基于MATLAB的三相整流电路的设计
- 格式:doc
- 大小:464.00 KB
- 文档页数:13
基于Matlab/Simulink的三相桥式全控整流电路的建模与仿真摘要本文在对三相桥式全控整流电路理论分析的基础上,建立了基于Simulink的三相桥式全控整流电路的仿真模型,并对其带电阻负载时的工作情况进行了仿真分析与研究。
通过仿真分析也验证了本文所建模型的正确性。
关键词Simulink建模仿真三相桥式全控整流对于三相对称电源系统而言,单相可控整流电路为不对称负载,可影响电源三相负载的平衡性和系统的对称性。
故在负载容量较大的场合,通常采用三相或多相整流电路。
三相或多相电源可控整流电路是三相电源系统的对称负载,输出整流电压的脉动小、控制响应快,因此被广泛应用于众多工业场合。
本文在Simulink仿真环境下,运用PowerSystemBlockset的各种元件模型建立三相桥式全控整流电路的仿真模型,并对其进行仿真研究。
一、三相桥式全控整流电路的工作原理三相桥式全控整流原理电路结构如图1所示。
三相桥式全控整流电路是应用最广泛的整流电路,完整的三相桥式整流电路由整流变压器、6个桥式连接的晶闸管、负载、触发器和同步环节组成(见图1-1)。
6个晶闸管以次相隔60度触发,将电源交流电整流为直流电。
三相桥式整流电路必须采用双脉冲触发或宽脉冲触发方式,以保证在每一瞬时都有两个晶闸管同时导通(上桥臂和下桥臂各一个)。
整流变压器采用三角形/星形联结是为了减少3的整倍次谐波电流对电源的影响。
元件的有序控制,即共阴极组中与a、b、c三相电源相接的三个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的三个晶闸管分别为VT、VT。
它们可构成电源系统对负载供电的6条整流回路,各整流回路的交流电源电压为两元件所在的相间的线电压。
图1-1 三相桥式全控整流原理电路二、基于Simulink三相桥式全控整流电路的建模三相桥式全控整流电路在Simulink环境下,运用PowerSystemBlockset的各种元件模型建立了三相桥式全控整流电路的仿真模型,仿真结构如图2-1所示:图2-1 三相桥式全控整流电路的仿真模型在模型的整流变压器和整流桥之间接入一个三相电压-电流测量单元V-I是为了观测方便。
目录摘要- 1 -Abstract- 2 -第一章引言- 3 -1.1 设计背景- 3 -1.2 设计任务- 3 -第二章方案选择论证- 5 -2.1方案分析- 5 -2.2方案选择- 5 -第三章电路设计- 6 -3.1 主电路原理分析- 6 -第四章仿真分析- 7 -4.1 建立仿真模型- 7 -4.2仿真参数的设置- 8 -4.3 仿真结果及波形分析- 9 -第五章设计总结- 22 -致谢- 23 -参考文献- 23 -摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。
这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。
据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。
电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
Matlab提供的可视化仿真工具Simulink 可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。
关键词:电力电子晶闸管simulink 三相桥式整流电路AbstractAt present, all kinds of power electronic converter input rectifier circuit input power level generally use the uncontrolled rectifier or phase controlled rectifier circuit. This kind of rectifier circuit is simple in structure, control technology is mature, but the AC input power factor is low, and the harmonic currents injected a lot to the power grid. According to estimates, in developed countries 60% of the electric energy transformed before use, and this figure reached 95% at the beginning of the century.Power electronic technology has been widely used in electric power system. According to estimates, the developed countries in the end users to use electricity, with more than 60% of the electricity at least after more than once in power electronic converter device. Power system in the modernization process, the power electronic technology is one of the key technologies. It is no exaggeration to say that, if you leave the power electronic technology, power system modernization is unthinkable.With the development of social production and scientific technology, application of rectifier