三相桥式全控整流电路的设计
- 格式:doc
- 大小:460.00 KB
- 文档页数:15
实验七 三相桥式全控整流电路实验一、实验目的了解三相桥式全控整流电路的工作原理,研究可控整流电路在电阻负载,电阻电感性负载,反电动势负载时的工作情况。
二、实验所需挂件及附件1. 电源控制屏2. 三相晶闸管触发电路3. 双踪示波器,万用表4. 晶闸管主电路5. 可调电阻,电感等三、实验原理1、电阻性负载图7-1 三相桥式全控整流电路(电阻性负载)及o 0=α波形阴极连接在一起的3个晶闸管(VT1,VT3,VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4,VT6,VT2)称为共阳极组。
共阴极组中与a ,b ,c 三相电源相接的3个晶闸管分别为VT1,VT3,VT5,共阳极组中与a ,b ,c 三相电源相接的3个晶闸管分别为VT4,VT6,VT2。
晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。
o 0=α表示各晶闸管从其自然换相点开始触发,得到的输出电压波形为其线电压的包络线。
图7-2 三相桥式全控整流电路(电阻性负载)o 30=α时波形从图可以看出,当o 60≤α时,u d 波形连续,对于电阻负载,i d 波形与u d 波形形状一样,也连续,每管工作120︒ ,每间隔60︒有一管换流。
60︒为波形连续和不连续的分界点。
α>60︒,由于对应线电压的过零变负,非同一相的共阴极组和共阳极晶闸管串联承受负压而关断,此时输出电压电流为零。
负载电流断续,各晶闸管导通角小于120︒。
晶闸管及输出整流电压的情况如下表所示:时段I II III IV V VI 共阴极组中导通的晶闸管VT1VT1VT3VT3VT5VT5共阳极组中导通的晶闸管VT6VT2VT2VT4VT4VT6整流输出电压u du α -u b=u abu α -u c=u αcu b –u c=u bcu b –u a=u bau c –u a=u cau c –u b=u cb三相桥式全控整流电路的特点:(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
实验三三相桥式全控整流电路实验一、实验目的(1)加深理解三相桥式全控整流的工作原理。
(2)了解KC系列集成触发器的调整方法和各点的波形。
二、实验所需挂件及附件三、实验线路及原理实验线路如图3-13及图3-14所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
集成触发电路的原理可参考1-3节中的有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
图3-13 三相桥式全控整流电路实验原理图四、实验内容三相桥式全控整流电路。
五、预习要求(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。
(2))学习本教材中有关集成触发电路的内容,掌握该触发电路的工作原理。
六、思考题(1)如何解决主电路和触发电路的同步问题?在本实验中主电路三相电源的相序可任意设定吗?答:①采用宽脉冲触发或双脉冲触发发式。
在本实验中使脉冲宽度大于1/6个周期。
②在除法某个晶闸管的同时,前一个晶闸管补发脉冲,即用两个窄脉冲替代宽脉冲。
(2)在本实验的整流时,对α角有什么要求?为什么?答:在本实验的整流时,移相角度α角度为0-90度,这是因为移相角度α超过90度就会进入逆变状态。
七、实验方法(1)三相桥式全控整流电路按图3-13接线,将DJK06上的 “给定”输出调到零(逆时针旋到底),使电阻器放在最大阻值处,按下“启动”按钮,调节给定电位器,增加移相电压,使α角在30°~150°范围内调节,用示波器观察并记录α=30°、60°及90°时的整流电压U d 和晶闸管两端电压U vt 的波形,并记录相应的U d 数值于下表中。
计算公式:U d =2.34U 2cosα (0~60O) U d =2.34U 2[1+cos(a+3)] (60o ~120o) 描绘α=300、600时Ud 、Uvt 的波形。
1 主电路的设计与原理说明1.1 主电路图图1-1中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)为共阳极组。
晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5, 共阳极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。
此主电路要求带反电动势负载,此反电动势E=60V ,电阻R=10Ω,电感L 无穷大使负载电 流连续。
