.在体育课的跳远比赛中,以4.00米为标准,若___跳出了4.23米,可记做+0.23米,那么___跳出了3.75米,记作-0.25米。
10.已知两个有理数相加,和小于每一个加数,请写出满足上述条件的一个算式:-1+2=-1/2.11.若∠α的余角是48°,则∠α的补角为42°。
人教版七年级上册数学《期末》测试卷(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =2.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③3.①如图1,AB ∥CD,则∠A +∠E +∠C=180°;②如图2,AB ∥CD,则∠E =∠A +∠C;③如图3,AB ∥CD,则∠A +∠E -∠1=180° ; ④如图4,AB ∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个4.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-75.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地其中符合图象描述的说法有( )A .2个B .3个C .4个D .5个6.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .437.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm8.(92的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或79.若a <b ,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b ->-D .22a b <10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x 的值为________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.已知(x ﹣1)3=64,则x 的值为_________.4.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.3.如图,O ,D ,E 三点在同一直线上,∠AOB=90°.(1)图中∠AOD 的补角是_____,∠AOC 的余角是_____;(2)如果OB 平分∠COE ,∠AOC=35°,请计算出∠BOD 的度数.4.已知:点A 、C 、B 不在同一条直线上,AD BE .(1)如图1,当58A ︒∠=,118B ︒∠=时,求C ∠的度数;(2)如图2,AQ 、BQ 分别为DAC ∠、EBC ∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图3,在(2)的前提下,有AC QB ,QP PB ⊥,直接写出::DAC ACB CBE ∠∠∠的值.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m 的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表: 车型运费运往甲地/(元/辆)运往乙地/(元/辆) 大货车720 800 小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、A7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、40°3、54、如果两个角是同一个角的余角,那么这两个角相等5、两6、a2+2ab+b2=(a+b)2三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(1)a=5,b=2,c=3 ;(2)±4.3、(1)∠AOE,∠BOC;(2)125°4、(1)∠ACB=120°;(2)2∠AQB+∠C=180°;(3)∠DAC:∠ACB:∠CBE=1:2:2.5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。
2020年人教版七年级数学上学期期末考试卷八
一、选择题:(本大题10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)
1.(4分)的倒数是()
A. B. C. D.
2.(4分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()
A.3.12×105 B.3.12×106 C.31.2×105 D.0.312×107
3.(4分)如果∠A的补角与∠A的余角互补,那么2∠A是()
A.锐角 B.直角 C.钝角 D.以上三种都可能
4.(4分)若与kx﹣1=15的解相同,则k的值为()
A.8 B.2 C.﹣2 D.6
5.(4分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是() A.B.C.D.
6.(4分)下列各题中,合并同类项结果正确的是()
A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy﹣3xy=1 D.2m2n﹣2mn2=0
7.(4分)有理数a,b在数轴上的表示如图所示,则下列结论中:①ab<0,②ab>0,
③a+b<0,④a﹣b<0,⑤a<|b|,⑥﹣a>﹣b,正确的有()
A.2个B.3个C.4个D.5个
8.(4分)下列各题中正确的是()
A.由7x=4x﹣3移项得7x﹣4x=3
B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)
C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1
D.由2(x+1)=x+7 移项、合并同类项得 x=5
9.(4分)该试题已被管理员删除
10.(4分)将全体自然数按下面的方式进行排列:
按照这样的排列规律,2014应位于()
A.位B.位C.位D.位
二、填空题:(每小题4分,共24分)
11.(4分)单项式﹣πa3bc的次数是,系数是.
12.(4分)若有理数a、b满足|a﹣5|+(b+7)2=0,则a+b的值为.
13.(4分)若代数式x﹣y的值为4,则代数式2x﹣3﹣2y的值是.
14.(4分)近似数6.4×105精确到位.
15.(4分)|x﹣1|=1,则x= .