circuit in the field of automatic control system, the measuring system and the generator excitation system is more and more widely. Matlab provides a visual simulation tool Simulink can directly establish circuit simulation model, changing the simulation parameters, and can immediately get the simulation results of arbitrary, intuitive, further saves the programming steps. In this paper, Simulink is used to model the three-phase full-bridge controlled rectifier circuit, the different control angle, bridge fault conditions are simulated and analyzed, which deepens the three-phase full-bridge controlled rectifier circuit theory, it also examines the foundations for modern power electronic experimental teaching lay a good solid.The curriculum design for the design of thyristor three-phase bridge controlled rectifier circuit, compared with three phase half wave rectifier circuit, the power of three-phase bridge rectifier circuit utilization rate higher, more extensive application.Key words: electronic power thyristor Simulink three-phase bridge rectifier circuit第一章引言1.1 设计背景在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。
五邑大学电力电子技术课程设计报告题目:三相桥式整流电路的MATLAB仿真院系信息工程学院专业自动化班级130705学号3113001682学生姓名李上雄指导教师张建民三相桥式整流电路的matlab仿真一、题目的要求和意义利用MATLAB软件中的SIMULINK对三相桥式整流电路进行建模、仿真,设置参数,采集波形。
设计意义:整流电路是电力电子技术中最为重要的电路,应用广泛。
常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。
三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。
Matlab 提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强。
利用matlab对三相桥式全控整流电路仿真,可以让我们进一步深入了解三相整流电路工作的每一个步骤,充分掌握三相整流电路,而对故障波形的采集与分析,锻炼我们解决电路出现问题时的能力,以使我们在实际工作中也能足够的理论知识去排除及解决各种电路故障,具有十分重要的意义。
设计目的:1、掌握MATLAB软件中的SIMULIN K仿真。
2、加深对三相桥式整流电路的理解。
实验要求:1、利用示波器观察纯电阻负载时的仿真波形,并将u d、i d、u VT1波形记录下来(触发角选择30°)。
2、利用示波器观察阻感负载时的仿真波形,并将u d、i d、u VT1波形记录下来(触发角选择30°)。
3、故障波形的采集:当触发角为0度时,将晶闸管2断开,查看阻感负载下的输出电压u d的波形,记录下来,并分析故障现象。
二、基本原理三相桥式全控整流电路图如下:图1三相桥式全控整流电路原理图晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6,相位依次差60°;共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,相位依次差120°。
用simulink对三相桥式全控整流电路进行仿真研究姓名:刘佰兰学校:中山大学学号:09382014 专业:自动化摘要:三相桥式全控整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。
这里结合全控整流电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路的进行仿真,对输出参数进行仿真及验证,进一步了解三相桥式全控整流电路的工作原理。
关键词:simulink 三相桥式全控整流仿真一、研究背景随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。
三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。
它是由半波整流电路发展而来的。
由一组共阴极的三相半波可控整流电路和一组共阳极接法的晶闸管串联而成。
六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。
由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。
Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
二、三相桥式全控整流电路工作原理1.三相桥式全控整流电路特性分析图1是电路接线图。