其原理如图1所示。
图1-1 三相桥式全控整理电路原理图1.2 主电路原理为说明此原理,假设将电路中的晶闸管换作二极管,这种情况就也就相当于晶闸管触发角α=0o 时的情况。
此时,对于共阴极组的三个晶闸管,阳极所接交流电压值最高的一个导通。
而对于共阳极组的三个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。
这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。
α=0o 时,各晶闸管均在自然换相点处换相。
由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。
在分析d u 的波形时,既可从相电压波形分析,也可以从线电压波形分析。
从相电压波形看,以变压器二次侧的中点n 为参考点,共阴极组晶闸管导通时,整流输出电压 1d u 为相电压在正半周的包络线;共阳极组导通时,整流输出电压2d u 为相电压在负半周的包络线,总的整流输出电压d u =1d u -2d u 是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。
从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压 d u 为这两个相电压相减,是线电压中最大的一个,因此输出整流电压d u 波形为线电压在正半周的包络线。
课程设计任务书学生姓名:杨专业班级:自动化指导教师:工作单位:信息工程系题目:三相全控桥式整流电路的设计一.初始条件:1.直流电动机额定参数: PN=10KW, UN=220V, IN =50A,n=1000r/min,电枢电阻NRa=0.5Ω,电流过载倍数λ=1.5,电枢电感LD =7mH,励磁电压UL=220V 励磁电流IL=1.6A.2.进线交流电源:三相380V3.性能指标:直流输出电压0-220V,最大输出电流75A,保证电流连续的最小电流为5A。
使用三相可控整流电路,电动机负载,工作于电动状态。
二.要求完成的主要任务:1. 三相全控桥式主电路设计(包括整流变压器参数计算,整流元件定额的选择,平波电抗器电感量的计算等),讨论晶闸管电路对电网及系统功率因数的影响。
2.触发电路设计。
触发电路选型(可使用集成触发器)。
3.晶闸管的过电压保护与过电流保护电路设计。
4.提供系统电路图纸不少于一张。
三.时间安排:指导老师签字:年月日1引言整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路, 不仅用于一般工业, 也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域. 因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义, 这不仅是电力电子电路理论学习的重要一环, 而且对工程实践的实际应用具有预测和指导作用. 因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。
2设计的步骤⑴根据给出的技术要求,确定总体设计方案⑵选择具体的元件,进行硬件系统的设计⑶进行相应的电路设计,完成相应的功能⑷进行调试与修改⑸撰写课程设计说明书3设计方案选择及论证3.1三相桥式全控整流电路(如图3-1)应用最为广泛,共阴极组——阴极连接在一起的3个晶闸管(VT1,VT3,VT5)共阳极组——阳极连接在一起的3个晶闸管(VT4,VT6,VT2)编号:1、3、5,4、6、2阻感负载时的工作情况a≤60°时,u d波形连续,工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压u d波形、晶闸管承受的电压波形等都一样区别在于:由于负载不同,同样的整流输出电压加到负载上,得到的负载电流i d波形不同。
三相全控整流电路设计首先,我们来了解一下三相全控整流电路的原理。
三相电压通过变压器降压后输入到全控整流桥中。
全控整流桥由六个可控硅组成,用于将交流电转换为直流电。
当可控硅接通时,正半周交流电通过可控硅和负载,产生正半周输出电流。
当可控硅关断时,负载上的电流为零。
通过不断调节可控硅的触发角,可以实现对输出直流电的控制。
下面是三相全控整流电路的设计步骤:1.确定输入电源的参数:包括输入电压、频率、输出电流等。
根据这些参数来选择合适的变压器和滤波电容。
2.选择可控硅器件:可控硅具有可逆电流特性,可以控制整流桥的导通和关断。
选择合适的可控硅型号,考虑到其额定电流和电压能否满足设计需求。
3.计算滤波电容:滤波电容可以平滑输出电压波动。
根据负载电流和要求的纹波系数来计算所需的滤波电容。