16.(4分)已知线段AB=6cm,点C在直线AB上,且CA=4cm,O是AB的中点,则线段OC的长度是cm.三、解答题:(共86分)
17.(8分)计算:﹣23﹣×[2﹣(﹣3)2].
18.(8分)化简
(1)3x﹣2x2+5+3x2﹣2x﹣5;(2)2(2a﹣3b)+3(2b﹣3a).
19.(8分)如图,已知平面上有四个点A,B,C,D.
(1)连接AB,并画出AB的中点P;
(2)作射线AD;
(3)作直线BC与射线AD交于点E.
20.(8分)解方程:x﹣=﹣.
21.(10分)化简求值:3(x2﹣2xy)﹣(2x2﹣xy),其中x=2,y=3.
22.(10分)苏宁电器元旦促销,将某品牌彩电按进价提高40%,然后在广告上写“元旦大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电进价是多少元?
23.(12分)某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.
(1)若黄老师家5月份用水16吨,问应交水费多少元?
(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?
(3)若黄老师家7月份用水a吨,问应交水费多少元?(用a的代数式表示)
24.(10分)如图,已知线段AD=6cm,线段AC=BD=4cm,E,F分别是线段AB,CD的中点,求EF的长度.
25.(12分)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?
(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON= (直接写出结果).
(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON= (直接写出结果).
参考答案
1.C.
2.B.
3.B.
4.B.
5.D.
6.A.
7.B.
8.D.
9.C.
10.C.
11.答案为:5,﹣.
12.答案为:﹣2.
13.答案为:5
14.答案为:万.
15.答案为:2或0.
16.答案为:1或7.
17.解:﹣23﹣×[2﹣(﹣3)2]=﹣8﹣×(2﹣9)=﹣8﹣×(﹣7)=﹣8﹣(﹣1)=﹣8+1=﹣7.
18.解:(1)3x﹣2x2+5+3x2﹣2x﹣5=(3x﹣2x)+(﹣2x2+3x2)+(5﹣5)=x2+x;
(2)2(2a﹣3b)+3(2b﹣3a)=4a﹣6b+6b﹣9a=﹣5a.
19.解:由题意可得,如右图所示.
20.解:去分母得6x﹣3(x﹣1)=4﹣(x+2),
去括号得6x﹣3x+3=4﹣x﹣2
移项合并得4x=﹣1,
系数化为1得x=﹣.
21.解:原式=3x2﹣6xy﹣2x2+xy=x2﹣5xy,当x=2,y=3时,原式=22﹣5×2×3=﹣26.
22.解:设每台彩电进价是x元,依题意得:0.8(1+40%)x﹣x=270,解得:x=2250.
答:每台彩电进价是2250元.
23.解:(1)10×2+(16﹣10)×2.5=35(元),答:应交水费35元;
(2)设黄老师家5月份用水x吨,由题意得10×2+2.5×(x﹣10)=30,解得x=14,
答:黄老师家5月份用水14吨;
(3)①当0<a≤10时,应交水费为2a(元),
②当a>10时,应交水费为:20+2.5(a﹣10)=2.5a﹣5(元).
24.解:∵E,F分别是线段AB,CD的中点,
∴AB=2EB=2AE,CD=2CF=FD,
∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,
∴AC+2CF=6,解得,CF=1,
同理可得:EB=1,∴BC=2,
∴EF=EB+BC+CF=1+2+1=4.
25.解:(1)如图1,∵∠AOB=90°,∠BOC=60°,
∴∠AOC=90°+60°=150°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°
∴∠MON=∠MOC﹣∠NOC=45°.
(2)如图2,
∵∠AOB=70°,∠BOC=60°,
∴∠AOC=70°+60°=130°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=∠AOC=65°,∠NOC=∠BOC=30°
∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.
故答案为:35°.
(3)如图3,∠MON=α,与β的大小无关.
理由:∵∠AOB=α,∠BOC=β,
∴∠AOC=α+β.
∵OM是∠AOC的平分线,ON是∠BOC的平分线,
∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,
∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.
∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.故答案为:α.。