三相桥式全控整流电路图是应用最为广泛的整流电路,其电路图如下:图1在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。
基于MATLAB^真平台的三相半波整流电路作者: 日期:基于MATLAB仿真平台的三相半波整流电路专业:学号:姓名:三相半波可控整流电路1、阻性负载阻性负载的三相半波可控整流电路如图1所示:图1三相半波可控整流电路共阴极接法电阻负载时的电路其中,R=1,三相电源为220V50HZ A、B、C三相初始相角分别设置为:0、120、240,VT1、VT2、VT3脉冲触发信号分别为(a+30+O)*0.01/180、(a+30+120 *0.01/180、(a+30+240*0.0Y180)。
(1)?=00时的仿真结果如图2所示。
由波形图可以看出,脉冲触发角?=00时刚好与自然换相点重合(改变触发角也只能在此基础上增大),故而电路的工作情况与三相半波不可控整流电路中的二极管整流工作情况相同,均在自然换相点处换流,U波形为三个相电压在正半周期的包络线。
丁—(2) ?=300时的仿真结果如图3所示。
?=30°时,VT1触发导通至a、b 两相的自然换相点时,虽有u b>u a,但VT2触发脉冲还未到,故VT2不能导通。
VT1持续导通至a相由0变负点将要承受反压自行关断时恰好VT2受触发导通,从而保证了负载电流的连续。
从输出电压、输出电流的波形也可看出,?=30°时,负载电流处于连续和断续的临界点,各相仍导通120°。
图3 ?=300时的波形(3) ?=600时的仿真结果如图4所示。
由波形图可看出,?=60°时晶闸管刚好在该相峰值处导通,导通前承受晶闸管的最大正向压降,即相电压峰值。
由理论分析可得出结论:1)三只晶闸管有且只有一相导通时,另外两只必承受或正或负的线电压,且最大反相电压为线电压峰值;2)三只晶闸管均不导通时,各自承受对应相的相电压。
?=90°、?=1200时的波形与?=600时雷同,不再一一阐述,仅出示仿真结果见图5和图6。
图4 ?=60°时的波形图5 ?=900时的波形图6 ?=1200时的波形(4) ?=1500时的仿真结果如图7所示。
基于MATLAB的三相全控整流建模与仿真萧飞河北惠仁医疗设备 2015年1月摘要本文在对三相桥式全控整流电路理论分析的基础上,建立了基于Simulink的三相桥式全控整流电路的仿真模型,并对其带电阻负载时的工作情况进行了仿真分析与研究。
通过仿真分析也验证了本文所建模型的正确性。
关键词Simulink建模 仿真 三相桥式全控整流对于三相对称电源系统而言,单相可控整流电路为不对称负载,可影响电源三相负载的平衡性和系统的对称性。
故在负载容量较大的场合,通常采用三相或多相整流电路。
三相或多相电源可控整流电路是三相电源系统的对称负载,输出整流电压的脉动小、控制响应快,因此被广泛应用于众多工业场合。
本文在Simulink仿真环境下,运用PowerSystemBlockset的各种元件模型建立三相桥式全控整流电路的仿真模型,并对其进行仿真研究。
一、 MATLAB基础MATLAB 是一种科学计算软件。
MATLAB 是 Matrix Laboratory(矩阵实验室)的缩写,这是一种以矩阵为基础的交互式程序计算语言。
早期的 MATLAB 主要用于解决科学和工程的复杂数学计算问题。
由于它使用方便、输入便捷、运算高效、适应科技人员的思维方式,并且有绘图功能,有用户自行扩展的空间,因此受到用户的欢迎,使它成为在科技界广为使用的软件,也是国内外高校教学和科学研究的常用软件。
MATLAB 由美国 Mathworks 公司于 1984 年开始推出,历经升级,到 2001 年已经有了6.0 版,现在 MATLAB 6.5、7.1、7.8版都已相继面世。
早期的 MATLAB 在 DOS 环境下运行,1990 年推出了Windows 版本。
1993年,Mathworks 公司又推出了MATLAB 的微机版,充分支持在MicrosoftWindows 界面下的编程,它的功能越来越强大,在科技和工程界广为传播,是各种科学计算软件中用频率最高的软件。
密级:公开科学技术学院NANCHANG UNIVERSITY COLLEGE OFSCIENCE AND TECHNOLOGY学士学位论文THESIS OF BACHELOR(2012 —2016年)题目基于MATLAB的三相整流器设计学科部:信息学科部专业:电气工程及其自动化班级:电气122班学号:7022812067学生姓名:张升林指导教师:万旻起讫日期:2015年12月—2016年5月29日目录摘要 (I)Abstract (II)第一章三相整流器的发展状况 (1)1 .1 三相整流器发展背景 (1)1 .2 三相整流器的进展 (1)1 .3 本论文主要研究的内容 (2)第二章Matlab-Simulink电力系统仿真介绍 (3)2 .1 Matlab介绍 (3)2 .2 Simulink的介绍 (4)第三章三相整流器的结构和原理分析 (5)3.1 三相桥式全控整流器结构和原理分析 (5)3.2 三相PWM整流器结构和原理分析 (5)第四章三相整流器电路的仿真 (7)4.1三相桥式全控整流器的仿真 (7)4.2 三相PWM整流器的仿真 (8)第五章三相PWM整流器的设计 (11)5.1 主电路设计 (11)5.2 功率器件的选择 (11)结论 (13)参考文献(References) (13)致谢 (14)基于MATLAB的三相整流器设计专业:电气工程及其自动化学号:7022812067 学生姓名:张升林指导教师:万旻摘要:整流器是把交流电源转化为直流电源的一种重要的电力电子设备。
常用的整流器有单相整流器和三相整流器。
在日常生活中,除非使用电池供电,所有的电子设备必须配备一个整流器,因为所有的电子设备必须提供直流电源。
但是电力公司总是提供交流电源。
然而电力系统多采用三相接法,因此三相整流器的运用是最为广泛的。
三相整流器在发电机发电过程中,把交流电转化直流电给蓄电池提供充电电压。
因此三相整流器也起到一个充电器的作用。