4.设计触发控制电路:触发控制电路用于控制可控硅的导通和关断。
触发脉冲的宽度和相位可以通过控制触发电路的输出来实现。
5.绘制电路原理图和PCB布局:将上述设计结果绘制成电路原理图,并进行PCB布局,以便制造和安装电路。
6.选择合适的保护措施:三相全控整流电路在设计过程中需要考虑过电流、过温、过压等保护措施,保证电路的安全运行。
三相全控整流电路的应用非常广泛。
它可以用于工业电力系统中的直流电源供应,如钢铁厂、化工厂等。
此外,它还可以应用于交通设备控制,如电动车充电器、电车、电梯等。
同时,它还可以作为电动机的起动器,实现电动机电源的变频控制。
总而言之,三相全控整流电路是一种常见的交流电到直流电转换电路,具有广泛的应用领域。
在设计这个电路时,我们需要确定输入电源参数,选择合适的可控硅器件,计算滤波电容,并设计触发控制电路。
通过合适的保护措施,可以确保电路的安全运行。
三相全控整流电路在工业电力系统、交通设备和电动机控制等领域具有重要的应用。
电力电子三相桥式全控整流电路的设计一、设计原理三相桥式全控整流电路由六个可控硅器件组成,分别连接在电源的三个相线和负载之间。
通过对六个可控硅器件的控制,可以实现对电源电压的全波整流,并将交流电转换为直流电供给负载。
由于可控硅器件具有可控导通和关断的特性,因此可以实现对整流电路的控制。
二、工作方式三相桥式全控整流电路的工作方式主要分为两个阶段:正半周期和负半周期。
在正半周期中,当Uab > Ubc > Uca时,可控硅器件S1和S2导通,S3和S4关断,S5和S6的导通与关断由控制信号决定。
在负半周期中,当Uab < Ubc < Uca时,可控硅器件S1和S2关断,S3和S4导通,S5和S6的导通与关断由控制信号决定。
通过不断调整控制信号,可以实现对整流电路的输出电压的控制。
三、电路参数计算1.电源电压:根据实际应用需求,确定电源电压的额定值,通常为220V或380V。
2.负载电流:根据负载的功率需求和额定电压,计算负载电流的额定值。
3.可控硅器件参数:选取合适的可控硅器件,根据其额定电流和额定电压,确定器件的参数。
4.电感参数:根据负载电流的频率和电感的自感系数,计算电感的参数。
5.电容参数:根据负载电流的频率和电容的容量,计算电容的参数。
四、性能指标1.效率:计算整流电路的输入功率和输出功率的比值,即效率。
2.谐波失真:通过谐波分析,计算整流电路输出电压的谐波含量,衡量电路输出电压的质量。
3.稳定性:通过控制信号的调整,使得整流电路输出电压的波动尽可能小,保证电路的稳定性。
4.抗干扰能力:通过合理的电路设计和控制策略,提高电路的抗干扰能力,减少外部干扰对电路的影响。
五、总结三相桥式全控整流电路是一种常见的电能变换电路,广泛应用于工业和电力系统中。
本文详细介绍了该电路的设计原理、工作方式、电路参数计算以及相关的性能指标。
在实际应用中,需要根据具体的需求和要求进行电路设计,并通过实验和测试来验证电路的性能。
三相桥式全控整流电路设计简介三相桥式全控整流电路是一种常用的交流电到直流电转换的电路,可以实现对交流电进行全波整流和调节输出直流电压的功能。
该电路由四个可控硅器件组成,通过适当的触发角控制,可以实现对整流电压的精确控制。
本文将详细介绍三相桥式全控整流电路的设计原理、工作原理、关键参数计算以及注意事项等内容。
设计原理三相桥式全控整流电路的设计基于桥式整流电路和可控硅器件。
在正半周,D1和D3导通,D2和D4截止;在负半周,D2和D4导通,D1和D3截止。
通过适当的触发角控制可控硅器件的导通时间,可以实现对输出直流电压的调节。
工作原理三相桥式全控整流电路的工作过程如下:1.当输入交流电源正半周时,S1和S3导通,S2和S4截止。
此时,在负载上产生正向直流输出。
2.当输入交流电源负半周时,S2和S4导通,S1和S3截止。
此时,在负载上产生反向直流输出。
通过调节可控硅器件的触发角,可以控制整流电路的导通时间,从而控制输出直流电压的大小。
关键参数计算在设计三相桥式全控整流电路时,需要计算以下关键参数:1.输入电压:根据实际应用需求和输入交流电源的特性确定。
2.输出电压:根据实际应用需求确定。
3.负载电阻:根据实际应用需求确定。
4.可控硅器件的触发角:根据输出直流电压的调节范围和所使用的可控硅器件的特性确定。
注意事项在设计和使用三相桥式全控整流电路时,需要注意以下事项:1.选择适当的可控硅器件:根据实际应用需求选择合适的可控硅器件,考虑其额定电流、额定电压、触发特性等参数。
2.进行散热设计:由于可控硅器件在工作过程中会产生较大的热量,因此需要进行散热设计,确保可控硅器件能够正常工作。
3.控制触发角度:通过控制可控硅器件的触发角度,可以实现对输出直流电压的精确控制。
需要合理选择触发角度,并进行相应的控制。
4.注意电路保护:在电路设计中,应考虑电路的过流保护、过压保护等功能,以确保电路的安全稳定运行。
结论三相桥式全控整流电路是一种常用的交流电到直流电转换电路,可以实现对交流电进行全波整流和调节输出直流电压的功能。
1 主电路的设计与原理说明1。
1 主电路图图1—1中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)为共阳极组.晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5, 共阳极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。
此主电路要求带反电动势负载,此反电动势E=60V,电阻R=10Ω,电感L 无穷大使负载电 流连续。
其原理如图1所示。
图1-1 三相桥式全控整理电路原理图1。
2 主电路原理为说明此原理,假设将电路中的晶闸管换作二极管,这种情况就也就相当于晶闸管触发角α=0o 时的情况。
此时,对于共阴极组的三个晶闸管,阳极所接交流电压值最高的一个导通.而对于共阳极组的三个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通.这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。
α=0o 时,各晶闸管均在自然换相点处换相。
由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。
在分析d u 的波形时,既可从相电压波形分析,也可以从线电压波形分析。
从相电压波形看,以变压器二次侧的中点n 为参考点,共阴极组晶闸管导通时,整流输出电压 1d u 为相电压在正半周的包络线;共阳极组导通时,整流输出电压2d u 为相电压在负半周的包络线,总的整流输出电压d u =1d u -2d u 是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。
从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压 d u 为这两个相电压相减,是线电压中最大的一个,因此输出整流电压d u 波形为线电压在正半周的包络线.由于负载端所接的电感值无限大,会对变化的电流有抵抗作用,从而使得负载电流几乎为一条直线。
《电力电子技术》三相桥式全控晶闸管整流电路目录一设计要求 (1)1.1概述 (1)1.2设计要求 (1)二小组成员任务分工........................................................................ 错误!未定义书签。
三三相全控桥式主电路原理分析 (2)3.1总体结构 (2)3.2主电路的分析与设计 (2)3.1.1整流变压器的设计原理 (2)3.1.2变压器参数计算与选择 (3)3.3触发电路的分析与设计 (4)3.3.1触发电路的选择 (4)3.3.2 TC787芯片介绍 (4)3.4电路原理图 (6)3.5主电路工作原理 (7)3.6晶闸管保护电路的分析与设计 (7)3.6.1晶闸管简介 (7)3.6.2保护电路 (7)3.6.3晶闸管对电网的影响 (8)3.6.4晶闸管过流保护电路设计 (8)四仿真模型搭建及参数设置 (10)4.1主电路的建模及参数设置 (10)4.2控制电路的建模与仿真 (11)五仿真调试 (14)六设计心得........................................................................................ 错误!未定义书签。
一设计要求1.1概述首先我们要设计出整体的电路分别包括主电路,触发电路以及晶闸管保护电路。
主电路运用的是整流电路。
整流电路是电力电子电路中经常用的一种电路,它将交流电转变为直流电。
这里要求设计的主电路为三相全控桥式晶闸管整流电路。
整流电路将交流电网中的交流电转变成直流电,但为了保护晶闸管正常工作,需要围绕晶闸管设计触发电路、过电压和过电流保护电路。
因此我们可以设计出整体的程序框图之后按照框图进行接下来的电路设计。
三相全控桥式晶闸管整流电路需要使用交流、直流和触发信号,而且还存在电容和电感等非线性元件,如果采用传统的方法,分析和运算都非常繁琐。
三相桥式全控整流电路的研究及触发电路设计三相桥式全控整流电路是一种常见的电力电子转换器,广泛应用于交流电转直流电的场合,如电机驱动、电力调节和换流器等。
其主要特点是可以实现对输出电压的调节,从而实现对负载的精确控制。
本文将对三相桥式全控整流电路的研究及触发电路设计进行详细介绍。