目录摘要 (2)Abstract (3)第一章引言 (4)1.1 设计背景 (4)1.2 设计任务 (4)第二章方案选择论证 (6)2.1方案分析 (6)2.2方案选择 (6)第三章电路设计 (7)3.1 主电路原理分析 (7)第四章仿真分析 (9)4.1 建立仿真模型 (9)4.2仿真参数的设置 (10)4.3 仿真结果及波形分析 (11)第五章设计总结 (26)致 (27)参考文献 (28)摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。
这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。
据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。
电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
Matlab提供的可视化仿真工具Simulink 可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。
关键词:电力电子晶闸管simulink 三相桥式整流电路AbstractAt present, all kinds of power electronic converter input rectifier circuit input power level generally use the uncontrolled rectifier or phase controlled rectifier circuit. This kind of rectifier circuit is simple in structure, control technology is mature, but the AC input power factor is low, and the harmonic currents injected a lot to the power grid. According to estimates, in developed countries 60% of the electric energy transformed before use, and this figure reached 95% at the beginning of the century.Power electronic technology has been widely used in electric power system. According to estimates, the developed countries in the end users to use electricity, with more than 60% of the electricity at least after more than once in power electronic converter device. Power system in the modernization process, the power electronic technology is one of the key technologies. It is no exaggeration to say that, if you leave the power electronic technology, power system modernization isunthinkable.With the development of social production and scientific technology, application of rectifier circuit in the field of automatic control system, the measuring system and the generator excitation system is more and more widely. Matlab provides a visual simulation tool Simulink can directly establish circuit simulation model, changing the simulation parameters, and can immediately get the simulation results of arbitrary, intuitive, further saves the programming steps. In this paper, Simulink is used to model the three-phase full-bridge controlled rectifier circuit, the different control angle, bridge fault conditions are simulated and analyzed, which deepens the three-phase full-bridge controlled rectifier circuit theory, it also examines the foundations for modern power electronic experimental teaching lay a good solid.The curriculum design for the design of thyristor three-phase bridge controlled rectifier circuit, compared with three phase half wave rectifier circuit, the power of three-phase bridge rectifier circuit utilization rate higher, more extensive application.Key words: electronic power thyristor Simulink three-phase bridge rectifier circuit第一章引言1.1 设计背景在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。