首先,我们来了解三相桥式全控整流电路的基本原理。
该电路通过与交流电源相连的三个可控硅组成的桥式整流器来完成交流电的转换。
根据负载的要求,通过控制可控硅的导通角度,可以实现对负载电压和电流的调节。
对于三相桥式全控整流电路,触发电路的设计十分重要。
触发电路的作用是控制可控硅的导通角度,从而实现对输出电压的调整。
常用的触发方式有脉冲触发、调相触发和零点触发等。
脉冲触发方式是最常用的触发方式之一、其原理是通过脉冲信号的控制,使可控硅在特定的时间点上导通。
在三相桥式全控整流电路中,脉冲触发电路一般由脉冲生成电路和脉冲控制电路两部分组成。
脉冲生成电路负责产生一系列的脉冲信号,而脉冲控制电路则根据需要将脉冲信号传输给可控硅,实现其导通控制。
调相触发方式是另一种常见的触发方式。
其原理是通过改变可控硅的导通时间,实现对输出电压的调节。
调相触发电路一般由相位比较器、比例积分器和触发器等组成。
相位比较器负责将电网电压与可控硅导通信号进行比较,得到相位差信号;比例积分器将相位差信号转化为控制信号,并根据需要进行放大和积分处理;触发器则根据控制信号来控制可控硅的导通。
零点触发方式是在交流电源的零点时刻触发可控硅的导通。
其原理是在零点期间,通过触发电路产生的信号来控制可控硅的导通。
零点触发电路由延时电路和触发控制电路组成。
延时电路负责延迟一定时间后输出特定的脉冲信号,而触发控制电路则负责将脉冲信号传输给可控硅,实现其导通控制。
在三相桥式全控整流电路的设计中,需要考虑到电路的稳定性、可靠性和效率等因素。
为此,我们可以采用模拟电路设计方法,结合计算分析和实际测试,对电路进行合理选择和优化。
1三相桥式全控整流电路(电阻性负载)
三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。
1-1三相桥式全控整流电路(电阻性负载)
1-1三相桥式全控整流电路
n
d
VT VT VT 462d 2
d
2-1三相桥式全控整流电路(电阻性负载)仿真图2.2三相桥式全控整流电路(电阻性负载)电源参数
电源220V.相位分别为0︒,120︒,-120︒,频率50HZ
设置控制脚a为0︒,30︒,60︒,90︒与其相印的波形
3-1三相桥式全控整流电路(电阻性负载)a为0︒
3-2三相桥式全控整流电路(电阻性负载)a为30︒
3-3三相桥式全控整流电路(电阻性负载)a为60︒
3-4三相桥式全控整流电路(电阻性负载)a为90︒
4总结
2个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同一相器件。
同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180 。
实验三三相桥式全控整流电路三相桥式整流电路是在工业生产中应用最为广泛的电力电子电路之一,它可以工作在整流状态,也可以工作在逆变状态。
还可以多台设备组合,构成一个负载的直流或交流电力转动系统。
它的移相范围要求比较大,一般用垂直移相电路进行触发。
一、实验目的1.熟悉掌握三相桥式整流电路的工作原理和调试方法。
2.掌握三相桥式整流电路输入电压、输出电压、控制角之间的函数关系。
二、实验仪器TDR-2三相整流电路学习机、示波器、万用表。
三、实验原理实验主电路如图3所示。
由6个晶闸管组成三相桥式全控电路的主电路。
每个晶闸管的触发脉冲来自由专用集成电路KJ004、KJ041构成的控制电路。
有关集成电路的技术指标和引脚排列见附录。
通过对控制电压UK的调节,可以使输出直流电压和电流改变,输入电压、输出电压和控制角之间有严格的函数关系。
A1冲J1接通J1断开图3四、实验步骤1.将实验装置的输入端A1、B1、C1接三相380V电源,注意相序正确;负载端接一滑线电阻器。
通过控制按钮使主电路接触器J1为断开状态,此时D31为暗状态。
调试移相触发电路,步骤如下:(1)接通J1,用示波器观测输出电压的波形。
(2)调节U P使输出电压在控制角大于120度的范围。
(3)分别调试电位器R6、R16、R26,使输出电压的波形各脉波尽量对称。
2.整流电路接纯电阻负载时的实验(1)整流电路的输出端接一个滑线电阻器,阻值放在最大位置。
按K4,D31亮,接触器J1闭合,主电路接通,调节U K使输出电压Ud为最大,再调节滑线电阻器使输出电流为1A。
(2)用示波器观察不同控制角时负载电压和电流的波形。
(3)测量不同控制角下输入电压、输出电压的数值,填入下表:五、思考题1.用多个三相桥式整流电路可以组成哪些电力传动系统?2.为什么三相桥式电路一般要求触发脉冲的调节范围比较大?六、实验报告要求1.画出控制角为60度时整流输出电压和电流的波形,晶闸管两端电压的波形。
三相桥式全控整流电路1. 引言三相桥式全控整流电路是一种常用的电力电子器件,广泛应用于直流供电系统中。
它能将三相交流电转换成稳定的直流电,并且可以根据需要调整输出电压大小。
本文将详细介绍三相桥式全控整流电路的结构、工作原理以及优缺点。
2. 结构三相桥式全控整流电路由六个可控硅组成,分别为三相桥臂和控制电路。
其中,三相桥臂由三个可控硅和三个反并联的二极管组成,形成了一个三相全控整流单元。
控制电路用于控制可控硅的导通和关断,以实现对输出电压的调节。
3. 工作原理当输入电源为三相交流电时,通过变压器将其降压,并适当调整相位,然后将其输出到三相桥臂上。
根据控制电路的控制信号,控制可控硅的导通和关断。
当可控硅导通时,交流电信号经过可控硅和二极管之间的通路,形成一个通路;当可控硅关断时,通路中断。
可控硅的导通和关断时间可以通过控制电路的触发方式和触发角来控制。
触发角表示可控硅导通的延迟时间,可以调整导通角度来控制输出电压的大小。
通过调整可控硅的导通角度,可以实现对输出电压的调节。
一般情况下,三相桥式全控整流电路的工作周期是以输入交流电的周期为基准的。
在每个周期内,三相桥臂会分别导通和关断,以便实现对输出电压的稳定控制。
控制电路会根据电压反馈信号和控制信号,实时调整可控硅的导通角度,以使输出电压达到设定值。
4. 优缺点4.1 优点•三相桥式全控整流电路具有较高的稳定性和精度,适用于对电压要求较高的场合。
•可控硅的导通角度可调,可以实现对输出电压的精确调节。
•结构相对简单,制造成本较低。
4.2 缺点•由于可控硅的导通和关断需要外部控制电路的支持,因此整体的复杂度较高。
•整流过程中会产生一定的谐波,可能对其他电器设备造成干扰。
•输出电压的调节需要实时监测和反馈,对控制电路提出了一定的要求。
5. 应用三相桥式全控整流电路广泛用于直流供电系统中,如直流电源、电动机控制等领域。
其稳定性和精确控制性使其成为电力电子设备的重要组成部分。
三相桥式全控整流电路实验报告实验目的,通过搭建三相桥式全控整流电路,了解其工作原理和特性,掌握整流电路的调试方法和技巧。
实验器材,三相交流电源、三相桥式全控整流电路板、示波器、电压表、电流表、直流电源。
实验原理,三相桥式全控整流电路由六个可控硅组成,分别为T1、T2、T3、T4、T5、T6,接在三相交流电源上。
当T1和T4导通时,电流从A相正半周流向负极,当T2和T5导通时,电流从B相正半周流向负极,当T3和T6导通时,电流从C相正半周流向负极。
这样便实现了三相桥式全控整流电路的整流功能。
实验步骤:1. 按照实验电路原理图,搭建三相桥式全控整流电路。
2. 接通三相交流电源,调节电压和频率,观察整流电路的工作状态。
3. 使用示波器观察整流电路的输入输出波形,记录波形特点。
4. 调节触发脉冲的相位和宽度,观察整流电路的输出电压和电流变化。
5. 测量整流电路的输出电压和电流,绘制特性曲线。
实验结果与分析:通过实验观察和测量,我们得到了三相桥式全控整流电路的输入输出波形和特性曲线。
在不同触发脉冲相位和宽度的情况下,整流电路的输出电压和电流呈现出不同的变化规律。
当触发脉冲提前或延迟,整流电路的输出电压和电流波形会发生相位移动和变形,从而影响整流电路的工作效果。
结论:通过本次实验,我们深入了解了三相桥式全控整流电路的工作原理和特性,掌握了整流电路的调试方法和技巧。
同时,我们也发现了整流电路在不同触发脉冲条件下的输出特性,为今后的实际工程应用提供了重要的参考依据。
实验总结:三相桥式全控整流电路作为一种常见的电力电子器件,具有广泛的应用前景。
通过本次实验,我们不仅学习了整流电路的基本原理,还掌握了实际调试和测量的技能。
希望通过今后的实验和学习,能够更深入地理解电力电子技术,为工程实践和科研创新提供有力支持。
以上就是本次三相桥式全控整流电路实验的报告内容,希望能够对大家有所帮助。
电力电子技术课程设计报告不可逆直流电力拖动系统中三相桥式全控整流电路的设计姓名陈营学号0317年级03班专业电气工程及其自动化系(院)汽车学院指导教师齐延兴2011年12月24日一、引言整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路, 不仅用于一般工业, 也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域. 因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义, 这不仅是电力电子电路理论学习的重要一环, 而且对工程实践的实际应用具有预测和指导作用. 因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。
二、设计任务课程设计目的1、培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养综合分析问题、发现问题和解决问题的能力。