基于三相桥式全控整流电路Matlab仿真实验报告 13351040 施定邦一、电路仿真原理及仿真电路图:图1图21、带电阻负载时当a≤60°时,电压波形均连续,对于电阻负载,电流波形与电压波形形状相同,也连续。
当a>60°时,电压波形每60°中的后一部分为零,电压波形因为晶闸管不能反向导通而不出现负值。
分析可知α角的移相范围是0°--120°。
2、带阻感负载时a≤60°时,电压波形连续,输出整流电压电压波形和晶闸管承受的电压波形与带电阻负载时十分相似,但得到的负载电流波形却有差异。
电容的容值越大电流波形就越平缓,近于水平直线。
a >60°时,电压波形则出现负值,是因为环流的作用使得电压反向。
分析可知α角的移相范围是0°--90°。
二、仿真过程与结果:设置三个交流电压源Va,Vb,Vc相位差均为120°,得到桥式全控的三相电源。
6个信号发生器产生整流电路的触发脉冲,六个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序依次给出,相位差依次为60°。
设置电源频率为50Hz:三、仿真结果1、带电阻负载:R=100Ω,无电容(1)α=0°时各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:2、带阻感负载:R=100Ω,H=1H (1)α=0°各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:(可以看到,和理论符合得很好,说明各参数设置合理,电路的工作状态接近于理想情况)实验总结:通过此次仿真实验,让自己对相关电路工作原理了解得更加详细和印象深刻,反正就是熟能生巧,然后多动手操作设置各种参数组合观察实验结果以得到比较理想的波形。
华东交通大学理工学院Institute of Technology.East China Jiaotong University课程(论文)题目基于MATLAB的三相整流电路的设计分院:电信分院专业:12电牵班级:1班学号:20120210470512学生姓名:姚涛指导教师:李房云起讫日期:2015年11月19日摘要在对三相桥式半控整流电路和三相桥式全控整流电路作出理论分析的基础上建立了基于 MATLAB/Simulink 的三相桥式整流电路的仿真模型,并对其带纯电阻负载及电阻电感性负载时的工作情况进行对比分析与研究。
用 MATLAB 软件自带的 Power System 工具箱进行仿真给出了仿真结果,验证了所建模型的正确性。
本文主要介绍三相桥式全控整流电路的主电路和触发电路的原理及控制电路图,由工频三相电压380V经升压变压器后由SCR(可控硅)再整流为直流供负载用。
但是由于工艺要求大功率,大电流,高电压,因此控制比较复杂,特别是触发电路部分必须一一对应,否则输出的电压波动大甚至还有可能短路造成设备损坏。
关键词三相桥式半控整流三相桥式全控整流晶闸管触发角AbstractIn the three-phase bridge type half controlled rectifier circuit and three-phase bridge type all control rectifier circuit to make a theoretical analysis on the basis of the established based on MATLAB /Simulink simulation model of three-phase bridge rectifier circuit And their resistance with pure resistive load and inductive load working condition were analyzed and the researchIn MATLAB software comes with Power System toolbox simulation gives the simulation results validate the correctness of the model.This paper mainly introduces the three-phase bridge type all control the rectifier circuit principle of main circuit and the trigger circuit and control circuit diagram, the three-phase power frequency voltage 380 v after step-up transformer by SCR rectifier (SCR) for dc for load. But because the process requires high power, high current, high voltage, so the control is more complex, especially the trigger circuit parts must be one to one correspondence, otherwise the output voltage fluctuation of big perhaps even short-circuit equipment damage.Key words Three-phase bridge type half controlled rectifier Three-phase bridge type all control rectifier thyristor trigger Angle目录中文摘要 (1)英文摘要 (2)目录 (3)引言 (4)1 三相桥式半控整流电路 (4)1.1 带纯电阻性负载的情况 (5)2 三相桥式半控整流电路图模型 (6)3 MATLAB的建模与仿真 (7)3.1MATLAB建模 (7)3.2MATLAB仿真 (9)3.3仿真结构分析 (11)4结论 (12)参考文献 (12)引言整流电路 Rectifier 尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路,不仅应用于一般工业领域也广泛应用于交通运输电力系统通信系统能源系统及其他领域因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有一定的现实意义,这不仅是电力电子电路理论学习的重要一环而且对工程实践的实际应用具有预测和指导作用1三相桥式半控整流电路由于三相桥式半控整流电路比三相桥式全控整流电路更简单,更经济,所以在中等容量装置或要求不可逆的电力拖动中应用比较广泛,它由共阴极接法的三相半波可控整流电路与共阳极接法的三相半波不可控整流电路串联而成因此这种电路兼有可控和不可控的特性[1]共阳极组 3 个整流二极管总是在自然换相点换流使电流换到比阴极电位更低的一相而共阴极组,3 个晶闸管则要在触发后才能换到阳极电位高的一个,输出整流电压的波形是三组整流电压波形之和。
改变共阴极组晶闸管的控制角可获得 0 2.34 2 变压器二次侧电压的直流电压。
具体电路图如图 1 所示:图 1 中 VT1 VT3 和 VT5 为触发脉冲相位互差 120 的晶闸管 VD4 VD6 和 VD2 为整流二极管由这 6 个管子组成三相桥式半控整流电路按照图 1 所示的管子编号它们的导通顺序依次为VT1-VD2-VT3-VD4-VT5-VD6 假定负载电感足够大、可以认为负载电流在整个稳态工作过程中保持恒值。
因此不论控制角为何值负载电流总是单向流动而且变化很小。
一个周期中参与导通的管子及输出整流电压的情况如表 1所示:以下分析带电阻负载的情况晶闸管触发角 =0 时对于共阴极组所接的 3 个晶闸管阳极所接交流电压最高的 1 个导通同理对于共阳极组阴极所接交流电压最低的 1 个导通。
这样任意时刻共阳极组和共阴极组中总是各有 1 个管子处于导通状态,负载电压为某个线电压图 1 中各个管子均在自然换相点处换相。
从输入电压与负载线电压的对照来看,自然换相点既是各线电压的交点又是各相电压的交点、从线电压波形可以看出由于共阴极组中处于通态的晶闸管对应的是最大的相电压,而共阳极组中对应的是最小的相电压,所以输出电压对应为 2 个相电压相减是线电压中最大的 1 个。
因此,输出直流电压波形为线电压在正半周的包络线只要共阴极组中有晶闸管导通、共阳极组中就会有二极管续流。
当 60 时:波形均连续对于电阻负载、波形与、波形形状一样也是连续的,波形图如图 3 a所示。
1.1 带纯电阻性负载的情况相应的参数设置1 交流电压源参数=100 V =25 Hz三相电源相位依次延迟120 2 晶闸管参数=0.001 =0.000 1 H =0 V =50 =250e-6F 3 负载参数=10 =0 H =inf 4 脉冲发生器的振幅为5 V 周期为0.04 s 即频率为25 Hz 脉冲宽度为2 当=0 时:设为0.003 3 0.016 60.029 9 s 此时的仿真结果如图3 a 所示。
当=60 时触发信号初相位依次设为0.01。
0.02330.036 6 s 此时仿真结果如图3 b 所示。
2三相桥式半控整流电路的仿真模型图模型3 MATLAB 建模与仿真3.1 MATLAB建模⑴三相桥式全控整流器的建模、参数设置三相桥式全控整流器的建模可以直接调用通用变换器桥(6-pulse thyristor)仿真模块。
参数设定如图5-1所示:图5-1 通用桥参数设置图⑵同步电源与6脉冲触发器的封装同步电源与6脉冲触发器模块包括同步电源和6脉冲触发器两个部分,6脉冲触发器需要三相线电压同步,所以同步电源的任务是将三相交流电源的相电压转换成线电压。
具体步骤如下:①建立一个新的模型窗口,命名为TBCF;②打开相应的模块组,复制5个int1(系统输入端口)、一个out1(系统输出端口、3个voltage Measurement(电压测量模块)、1个6-Pulse Generator (脉冲触发器)。
按图5-2连线。
图5-2 触发器模块连接图③进行封装,封装图如图5-3所示。
图5-3 封装图⑶三相桥式全控整流电路的建模、参数设置建立一个新的模型窗口,命名为ban2。
将三相桥式全控整流器和同步6脉冲触发器子系统复制到ban2模型窗口中。
通过合适的连接,最后连接成如图5-4所示的命名为修改版的三相桥式全控整流器电路仿真模型。
相关参数说明:交流电压源Ua、Ub、Uc等于U2为179.6V,频率为50Hz,Ua相序为0度,Ub相序为-120度,Uc相序为-240度。
RC中的参数为:R为1欧,L为0H,C为(1e-6)F。
RL 中的参数为:R的参数为0.721欧,L(平波电抗器)的参数为4.4mH。
DC的参数为-220V可设为任意值。
图5-4 三相桥式全控整流电路仿真图3.2 MATLAB 仿真打开仿真参数窗口,选择ode123tb算法,将相对误差设置1e-3,仿真开始时间设置为0,停止时间设置为0.04秒。
在下面的仿真图中Ud、Id为负载电压(V)和负载电流(A)。
⑴触发角为0度是的波形图5-5 触发角为0度时ud、id的波形图⑵触发角为30度时的波形图5-6 触发角为30度时ud、id的波形图⑵触发角为90度时的波形图5-7 触发角为90度时ud、id的波形图3.3 仿真结构分析由仿真出的触发角分别为0度、30度和90度的Ud、Id波形图和图2-2、图2-3、图2-4比较可知,三相桥式全控整流电路接反电动势负载时,在负载电感足够大以使负载电流连续的情况下,电路工作情况与电感负载时相似,电路中各处电压、电流波形均相同、仅在计算Id时有所不同,接反电动势阻感负载时的Id为:R EU I d d -=心得体会我知道电力电子技术是一门基础性和支持很强的技术,但我真正体会到这一点却是在这次课设的过程中。
通过本次课程设计,我对电力电子技术这门课有了很深的了解,对各个知识点有个更好的掌握。
本次设计,我所设计的是三相桥式全控整流电路,开始设计时我遇到了很多的问题,特别是在用MTALAB对整流电路进行仿真时,我有种很深的无助感。
好在后来经过仔细查阅资料,各类图书,以及老师和同学的帮助,我顺利完成了课设中的任务。