3、通过对不可逆直流电力拖动系统中三相桥式全控整流电路的设计,掌握三相桥式全控整流电路的工作原理,综合运用所学知识,三相桥式全控整流电路和系统设计的能力4、培养运用知识的能力和工程设计的能力。
5、提高课程设计报告撰写水平。
课程设计指标内容及要求三相桥式全控整流电路设计要求:(1)电网:380V,50HZ;(2)直流电机额定功率17KW,额定电压220V,额定电流90A,额定转速1500r/min.(3)变压器漏感:设计的步骤⑴根据给出的技术要求,确定总体设计方案⑵选择具体的元件,进行硬件系统的设计⑶进行相应的电路设计,完成相应的功能⑷进行调试与修改⑸撰写课程设计说明书三、设计方案选择及论证三相半波可控整流电路特点:阻感负载,L值很大,i d波形基本平直:a≤30°时:整流电压波形与电阻负载时相同;a>30°时(如a=60°时的波形如图2-16所示)u2过零时,VT1不关断,直到VT2的脉冲到来,才换流,由VT2导通向负载供电,同时向VT1施加反压使其关断——u d波形中出现负的部分阻感负载时的移相范围为90°。
数量关系:U d /U 2与a 成余弦关系,如图中的曲线2所示。
如果负载中的电感量不是很大,则当a >30°后,u d 中负的部分减少,U d 略为增加,U d /U 2与a的关系将介于曲线1和2之间。
变压器二次电流即晶闸管电流的有效值为晶闸管的额定电流为 晶闸管最大正反向电压峰值均为变压器二次线电压峰值图2-16中i d 波形有一定的脉动,但为简化分析及定量计算,可将i d 近似为一条水平线。
三相半波的主要缺点在于其变压器二次电流中含有直流分量,为此其应用较少。
三相桥式全控整流电路应用最为广泛,共阴极组——阴极连接在一起的3个晶闸管(VT 1,VT 3,VT 5)共阳极组——阳极连接在一起的3个晶闸管(VT 4,VT 6,VT 2)编号:1、3、5,4、6、2阻感负载时的工作情况a ≤60°时,u d 波形连续,工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压u d 波形、晶闸管承受的电压波形等都一样区别在于:由于负载不同,同样的整流输出电压加到负载上,得到的负载电流i d 波形不同。
阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。
a >60°时阻感负载时的工作情况与电阻负载时不同,电阻负载时u d 波形不会出现负的部分,而阻感负载时,由于电感L 的作用,u d 波形会出现负的部分带阻感负载时,三相桥式全控整流电路的a 角移相范围为90°。
定量分析当整流输出电压连续时(即带阻感负载时,或带电阻负载a ≤60°时)的平均值为:图 三相半波可控整流电路,阻感负载时的电路及a =60°时的波形(3-1)(3-2)(3-3)带电阻负载且a >60°时,整流电压平均值为:输出电流平均值为 I d =U d /R当整流变压器为图2-17中所示采用星形接法,带阻感负载时,变压器二次侧电流波形如图2-23中所示,为正负半周各宽120°、前沿相差180°的矩形波,其有效值为:晶闸管电压、电流等的定量分析与三相半波时一致。
三相桥式全控整流电路接反电势阻感负载时,在负载电感足够大足以使负载电流连续的情况下,电路工作情况与电感性负载时相似,电路中各处电压、电流波形均相同,仅在计算I d 时有所不同,接反电势阻感负载时的I d 为:式中R 和E 分别为负载中的电阻值和反电动势的值。
不考虑电动机的电枢电感时,只有晶闸管导通相的变压器二次侧电压瞬时值大于反电动势时才有电流输出,此时负图三相桥式整流电路带阻感负载,a =30°时的波形载电流断续,对整流电路和电动机的工作都不利,要尽量避免。
故在电枢回路串联一平波电抗器,以保证整流电流在较大范围内连续,如图。
图三相半波带电动机负载且加平波电抗器时的电压电流波形电动机稳态时,虽然U d波形脉动较大,但由于电动机有较大的机械惯量,故其转速和反电动势都基本无脉动。
此时整流电压的平均值由电动机的反电动势及电路中负载平均电流I d 所引起的各种电压降所平衡。
整流电压的交流分量则全部降落在电抗器上。
由I d引起的压降有下列四部分:变压器的电阻压降,其中为变压器的等效电阻,它包括变压器二次绕组本身的电阻以及一次绕组电阻折算到二次侧的等效电阻;晶闸管本身的管压降,它基本上是一恒值;电枢电阻压降;以及由重叠角引起的电压降。
此时,整流电路直流电压的平衡方程为(a、电流连续时电动机的机械特性在电机学中,已知直流电动机的反电动势为(3-4)式中,Ce为由电动机结构决定的电动势常数;φ为电动机磁场每对磁极下的图三相半波电流连续时以电流表示的电动机机械特性磁通量,单位为(Wb);n为电动机的转速,单位为(r/min)。
其机械特性与由直流发电机供电时的机械特性是相似的,是一组平行的直线,其斜率由于内阻不一定相同而稍有差异。
调节角,即可调节电动机的转速。
同理,可列出三相桥式全控整流电路电动机负载时的机械特性方程为b、电流断续时电动机的机械特性由于整流电压是一个脉动的直流电压,当电动机的负载减小时,平波电抗器中的电感储能减小,致使电流不再连续,此时电动机的机械特性也就呈现出非线性。
电流连续时的理想空载反电动势如图2-39所示。
实际上当I d减小至某一定值I dmin以后,电流变为断续,这个是不存在的,真正的理想空载点远大于此值。
电流断续时电动机机械特性的特点:电动机的理想空载转速抬高机械特性变软,即负载电流变化很小也可引起很大的转速变化。
随着a 的增加,进入断续区的电流值加大。
由于a愈大,变压器加给晶闸管阳极上的负电压时间愈长,电流要维持导通,必须要求平波电抗器储存较大的磁能,而电抗器的L为一定值的情况下,要有较大的电流I d才行电流断续时电动机机械特性可由下面三个式子准确地得出:式中,L为回路总电感。
一般只要主电路电感足够大,可以只考虑电流连续段,完全按线性处理。
当低速轻载时,断续作用显著,可改用另一段较陡的特性来近似处理,其等效电阻比实际的电阻R要大一个数量级。
整流电路为三相半波时,在最小负载电流为I d min时,为保证电流连续所需的主回路电感量为(mH))对于三相桥式全控整流电路带电动机负载的系统,有(mH))L中包括整流变压器的漏电感、电枢电感和平波电抗器的电感。
前者数值都较小,有时可忽略。
I dmin一般取电动机额定电流的5%~10%。
因为三相桥式全控整流电压的脉动频率比三相半波的高一倍,因而所需平波电抗器的电感量也可相应减小约一半,这也是三相桥式整流电路的一大优点。
本次设计采用的是三相桥式全控整流电路的方法,开关选用晶闸管。
四、总体电路设计根据三相桥式全控整流电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出桥式全控整流电路的结构框图如图1所示。
图三相桥式全控整流电路结构框图五、各功能模块电路设计控制电路设计相控电路指晶闸管可控整流电路,通过控制触发角a的大小即控制触发脉冲起始相位来控制输出电压大小。
为保证相控电路的正常工作,很重要的一点是应保证按触发角a的大小在正确的时刻向电路中的晶闸管施加有效的触发脉冲。
对于相控电路这样使用晶闸管的场合,也习惯称为触发控制,相应的电路习惯称为触发电路。
大、中功率的变流器对触发电路的精度要求较高,对输出的触发功率要求较大,故广泛应用的是晶体管触发电路,其中以同图同步信号为锯齿波的步信号为锯齿波的触发电路应用最多。
(1)同步信号为锯齿波的触发电路如图为同步信号为锯齿波的触发电路,其输出可为双窄脉冲(适用于有两个晶闸管同时导通的电路),也可为单窄脉冲。
电路结包括三个基本环节:脉冲的形成与放大、锯齿波的形成和脉冲移相、同步环节。
此外,还有强触发和双窄脉冲形成环节。
a、脉冲形成环节V4、V5——脉冲形成V7、V8——脉冲放大控制电压u co加在V4基极上。
u co=0时,V4截止。
V5饱和导通。
V7、V8处于截止状态,无脉冲输出。
电容C 3充电,充满后电容两端电压接近2E 1(30V)时,V 4导通,A 点电位由+E 1(+15V) 下降到左右,V 5基极电位下降约-2E 1(-30V), V 5立即截止。
V 5集电极电压由-E 1(-15V) 上升为+,V 7、V 8导通,输出触发脉冲。
电容C 3放电和反向充电,使V 5基极电位上升,直到u b5>-E 1(-15V),V 5又重新导通。
使V 7、V 8截止,输出脉冲终止。
脉冲前沿由V4导通时刻确定,脉冲宽度与反向充电回路时间常数R 11C 3有关。
电路的触发脉冲由脉冲变压器TP 二次侧输出,其一次绕组接在V 8集电极电路中。
b 、锯齿波的形成和脉冲移相环节锯齿波电压形成的方案较多,如采用自举式电路、恒流源电路等。
锯齿波电路由V 1、V 2、V3和C 2等元件组成,V 1、V S 、RP 2和R 3为一恒流源电路。
锯齿波是由开关V 2管来控制的。
V 2截止时,恒流源电流I 1c 对电容C 2充电, 调节RP 2,即改变C 2的恒定充电电流I 1c ,可见RP 2是用来调节锯齿波斜率的。
V 2导通时,因R 4很小故C 2迅速放电,u b3电位迅速降到零伏附近。
V 2周期性地通断,u b3便形成一锯齿波,同样u e3也是一个锯齿波。
射极跟随器V 3的作用是减小控制回路电流对锯齿波电压u b3的影响。
V 4基极电位由锯齿波电压、控制电压u co 、直流偏移电压u p 三者作用的叠加所定。
如果u co =0,u p为负值时,b 4点的波形由u h +u p 确定。